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Global Sea Floor Topography
from Satellite Altimetry and

Ship Depth Soundings
Walter H. F. Smith* and David T. Sandwell

A digital bathymetric map of the oceans with a horizontal resolution of 1 to 12 kilometers
was derived by combining available depth soundings with high-resolution marine gravity
information from the Geosat and ERS-1 spacecraft. Previous global bathymetric maps
lacked features such as the 1600-kilometer-long Foundation Seamounts chain in the
South Pacific. This map shows relations among the distributions of depth, sea floor area,
and sea floor age that do not fit the predictions of deterministic models of subsidence
due to lithosphere cooling but may be explained by a stochastic model in which randomly
distributed reheating events warm the lithosphere and raise the ocean floor.

Knowledge of ocean floor topography data
is essential for understanding physical
oceanography, marine biology, chemistry,
and geology. Currents, tides, mixing, and
upwelling of nutrient-rich water are all in-
fluenced by topography. Seamounts may be

particularly important in mixing and tidal
dissipation (1), and deep water fisheries on
seamount flanks have become economically
significant (2). Seamounts, oceanic pla-
teaus, and other geologic structures associ-
ated with intraplate volcanism, plate
boundary processes, and the cooling and
subsidence of the oceanic lithosphere
should all be manifest in accurate bathy-
metric maps.

Conventional sea floor mapping is a te-
dious process. Ships have measured depth
with single-beam echo sounders since the

W. H. F. Smith is at the National Oceanic and Atmospher-
ic Administration, Code E/OC-2, 1315 East-West High-
way, Silver Spring, MD 20910–3282, USA.
D. T. Sandwell is at the Scripps Institution of Oceanogra-
phy, La Jolla, CA 92093, USA.
*To whom correspondence should be addressed. E-mail:
walter@amos.grdl.noaa.gov

SCIENCE z VOL. 277 z 26 SEPTEMBER 1997 z www.sciencemag.org1956



60
°N

30
°N

30
°S

60
°S0°

0°
0°

30
°E

60
°E

90
°E

12
0°

E
15

0°
E

18
0°

15
0°

W
12

0°
W

90
°W

60
°W

30
°W

-6
-4

E
le

va
ti

o
n

 (
km

)
-2

0
3

Fi
g

.1
.C

ol
or

sh
ad

ed
-r

el
ie

fi
m

ag
e

of
th

e
m

od
el

ed
to

po
gr

ap
hy

,i
llu

m
in

at
ed

fro
m

th
e

no
rt

hw
es

t.

RESEARCH ARTICLE

www.sciencemag.org z SCIENCE z VOL. 277 z 26 SEPTEMBER 1997 1957



1950s, but these data are sparsely distribut-
ed (hundreds of kilometers between sur-
veys) and may have large errors in naviga-
tion and digitization (3). More accurate
multibeam swath-mapping systems came
into use on some ships in the 1980s, but in
the deep ocean, these were deployed pri-
marily along mid-ocean ridges (4). Some
surveys are classified as secret in military
archives (5) or remain proprietary for eco-
nomic or political reasons. Global bathy-
metric mapping requires some means of
combining these heterogeneous soundings
and estimating depths in the regions where
survey data are sparse. Traditionally, bathy-
metric contours have been drawn by hand
so that intuition (or prejudice) fills the gaps
in coverage. The contours may then be
digitized and interpolated to produce grid-
ded estimates. The last global syntheses
were made in the late 1970s and early
1980s, yielding the fifth edition of the Gen-
eral Bathymetric Charts of the Oceans
(GEBCO) (6) and the Earth Topography
5-arc-min grid (ETOPO-5) (7).

Recent developments allow another ap-
proach to this problem. International coop-
eration has yielded access to a greater vari-
ety of sounding data (4, 6, 8), and automat-
ed quality control (3, 9) and archiving (10)
methods have been devised. In addition,
the ERS-1 and Geosat spacecrafts have sur-
veyed the gravity field over nearly all of the
world’s ocean areas (11, 12). Over the 15-
to 200-km wavelength band, marine gravity
anomalies are caused primarily by topo-
graphic variations on the ocean floor; thus,
in principle, satellite gravity data can be
used to infer some aspects of the ocean’s
depths. However, the topography/gravity
ratio varies from one region to another
because of changes in sediment thickness
and other factors, so that the estimation of
topography from gravity is not straightfor-
ward and requires accurate depth soundings
for calibration. Here, we report our efforts
to combine quality-controlled ship depth
soundings with interpolation guided by sat-
ellite-derived gravity data to yield a high-
resolution grid of sea floor topography.

We assembled digital depth soundings
from the U.S. National Geophysical Data
Center (NGDC) (8), the Scripps Institu-
tion of Oceanography (SIO) (13), and two
databases derived from data originally ar-
chived at the Lamont Doherty Earth Ob-
servatory (LDEO) (3, 9, 14). Although
the four sources have many cruises in com-
mon, each has unique strengths (15). We
also obtained recent survey data directly
from various investigators (16). Global
gridded gravity anomaly data were derived
from satellite altimeter measurements of
sea surface slope (11, 17). The accuracy of
the gravity grid is 3 to 7 mgal (1 milli-

Galileo 5 10–5 m/s2) with a resolution
limit of 20 to 25 km, depending on factors
such as local sea state and proximity to
areas of high mesoscale ocean variability
(11, 18). Land elevation and shoreline
data (19) furnished additional constraints
in nearshore areas.

Method and limitations. Dixon et al.
(20) have summarized the basic theory for
estimating sea floor topography from gravity
anomalies. Models of the isostatic compen-
sation of sea floor topography furnish a
spectral transfer function that predicts the
gravity anomaly expected from sea floor
topography (21). This transfer function is
isotropic and depends on mean depth,
crustal density and thickness, and elastic
lithosphere thickness, and although its in-
verse provides a theoretical basis for esti-
mating sea floor topography from observed
gravity anomalies, there are a number of
complications that require careful treatment
(20, 22–25). (i) The estimation must be
restricted to a limited wavelength band, be-
cause the gravity-to-topography transfer
function becomes singular at wavelengths
much longer than the flexural wavelength of
the lithosphere and also at wavelengths
much shorter than 2p 3 the mean depth,
because of isostatic compensation and up-
ward continuation, respectively. (ii) At short
wavelengths, the transfer function depends
on well-constrained parameters (mean depth
and crustal density), but at longer wave-
lengths, it also depends on more variable and
less certain parameters (elastic lithosphere
thickness or crustal thickness). (iii) Sedi-
mentation preferentially fills bathymetric
lows and can eventually bury the original
topography, adding a spatially dependent
and nonlinear aspect to the transfer func-
tion. (iv) The transfer function is two di-
mensional and so requires complete coverage

of gravity data. (v) The transfer function is
nonlinear (22) in areas of high-amplitude
topography, especially where summits ap-
proach the sea surface.

Our method uses a Gaussian filter with a
half-amplitude at 160-km wavelength to
smoothly separate the topography into two
bands: a long-wavelength regional topogra-
phy, where the transfer function requires an
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Fig. 2. Coherency between our depth estimates
and the Atalante measurements as a function of
wavelength, with one sigma error bars. Coheren-
cy values of 1, 0, and 0.5 correspond to perfect
correlation, complete absence of correlation, and
equal magnitudes of correlated and uncorrelated
components, respectively.
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area per 50-m interval of depth, as a function of
depth. (A) Using all data. Our solution (solid line)
smoothly resolves 50-m intervals, whereas
ETOPO-5 (7) (gray bars) is biased toward contour
values. Previous estimates (34) (dashed line) gave
only 1-km intervals. Our solution for 1-km intervals
(dotted line) has less area in the 5- to 6-km bin and
more area in the 3 to 4-km bin than previously
found, because the satellite gravity reveals more
seamounts. (B) Solution from all data [solid line,
same as in (A)] and from a restricted data set
corrected for sediment thickness (gray area). (C)
Observed hypsometry of the restricted data set
[gray area, same as in (B)] and predictions of three
model curves: plate models PS (45) (dashed line)
and GDH1 (47 ) (dotted line) and our model (solid
line).
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assumed elastic thickness, and a short-
wavelength local topography, where the
transfer function is independent of the elas-
tic thickness. We restricted gravity-derived
estimation to the shorter wavelength band
(26). We regionally calibrated the topogra-
phy/gravity ratio using the local topography
at points constrained by soundings, to ad-
just the transfer function for the effects of
regionally varying sediment thickness. Our

earlier method (23) was improved by add-
ing a constraint-propagation step: grid cells
constrained by data were set to the median
of data values in the cell, and then a finite-
difference interpolation routine (27) was
used to perturb neighboring estimated val-
ues toward the constrained values. Thus, in
well-surveyed areas, the accuracy and reso-
lution depended only on the grid spacing
(17) and the quality of the constraints and
not on the gravity data. Constrained and
estimated values were separately encoded so
that they could be distinguished. During our
process, inaccurate ship soundings became
evident that were not detectable in initial
quality control (3); these soundings were
deleted from the databases, and a new esti-
mate was made. This approach differed from
another solution (24) in several respects
(28).

Results, verification, and assessment.
Our topography (29) reveals all of the in-
termediate- and large-scale structures of the
ocean basins (Fig. 1). Incised canyons are
seen in the continental margins. Spreading
ridges stand out as broad highs with an axial
valley along the Mid-Atlantic Ridge and an
axial high along the East Pacific Rise and
the Pacific-Antarctic Rise. Fracture zones
reflect the direction of opening of the At-
lantic basin, whereas in the Pacific they
record a more complex history of major
plate reorganizations. Numerous seamounts,
some in linear chains, display a variety of
patterns of volcanism.

We tested the precision and resolution of
our estimates in a worst case scenario: a
high-relief area lying more than 160 km from
most soundings. After making a topography
estimate, we obtained depths measured by
the research vessel (R/V) Atalante (30) in a
remote area of the South Pacific near the
Foundation Seamounts (31–33). Atalante

found seamounts with summits less than 1
km from the surface and a 6500-m-deep
trough in this area, where the ocean floor
typically lies at 4-km depth. The root-mean-
square (rms) amplitude of these topographic
variations was 791 m, whereas the rms dif-
ference between our estimates and the ob-
served values was 250 m; thus, the estimates
recovered nearly 70% of the signal. Cross-
spectral coherency (Fig. 2) shows high cor-
relation between our estimates and the ob-
served depths at all wavelengths greater than
25 km, with a slight decrease at wavelengths
greater than 100 km, where the estimation
relied on interpolated soundings more than
altimetry. The low coherency at wavelengths
less than 25 km means that in the estimated
topography, two narrow objects may blur
into one object if they are closer than 12.5
km apart and objects much narrower than
12.5 km will be poorly resolved.

The Foundation Seamounts were un-
known until they were revealed by satellite
altimetry (33). We compared the Atalante
depths with ETOPO-5 depths to assess how
much information was missing in older
maps; the (rms) difference between the two
was 580 m, more than 70% of the signal.
Uncharted seamounts were a significant
source of topographic variation, and infor-
mation from satellite gravity can reduce the
error in estimated topographic variation by
more than half.

Hypsometry and thermal subsidence
models. Various estimates of the distribu-
tion of ocean floor area with depth, called
hypsometric curves, are shown in Fig. 3A.
Previous curves (34) were calculated in 1-
km intervals. The ETOPO-5 data cannot
yield a more detailed curve because of biases
toward multiples of 100, 200, and 500 m,
the contours that were digitized to produce
ETOPO-5. Our solution yielded a smooth
curve at 50-m intervals. Viewed in 1-km
intervals, our solution had more area in the
3- to 4-km range and less in the 5- to 6-km
range than was seen previously, reflecting
the increased number of seamounts mapped
by satellite altimetry (35).

We interpolated ages (36) and sediment
thicknesses (37) to our depth grids, exclud-
ed anomalous or problematic areas (38) but
not thermal swells, and isostatically correct-
ed the depths in the remaining areas for the
sediment load using an average sediment
density (39). Grouping the areas of the
remaining data into intervals of 50 m of
depth and 1 million years (My) of age shows
the variation of depth with age (Fig. 4A).
These exclusions and corrections affected
the hypsometry (Fig. 3B); the sediment cor-
rection slightly increased the area deeper
than 5.2 km, whereas the exclusions re-
duced the area elsewhere. The area reduc-
tion was roughly independent of depth at
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Fig. 4. Sediment-corrected depth as a function of
sea floor age. (A) Area of the sea floor in 50-m
depth and 1-My age intervals (colors, scale at
bottom). Upper and lower quartiles of depth (thin
lines), median depth (heavy line), and modal depth
(dots) are shown in each age interval from 0 to 130
Ma, where they are reliably determined. (B) Ob-
served median depth [heavy line, same as in (A)]
and depth predicted by deterministic models PS
(45) (thin solid line), GDH1 (47) (dashed line), and
BL (46) (dotted line). (C) Synthetic data predicted
by our model give an area distribution (colors,
scale at bottom) and a median and quartiles of
depth at each age (thin lines); the observed medi-
an [heavy line, same as in (A) and (B)] is shown for
comparison.
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depths less than 3.5 km. There is an overall
decrease of area with age, as expected if
spreading ridges generate area at a constant
rate, whereas subduction zones consume
area independently of age (Fig. 5) (40).
Superimposed on this are steplike changes
that primarily reflect variations in spreading
rate but are also caused by our exclusions of
some areas (41). It appears that a large area
of sea floor was generated during the 20 to
33 million years ago (Ma) period, implying
more rapid sea floor generation with a con-
sequent rise in sea level (42) and a change
in global carbon chemistry (43).

From the distribution of area with depth
within each age interval, we found the
modal depth, the median depth, the first
and third quartile depths, and the inter-
quartile range (IQR) (44) (Fig. 4A). The
mode and quantiles deepened with age from
0 to 55 Ma and then abruptly flatten and
become nearly constant at ages older than
70 Ma. Comparing these statistics with the
area distribution (Fig. 4A) shows that in
every age interval the distribution of depths
is skewed, with more area above the mode
than below it. Seamounts would cause this.
The IQR was about 0.5 km for the first 27
My, increased to 0.75 km at 80 Ma, and
stayed nearly constant at older ages. These
statistics are not reliably determined at ages
older than 130 Ma because the available
sample of area is small.

Thermal models of the cooling and sub-
sidence of oceanic lithosphere (45) predict
that depth z should increase monotonically
with the age of the sea floor t as the litho-
spheric plate moves away from the hot mid-
ocean ridge where it formed. Because these
models treat z deterministically, they will
not explain why the variation we observe in
z increases with t, and we therefore compare
them with the median z at each t. The
simplest model is the “boundary layer” (BL)
model (46), which predicts that z should
increase with t according to

z~t! 5 r 1 aÎt (1)

where r 5 2.5 km is the depth at zero age
and a 5 0.35 km/(My)1/2 is the subsidence
rate. This model gives a good fit to the
median depths (Fig. 4B) in the 0 to 55 Ma
age range, but not beyond that, where the
observed depths flatten. A model that imi-
tates BL for a time and then flattens is the
“plate model,” which predicts that

z~t! 5 r 1 hH1 2
8
p2 3

O
n51

` 1
~2n 1 1!2 exp@2n2 t/t#J (2)

in which h is the overall subsidence from
zero to infinite age and t is a characteristic
time. For t , t, Eq. 2 gives approximately

the same behavior as Eq. 1 with a 5 4h/p3t,
whereas for larger t, the z(t) curve will flat-
ten. A plate model with r and a as in BL and
t 5 62.8 My, we call model “PS” after its
authors (45); a model with r 5 2.6 km, a 5
0.365 km/(My)1/2, and t 5 36 My was called
“Global Depth and Heat Flow 1” or GDH1
by its authors (47). Model PS fits the median
depths in the same range as model BL (Fig.
4B) because it has the same initial behavior;
it also begins to flatten at about the right
time. However, the flattening is not abrupt
enough to fit the data. Model GDH1
achieves greater flattening by using a smaller
t than model PS, but to have approximately
the right overall subsidence h, GDH1 in-
creases a to compensate for the decreased t;
this causes it to predict too much initial
subsidence and a too early onset of flattening
while still failing to follow the abrupt flat-
tening observed. Hypsometric curves pre-
dicted by models PS and GDH1 (48) (Fig.
3C) are not a good match to the observa-
tions; they imitate the variations in the area-
age distribution too closely, they predict less
area than is observed at depths shallower
than 5000 m, and they predict that large
areas of the ocean floor should lie at the
asymptotic depth of the model.

We propose a stochastic reheating model
to explain the hypsometry, the abrupt flat-
tening of median depth with age, and the
increased variability of depth at older ages. It
is based on the following observations: (i)
different regions in the oceans subside like
BL until different flattening ages, some as old
as 170 Ma (49); (ii) depth and heat flow in
some old basins behave like BL but with an
effective thermal age te, which is younger
than the (paleomagnetically determined) ac-
tual age tm (50); (iii) effective elastic litho-
sphere thicknesses under some intraplate
volcanoes suggest that hot spots produce a
“thermal rejuvenation,” reducing te (51);
(iv) the depths and subsidence of hot spot
swells suggest that many swells reduce te to
the same value (52); and (v) on old litho-
sphere, it is hard to find areas that have not
been near hot spots (53). If N sites of reheat-
ing, each affecting an area of diameter D, are
uniformly and randomly distributed in an
area Ah, and the plates making up Ah move
over these sites with velocity V, then in a
steady-state situation with Ah, D, N, and V
all independent of time, the probability den-
sity function p(t) for t, the time since any
point’s last reheating, is

p~t! 5
1
a

exp@2t/a# (3)

where

a 5 Ah/NDV (4)

is the mean time between reheating events
(54). If reheating events always reset te to a

fixed value t0, whereas lithosphere younger
than t0 is not affected by reheating, and if
the sea floor we observe is a random sample
from such a system, then X, the chance that
sea floor of (actual) age tm has not been
reheated since t0, is

X~tm! 5 H 1
exp@2~tm 2 t0!/a#

if tm # t0

if tm . t0
J
(5)

and the probability density function for te
given an observed tm is

This model predicts that (i) when tm # t0, te
is deterministic and te 5 tm; (ii) as tm ex-
ceeds t0, a fraction (1 2 X) of the area has
te , tm; (iii) when tm . t0 1 a log 2, the
median te is less than tm; and (iv) at large tm,
X 3 0 and a steady state prevails in which
te is independent of tm. In the steady state,
the mean effective age is mt 5 t0 1 a and
the standard deviation of the effective ages
is st 5 a.

If z follows the BL cooling rule with te in
Eq. 1, then the probability density for z
given tm is

and z0 and zm are the depths corresponding
to t0 and tm in Eq. 1. The change of vari-
ables from te to z is nonlinear so the mean
and standard deviation of z cannot be found
from mt and st; however, the quantiles (44)
can be transformed: z Q 5 r 1 a=tQ always,
and tQ 5 t0 2 a log(1 2 Q) in the steady
state.

The predictions formed by our model
with t0 5 45 My and a 5 25 My combined
with a Gaussian noise process having a zero

p~tetm! 5

5
d~te 2 tm) if tm # t0

X~tm!d~te 2 tm! 1

1
a

exp F2~te 2 t0!

a G if t0 # te # tm

(6)

6

p~ztm!

5 H d~z 2 zm!
X~tm!d~z 2 zm! 1 f~z!

if tm # t0

if tm . t0
J

(7)

where

f~z! 5

5
0 z [/ ~z0, zm!

2~z 2 r!
a2a

3

expH2@~z 2 r!2 2 ~z0 2 r!2#

a2a J z [~z0, zm!

(8)
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mean and an IQR of 0.5 km at all ages are
shown in Figs. 3C and 4C. We added this
noise to simulate the variability of the data
at ages younger than t0, where the model is
deterministic. Taking Ah 5 115 3 1012 m2,
the area of the sea floor older than 45 Ma,
if D and V are roughly 1000 km and 80
km/My, respectively, then a 5 25 My gives
N 5 57 reheating sites in this area, and aV,
the characteristic distance between reheat-
ing sites, is about 2000 km. We were able to
obtain reasonable fits to the data in Figs. 3C
and 4C with other values as well (for ex-
ample, t0 5 40 and a 5 30), but we caution
against overfitting the data; the Gaussian
noise, being symmetric, does not realistical-
ly simulate the skewed variability produced
by seamounts.

If one merely desired to explain the hyp-
sometry, any reheating process that con-
verted tm to te such that the distribution of
area with te was as shown by the curve in
Fig. 5 would suffice. This curve is obtained
from the hypsometric curve by converting z
to te with the inverse of Eq. 1. It shows that
te is usually less than tm and that areas with
te older than 130 My are rare. Reheating
that is concentrated primarily in one area
(55) or at one age (56) might explain some
features of the area-te distribution in Fig. 5,
but the age independence of the depth dis-
tribution at old age (Fig. 4A) suggests a
model with reheating events randomly dis-
tributed in space and time.

Boundary layer cooling is the physically
expected behavior unless some other ther-
mal process intervenes. The plate model
assumes that a fixed temperature is main-
tained at a fixed depth everywhere and so
predicts that subsidence curves should flat-
ten at the same age everywhere; they do not
(49). Our model indicates that from time to
time some areas will probably be reheated
(57) and uplift and rejuvenated subsidence
may occur anywhere at any time after t0.
The depth at any individual site older than
t0 may be between z 0 and zm, but the ag-
gregate properties of a large sample of sites
should have order statistics (44) predicted
by the model; these statistics can flatten
more abruptly than the plate model subsi-
dence curve if a is small compared with t.
Old areas are rare in comparison with young
areas (Fig. 5) and constitute a small sample.
Thus, the fact that some sites on old sea
floor have depths lying on the PS plate
model curve (45, 50) does not disprove our
model. The heat flow at these sites argues
for reheating and against the plate model
(50).
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