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Hydrocarbons

❑ Aliphatic (Aleifar = Ointment). 

▪ Alkanes (saturated hydrocarbons): hydrocarbons having only 

single C−C and C−H bonds.

➢Linear (normal alkanes, n-alkanes)

➢Branched

➢Cyclic

▪ Alkenes (olefins): hydrocarbons having double bonds.

▪ Alkynes: hydrocarbons having triple bonds.

❑ Aromatic
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Alkanes

methane

ethane

propane

butane

pentane

hexane

heptane

octane

nonane

decane

eicosane

Numberof 

C-atoms

Molecular 

formula

Name 

(n-alkane)

Empirical formula: CnH2n+2

metano

etano

propano

butano

pentano

esano

eptano

ottano

nonano

decano

eicosano
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tetrahedral sp3 C ethane

Two sp3 hybrids overlap 
giving the  C–C s bond

sp3 hybrids on C 
overlap with 1s
orbitals on H giving 
the C-H s bonds.

Ethane and Propane
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Examples

1ry carbon

2ry carbon 3ry carbon

4ry carbon

H 1ry
H 2ry

H 3ry
methine

methyl
methylene
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Alkanes – Structural Isomerism

❑ There are two hydrocarbons with empirical formula 

C4H10: butane and isobutane.

❑ Butane and isobutane are structural (constitutional) 

isomers: they have the same composition but different 

physico-chemical properties. 

butane

isobutane

Linear Alkane

Branched Alkane

*



International Union of Pure and Applied Chemistry

IUPAC Nomenclature

1. Identify the longest hydrocarbon chain

2. Name the substituents in alphabetical order

3. Assign  the substituent position the lowest number 



3-methylhexane

Alkane Nomenclature

2-methylbutane

CH3- methyl

3-ethylhexane

CH3CH2- ethyl



C-Atoms Structure Name

5 n-pentyl

C-Atoms Structure Name

1 methyl

methylene

methine

2 ethyl

3 n-propyl

isopropyl

4 n-butyl

isobutyl

sec-butyl

tert-butyl

Alkyl Groups

neopentyl

isopentyl



Alkane Nomenclature

di-

tri-

tetra-

penta-

hexa-



WRONG

1,3-dimethylcyclohexane 1,5-dimethylcyclohexane

1-ethyl-3-methylcyclohexane 3-ethyl-1-methylcyclohexane

WRONG

Cycloalkane Nomenclature
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1

1-methylethyl

1-methylpropyl
1

2-methylpropyl
12

1,1-dimethylethyl

IUPAC Nomenclature for Alkyl Groups
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Regole di nomenclatura IUPAC degli alcani

• Identificare la catena principale

• Identificare i sostituenti e dare loro il nome

• Assegnare un numero a ciascun sostituente

Per assemblare il nome:

• Nominare i sostituenti in ordine alfabetico.

• I prefissi ter-, sec- e quelli moltiplicativi di-, tri- etc vengono ignorati per l’ordine

alfabetico

• ISO in isopropile e isobutile non viene ignorato nell’ordine alfabetico

• Far precedere al nome di ogni sostituente il numero che indica la sua posizione.

• Numeri sono separati fra loro da una virgola.

• Numero e nome sono separati da un trattino.

• Il nome dell’ alcano è una parola unica.
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Solubility: soluble in organic solvents (apolar)

insoluble in water

Physical state: C1-C4      gas /b.p. -160°-0°

C5-C17    liq./m.p.    -130°-20°

>C17        solid

Physical Properties
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Physical Properties

# C atoms

T
e

m
p

e
ra

tu
re

Boiling point

Melting point



Natural sources of alkanes are natural gas and oil. 

Natural gas contains mainly methane: minor components are 

ethane, propane and butane.

Oil is a complex mixture of, mainly, C1-C40 hydrocarbons. 

Distillation of crude oil (refining) separates oil in fractions with 

different boiling point. The main fractions are:

gasoline: C5H12 – C12H26

kerosene: C12H26 – C16H34

diesel oil: C15H32 – C18H38

Natural Sources
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Refining

❑ In the refining process, crude oil is heated and the volatile 

fractions distill first, followed by fractions with higher boiling 

points. 

Pre-heated crude 

oil and gases

C1-C4

C5-C10

C10-C18

C18-C25

gasoline

kerosene

diesel oil

lubricant oil

Residue (asphalt)
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Industrial Treatments of Refined Oil 

❑ Cracking (kerosene, diesel oil)

▪ Converts high MW hydrocarbons in lower MW hydrocarbons 

(hydrocracking).

▪ Converts alkanes in alkenes (intermediates for the fine 

chemical industry).

❑ Reforming

▪ Increases branching

▪ Converts aliphatic hydrocarbons into aromatics (branched 

and aromatic hydrocarbons are better fuels for  combustion 

engines).



Barrel

42 gal

159 l

fine chemicals and plastics 1.25 gal 3%   

asphalt 1,3   gal 3%

coolants 2,9  gal 7%

lubrificants, waxes, solvents 4,2  gal 10%

kerosene (aeroplanes) 4,2  gal 10%

gasoline 19,7 gal 47%

diesel and fuel oil 8,4  gal 20%

1 US gal = 3.78 l

Crude Oil
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Ethane

❑ In the eclipsed conformation, all C−H bonds are aligned.

❑ In the staggered conformation, C−H bonds on each carbon 

bisect the H−C−H angles on the other carbon.

60° rotation

eclipsed staggered

Conformations

modelli 3D

(sfalsata)(eclissata)

Conformations: tridimentional arrangements of atoms (groups) of a molecule differing

by rotations around single bonds.  

https://moodle2.units.it/mod/page/view.php?id=209622
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60° rotation

View along the C–C bond

C front

C back

❑ The H−C−C−H angle is called dihedral angle (0° in the 

eclipsed and 60° in the staggered conformation).

0°

Staggered conformationEclipsed conformation

The front C-H bonds bisect the  H−C−H angles 

on the carbon atom at the back

Ethane Conformations
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Newman Projection

❑ How to draw a Newman projection

[1] Look along the C-C bond and draw a circle (the back C atom) 

with a dot in the centre (the front C atom).

[2] Draw the bonds

[3] Add the atoms

C front

C back
front bonds

back bonds

H

H

H

HH

H
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staggered conformation eclipsed conformation

dihedral angle
Dihedral angle

0°

Newman Projections of Ethane
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P
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E

n
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Torsional Strain is 3.0 kcal/mole

eclipsed

energy 

maximum

staggered 

energy 

minimum

Conformations of Ethane

video

modelli 3D

https://moodle2.units.it/pluginfile.php/380080/mod_resource/content/2/Ethane%20Rotation%20About%20the%20Carbon-Carbon%20Single%20Bond.mp4
https://www.chemtube3d.com/stethanenewman/
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staggered conformation eclipsed conformation

ethane propane

Conformations of Propane
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Torsional Strain (3.3 kcal/mole) is higher than in ethane. The 

methyl group is bulkier than a hydrogen atom

Conformations of Propane

P
o
te

n
ti
a
l 
E

n
e
rg

y

eclipsed

energy 

maximum

staggered 

energy 

minimum

H-C-C-CH3 dihedral angle
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6 different conformations

eclipsedstaggered, anti

eclipsed staggered, gauche eclipsed, syn

staggered, gauche

Conformations of Butane
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Eclipsed conformation

Staggered, anti Staggered, gauche

4

31

The CH3 are at 180° The CH3 are at 60°

steric strain

The CH3 are at 0°

steric strain

A staggered conformation with two 

large groups at 60° is called gauche.

A staggered conformation with two 

large groups at 180° is called anti

Conformations of Butane
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▪ Staggered conformations: 

▪ 1 (anti) is the absolute 

minimum 

▪ 3,5 (gauche) are relative 

minima

▪ Eclipsed conformations:

▪ 4 is the absolute 

maximum (CH3 eclipsed) 

▪ 2,6 are relative maxima

Conformations of Butane

P
o
te

n
ti
a
l 
E

n
e
rg

y

H3C-C-C-CH3 dihedral angle

modelli 3D

video

https://www.chemtube3d.com/conformations-of-butane-energetics/
http://www.apple.com/uk
https://www.chemtube3d.com/movies/butanemovienosquares.mov
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❑ A rotational barrier is the energy difference between two 

minima.

❑ The most stable conformation of linear hydrocarbons is 

staggered with the bulky groups in anti. Thus long chains are 

usually drawn with a zigzag.

Interaction Energy (kcal/mole)

Eclipsing H,H 1

Eclipsing H,CH3 1.5

Eclipsing CH3,CH3 4

Gauche CH3,CH3 0.9

Torsional Strain in Linear Alkanes

modello 3D

https://moodle2.units.it/mod/page/view.php?id=216898


Conformations in complex molecules
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Cycloalkanes
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Cycloalkanes

• Cycloalkanes have empirical formula CnH2n and contain 

carbon atoms arranged in a cyclic chain

• Nomenclature: cyclo + name of the corresponding alkane

cyclopropane

C3H6

cyclobutane

C4H8

cyclopentane

C5H10

cyclohexane

C6H12

modelli 3D

https://moodle2.units.it/mod/page/view.php?id=209626/view.php?id=179029


Stereoisomers

cis-1,3-dimethylcyclopropane trans-1,3-dimethylcyclopropane

Stereoisomers: same constitution, different 3D structure
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Stability: Angular Strain (Baeyer’s Strain)

❑ Baeyer (1885): as carbon prefers 109° bond angles, rings other 

than five or six membered may be too strained to exist. 

❑ Cycloalkanes from C3 to C30 do exist, but some of them are 

strained because of distorted bond angles and other 

interactions.
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Cyclopropane C3H6

❑ Planar.

❑ Angle strain: 60° CCC angles. 

❑ Torsional strain: all H are eclipsed.

❑ May be described as sp3 hybridized with banana bonds. 

HH

HH

H H
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Cyclobutane C4H8

❑ In planar cyclobutane all hydrogens would be eclipsed.

❑ To relieve torsional strain, cyclobutane is puckered by 

about 25°. 

❑ In doing so the  CCC bond angles decrease to 88° and 

hydrogens on opposite carbons become closer.

Puckered

slightly higher angle strain

lower torsional strain

some VdW strain 

H

H

H

H

H

H

H

H
25°

puckering

angle

Planar

angle strain

torsional strain 
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Ring Strain

Stability of cycloalkanes depend on ring strain:

▪ angle strain: distorted bond angles.

▪ torsional strain: eclipsing of C-H bonds.

▪ VdW or steric strain: repulsions between non bonded atoms.
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Cyclopentane C5H10

“envelope” conformation

eclipsing is partially relieved

25°

puckering angle

envelope and half-chair conformations have similar 

energies and rapidly interconvert into one another

angle strain 

torsional strain 

envelope half-chair
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❑ Planar cyclohexane.

❑ Chair conformation.

angle strain torsional strain

all H are eclipsedCCC > 109.5°

H are staggered

Cyclohexane C6H12

strainless
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Strain Energies of Cycloalkanes

ring size

s
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y
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k
J
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m

o
l



❑ Heats of combustion are used to calculate strain energies of cycloalkanes.

❑ Heats of combustion increase with the number of C atoms.

❑ Cyclohexane is taken as reference (Strain = 0). 

Per CH2 697 681 658 653 657 658

kJ/mol    2091       2724          3290           3910             4599              5264

Strain      132          112             25                  0                28                   40  

Strain Energies of Cycloalkanes

(697 – 653)x3
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How to Draw Chair Cyclohexane
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❑ There are two types of hydrogens: 

▪ Axial: perpendicular to the ring’s mid-plane, above and below 

the ring. 

▪ Equatorial: in the ring’s mid-plane, all around the ring.

❑ There are 6 axial and 6 equatorial hydrogens in 

cyclohexane.

Chair Conformation of Cyclohexane

H axial

H equatorial

equatorial
upward

equatorial
downward

axial  
upward

axial 
downward
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Ring Flipping

❑ Ring flipping is the interconversion between two chair 

conformations of cyclohexane. 

❑ Upwards C become dawnwards and viceversa. 

❑ Axial H become equatorial and viceversa. 

chair 1 chair 2boat

video

https://www.chemtube3d.com/stcyclohexane-ring-flip/
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chair 1 chair 2boat

axial H become equatorial

equatorial H become axial

Ring Flipping
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Conformations of Cyclohexane

❑ Chair conformations are 7 kcal/mol more stable than boat 

conformations. 

❑ Torsional strain. In the boat conformation the H on the 

base are eclipsed.

❑ Steric strain. Flag pole H are forced in close proximity.

H eclipsed

H eclipsed

H flagpole

1.80 Å

H bowspring

H bowspring
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5.5 
kcal/mole

10.8 
kcal/mole

6.9 
kcal/mole

E

twist-boat

boat

half-chair half-chair

chair chair

Conformations of Cyclohexane
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chair 

no ring strain

(99.99% at 25°C)

boat

- torsional strain

- steric strain 

ring strain: ~ 7  kcal

twist-boat 

~ 1.5 kcal more stable 

than the boat

(0.01% at 25°C)

Conformations of Cyclohexane
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❑ The chair conformations are no longer equivalent: they 

have different energies.

❑ The axial conformer is destabilized by 1,3-diaxial 

interactions (VdW interactions) between the substituent 

and axial hydrogens. 

❑ The larger the substituent, the less stable the axial 

conformation.

Substitued Cyclohexanes

123

2
3
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equatorial

(95%)

no steric strain

axial

(5%)

steric 

repulsion

Each CH3 / H interaction destabilizes the axial conformer by 0.9 kcal/mol

1,3-diaxial 

interactions

Methylcyclohexane

DG ~ 1.8 kcal

modelli

https://moodle2.units.it/mod/page/view.php?id=209627
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tert-Butylcyclohexane

❑ The tert-butyl group is so bulky that there is no axial 

conformer at the equilibrium.

< 0.01% > 99.99%

DG ~ 5.5 kcal

The tert-butyl group freezes the conformational equilibrium.
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Disubstitued Cyclohexanes. Geometrical 

Stereoisomerism

❑ There are two isomers of 1,4-dimethylcyclohexane.

❑ Each geometrical isomer has two possible chair 

conformations.

cis trans
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1,4-Dimethylcyclohexane

DG = 0 kcal

equatorial-axial

2 1,3-diaxial interactions

2 x 0.9 = 1.8 kcal

axial-equatorial

2 1,3-diaxial interactions 

2 x 0.9 = 1.8 kcal

bisequatorial

no repulsions

bisaxial

4 1,3-diaxial interactions 

4 x 0.9 = 3.6 kcal

DG ~ 3.6 kcal

trans

cis
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cis-1-t-Butyl-4-methylcyclohexane

❑The conformational equilibrium is frozen by the bulky t-butyl 

group.

DG ~ 3.7 kcal1.8 kcal/mole5.5 kcal/mol

But
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A spiro bicyclic system

• One atom is shared by two rings

Polycyclic compounds
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Polycyclic compounds

modelli

https://moodle2.units.it/mod/page/view.php?id=209629
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Polycyclic Hydrocarbons

cis-decaline

trans-decaline

more stable

(equatorial substituents)

less stable

(1 axial substituent)

modelli

https://www.chemtube3d.com/stdecalins/
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• no lone pairs

• no π bonds

• no heteroatoms

• not nucleophilic

• not electrophilic

• strong, not polar C–C, 

C–H bonds

Alkanes react only at high 

temperatures, with radical 

mechanisms.

Reactions of Alkanes
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Halogenation of Alkanes

Chapt. 10 Organic Chemistry, 8th Edition

John E. McMurry
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Halogenation of Alkanes

❑ In the presence of heat or light, alkanes react with 

halogens, with a radical mechanism, to give alkyl halides.

❑ Halogenation of alkanes is carried out with Cl2 o Br2. The 

reaction with F2 is too violent and the reaction with I2 is too 

slow. 

R–H  +  X2 ⎯⎯→  R–X +  HX
D or hn

radical substitution
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Halogenation of Methane

Initiation

Stage [1]: formation of Cl
.

radicals

Propagation

Stages [2] and [3]: A new radical is formed for each reacting radical

Termination

Stage [4]: Two radicals recombine forming a s bond.

thousands of 

cycles.

Chain reaction

video

https://www.chemtube3d.com/rad-chlorination-of-alkanes/
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Energetics

ΔH°(C-H) 104

X = F Cl Br I

ΔH°(X-H) 136 103 88 71

ΔH° -32 +1 +16 +33

DH°, Kcal/mole

36

32

24

16

8

DH°

4

–32

0
Eatt +1.2 Kcal/mole

–32 Kcal/mole

Eatt +4 Kcal/mole

+1 Kcal/mole

Eatt +18 Kcal/mole

+16 Kcal/mole

Eatt +34 Kcal/mole

+33 Kcal/mole

F

Cl

Br

I

Stage [2] is the slow step:

DH° = DH°(C-H) - DH°(X-H)
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❑ Monohalogenation is only possible with an excess of 

alkane, otherwise polyhalogenation predominates.

❑ Problem: mixture of halogenated products.

❑ Solution: CH4 in large excess and recycled.

Halogenation of Alkanes
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Regioselectivity

❑ Isomers are formed in the halogenation of propane and 

higher hydrocarbons:

substitution of a 2ry H 

observed ratio 1                  :                 1                

statistical ratio

substitution of a 1ry H 

/
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❑ Alkyl radicals are sp2 hybridized with a trigonal planar 

geometry.

❑ The p orbital contains an unpaired electron. 

Structure of Radicals

a single electron in 

the p orbital

methyl 

radical

1ry

radical

2ry

radical

3ry

radical
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R−H  →  R•  +  H•

C−H Bond Dissociation Energies

B
D

E

104 kcal/mole

98 kcal/mole

98 kcal/mole (1ry C-H)

95 kcal/mole (2ry C-H)

91 kcal/mole (3ry C-H)

Reactivity of C−H bonds:

3ry > 2ry > 1ry > CH3−H

DH = BDE bond dissociation energy

S
T

A
B

IL
IT

Y
methyl 

radical

1ry

radical

2ry

radical

3ry

radical



❑ Radical stability: 3ry > 2ry > 1ry.

❑ Strength of C-H bonds: 3ry < 2ry < 1ry.

Lower energy, more stable, 

weaker C-H bond.

98 kcal 95 kcal

1ry radical 2ry radical

Regioselectivity
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Reactivity and Selectivity

▪ Chlorination of alkanes is faster than bromination.

▪ Bromination of alkanes is more selective.

57%43%

/

/

Bromination of an alkane is a regioselective reaction: 

occurs preferencially at the most substituted C-H.
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Regioselectivity

Cl2: 28% 23% 35% 14%

Br2: ~0% 90% 9% ~0%

isopentane 2ry H

3ry H

C-H relative reactivity 3ry 2ry 1ry

with Cl2 5.2 3.9 1

with Br2 1640 82 1

1ry H 1ry H

/



Regioselectivity

Chlorination is convenient only if C-H are equivalent
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❑ Allylic carbons are sp3 carbons adjacent to a double bond.

❑ A resonance-stabilized allylic radical is obtained by omolysis of 

an allylic C−H bond.

❑ BDEs of allylic C−H bonds are approximately 4 kcal/mol lower 

than BDE for 3ry C−H bonds. 

❑ The delocalized allylic radical is more stable than a 3ry radical.

Halogenation of Allylic Carbons

allylic radical

radical stability

radicale allilico
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The Allylic Radical
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Halogenation of Allylic Carbons
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❑ Allylic carbons can be selectively brominated with NBS and 

UV irradiation or a radical initiator.

❑ Breaking of the weak N-Br bond of NBS initiates the radical 

chain reaction. 

allylic C

Halogenation of Allylic Carbons

/
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Halogenation of Allylic Carbons
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Combustion of Alkanes

❑ Combustion is a redox reaction. C is oxidized and O is 

reduced.

❑ All hydrocarbons burn giving carbon dioxide, water and 

heat (DH <0). 

❑ C−C e C−H bonds are converted into C-O and H-O bonds.

Every C atom is converted into CO2

CnH2n+2 +             O2 n CO2 +  (n+1)H2O  +  calore
2

3n+1

isoottano

heat

heat

heat
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Stability of Isomers

❑ Heats of combustion are used to compare the stability of 

isomers. E.g.: C8H18

Branched isomers are more stable than linear ones.

1303.0 kcal
~

~
1304.6 kcal

~

~
1306.3 kcal

~

~
1307.5 kcal

~

~

8 CO2 + 9 H2O







Alkyl Groups

Root-Suffix (= yl)

Free 

valence
methyl

ethyl

propyl


