

Chapter 9 Organic Chemistry, 8th Edition John E. McMurry

Structure and Bonding

General molecular formula C_nH_{2n-2} , Thus, the triple bond introduces two degrees of unsaturation.

• The σ bond is formed by end-on overlap of the two *sp* hybrid orbitals.

• Each π bond is formed by side-by-side overlap of two 2p orbitals.

Structure and Bonding

Alkynes are more reactive than alkenes

- Both π bonds of a C-C triple bond are weaker than a C-C σ bond, making them much more easily broken. As a result, alkynes undergo many addition reactions.
- Alkynes are more polarizable than alkenes because the electrons in their π bonds are more loosely held.

Structure and Bonding

- Like trans cycloalkenes, cycloalkynes with small rings are unstable.
- Cyclooctyne is the smallest isolable cycloalkyne, though it decomposes upon standing at room temperature after a short time.

Nomenclature

Physical Properties

- The physical properties of alkynes resemble those of hydrocarbons of similar shape and molecular weight.
- Alkynes have low melting points and boiling points.
- Melting point and boiling point increase as the number of carbons increases.
- Alkynes are soluble in organic solvents and insoluble in water.

Acetylene

• The combustion of acetylene releases more energy per mole of oxygen consumed than any other hydrocarbons. It burns with a very hot flame (3300 °C) and is an excellent fuel.

Reaction	∆ H/mol O ₂ (Kcal/mol)
$H_3C - CH_3 + 7/2O_2 \longrightarrow 2CO_2 + 3H_2O$	-442
$H_2C=CH_2 + 3O_2 \longrightarrow 2CO_2 + 2H_2O$	-467
$HC \equiv CH + 5/2 O_2 \longrightarrow 2 CO_2 + H_2O$	-520

Acetylene

- From coal:
- $CaO + 3C \xrightarrow{2200 \circ C} CaC_2 + CO$
- $CaC_2 + 2 H_2O \longrightarrow Ca(OH)_2 + C_2H_2$
- From oil (cracking):

Preparation of Alkynes

Alkynes are prepared by elimination reactions.

Alkyne Reactions—Additions

Hydrohalogenation

Hydrohalogenation

Not regioselective with internal alkynes

Halogenation

Part [2] Addition of X2 to form a tetrahalide

Hydration

Equilibrium favors the keto form largely because the C=O is much stronger than a C=C.

• *Tautomers* are constitutional isomers that differ in the location of a double bond and a hydrogen atom. Two tautomers are in equilibrium with each other.

Hydration

Hydroboration—Oxidation

terminal alkyne

aldehyde

internal alkyne

isomeric Ketones

Reduction of Alkynes

• Adding two equivalents of H₂ forms an alkane.

$$R-C \equiv C-R \xrightarrow{H_2} R \xrightarrow{H H} H$$

$$R-C-C-R$$

$$H H$$

$$H H$$

$$R$$

$$R-C-C-R$$

$$H H$$

$$H$$

$$H$$

$$H$$

$$H$$

$$H$$

• Adding one equivalent of H₂ in a syn fashion forms a cis alkene.

• Adding one equivalent of H₂ in an anti fashion forms a trans alkene.

$$R-C\equiv C-R \xrightarrow[(1 equiv)]{H} R \xrightarrow{R} \xrightarrow{H} H$$
 anti addition

trans alkene

Catalytic Hydrogenation

Catalytic Hydrogenation

Cis-Alkenes:

- Palladium metal is too reactive to allow hydrogenation of an alkyne to stop after one equivalent of H_2 adds.
- To stop at a cis alkene, a less active Pd catalyst is used Pd adsorbed onto $CaCO_3$ with added lead(II) acetate and quinoline. This is called Lindlar's catalyst.

Dissolving Metal Reduction

Steps [1] and [2] Addition of one electron and one proton to form a radical

Steps [3] and [4] Addition of one electron and one proton to form the trans alkene

Example $CH_3 - C \equiv C - CH_3$ \xrightarrow{Na} NH_3 H C = C2-butyne H CH_3 H CH_3 trans-2-butene

Summary of Alkyne Reductions

Oxidative Cleavage of Alkynes

•Internal alkynes are oxidized to carboxylic acids (RCOOH).

•Terminal alkynes afford a carboxylic acid and CO₂ from the *sp* hybridized C—H bond.

Acetylide anions

		Base	pK _a of the conjugate acid
These bases are strong enough to deprotonate an alkyne.	{	⁻NH₂ H⁻	38 35
These bases are not strong enough to deprotonate an alkyne.	{	⁻OH ⁻OR	15.7 15.5–18

Acetylide Anions

- Acetylide anions are strong nucleophiles and react with methyl and 1° alkyl halides to yield products of nucleophilic substitution.
- •Acetylide anions do not react with 2° and 3° alkyl halides.

Nucleophilic substitution with acetylide anions forms new carbon-carbon bonds.

Acetylide anions

Synthesis

Disparlure – a pheromone

Synthesis

