Carbonyl Compounds

Introduction

1

Introduction

Two broad classes of compounds contain the carbonyl group:

[1] Compounds that have only carbon and hydrogen atoms bonded to the carbonyl

[2] Compounds that contain an eteroatom (N, O, S, Cl) bonded to the carbonyl

Introduction

• Carbonyl carbons are sp^2 hybridized, trigonal planar, and have bond angles that are ~120°.

 The electronegative oxygen atom in the carbonyl group means that the bond is polarized, making the carbonyl carbon electron deficient.

the major contributor to the hybrid

a minor contributor to the hybrid

polarized carbonyl

General Reactions of Carbonyl Compounds

Aldehydes and ketones

Acyl derivatives

Aldehydes and Ketones

Chapter 19 Organic Chemistry, 8th Edition John McMurry

Nomenclature of Aldehydes

- Find the longest chain containing the CHO group, and change the -e ending of the parent alkane to the suffix -al. If the CHO group is bonded to a ring, name the ring and add the suffix -carbaldehyde.
- A common name for an aldehyde is formed by taking the common parent name and adding the suffix –aldehyde.

Nomenclature of Ketones

Nomenclature of Aldehydes and Ketones

benzoyl group

Do not confuse a **benzyl** group with a **benzoyl** group.

CH₂−ξ

benzyl group

formyl group

acetyl group

Physical Properties

Table 21.	1.1 Physical Properties of Aldehydes and Ketones		
Property	Observation		
Boiling point and melting point	 For compounds of comparable molecular weight, bp's and mp's follow the usual trend: The stronger the intermolecular forces, the higher the bp or mp. 		
and a grant	CH ₃ CH ₂ CH ₂ CH ₂ CH ₃ CH ₃ CH ₂ CH ₂ CHO	CH ₃ CH ₂ CH ₂ CH ₂ OH	
	VDW VDW, DD MW = 72 MW = 72 bp 76 °C bp 36 °C CH ₃ CH ₂ COCH ₃	VDW, DD, HB MW = 74 bp 118 °C	
	VDW, DD MW = 72 bp 80 °C		
	Increasing strength of intermolecular forces Increasing boiling point		
Solubility	RCHO and RCOR are soluble in organic solvents regardless of size.		
	 RCHO and RCOR having ≤ 5 C's are H₂O soluble because they can hydrogen bond with H₂O (Section 3.4C). 		
	 RCHO and RCOR having > 5 C's are H₂O insoluble because the nonpolar alkyl portion is too large to dissolve in the polar H₂O solvent. 		

Key: VDW = van der Waals, DD = dipole-dipole, HB = hydrogen bonding, MW = molecular weight

Keto-Enol Tautomerism

Keto tautomer

Enol tautomer

99,9999999%

0,000001%

99,9999%

0,0001%

Keto-Enol Tautomerism

Keto-Enol Tautomerism

Enolization is catalyzed by both acids and bases

The catalyst accelerates the equilibrium; it does not influence its position

Interesting Aldehydes and Ketones

formaldehyde CH₂=O

Billions of pounds of formaldehyde are produced annually from the oxidation of methanol. It is sold as a 37% solution called formalin which is used as a disinfectant, antiseptic, and preservative for biological specimens. It is a product of incomplete combustion of coal, and is partly responsible for the irritation caused by smoggy air.

acetone (CH₃)₂C=O

Acetone is an industrial solvent. It is also produced in vivo during breakdown of fatty acids. Diabetics often have unusually high levels of acetone in their blood streams.

Interesting Aldehydes and Ketones

Many aldehydes and ketones with characteristic odors occur in nature.

Preparation of Aldehydes

Preparation of Aldehydes and Ketones

i−Bu₂AlH

Li+ AIH [O-t-Bu]3

DIBAL-H Diisobutilaluminium hydride

Lithium tri-tert-butoxyaluminium hydride

Sterically hindered - Less reactive than LiAlH₄

Preparation of Ketones

Preparation of Aldehydes and Ketones

Aldehydes and ketones are also both obtained as products of the oxidative cleavage of alkenes.

Reactions of Aldehydes and Ketones—General

[1] Nucleophilic addition

[2] Oxidation

[3] Reaction at the α carbon

Nucleophilic Addition

Nucleophilic Addition: Geometry

Nü ~ 105°-110°

Acid Catalysis

Reduction

 H_2/Pd reduces also C=C NaBH₄, LiAlH₄ selective for C=O

Reduction

Mechanism: nucleophilic addition of H⁻ to the C=O bond

Reduction

Comparison NaBH₄ / LiAlH₄

LiAlH₄ (LAH) is more reactive and less selective than NaBH₄:

NaBH₄ reduces only aldehydes and ketones, LAH reduces also esters, amides and nitriles.

NaBH₄ can be used in protic solvents (alcohols and H_2O) LAH must be used in non protic, anhydrous solvents (diethyl ether, THF), due to hydrolysis reaction:

 $NaBH_4 + H_2O \longrightarrow NaOH + B(OH)_3 + H_2$ very slow

 $LiAIH_4 + H_2O \longrightarrow LiOH + AI(OH)_3 + H_2$ very fast

Selectivity in reduction

Nucleophilic Addition of Organometallic Reagents

Mechanism: nucleophilic addition to the C=O bond

Reaction of carbonyl compounds with organometallic reagents

Organometallic reagents

Organometallic reagents must be prepared and used in anhydrous aprotic solvents (EtOEt, THF, toluene)

 $\begin{array}{cccc} RX + Mg & \xrightarrow{an. THF} & RMgX \\ \hline RMgX + H_2O & \longrightarrow & RH + hydroxides \\ & & & & & & \\ pKa \ 15.75 & & & & & pKa \ 50 \end{array}$

 H_2O (pKa 16) , alcohols (pKa 16 -18), amines (pKa 35) destroy Grignard and lithiumorganic reagents by protonation and conversion to the corresponding alkane

Synthesis of alcohols

Nucleophilic Addition of CN⁻

• Treatment of an aldehyde or ketone with HCN gives a cyanohydrin.

Nucleophilic Addition of CN⁻

 Cyanohydrins can be reconverted to carbonyl compounds by treatment with base. This process is just the reverse of the addition of HCN: deprotonation followed by elimination of ⁻CN.

• The cyano group of a cyanohydrin is readily hydrolyzed to a carboxy group by heating with aqueous acid or base.

$$\begin{array}{c} \text{Hydrolysis of a} \\ \text{cyano group} \end{array} \xrightarrow[]{\begin{subarray}{c} OH \\ I \\ C \equiv N \end{array}} \xrightarrow[]{\begin{subarray}{c} OH \\ H_2O \\ (H^+ \text{ or } \begin{subarray}{c} OH \\ I \\ (H^+ \text{ or } \begin{subarray}{c} OH \\ I \\ C \equiv N \end{array} \xrightarrow[]{\begin{subarray}{c} OH \\ (H^+ \text{ or } \begin{subarray}{c} OH \\ I \\ C \equiv N \end{array} \xrightarrow[]{\begin{subarray}{c} OH \\ (H^+ \text{ or } \begin{subarray}{c} OH \\ I \\ C \equiv N \end{array} \xrightarrow[]{\begin{subarray}{c} OH \\ (H^+ \text{ or } \begin{subarray}{c} OH \\ I \\ C \equiv OH \end{array} \xrightarrow[]{\begin{subarray}{c} OH \\ I \\ C \equiv N \end{array} \xrightarrow[]{\begin{subarray}{c} OH \\ (H^+ \text{ or } \begin{subarray}{c} OH \\ I \\ C \equiv OH \end{array} \xrightarrow[]{\begin{subarray}{c} OH \\ I \\ C \equiv N \end{array} \xrightarrow[]{\begin{subarray}{c} OH \\ (H^+ \text{ or } \begin{subarray}{c} OH \\ I \\ C \equiv OH \end{array} \xrightarrow[]{\begin{subarray}{c} OH \\ I \\ C \equiv OH \end{array} \xrightarrow[]{\begin{subarray}{c} OH \\ I \\ C \equiv OH \end{array} \xrightarrow[]{\begin{subarray}{c} OH \\ I \\ C \equiv OH \end{array} \xrightarrow[]{\begin{subarray}{c} OH \\ I \\ C \equiv OH \end{array} \xrightarrow[]{\begin{subarray}{c} OH \\ I \\ C \equiv OH \end{array} \xrightarrow[]{\begin{subarray}{c} OH \\ I \\ C \equiv OH \end{array} \xrightarrow[]{\begin{subarray}{c} OH \\ I \\ C \equiv OH \end{array} \xrightarrow[]{\begin{subarray}{c} OH \\ I \\ C \equiv OH \end{array} \xrightarrow[]{\begin{subarray}{c} OH \\ I \\ C \equiv OH \end{array} \xrightarrow[]{\begin{subarray}{c} OH \\ I \\ C \equiv OH \end{array} \xrightarrow[]{\begin{subarray}{c} OH \\ I \\ C \equiv OH \end{array} \xrightarrow[]{\begin{subarray}{c} OH \\ I \\ C \equiv OH \end{array} \xrightarrow[]{\begin{subarray}{c} OH \\ I \\ C \equiv OH \end{array} \xrightarrow[]{\begin{subarray}{c} OH \\ I \\ C \equiv OH \end{array} \xrightarrow[]{\begin{subarray}{c} OH \\ I \\ C \equiv OH \end{array} \xrightarrow[]{\begin{subarray}{c} OH \\ I \\ C \equiv OH \end{array} \xrightarrow[]{\begin{subarray}{c} OH \\ I \\ C \equiv OH \end{array} \xrightarrow[]{\begin{subarray}{c} OH \\ I \\ C \equiv OH \end{array} \xrightarrow[]{\begin{subarray}{c} OH \\ I \\ C \equiv OH \end{array} \xrightarrow[]{\begin{subarray}{c} OH \\ I \\ C \equiv OH \end{array} \xrightarrow[]{\begin{subarray}{c} OH \\ I \\ C \equiv OH \end{array} \xrightarrow[]{\begin{subarray}{c} OH \end{array} \xrightarrow[]{\begin{subarray}{c$$

Nucleophilic Addition of CN⁻

Linamarin and Amygdalin are two naturally occurring cyanohydrin derivatives.

 Both compounds are toxic because they are metabolized to cyanohydrins, which are hydrolyzed to carbonyl compounds and HCN gas.

Addition of H₂O — Hydration

Addition of H₂O — Hydration

Gem-diol product yields are good only when unhindered aldehydes or aldehydes with nearby electron withdrawing groups are used.

Addition of H₂O — Hydration

Addition of H₂O is generally slow but can be catalyzed by OH- or H⁺

Acid catalysis:

Basic catalysis:

Addition of Alcohols — Acetal Formation

Addition of Alcohols — Acetal Formation

Acetal Hydrolysis

Acetals as Protecting Groups

Cyclic Hemiacetals and Acetals

Cyclic hemiacetals are formed by intramolecular cyclization of hydroxy aldehydes.

Cyclic hemiacetals can be converted to acetals by treatment with an alcohol and acid.

Introduction to Carbohydrates

- Carbohydrates, commonly referred to as sugars and starches, are polyhydroxy aldehydes and ketones, or compounds that can be hydrolyzed to them.
- Many carbohydrates contain cyclic acetals or hemiacetals. Examples include glucose and lactose.

Equilibrium Between Hemiacetal and Open Chain Forms of Glucose

Introduction to Carbohydrates

- Carbohydrates, commonly referred to as sugars and starches, are polyhydroxy aldehydes and ketones, or compounds that can be hydrolyzed to them.
- Many carbohydrates contain cyclic acetals or hemiacetals. Examples include glucose and lactose.

Addition of Amines

• Treatment of an aldehyde or a ketone with a 1ry amine affords an imine (also called a Schiff base).

180°).

• Treatment of an aldehyde or a ketone with a 2ry amine affords an enamine.

Primary Amines: Complete Mechanism

1. Amine addition

2. Elimination of water (E1)

Secondary Amines: Complete Mechanism

1. Amine addition

2. Elimination of water (E1)

Addition of Amines

Imine and Enamine Hydrolysis

- Because imines and enamines are formed by a reversible set of reactions, both can be converted back to carbonyl compounds by hydrolysis with mild acid.
- The mechanism of hydrolysis is the exact reverse of the mechanism written for formation of imines and enamines.

Hydrolysis of imines and enamines forms aldehydes and ketones.

Other Amines

Addition of Amines – Effect of pH

General pH-rate profile for addition of amines to carbonyl compounds

Preparation of phosphorus ylides (phosphoranes) B: nBuLi, NaNH₂, NaH

Reaction of phosphorus ylides with carbonyl compounds

Advantage: the Wittig reaction always gives a single constitutional isomer.

Limitation: a mixture of stereoisomers is sometimes formed.

Nucleophilic Addition

a,β-Unsaturated Carbonyl Compounds

Conjugate Addition

general mechanism:

examples:

Oxidation

mechanism

 α -halogenation:

Enolates. Reaction at the a-Carbon

Example: 2-methylcyclohexanone

