CARBOXYLIC ACIDS AND DERIVATIVES

Chapters 20, 21 Organic Chemistry, 8th Edition John McMurry

CARBOXYLIC ACIDS DERIVATIVES

acetic anhydride

CARBOXYLIC ACID DERIVATIVES

CARBOXYLIC ACIDS - NOMENCLATURE

IUPAC

COMMON NAMES

CARBOXYLIC ACIDS IUPAC NOMENCLATURE

NOMENCLATURE-COMMON NAMES

• In common names often greek letters are used to define the substituents position.

4,5-dimethyl hexanoic acid γ,δ -dimethyl hexanoic acid

NOMENCLATURE-POLYIACIDS

malonic acid (propanedioic acid)

Malon

Succinum (ambra)

oxalic acid (ethanedioic acid)

Oxalis acetosella

ACID CHLORIDES: NOMENCLATURE

or α-methylbutyryl chloride

ACYL GROUPS

generic acyl group

benzoyl group

Do not confuse a **benzyl** group with a **benzoyl** group.

CH2-§

benzyl group

formyl group

acetyl group

ANHYDRIDES

The word anhydride means without water. Removing one molecule of water from two molecules of carboxylic acid forms an anhydride.

ANHYDRIDES: NOMENCLATURE

ESTERS: NOMENCLATURE $\stackrel{O}{R}\stackrel{O}{\longrightarrow} \stackrel{O}{R}\stackrel{O}{\longrightarrow} \stackrel{O}{R}\stackrel{O}{\longrightarrow} \stackrel{O}{H} + R'OH$

Esters are the (formal) condensation products of an acid and an alcohol

Methyl benzoate

Ethyl acetate

lsopropyl cyclopentanecarboxylate

Lactones are cyclic esters

INTERESTING ESTERS

Many low molecular weight esters have pleasant and very characteristic odors.

AMIDES: NOMENCLATURE

All 1° amides are named by replacing the *-ic acid*, *-oic acid*, or *-ylic acid* ending with the suffix amide.

2° and 3° amides are named as N-substituted (2°) or N,Ndisubstituted (3°) derivatives of 1° amides

derived from butanoic acid

N-cyclohexyl-*N*-methylbutanamide

CARBOXYLIC ACIDS -STRUCTURE AND BONDING

PHYSICAL PROPERTIES

- Carboxylic acids exhibit dipole-dipole interactions because they have polar C—O and O—H bonds.
- They also exhibit intermolecular hydrogen bonding.
- In the gas phase and in apolar solvents, carboxylic acids often exist as dimers held together by two intermolecular hydrogen bonds.

23

PHYSICAL PROPERTIES

Property	Observation		
Boiling point and melting point	 Carboxylic acids have higher boiling points and melting points than other compounds of comparable molecular weight. 		
	CH ₃ CH ₂ CH ₂ CH ₂ CH ₃ CH ₃ CH ₂ CHO CH ₃ CH ₂ CH ₂ OH CH ₃ COOH VDW VDW, DD VDW, DD, HB VDW, DD, two HB		
	MW = 58 MW = 58 MW = 60 MW = 60		
	bp 0 °C bp 48 °C bp 97 °C bp 118 °C		
	Increasing strength of intermolecular forces Increasing boiling point		
Solubility	Carboxylic acids are soluble in organic solvents regardless of size.		
	 Carboxylic acids having ≤ 5 C's are water soluble because they can hydrogen bond with H₂O (Section 3.4C). 		
	 Carboxylic acids having > 5 C's are water insoluble because the nonpolar alkyl portion is too large to dissolve in the polar H₂O solvent. These "fatty" acids dissolve in a nonpolar fat-like environment but do not dissolve in water. 		
Key: VDW = van der Waal	s, DD = dipole-dipole, HB = hydrogen bonding, MW = molecular weight		

ACIDITY OF CARBOXYLIC ACIDS

The acetate anion has two C—O bonds of equal length (1.27 Å) and intermediate between the length of a C—O single bond (1.36 Å) and C=O (1.21 Å).

CARBOXYLIC ACIDS—STRONG ORGANIC BRØNSTED-LOWRY ACIDS

CARBOXYLIC ACIDS—STRONG ORGANIC BRØNSTED-LOWRY ACIDS

	Base	Conjugate acid (pKa)
>	Na ⁺ HCO ₃ ⁻	H ₂ CO ₃ (6.4)
sicit	NH ₃	NH4 ⁺ (9.4)
Increasing bas	Na ₂ CO ₃	HCO3 ⁻ (10.2)
	Na ⁺ [−] OCH ₃	CH ₃ OH (15.5)
	Na ^{+ −} OH	H ₂ O (15.7)
	Na ^{+ -} OCH ₂ CH ₃	CH ₃ CH ₂ OH (16)
-	Na⁺ H⁻	H ₂ (35)

THE INDUCTIVE EFFECT IN ALIPHATIC CARBOXYLIC ACIDS

- Electron-withdrawing groups stabilize a conjugate base, making a carboxylic acid more acidic.
- Electron-donating groups destabilize the conjugate base, making a carboxylic acid less acidic.

THE INDUCTIVE EFFECT IN ALIPHATIC CARBOXYLIC ACIDS

• The larger the number of electronegative substituents, the stronger the acid.

CICH2CH2CH2COOHCH3CHCH2COOHCH3CHCH2COOH4-chlorobutanoic acid
 $pK_a = 4.5$ 3-chlorobutanoic acid
 $pK_a = 4.1$ 2-chlorobutanoic acid
 $pK_a = 2.9$

SUBSTITUTED BENZOIC ACIDS

SUBSTITUTED BENZOIC ACIDS

PREPARATION OF CARBOXYLIC ACIDS

[1] Oxidation of 1° alcohols

[2] Oxidation of alkyl benzenes

PREPARATION OF CARBOXYLIC ACIDS

[3] Oxidative cleavage of alkenes and alkynes

General reactions

$$R-C \equiv C-R' \xrightarrow{[1] O_3} \underset{[2] H_2O}{\overset{R}{\longrightarrow}} \underset{HO}{\overset{R}{\longrightarrow}} C \equiv O + O = C \underset{OH}{\overset{OH}{\longrightarrow}} OH$$

$$R-C \equiv C-H \xrightarrow{[1] O_3} \underset{[2] H_2O}{\overset{R}{\longrightarrow}} \underset{HO}{\overset{R}{\longrightarrow}} C = O + CO_2$$

PREPARATION OF CARBOXYLIC ACIDS

[4] From alkyl halides

Carbonatation (carboxylation) of Grignard reagents

REACTIONS OF CARBOXYLIC ACIDS

DERIVATIVES: STRUCTURE AND BONDING

• Three resonance structures stabilize carboxylic acid derivatives (RCOZ) by delocalizing electron density.

REACTION OF CARBOXYLIC ACID DERIVATIVES: NUCLEOPHILIC ACYL SUBSTITUTION

Nucleophilic Acyl Substitution = Nucleophilic Addition + Elimination (S_NAE)

COMPARISON WITH NUCLEOPHILIC ADDITION TO CARBONYL COMPOUNDS

R⁻ and H⁻ are not leaving group

Nucleophilic Acyl Substitution

The leaving group is substituted by the nucleophile. With neutral nucleophiles a proton is removed to give a neutral product.

Nucleophilic Acyl Substitution

Interconvertion of carboxylic acid derivatives: a more reactive derivative can be transformed in a less reactive. For example, all derivatives can be hydrolyzed to carboxylic acids.

$$H_{C} \xrightarrow{O}_{C} Z \xrightarrow{H_{2}O} H_{C} \xrightarrow{O}_{OH} Z = CI, OCOR, OR, NR_{2}$$

ACID CHLORIDES: REACTIONS

- Acyl chlorides are the most reactive among carboxylic acid derivatives
- A weak, non nucleophilic, base like pyridine is often added to the reaction mixture to remove the byproduct HCI.
- Acyl chlorides are easily decomposed by water
- Catalysis is not required

ACID CHLORIDES: REACTIONS

Hydrolysis:

Formation of anhydrides:

Reaction of Acid Chlorides with amines

- Acid chlorides react with ammonia and 1° and 2° amines to form 1°, 2° and 3° amides respectively.
- Two equivalents of NH_3 or amine are used.
- One equivalent acts as the nucleophile to replace CI, while the other reacts as a base with the HCI by-product to form an ammonium salt.

ANHYDRIDES: REACTIONS

- Anhydrides are strong acylating agents
- A weak acid is formed as by-product.
- Anhydrides are readily decomposed by water.
- Catalysis is not required.

REACTIONS OF ANHYDRIDES

Anhydrides are very common acylating agents for the synthesis of esters and amides:

REACTION OF CARBOXYLIC ACIDS: SYNTHESIS OF ACYL CHLORIDES

By the reaction of a carboxylic acid with thionyl chloride (SOCl₂).

Steps [1] and [2] Conversion of the OH group into a good leaving group

Steps [3] and [4] Substitution of the leaving group by Cl

CARBOXYLIC ACIDS: FISCHER ESTERIFICATION

Part [1] Addition of the nucleophile R'OH

The reaction is an equilibrium, so it is driven to the right by using excess alcohol or by removing water as it is formed.

AMIDES FROM CARBOXYLIC ACIDS

Carboxylic acids cannot be converted into amides by reaction with NH_3 or an amine.

Carboxylic acids are converted into amides by reaction with NH_3 or an amine in the presence of a condensing agent (DCC).

REACTIONS OF CARBOXYLIC ACIDS: AMIDES

Part [1] Conversion of OH into a better leaving group

Part [2] Addition of the nucleophile and loss of the leaving group

ESTERS: REACTIONS

Mechanism of amide formation

ESTERS: REACTIONS

Acid hydrolysis

Part [1] Addition of the nucleophile H₂O

64

ESTERS: REACTIONS

• Basic hydrolysis of an ester is also called saponification.

 Hydrolysis is base promoted, <u>not</u> base catalyzed, because the base (OH⁻) is the nucleophile that adds to the ester and forms part of the product. It participates in the reaction and is not regenerated later.

Lipids

- Each triacylglycerol is a triester, containing three long hydrocarbon side chains.
- Unsaturated triacylglycerols have one or more double bonds in their long hydrocarbon chains, whereas saturated triacylglycerols have none.

LIPID HYDROLYSIS

Soap is prepared by the basic hydrolysis or saponification of a triacylglycerol. Heating an animal fat or vegetable oil with aqueous base hydrolyzes the three esters to form glycerol and sodium salts of three fatty acids. These carboxylate salts are soaps.

SOAP

• Soap molecules self-aggregate in water to form micelles

Micelles are water-soluble because the heads are hydrophilic. Fats and oils from dirt dissolve in the hydorphobic core and are taken into solution

• Synthetic detergents

ESTERS FROM CARBOXYLIC ACIDS

• SN2 (mainly for methyl esters).

Fischer esterification.

AMIDES: STRUCTURE

AMIDES: STRUCTURE

Amide resonance

C, N, O: sp² planar restricted rotation

Trans amides are more stable than cis amides

N-METHYLACETAMIDE

- The rotational barrier is unusually high in amides (15-20 kcal/mol) due to the partial double bond character of the C-N bond.
- Trans-amides are more stable than cis-amides.

AMIDES: BASICITY

DERIVATIVES: PHYSICAL PROPERTIES

- Because all carbonyl compounds have a polar carbonyl group, they exhibit dipole-dipole interactions.
- Because they contain one or two N—H bonds, 1° and 2° amides are capable of intermolecular hydrogen bonding.

AMIDES: REACTIONS

Amides are the least reactive of the carboxylic acid derivatives.

AMIDES: REACTIONS

The mechanism of amide hydrolysis is exactly the same as the mechanism of ester hydrolysis.

Amide hydrolysis is hard in acid because the nucleophile (H_2O) and the electrophile (amide) are poor. Amide hydrolysis is hard in base because the electrophile and the leaving group (NR_2) are poor.

REDUCTION: ACID CHLORIDES, ANHYDRIDES AND ESTERS

Acid chlorides, anhydrides, carboxylic acids and esters are reduced to 1^{ry} alcohols by Al hydrides, e.g. LiAlH4 A two-step reaction:

1. Nucleophilic acyl substitution

2. Nucleophilic addition

Z = CI, OH, OCOR, OR'

REDUCTION OF ACID CHLORIDES, ANHYDRIDES AND ESTERS

- LiAlH₄ is a strong reducing agent that reduces acids, acid chlorides, anhydrides and esters to primary alcohols.
- Diisobutylaluminum hydride $([(CH_3)_2CHCH_2]_2AlH, abbreviated DIBAL-H, has two bulky isobutyl groups which makes this reagent less reactive than LiAlH_4.$
- DIBAL-H reduces acid chlorides, anhydrides and esters to aldehydes.

REDUCTION OF CARBOXYLIC ACIDS AND THEIR DERIVATIVES

<i>Table 20.1</i>	A Summary of Metal Hydride Reducing Agents			
	Reagent	Starting material	\rightarrow	Product
strong reagent	LiAIH ₄	RCHO	\rightarrow	RCH ₂ OH
		R ₂ CO	\rightarrow	R ₂ CHOH
		RCOOH	\rightarrow	RCH ₂ OH
		RCOOR'	\rightarrow	RCH ₂ OH
		RCOCI	\rightarrow	RCH ₂ OH
milder reagents	NaBH ₄	RCHO	\rightarrow	RCH ₂ OH
		R ₂ CO	\rightarrow	R ₂ CHOH
	LiAIH[OC(CH ₃) ₃] ₃	RCOCI	\rightarrow	RCHO
	DIBAL-H	RCOOR'	\rightarrow	RCHO

REDUCTION OF AMIDES

- Amides are reduced to amines by Al hydrides, e.g. LiAlH4
- A two-step reaction:

REACTION OF ORGANOMETALLIC REAGENTS WITH CARBOXYLIC ACID DERIVATIVES.

- Both esters and acid chlorides form 3° alcohols when treated with two equivalents of either Grignard or organolithium reagents.
- A two-step reaction:
 - 1. Nucleophilic acyl substitution

2. Nucleophilic addition

REACTION OF ORGANOMETALLIC REAGENTS WITH CARBOXYLIC ACID DERIVATIVES.

- Organocuprates (R'₂CuLi) are less reactive than organolithium and organomagnesium compounds.
- R'₂CuLi react only with acid chlorides, which are the more reactive among carboxylic acid derivatives, to give a ketone as the product.
- Esters do not react with R'_2CuLi .

SUMMARY: IMPORTANT REACTIONS OF ACID CHLORIDES.

SUMMARY: IMPORTANT REACTIONS OF ANHYDRIDES.

SUMMARY: IMPORTANT REACTIONS OF ESTERS.

SUMMARY: IMPORTANT REACTIONS OF AMIDES.

NATURAL AND SYNTHETIC FIBERS

- Fibers like wool and silk are proteins obtained from animals.
- Cotton and linen are derived from carbohydrates having the general structure of cellulose.

NATURAL AND SYNTHETIC FIBERS: NYLON—A POLYAMIDE

NATURAL AND SYNTHETIC FIBERS: NYLON—A POLYAMIDE

Nylon is a condensation polymer

POLIESTERI

NITRILES

- Nitriles are not common in nature.
- Cyanohydrins are the most common natural nitriles.

NOMENCLATURE — NITRILES

NITRILES

Nitriles are prepared by S_N2 reactions of unhindered methyl and 1° alkyl halides with ⁻CN.

• Nitriles are prepared by dehydration of amides (more general).

SUMMARY: IMPORTANT REACTIONS OF NITRILES.

REACTIONS OF NITRILES — REDUCTION

LiAlH₄ (more reactive)

REACTIONS OF NITRILES — REDUCTION

DIBAL-H (less reactive)

ADDITION OF ORGANOMETALLIC REAGENTS

Both Grignard and organolithium reagents react with nitriles to form ketones with a new C—C bond.

REACTIONS OF NITRILES—HYDROLYSIS

REACTIONS OF NITRILES — HYDROLYSIS

Part [2] Tautomerization of the imidic acid to an amide

Part [3] Hydrolysis of the 1° amide to a carboxylate anion

