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BASICS ON PROBABILITIES

SIGMA ALGEBRAS

Let Ω be a set, S ⊆ 2Ω is a σ-algebra iff

1 ∅,Ω ∈ S;
2 A ∈ S ⇒ Ac ∈ S;
3 An ∈ S, n ∈ N⇒

⋃
n An ∈ S;

(Ω,S) is called measurable space. Example: the Borel sigma
algebra B in Rn, the smallest σ-algebra containing all open sets.

MEASURABLE FUNCTION

A function f : (X ,A)→ (Y ,B) is measurable iff f−1(B) ∈ A for
each B ∈ B
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BASICS ON PROBABILITIES

PROBABILITY MEASURE

Let (Ω,S) be a measurable space. A probability measure on
(Ω,S) is a function µ : S → [0,1] such that

1 µ(∅) = 0
2 µ(Ac) = 1 − µ(A)

3 If An ∈ S disjoint, then µ(
⋃

n An) =
∑∞

n=0 µ(An)

PROBABILITY SPACE

(Ω,S, µ), with S σ-algebra and µ probability measure on (Ω,S),
is a probability space.
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PROBABILITIES: AN INTUITION

Random variables: results of non exactly reproducible
experiments
Either intrinsically random (e.g. quantum mechanics) or
the system is incompletely known, cannot be controlled
precisely

The probability pi of an experiment taking a certain value i
is the frequency with which that value is taken in the limit of
infinite experimental trials (frequentist viewpoint)
Alternatively, we can take probability to be our belief that a
certain value will be taken (Bayesian viewpoint)
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RANDOM VARIABLES: FORMALLY

Let (Ω,S, µ) be a probability space (the sample space) and
(X,A) be a measurable space.

A measurable function
x : (Ω,S)→ (X,A) is called a random variable.
The law of x is P{x ∈ A} = µ(x−1(A)), for each A ∈ A, and it
is a probability distribution in (X,A).
Example: discrete random variables, with values in a
countable state space S, with the σ-algebra 2S.
Example: real-valued random variables, with values in R,
with the Borel σ-algebra.
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RANDOM VARIABLES, NOTATION AND MORE

DEFINITIONS

Let x and y be two random variables, p(x = i , y = j) is the
joint probability of x taking value i and y taking value j
(with i and j in the respective spaces of possible values).
Often just written p(x , y) to indicate the function (as
opposed to its evaluation over the outcomes i and j).
p(x |y) is the conditional probability, i.e. the probability of x
if you know y has a certain value
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RULES OF PROBABILITY (DISCRETE RV)

Normalisation: the sum of the probabilities of all possible
experimental outcomes must be 1,

∑
x∈X p(x) = 1

Sum rule: the marginal probability p(x) is given by
summing the joint p(x , y) over all possible values of y ,

p(x) =
∑
y∈Y

p(x , y)

Product rule: the joint is the product of the conditional and
the marginal,p(x , y) = p(x |y)p(y)

Bayes rule: the posterior is the ratio of the joint and the
marginal

p(y |x) =
p(x |y)p(y)

p(x)
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INDEPENDENCE

Two random variables x and y are independent if their joint
probability factorises in terms of marginals

p(x , y) = p(x)p(y)

Using the product rule, this is equivalent to the conditional
being equal to the marginal

p(x , y) = p(x)p(y)⇔ p(x |y) = p(x)
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CONTINUOUS STATES

If the state space X is continuous some of the previous
definitions must be modified
The general case is mathematically difficult; we restrict
ourselves to X = Rn and to distributions which admit a density,
i.e. a function

p : X → R s.t. p(x) ≥ 0, ∀x and
∫
X

p(x)dx = 1

Formally, these are absolute continuous measures with respect
to the Lebesgue measure, with density function playing the role
of a Radon-Nikodym derivative.
It can be shown that the rules of probability distributions hold
also for probability densities
Notice that p(x) is NOT the probability of the random variable
being in state x (that is always zero for bounded densities);
probabilities are only defined as integrals over subsets of X
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PROBABILISTIC INFERENCE

In logics, an inference system is given by a set of inference
rules, allowing to infer logical consequences from a set of
facts/ axioms.

The rules of probability define an inference system
generalising logical ones to reason under uncertainty.
Typically, we have a probabilistic model, and possibly
evidence (e.g. experimental observations), and we want to
deduce consequences – here compute probabilities.
We do this by consistent applications of the rules of
probability.
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PROBABILISTIC INFERENCE: EXAMPLE

Scientists1 found that people that enjoy working 14 hours
per day (HW) almost inevitably eat Frico (F):
p(F |HW ) = 0.8. The probability of being a HW is rather
low, about 10−4.

Assuming eating Frico is quite common, p(F ) = 0.4, what
is the probability that a Frico eater is a HW? By Bayes rule:

p(HW |F ) =
p(F |HW )p(HW )

p(F )
=

0.8 · 10−4

0.4
= 2 · 10−4

As Frico eating is rare worldwide, say p(F ) = 2 · 10−4

p(HW |F ) =
p(F |HW )p(HW )

p(F )
=

0.8 · 10−4

2 · 10−4
= 0.4

1cf. Monon Behaviour
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PROBABILISTIC INFERENCE: EXAMPLE

Probabilistic Reasoning

where we used the fact that in our model p(B, M) = p(B)p(M). Plugging in the values we have (see also
demoClouseau.m)

p(B = murderer|knife used) =
6
10

�
2
10 ⇥ 1

10 + 8
10 ⇥ 6

10

�
6
10

�
2
10 ⇥ 1

10 + 8
10 ⇥ 6

10

�
+ 4

10

�
2
10 ⇥ 2

10 + 8
10 ⇥ 3

10

� =
300

412
⇡ 0.73 (1.2.8)

Hence knowing that the knife was the murder weapon strengthens our belief that the butler did it.

Remark 1.3. The role of p(knife used) in the Inspector Clouseau example can cause some confusion. In
the above,

p(knife used) =
X

b

p(b)
X

m

p(knife used|b, m)p(m) (1.2.9)

is computed to be 0.456. But surely, p(knife used) = 1, since this is given in the question! Note that the
quantity p(knife used) relates to the prior probability the model assigns to the knife being used (in the
absence of any other information). If we know that the knife is used, then the posterior

p(knife used|knife used) =
p(knife used, knife used)

p(knife used)
=

p(knife used)

p(knife used)
= 1 (1.2.10)

which, naturally, must be the case.

Example 1.4 (Who’s in the bathroom?). Consider a household of three people, Alice, Bob and Cecil.
Cecil wants to go to the bathroom but finds it occupied. He then goes to Alice’s room and sees she is there.
Since Cecil knows that only either Alice or Bob can be in the bathroom, from this he infers that Bob must
be in the bathroom.

To arrive at the same conclusion in a mathematical framework, we define the following events

A = Alice is in her bedroom, B = Bob is in his bedroom, O = Bathroom occupied (1.2.11)

We can encode the information that if either Alice or Bob are not in their bedrooms, then they must be in
the bathroom (they might both be in the bathroom) as

p(O = tr|A = fa, B) = 1, p(O = tr|A, B = fa) = 1 (1.2.12)

The first term expresses that the bathroom is occupied if Alice is not in her bedroom, wherever Bob is.
Similarly, the second term expresses bathroom occupancy as long as Bob is not in his bedroom. Then

p(B = fa|O = tr, A = tr) =
p(B = fa, O = tr, A = tr)

p(O = tr, A = tr)
=

p(O = tr|A = tr, B = fa)p(A = tr, B = fa)

p(O = tr, A = tr)
(1.2.13)

where

p(O = tr, A = tr) = p(O = tr|A = tr, B = fa)p(A = tr, B = fa)

+ p(O = tr|A = tr, B = tr)p(A = tr, B = tr) (1.2.14)

Using the fact p(O = tr|A = tr, B = fa) = 1 and p(O = tr|A = tr, B = tr) = 0, which encodes that if Alice
is in her room and Bob is not, the bathroom must be occupied, and similarly, if both Alice and Bob are in
their rooms, the bathroom cannot be occupied,

p(B = fa|O = tr, A = tr) =
p(A = tr, B = fa)

p(A = tr, B = fa)
= 1 (1.2.15)

This example is interesting since we are not required to make a full probabilistic model in this case thanks
to the limiting nature of the probabilities (we don’t need to specify p(A, B)). The situation is common in
limiting situations of probabilities being either 0 or 1, corresponding to traditional logic systems.

14 DRAFT June 18, 2013
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14 DRAFT June 18, 2013
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PROBABILISTIC INFERENCE: EXAMPLE

Exercises

and also

p(x|y, z) =
p(y|x, z)p(x|z)

p(y|z)
(1.6.2)

Exercise 1.2. Prove the Bonferroni inequality

p(a, b) � p(a) + p(b)� 1 (1.6.3)

Exercise 1.3 (Adapted from [181]). There are two boxes. Box 1 contains three red and five white balls and
box 2 contains two red and five white balls. A box is chosen at random p(box = 1) = p(box = 2) = 0.5 and
a ball chosen at random from this box turns out to be red. What is the posterior probability that the red ball
came from box 1?

Exercise 1.4 (Adapted from [181]). Two balls are placed in a box as follows: A fair coin is tossed and a
white ball is placed in the box if a head occurs, otherwise a red ball is placed in the box. The coin is tossed
again and a red ball is placed in the box if a tail occurs, otherwise a white ball is placed in the box. Balls
are drawn from the box three times in succession (always with replacing the drawn ball back in the box). It
is found that on all three occasions a red ball is drawn. What is the probability that both balls in the box are
red?

Exercise 1.5 (From David Spiegelhalter understandinguncertainty.org). A secret government agency
has developed a scanner which determines whether a person is a terrorist. The scanner is fairly reliable;
95% of all scanned terrorists are identified as terrorists, and 95% of all upstanding citizens are identified
as such. An informant tells the agency that exactly one passenger of 100 aboard an aeroplane in which you
are seated is a terrorist. The agency decide to scan each passenger and the shifty looking man sitting next
to you is the first to test positive. What are the chances that this man is a terrorist?

Exercise 1.6. Consider three variable distributions which admit the factorisation

p(a, b, c) = p(a|b)p(b|c)p(c) (1.6.4)

where all variables are binary. How many parameters are needed to specify distributions of this form?

Exercise 1.7. Repeat the Inspector Clouseau scenario, example(1.3), but with the restriction that either the
maid or the butler is the murderer, but not both. Explicitly, the probability of the maid being the murderer
and not the butler is 0.04, the probability of the butler being the murderer and not the maid is 0.64. Modify
demoClouseau.m to implement this.

Exercise 1.8. Prove

p(a, (b or c)) = p(a, b) + p(a, c)� p(a, b, c) (1.6.5)

Exercise 1.9. Prove

p(x|z) =
X

y

p(x|y, z)p(y|z) =
X

y,w

p(x|w, y, z)p(w|y, z)p(y|z) (1.6.6)

Exercise 1.10. As a young man Mr Gott visits Berlin in 1969. He’s surprised that he cannot cross into
East Berlin since there is a wall separating the two halves of the city. He’s told that the wall was erected 8
years previously. He reasons that : The wall will have a finite lifespan; his ignorance means that he arrives
uniformly at random at some time in the lifespan of the wall. Since only 5% of the time one would arrive
in the first or last 2.5% of the lifespan of the wall he asserts that with 95% confidence the wall will survive
between 8/0.975 ⇡ 8.2 and 8/0.025 = 320 years. In 1989 the now Professor Gott is pleased to find that
his prediction was correct and promotes his prediction method in prestigious journals. This ‘delta-t’ method
is widely adopted and used to form predictions in a range of scenarios about which researchers are ‘totally
ignorant’. Would you ‘buy’ a prediction from Prof. Gott? Explain carefully your reasoning.

Exercise 1.11. Implement the soft XOR gate, example(1.7) using BRMLtoolbox. You may find condpot.m

of use.
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DISTRIBUTIONS AND EXPECTATIONS

A probability distribution for finite state space can be given
by a table, in general is given by a functional form
Probability distributions (over numerical objects) are useful
to compute expectations of functions

〈f 〉 =
∑
x∈X

f (x)p(x)

Important expectations are the mean 〈x〉 and variance
var(x) = 〈(x − 〈x〉)2〉.
For more variables, also the covariance
cov(x , y) = 〈(x − 〈x〉)(y − 〈y〉)〉 or its scaled relative the
correlation corr(x , y) = cov(x , y)/

√
var(x)var(y)
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DISTRIBUTIONS AND EXPECTATIONS

EXERCISE

if two variables are independent, then their correlation is zero.
NOT TRUE viceversa (no correlation does not imply
independence)
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COMPUTING EXPECTATIONS

If you know analytically the probability distribution and can
compute the sums (integrals), no problem

If you know the distribution but cannot compute the sums
(integrals), enter the magical realm of approximate
inference (fun but out of scope)
If you know nothing but have NS samples, then use a
sample approximation
Approximate the probability of an outcome with the
frequency in the sample

〈f (x)〉 '
∑

x

nx

NS
f (x) =

1
NS

NS∑
i=1

f (xi)
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BASIC DISCRETE DISTRIBUTIONS

DISCRETE/ CATEGORICAL DISTRIBUTION

a random variable can take N distinct values with probability
pi , i = 1, . . . ,N . Formally

p(x = i) = pi

N∑
i=1

pi = 1
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BASIC DISCRETE DISTRIBUTIONS

BERNOULLI DISTRIBUTION

a discrete random variable x with two outcomes: 1, with
probability p(x = 1|θ) = θ and 0, with probability 1 − θ. Compute
mean and variance.

〈x〉 = θ

var(x) = θ(1 − θ)
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BASIC DISCRETE DISTRIBUTIONS

BINOMIAL DISTRIBUTION

describes the outcome of n Bernoulli trials. The probability of k
successes is

p(y = k |θ) =

(
n
k

)
θk (1 − θ)n−k

Compute mean and variance.

〈x〉 = nθ

var(x) = nθ(1 − θ)
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BASIC DISCRETE DISTRIBUTIONS

MULTINOMIAL DISTRIBUTION

describes the outcome of n trials of a categorical distribution on
{1, . . . ,K } with probabilities θ = (θ1, . . . , θK ). The probability of
observing yi outcomes of type i is

p(y1, . . . , yK |θ) =
n!

y1! · · · yK !

K∏
i=1

θ
yi
i

Compute mean and variance.

〈yi 〉 = nθi

var(yi ) = nθi (1 − θi )

cov(yi , yj ) = −nθiθj
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POISSON DISTRIBUTION

a distribution over non-negative integers

p (n|λ) =
λn

n!
exp[−λ]

The parameter λ is often called the rate of the distribution. The
Poisson distribution is often used for rare events, e.g. decaying of
particles or binding of DNA fragments to a probe.
Compute mean and variance.

〈x〉 = λ

var(x) = λ

A binomial with
parameter θ = λ/n
converges to a
Poisson for n → ∞
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BASIC CONTINUOUS DISTRIBUTIONS

UNIFORM DISTRIBUTION

A variable x with constant density, over its domain of definition, which
is an interval [a,b] ⊂ R.

Hence p(x) = 1/(b − a), if x ∈ [a,b].

〈x〉 = (a + b)/2

var(x) = (a2 + b2 + ab)/3
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EXPONENTIAL DISTRIBUTION

Typically used for the time of occurrence of a random event, like the
decay of a particle or the arrival of a customer in a shop. For x ≥ 0,

p(x |λ) = λe−λx

with λ known as the rate of the distribution.

〈x〉 = 1/λ

var(x) = 1/λ2
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GAMMA DISTRIBUTION

Defined for x ≥ 0, by the density

p(x |α, β) =
1

βΓ(α)
(x/β)α−1e−x/β

where α is the shape parameter, β is the scale parameter, and Γ(α) is
the gamma function

Γ(a) =

∫ ∞

0
ta−1e−tdt

〈x〉 = α/β

var(x) = α/β2

Gamma(1, λ) ≡ Exp(λ)
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INVERSE GAMMA DISTRIBUTION

Defined for x ≥ 0, by the density

p(x |α, β) =
βα

Γ(α)
(1/x)α+1e−β/x

where α is the shape parameter, β is the scale parameter, and Γ(α) is
the gamma function

〈x〉 = β/(α − 1), α > 1

var(x) = β2/((α − 1)2(α − 2))
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BETA DISTRIBUTION

Defined for x ∈ [0,1] by

p(x |α, β) =
1

B(α, β)
xα−1(1 − x)β−1

where the Beta function B(α, β) is defined by [B(α, β) =
Γ(α)Γ(β)
Γ(α+β)

〈x〉 = α/(α + β)

var(x) = αβ

(α+β)2(α+β+1)
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DIRICHLET DISTRIBUTION

It is a distribution over discrete probability distributions on k elements.
It depends on k parameters u = u1, . . . ,uk . Its pdf is

pdir (x|u) = p(x|u) =
1

B(u)

k∏
i=1

xui−1
i

with B(u) =
∏k

i=1 Γ(ui )

Γ(
∑k

i=1 ui )

〈xi 〉 = ui/(ui + ūi ), ūi =
∑

j,i uj

var(xi ) = ui ūi
(ui +ūi )2(ui +ūi +1)

pdir (x|u1)pdir (x|u2) = pdir (x|u1 + u2)∫
xj

pdir (x|u)dxj = pdir (x/j|u/j)∫
x/j

pdir (x|u)dx/j = pbeta(xj |uj ,
∑

i,j uj )
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BASIC CONTINUOUS DISTRIBUTIONS

One of the most used distributions in Machine Learning

p(x |µ, σ2) = N(x |µ, σ2) =
1

√
2πσ2

e−
1

2σ2 (x−µ)2

〈x〉 = µ

var(x) = σ2

For µ = 1, σ2 = 1 we talk
about a standard normal
distribution.
1/σ2 is known as
precision.



BASICS DISTRIBUTIONS FITTING DISTRIBUTIONS INFORMATION THEORY DECISION THEORY 31 / 65

BASIC CONTINUOUS DISTRIBUTIONS

One of the most used distributions in Machine Learning

p(x |µ, σ2) = N(x |µ, σ2) =
1

√
2πσ2

e−
1

2σ2 (x−µ)2

〈x〉 = µ

var(x) = σ2

For µ = 1, σ2 = 1 we talk
about a standard normal
distribution.
1/σ2 is known as
precision.



BASICS DISTRIBUTIONS FITTING DISTRIBUTIONS INFORMATION THEORY DECISION THEORY 32 / 65

STUDENT’S T-DISTRIBUTION

Classical Distributions
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Figure 8.5: Top: 200 datapoints x1, . . . , x200 drawn from a Gaussian distribution.
Each vertical line denotes a datapoint at the corresponding x value on the hori-
zontal axis. Middle: Histogram using 10 equally spaced bins of the datapoints.
Bottom: Gaussian distribution N (x µ = 5,� = 3) from which the datapoints
were drawn. In the limit of an infinite amount of data, and limitingly small bin
size, the normalised histogram tends to the Gaussian probability density function.

and �(x) is the Gamma function. Note that the distribution can be flipped by interchanging x for 1 � x,
which is equivalent to interchanging ↵ and �. See fig(8.4).

The mean and variance are given by

hxi =
↵

↵+ �
, var(x) =

↵�

(↵+ �)2 (↵+ � + 1)
(8.3.19)

Definition 8.24 (Laplace Distribution).

p(x|�) ⌘ �e�
1
b
|x�µ| (8.3.20)

For scale b

hxi = µ, var(x) = 2b2 (8.3.21)

The Laplace distribution is also known as the Double Exponential distribution, fig(8.2b).

Definition 8.25 (Univariate Gaussian Distribution).

p(x|µ,�2) = N
�
x µ,�2

�
⌘ 1p

2⇡�2
e�

1
2�2 (x�µ)2 (8.3.22)

where µ is the mean of the distribution, and �2 the variance. This is also called the normal distribution.

One can show that the parameters indeed correspond to

µ = hxiN (x µ,�2) , �2 =
D
(x� µ)2

E
N (x µ,�2)

(8.3.23)

For µ = 0 and � = 1, the Gaussian is called the standard normal distribution. See fig(8.5) for a depiction of
the univariate Gaussian and samples therefrom.

Definition 8.26 (Student’s t-distribution).

p(x|µ,�, ⌫) = Student (x|µ,�, ⌫) =
�(⌫+1

2 )

�(⌫2 )

✓
�

⌫⇡

◆ 1
2

"
1 +

� (x� µ)2

⌫

#� ⌫+1
2

(8.3.24)

where µ is the mean, ⌫ the degrees of freedom, and � scales the distribution. The variance is given by

var(x) =
⌫

� (⌫ � 2)
, for ⌫ > 2 (8.3.25)

For ⌫ !1 the distribution tends to a Gaussian with mean µ and variance 1/�. As ⌫ decreases the tails of
the distribution become fatter.
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Classical Distributions
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Figure 8.6: Dirichlet distribution with parameter (u1, u2, u3) displayed on the simplex x1, x2, x3 � 0, x1 +
x2 + x3 = 1. Black denotes low probability and white high probability. (a): (3, 3, 3) (b): (0.1, 1, 1). (c):
(4, 3, 2). (d): (0.05, 0.05, 0.05).

The t-distribution can be derived from a scaled mixture

p(x|µ, a, b) =

Z 1

⌧=0
N
�
x µ, ⌧�1

�
Gamis (⌧ |a, b) d⌧ (8.3.26)

=

Z 1

⌧=0

⇣ ⌧
2⇡

⌘ 1
2
e�

⌧
2
(x�µ)2bae�b⌧⌧a�1 1

�(a)
d⌧ (8.3.27)

=
ba

�(a)

�(a + 1
2)p

2⇡

1
⇣
b + 1

2 (x� µ)2
⌘a+ 1

2

(8.3.28)

This matches equation (8.3.24) on setting ⌫ = 2a and � = a/b.

Definition 8.27 (Dirichlet Distribution). The Dirichlet distribution is a distribution on probability distri-
butions, ↵ = (↵1, . . . ,↵Q), ↵i � 0,

P
i ↵i = 1:

p(↵) =
1

Z(u)
�

 
QX

i=1

↵i � 1

!
QY

q=1

↵
uq�1
q I [↵q � 0] (8.3.29)

where

Z(u) =

QQ
q=1 �(uq)

�
⇣PQ

q=1 uq

⌘ (8.3.30)

It is conventional to denote the distribution as

Dirichlet (↵|u) (8.3.31)

The parameter u controls how strongly the mass of the distribution is pushed to the corners of the simplex.
Setting uq = 1 for all q corresponds to a uniform distribution, fig(8.6). In the binary case Q = 2, this is
equivalent to a Beta distribution.

The product of two Dirichlet distributions is another Dirichlet distribution

Dirichlet (✓|u1) Dirichlet (✓|u2) = Dirichlet (✓|u1 + u2) (8.3.32)

The marginal of a Dirichlet is also Dirichlet:

Z

✓j

Dirichlet (✓|u) = Dirichlet
�
✓\j |u\j

�
(8.3.33)
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STUDENT’S T-DISTRIBUTION

Classical Distributions
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Figure 8.5: Top: 200 datapoints x1, . . . , x200 drawn from a Gaussian distribution.
Each vertical line denotes a datapoint at the corresponding x value on the hori-
zontal axis. Middle: Histogram using 10 equally spaced bins of the datapoints.
Bottom: Gaussian distribution N (x µ = 5,� = 3) from which the datapoints
were drawn. In the limit of an infinite amount of data, and limitingly small bin
size, the normalised histogram tends to the Gaussian probability density function.

and �(x) is the Gamma function. Note that the distribution can be flipped by interchanging x for 1 � x,
which is equivalent to interchanging ↵ and �. See fig(8.4).

The mean and variance are given by

hxi =
↵

↵+ �
, var(x) =

↵�

(↵+ �)2 (↵+ � + 1)
(8.3.19)

Definition 8.24 (Laplace Distribution).

p(x|�) ⌘ �e�
1
b
|x�µ| (8.3.20)

For scale b

hxi = µ, var(x) = 2b2 (8.3.21)

The Laplace distribution is also known as the Double Exponential distribution, fig(8.2b).

Definition 8.25 (Univariate Gaussian Distribution).

p(x|µ,�2) = N
�
x µ,�2

�
⌘ 1p

2⇡�2
e�

1
2�2 (x�µ)2 (8.3.22)

where µ is the mean of the distribution, and �2 the variance. This is also called the normal distribution.

One can show that the parameters indeed correspond to

µ = hxiN (x µ,�2) , �2 =
D
(x� µ)2

E
N (x µ,�2)

(8.3.23)

For µ = 0 and � = 1, the Gaussian is called the standard normal distribution. See fig(8.5) for a depiction of
the univariate Gaussian and samples therefrom.

Definition 8.26 (Student’s t-distribution).

p(x|µ,�, ⌫) = Student (x|µ,�, ⌫) =
�(⌫+1

2 )

�(⌫2 )

✓
�

⌫⇡

◆ 1
2

"
1 +

� (x� µ)2

⌫

#� ⌫+1
2

(8.3.24)

where µ is the mean, ⌫ the degrees of freedom, and � scales the distribution. The variance is given by

var(x) =
⌫

� (⌫ � 2)
, for ⌫ > 2 (8.3.25)

For ⌫ !1 the distribution tends to a Gaussian with mean µ and variance 1/�. As ⌫ decreases the tails of
the distribution become fatter.
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Figure 8.6: Dirichlet distribution with parameter (u1, u2, u3) displayed on the simplex x1, x2, x3 � 0, x1 +
x2 + x3 = 1. Black denotes low probability and white high probability. (a): (3, 3, 3) (b): (0.1, 1, 1). (c):
(4, 3, 2). (d): (0.05, 0.05, 0.05).

The t-distribution can be derived from a scaled mixture

p(x|µ, a, b) =

Z 1

⌧=0
N
�
x µ, ⌧�1

�
Gamis (⌧ |a, b) d⌧ (8.3.26)

=

Z 1

⌧=0

⇣ ⌧
2⇡

⌘ 1
2
e�

⌧
2
(x�µ)2bae�b⌧⌧a�1 1

�(a)
d⌧ (8.3.27)

=
ba

�(a)

�(a + 1
2)p

2⇡

1
⇣
b + 1

2 (x� µ)2
⌘a+ 1

2

(8.3.28)

This matches equation (8.3.24) on setting ⌫ = 2a and � = a/b.

Definition 8.27 (Dirichlet Distribution). The Dirichlet distribution is a distribution on probability distri-
butions, ↵ = (↵1, . . . ,↵Q), ↵i � 0,

P
i ↵i = 1:

p(↵) =
1

Z(u)
�

 
QX

i=1

↵i � 1

!
QY

q=1

↵
uq�1
q I [↵q � 0] (8.3.29)

where

Z(u) =

QQ
q=1 �(uq)

�
⇣PQ

q=1 uq

⌘ (8.3.30)

It is conventional to denote the distribution as

Dirichlet (↵|u) (8.3.31)

The parameter u controls how strongly the mass of the distribution is pushed to the corners of the simplex.
Setting uq = 1 for all q corresponds to a uniform distribution, fig(8.6). In the binary case Q = 2, this is
equivalent to a Beta distribution.

The product of two Dirichlet distributions is another Dirichlet distribution

Dirichlet (✓|u1) Dirichlet (✓|u2) = Dirichlet (✓|u1 + u2) (8.3.32)

The marginal of a Dirichlet is also Dirichlet:

Z

✓j

Dirichlet (✓|u) = Dirichlet
�
✓\j |u\j

�
(8.3.33)
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MULTIVARIATE NORMAL DISTRIBUTION

This is the most important distribution we will use, and generalises
the 1d normal. In d dimensions

p(x|µ,Σ) = N(x|µ,Σ) =
1√

(2π)d det(Σ)
exp

(
−

1
2

(x − µ)Σ−1(x − µ)T
)

It holds µ = 〈x〉, and Σ = cov(x,x) = 〈(x − µ)(x − µ)T 〉
Multivariate Gaussian
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Figure 8.7: (a): Bivariate Gaussian with mean (0, 0) and covariance [1, 0.5; 0.5, 1.75]. Plotted on the
vertical axis is the probability density value p(x). (b): Probability density contours for the same bivariate
Gaussian. Plotted are the unit eigenvectors scaled by the square root of their eigenvalues,

p
�i.

The marginal of a single component ✓i is a Beta distribution:

p(✓i) = B

0
@✓i|ui,

X

j 6=i

uj

1
A (8.3.34)

8.4 Multivariate Gaussian

The multivariate Gaussian plays a central role in data analysis and as such we discuss its properties in some
detail.

Definition 8.28 (Multivariate Gaussian Distribution).

p(x|µ,⌃) = N (x µ,⌃) ⌘ 1p
det (2⇡⌃)

e�
1
2
(x�µ)T⌃�1(x�µ) (8.4.1)

where µ is the mean vector of the distribution, and ⌃ the covariance matrix. The inverse covariance ⌃�1

is called the precision.

One may show

µ = hxiN (x µ,⌃) , ⌃ =
D
(x� µ) (x� µ)T

E
N (x µ,⌃)

(8.4.2)

Note that det (⇢M) = ⇢Ddet (M), where M is a D ⇥D matrix, which explains the dimension independent
notation in the normalisation constant of definition(8.28).

The moment representation uses µ and ⌃ to parameterise the Gaussian. The alternative canonical repre-
sentation

p(x|b,M, c) = ce�
1
2
xTMx+xTb (8.4.3)

is related to the moment representation via

⌃ = M�1, µ = M�1b,
1p

det (2⇡⌃)
= ce

1
2
bTM�1b (8.4.4)
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PROPERTIES OF MULTIVARIATE NORMAL

Completing the square

Multivariate Gaussian

The multivariate Gaussian is widely used and it is instructive to understand the geometric picture. This
can be achieved by viewing the distribution in a di↵erent co-ordinate system. First we use the fact that
every real symmetric matrix D ⇥D has an eigen-decomposition

⌃ = E⇤ET (8.4.5)

where ETE = I and ⇤ = diag (�1, . . . ,�D). In the case of a covariance matrix, all the eigenvalues �i are
positive. This means that one can use the transformation

y = ⇤�
1
2 ET (x� µ) (8.4.6)

so that

(x� µ)T ⌃�1 (x� µ) = (x� µ)T E⇤�1ET (x� µ) = yTy (8.4.7)

Under this transformation, the multivariate Gaussian reduces to a product of D univariate zero-mean unit
variance Gaussians (since the Jacobian of the transformation is a constant). This means that we can view a
multivariate Gaussian as a shifted, scaled and rotated version of a ‘standard’ (zero mean, unit covariance)
Gaussian in which the centre is given by the mean, the rotation by the eigenvectors, and the scaling by the
square root of the eigenvalues, as depicted in fig(8.7b). A Gaussian with covariance ⌃ = ⇢I for some scalar
⇢ is an example of an isotropic meaning ‘same under rotation’. For any isotropic distribution, contours of
equal probability are spherical around the origin.

Result 8.2 (Product of two Gaussians). The product of two Gaussians is another Gaussian, with a multi-
plicative factor, exercise(8.35):

N (x µ1,⌃1) N (x µ2,⌃2) = N (x µ,⌃)
exp

⇣
�1

2 (µ1 � µ2)
T S�1 (µ1 � µ2)

⌘

p
det (2⇡S)

(8.4.8)

where S ⌘ ⌃1 + ⌃2 and the mean and covariance are given by

µ = ⌃1S
�1µ2 + ⌃2S

�1µ1 ⌃ = ⌃1S
�1⌃2 (8.4.9)

8.4.1 Completing the square

A useful technique in manipulating Gaussians is completing the square. For example, the expression

exp

✓
�1

2
xTAx + bTx

◆
(8.4.10)

can be transformed as follows. First we complete the square:

1

2
xTAx� bTx =

1

2

�
x�A�1b

�T
A
�
x�A�1b

�
� 1

2
bTA�1b (8.4.11)

Hence

exp

✓
�1

2
xTAx� bTx

◆
= N

�
x A�1b,A�1

�q
det
�
2⇡A�1

�
exp

✓
1

2
bTA�1b

◆
(8.4.12)

From this one can derive

Z
exp

✓
�1

2
xTAx + bTx

◆
dx =

q
det
�
2⇡A�1

�
exp

✓
1

2
bTA�1b

◆
(8.4.13)
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p(x|A,b)c exp
(
− 1

2 xAxT + bT x
)

is known as the canonical representation, and it is normal with mean A−1b and

covariance A−1.

Linear transformation
Multivariate Gaussian

Result 8.3 (Linear Transform of a Gaussian). Let y be linearly related to x through

y = Mx + ⌘ (8.4.14)

where x??⌘, ⌘ ⇠ N (µ,⌃), and x ⇠ N (µx,⌃x). Then the marginal p(y) =
R
x p(y|x)p(x) is a Gaussian

p(y) = N
⇣
y Mµx + µ,M⌃xM

T + ⌃
⌘

(8.4.15)

Result 8.4 (Partitioned Gaussian). Consider a distribution N (z µ,⌃) defined jointly over two vectors x
and y of potentially di↵ering dimensions,

z =

✓
x
y

◆
(8.4.16)

with corresponding mean and partitioned covariance

µ =

✓
µx

µy

◆
⌃ =

✓
⌃xx ⌃xy

⌃yx ⌃yy

◆
(8.4.17)

where ⌃yx ⌘ ⌃T
xy. The marginal distribution is given by

p(x) = N (x µx,⌃xx) (8.4.18)

and conditional

p(x|y) = N
�
x µx + ⌃xy⌃

�1
yy

�
y � µy

�
,⌃xx �⌃xy⌃

�1
yy ⌃yx

�
(8.4.19)

Result 8.5 (Gaussian average of a quadratic function).

D
xTAx

E
N (x µ,⌃)

= µTAµ + trace (A⌃) (8.4.20)

8.4.2 Conditioning as system reversal

For a joint Gaussian distribution p(x,y), consider the conditional p(x|y). The formula for this Gaussian is
given in equation (8.4.19). An equivalent and useful way to write this result is to consider a ‘reversed’ linear
system of the form

x =
 �
Ay + �⌘ , where  �⌘ ⇠ N

⇣ �⌘  �µ ,
 �
⌃
⌘

(8.4.21)

and show that the marginal over the ‘reverse’ noise  �⌘ is equivalent to conditioning. That is, for a Gaussian

p(x|y) =

Z
�
⇣
x� �Ay � �⌘

⌘
p( �⌘ ), p( �⌘ ) = N

⇣ �⌘  �µ ,
 �
⌃
⌘

(8.4.22)

for suitably defined
 �
A,  �µ ,

 �
⌃ . To show this, we need to make the statistics of x under this linear system

match those given by the conditioning operation, (8.4.19). The mean and covariance of the linear system
equation (8.4.21) are given by

µx =
 �
Ay + �µ , ⌃xx =

 �
⌃ . (8.4.23)

We can make these match equation (8.4.19) by setting
 �
A = ⌃xy⌃

�1
yy ,

 �
⌃ = ⌃xx �⌃xy⌃

�1
yy ⌃yx,  �µ = µx �⌃xy⌃

�1
yy µy (8.4.24)

This means that we can write an explicit linear system of the form equation (8.4.21) where the parameters
are given in terms of the statistics of the original system. This is particularly useful in deriving results in
inference with Linear Dynamical Systems, section(24.3).
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PROPERTIES OF MULTIVARIATE NORMAL
Multivariate Gaussian
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Figure 8.7: (a): Bivariate Gaussian with mean (0, 0) and covariance [1, 0.5; 0.5, 1.75]. Plotted on the
vertical axis is the probability density value p(x). (b): Probability density contours for the same bivariate
Gaussian. Plotted are the unit eigenvectors scaled by the square root of their eigenvalues,

p
�i.

The marginal of a single component ✓i is a Beta distribution:

p(✓i) = B

0
@✓i|ui,

X

j 6=i

uj

1
A (8.3.34)

8.4 Multivariate Gaussian

The multivariate Gaussian plays a central role in data analysis and as such we discuss its properties in some
detail.

Definition 8.28 (Multivariate Gaussian Distribution).

p(x|µ,⌃) = N (x µ,⌃) ⌘ 1p
det (2⇡⌃)

e�
1
2
(x�µ)T⌃�1(x�µ) (8.4.1)

where µ is the mean vector of the distribution, and ⌃ the covariance matrix. The inverse covariance ⌃�1

is called the precision.

One may show

µ = hxiN (x µ,⌃) , ⌃ =
D
(x� µ) (x� µ)T

E
N (x µ,⌃)

(8.4.2)

Note that det (⇢M) = ⇢Ddet (M), where M is a D ⇥D matrix, which explains the dimension independent
notation in the normalisation constant of definition(8.28).

The moment representation uses µ and ⌃ to parameterise the Gaussian. The alternative canonical repre-
sentation

p(x|b,M, c) = ce�
1
2
xTMx+xTb (8.4.3)

is related to the moment representation via

⌃ = M�1, µ = M�1b,
1p

det (2⇡⌃)
= ce

1
2
bTM�1b (8.4.4)
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Eigendecomposition

Multivariate Gaussian

The multivariate Gaussian is widely used and it is instructive to understand the geometric picture. This
can be achieved by viewing the distribution in a di↵erent co-ordinate system. First we use the fact that
every real symmetric matrix D ⇥D has an eigen-decomposition

⌃ = E⇤ET (8.4.5)

where ETE = I and ⇤ = diag (�1, . . . ,�D). In the case of a covariance matrix, all the eigenvalues �i are
positive. This means that one can use the transformation

y = ⇤�
1
2 ET (x� µ) (8.4.6)

so that

(x� µ)T ⌃�1 (x� µ) = (x� µ)T E⇤�1ET (x� µ) = yTy (8.4.7)

Under this transformation, the multivariate Gaussian reduces to a product of D univariate zero-mean unit
variance Gaussians (since the Jacobian of the transformation is a constant). This means that we can view a
multivariate Gaussian as a shifted, scaled and rotated version of a ‘standard’ (zero mean, unit covariance)
Gaussian in which the centre is given by the mean, the rotation by the eigenvectors, and the scaling by the
square root of the eigenvalues, as depicted in fig(8.7b). A Gaussian with covariance ⌃ = ⇢I for some scalar
⇢ is an example of an isotropic meaning ‘same under rotation’. For any isotropic distribution, contours of
equal probability are spherical around the origin.

Result 8.2 (Product of two Gaussians). The product of two Gaussians is another Gaussian, with a multi-
plicative factor, exercise(8.35):

N (x µ1,⌃1) N (x µ2,⌃2) = N (x µ,⌃)
exp

⇣
�1

2 (µ1 � µ2)
T S�1 (µ1 � µ2)

⌘

p
det (2⇡S)

(8.4.8)

where S ⌘ ⌃1 + ⌃2 and the mean and covariance are given by

µ = ⌃1S
�1µ2 + ⌃2S

�1µ1 ⌃ = ⌃1S
�1⌃2 (8.4.9)

8.4.1 Completing the square

A useful technique in manipulating Gaussians is completing the square. For example, the expression

exp

✓
�1

2
xTAx + bTx

◆
(8.4.10)

can be transformed as follows. First we complete the square:

1

2
xTAx� bTx =

1

2

�
x�A�1b

�T
A
�
x�A�1b

�
� 1

2
bTA�1b (8.4.11)

Hence

exp

✓
�1

2
xTAx� bTx

◆
= N

�
x A�1b,A�1

�q
det
�
2⇡A�1

�
exp

✓
1

2
bTA�1b

◆
(8.4.12)

From this one can derive

Z
exp

✓
�1

2
xTAx + bTx

◆
dx =

q
det
�
2⇡A�1

�
exp

✓
1

2
bTA�1b

◆
(8.4.13)
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So by rescaling, we can obtain a product of d-univariate standard normal distributions, one per dimension.
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Marginal and conditional of multivariate Gaussians

Multivariate Gaussian

Result 8.3 (Linear Transform of a Gaussian). Let y be linearly related to x through

y = Mx + ⌘ (8.4.14)

where x??⌘, ⌘ ⇠ N (µ,⌃), and x ⇠ N (µx,⌃x). Then the marginal p(y) =
R
x p(y|x)p(x) is a Gaussian

p(y) = N
⇣
y Mµx + µ,M⌃xM

T + ⌃
⌘

(8.4.15)

Result 8.4 (Partitioned Gaussian). Consider a distribution N (z µ,⌃) defined jointly over two vectors x
and y of potentially di↵ering dimensions,

z =

✓
x
y

◆
(8.4.16)

with corresponding mean and partitioned covariance

µ =

✓
µx

µy

◆
⌃ =

✓
⌃xx ⌃xy

⌃yx ⌃yy

◆
(8.4.17)

where ⌃yx ⌘ ⌃T
xy. The marginal distribution is given by

p(x) = N (x µx,⌃xx) (8.4.18)

and conditional

p(x|y) = N
�
x µx + ⌃xy⌃

�1
yy

�
y � µy

�
,⌃xx �⌃xy⌃

�1
yy ⌃yx

�
(8.4.19)

Result 8.5 (Gaussian average of a quadratic function).

D
xTAx

E
N (x µ,⌃)

= µTAµ + trace (A⌃) (8.4.20)

8.4.2 Conditioning as system reversal

For a joint Gaussian distribution p(x,y), consider the conditional p(x|y). The formula for this Gaussian is
given in equation (8.4.19). An equivalent and useful way to write this result is to consider a ‘reversed’ linear
system of the form

x =
 �
Ay + �⌘ , where  �⌘ ⇠ N

⇣ �⌘  �µ ,
 �
⌃
⌘

(8.4.21)

and show that the marginal over the ‘reverse’ noise  �⌘ is equivalent to conditioning. That is, for a Gaussian

p(x|y) =

Z
�
⇣
x� �Ay � �⌘

⌘
p( �⌘ ), p( �⌘ ) = N

⇣ �⌘  �µ ,
 �
⌃
⌘

(8.4.22)

for suitably defined
 �
A,  �µ ,

 �
⌃ . To show this, we need to make the statistics of x under this linear system

match those given by the conditioning operation, (8.4.19). The mean and covariance of the linear system
equation (8.4.21) are given by

µx =
 �
Ay + �µ , ⌃xx =

 �
⌃ . (8.4.23)

We can make these match equation (8.4.19) by setting
 �
A = ⌃xy⌃

�1
yy ,

 �
⌃ = ⌃xx �⌃xy⌃

�1
yy ⌃yx,  �µ = µx �⌃xy⌃

�1
yy µy (8.4.24)

This means that we can write an explicit linear system of the form equation (8.4.21) where the parameters
are given in terms of the statistics of the original system. This is particularly useful in deriving results in
inference with Linear Dynamical Systems, section(24.3).
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Product of multivariate Gaussians

Multivariate Gaussian

The multivariate Gaussian is widely used and it is instructive to understand the geometric picture. This
can be achieved by viewing the distribution in a di↵erent co-ordinate system. First we use the fact that
every real symmetric matrix D ⇥D has an eigen-decomposition

⌃ = E⇤ET (8.4.5)

where ETE = I and ⇤ = diag (�1, . . . ,�D). In the case of a covariance matrix, all the eigenvalues �i are
positive. This means that one can use the transformation

y = ⇤�
1
2 ET (x� µ) (8.4.6)

so that

(x� µ)T ⌃�1 (x� µ) = (x� µ)T E⇤�1ET (x� µ) = yTy (8.4.7)

Under this transformation, the multivariate Gaussian reduces to a product of D univariate zero-mean unit
variance Gaussians (since the Jacobian of the transformation is a constant). This means that we can view a
multivariate Gaussian as a shifted, scaled and rotated version of a ‘standard’ (zero mean, unit covariance)
Gaussian in which the centre is given by the mean, the rotation by the eigenvectors, and the scaling by the
square root of the eigenvalues, as depicted in fig(8.7b). A Gaussian with covariance ⌃ = ⇢I for some scalar
⇢ is an example of an isotropic meaning ‘same under rotation’. For any isotropic distribution, contours of
equal probability are spherical around the origin.

Result 8.2 (Product of two Gaussians). The product of two Gaussians is another Gaussian, with a multi-
plicative factor, exercise(8.35):

N (x µ1,⌃1) N (x µ2,⌃2) = N (x µ,⌃)
exp

⇣
�1

2 (µ1 � µ2)
T S�1 (µ1 � µ2)

⌘

p
det (2⇡S)

(8.4.8)

where S ⌘ ⌃1 + ⌃2 and the mean and covariance are given by

µ = ⌃1S
�1µ2 + ⌃2S

�1µ1 ⌃ = ⌃1S
�1⌃2 (8.4.9)

8.4.1 Completing the square

A useful technique in manipulating Gaussians is completing the square. For example, the expression
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can be transformed as follows. First we complete the square:

1

2
xTAx� bTx =

1

2

�
x�A�1b

�T
A
�
x�A�1b

�
� 1
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From this one can derive

Z
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◆
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q
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�
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◆
(8.4.13)
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Gaussian average of a quadratic function

Multivariate Gaussian

Result 8.3 (Linear Transform of a Gaussian). Let y be linearly related to x through

y = Mx + ⌘ (8.4.14)

where x??⌘, ⌘ ⇠ N (µ,⌃), and x ⇠ N (µx,⌃x). Then the marginal p(y) =
R
x p(y|x)p(x) is a Gaussian

p(y) = N
⇣
y Mµx + µ,M⌃xM

T + ⌃
⌘

(8.4.15)

Result 8.4 (Partitioned Gaussian). Consider a distribution N (z µ,⌃) defined jointly over two vectors x
and y of potentially di↵ering dimensions,

z =

✓
x
y

◆
(8.4.16)

with corresponding mean and partitioned covariance

µ =

✓
µx

µy

◆
⌃ =

✓
⌃xx ⌃xy

⌃yx ⌃yy

◆
(8.4.17)

where ⌃yx ⌘ ⌃T
xy. The marginal distribution is given by

p(x) = N (x µx,⌃xx) (8.4.18)

and conditional
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�
x µx + ⌃xy⌃

�1
yy

�
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�
,⌃xx �⌃xy⌃

�1
yy ⌃yx

�
(8.4.19)

Result 8.5 (Gaussian average of a quadratic function).

D
xTAx

E
N (x µ,⌃)

= µTAµ + trace (A⌃) (8.4.20)

8.4.2 Conditioning as system reversal
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 �
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 �
⌃ . To show this, we need to make the statistics of x under this linear system

match those given by the conditioning operation, (8.4.19). The mean and covariance of the linear system
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This means that we can write an explicit linear system of the form equation (8.4.21) where the parameters
are given in terms of the statistics of the original system. This is particularly useful in deriving results in
inference with Linear Dynamical Systems, section(24.3).
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THE CURSE OF DIMENSIONALITY

Exercise I: Suppose you want to explore uniformly a region by
gridding it. How many grid points do you need?
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THE CURSE OF DIMENSIONALITY

Exercise II: Suppose you sample from a uniform distribution in
d dimensions. What is the probability of finding a point inside
the region [ε,1 − ε]d?
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THE CURSE OF DIMENSIONALITY

Exercise III: Suppose you sample from a spherical Gaussian
distribution. Where do the points lie as the dimensions
increase?
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MIXTURES: HOW TO BUILD MORE DISTRIBUTIONS

More general distributions can be built via mixtures: e.g.

p(x |µ1...,n, σ
2
1,...,n) =

∑
i

πiN(µi , σ
2
i )

where the mixing coefficients πi are discretely distributed

You can interpret this as a two stage hierarchical process:
choose one component out of a discrete distribution, then
choose the distribution for that component
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MIXTURES: HOW TO BUILD MORE DISTRIBUTIONS

IMPORTANT CONCEPT: the mixture

p(x |µ1...,n, σ
2
1,...,n) =

∑
i

πiN(µi , σ
2
i )

is an example of latent variable model, with a latent class
variable and an observed continuous value. The mixture is
the marginal distribution for the observations (w.r.t. the
latent variable)

The probability of the latent variables given the
observations can be obtained using Bayes’ theorem.
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CONTINUOUS MIXTURES: SOME COOL DISTRIBUTIONS

No need for the mixing distribution (latent variable) to be
discrete

Suppose you are interested in the means of normally
distributed samples (possibly with different variances/
precisions): Marginalising the precision in a Gaussian
using a Gamma mixing distribution yields a Student
t-distribution
Suppose you have multiple rare event processes
happening with slightly different rates: Marginalising the
rate in a Poisson distribution using a Gamma mixing
distribution yields a negative binomial distribution
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PARAMETERS?

Many distributions are written as conditional probabilities
given the parameters: p(x |θ)

Often the values of the parameters are not known
If we have observations, we can try to estimate the
parameters from such data.
We assume to have independent and identically distributed
(i.i.d.) observations of p(x |θtrue): x = x1, . . . , xN .
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MAXIMUM LIKELIHOOD

Likelihood for i.i.d. observations x = x1, . . . , xN :

p(x|θ) =
N∏

i=1

p(xi |θ)

Choose the parameters that best explain the observations:
we pick θ by maximum likelihood:

θ̂ = argmaxθ

∏
i

p(xi |θ)


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MAXIMUM A POSTERIORI

Suppose we can encode prior knowledge (or absence of it)
in a prior distribution over parameters, p(θ).
We can then compute the posterior distribution, given i.i.d.
observations x = x1, . . . , xN , by Bayes theorem:

p(θ|x) =
p(x|θ)p(θ)

p(x)

where
p(x) =

∫
θ
p(x|θ)p(θ)dθ

Estimate θtrue by the maximum a posteriori (MAP) estimate

θ̂MAP = argmaxθ

p(θ)
∏

i

p(xi |θ)


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EXERCISE: FITTING A DISCRETE DISTRIBUTION

We have a discrete distribution with values in
K = {1, . . . , k }, with parameters µ = µ1, . . . , µk ,

∑
i µi = 1.

We have independent observations x = x1, . . . , xN , each
taking values in K .
The likelihood is

L(µ) = p(x|µ) =
N∏

i=1

p (xi |µ)

Compute the Maximum Likelihood estimate of µ. What is
the intuitive meaning of the result? What happens if one of
the D values is not represented in your sample?
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EXERCISE: FITTING A DISCRETE DISTRIBUTION
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EXERCISE II: FITTING A GAUSSIAN DISTRIBUTION

We have independent, real valued observations x = x1, . . . , xN .
Fit a Gaussian by maximum likelihood.
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BAYESIAN ESTIMATION

The Bayesian approach fully quantifies uncertainty
The parameters are treated as additional random variables
with their own prior distribution p(θ)

The observation likelihood is combined with the prior to
obtain a posterior distribution via Bayes’ theorem

p(θ|x) =
p(x|θ)p(θ)

p(x)

The distribution of the observable x (predictive distribution)
is obtained as

p(x |x) =

∫
p(x |θ)p(θ|x)dθ
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EXERCISE: BAYESIAN FITTING OF GAUSSIANS

Let data xi i = 1, . . . ,N be distributed according to a
Gaussian with mean µ and variance σ2

Let the prior distribution over the mean µ be a Gaussian
with mean m and variance v2

Compute the posterior (and predictive distribution,
Exercise)
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EXERCISE: BAYESIAN FITTING OF GAUSSIANS
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ESTIMATORS

A procedure to calculate an expectation is called an
estimator
e.g., fitting a Gaussian to data by maximum likelihood
provides the M.L. estimator for mean and variance, or
Bayesian posterior mean
An estimator will be a noisy estimate of the true value, due
to finite sample effects
An estimator f̂ is unbiased if its expectation (under the joint
distribution of the data set) coincides with the true value
An estimator f̂ is consistent if it converges to the true value
when the number of data goes to infinity.
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EXERCISE: BIASED ESTIMATOR

The ML estimator of variance, σ̂2 = 1
N

∑N
i=1(xi − µ̂)2 is biased:

〈σ̂2〉 = N−1
N σ2.
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BOOTSTRAP

For an estimator, in theory we can compute its mean and
its variance under the joint distribution of the datasets. In
practice, getting the variance may be very hard.
Bootstrapping can be used instead.
Given the dataset x = x1, . . . , xN , construct from it K new
datasets xi, also of size N, by sampling with repetitions.
compute the estimator θ̂i for each xi.
Compute the empirical variance (or any other statistics)
from x1, . . . ,xK.
This is an estimate of the actual variance of the estimator.



BASICS DISTRIBUTIONS FITTING DISTRIBUTIONS INFORMATION THEORY DECISION THEORY 57 / 65

CONJUGATE PRIORS

The Bayesian way has advantages in that it quantifies
uncertainty and regularizes naturally
BUT computing the normalisation in Bayes theorem is very
hard
The case when it is possible is when the prior and the
posterior are of the same form (conjugate)
Example + Exercise: Bernoulli and Beta.
Example: discrete and Dirichlet
Exercise: conjugate priors for the univariate normal (mean)



BASICS DISTRIBUTIONS FITTING DISTRIBUTIONS INFORMATION THEORY DECISION THEORY 58 / 65

CONJUGATE PRIORS: BINOMIAL AND BETA

Show that the Beta is the conjugate prior for the Bernoulli
distribution.
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ENTROPY

Probability theory is the basis of information theory
(interesting, but not the topic of this course).
An important quantity is the entropy of a distribution

H[p] = −
∑

i

pi log2 pi

Or for continuous distributions:

H[p] = −

∫
p(x) log p(x)dx

Entropy measures the level of disorder of a distribution; for
discrete distributions, it is always ≥ 0 and 0 only for
deterministic distributions. The maximum is log K , if K is
the size of the support of the discrete distribution, and is
achieved by the uniform distribution.
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DIVERGENCE

The relative entropy or Kullback-Leibler (KL) divergence
between two distributions is

KL[q‖p] =
∑

i

qi log
qi

pi

Of in the continuous case

KL[q‖p] =

∫
q(x) log

q(x)

p(x)
dx

Fact: KL is convex and ≥ 0 (by Jensen ineq)
Fact: KL is zero if and only if p = q.
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CONDITIONAL ENTROPY AND MUTUAL INFORMATION

Conditional entropy is defined as

H[p(x |y)] = −

∫ ∫
p(x , y) log p(x |y)dxdy = H[p(x , y)]−H[p(y)]

and captures the residual uncertainty on x once y is
known.
Mutual information between r.v. x and y is defined as

I[x , y ] = KL[p(x , y)|p(x)p(y)] = H[p(x)] − H[p(x |y)]

and captures the reduction in uncertainty about x by
knowing y , i.e. it is a measure of how much y brings
information about x , and viceversa.
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JUSTIFICATION FOR MAXIMUM LIKELIHOOD

Given a data set x = {xi }, i = 1, . . . ,N, let the empirical
distribution be

pemp(x) =
1
N

N∑
i=1

I(xi)

with I the indicator function of a set
To find a suitable distribution q to model the data, one may
wish to minimize the Kullback-Leibler divergence

KL[pemp‖q] = H[pemp] − 〈log q(x)〉pemp = −
1
N

∑
log q(xi)

Maximum likelihood is equivalent to minimizing a KL
divergence with the empirical distirbution
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AN OVERVIEW

Suppose we have a classification problem, and we are
able to learn a model of the joint distribution p(x , y), where
y is a categorical variable. Given a new input x∗, for which
we want to make a prediction, to which class should we
assign it?

We may choose to assign it to class j if p(y = j |x∗) is the
maximum one. However, suppose y models having or not
a cancer, and that
p(y = 0|x∗) = 0.51 > 0.49 = p(y = 1|x∗).
To be more flexible, we can specify a loss function (or utility
function), which is the cost ck ,j of assigning x∗ to class j
when the true class is k .
Then we can assign a point x∗ to the class j minimising the
expected loss w.r.t. the learned joint distribution (i.e.∑

k ck ,jp(y = k |x∗)).
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