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FITTING A STRAIGHT LINE

@ Consider training data (xp, yn)n=1...n. We want to find the best
linear fit to this data, i.e. the best straight line y(x) = wy - x + wg

@ Let’s take a curve fitting approach, and find the coefficients
w = (wp, wq) that minimise sum-of-squares error

N
EW) = > [yn - y(xn)PP
n=1
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FITTING A STRAIGHT LINE

@ Consider training data (xp, yn)n=1...n- We want to find the best
linear fit to this data, i.e. the best straight line y(x) = wy - x + wg

@ Let’s take a curve fitting approach, and find the coefficients
w = (Wp, wq) that minimise sum-of-squares error

N
E(W) = > [yn - ()PP

N Wo "4}
5 5.3812 | 8.1856
10 2.9735 | 9.6608
20 3.5493 | 9.6204
50 3.2084 | 9.9253
100 | 2.8327 | 9.8894
1000 | 3.0451 | 9.9464
10000 | 2.9937 | 10.0147
100000 | 3.0084 | 9.9992
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GENERALISED BASIS FUNCTIONS

@ Suppose our inputs are real vectors, and outputs are real
numbers, and we have observations (x;,y;), i =1,...,N.
e We consider a set of M basis functions ¢; : R” — R, and
write ¢(X) = (¢o(X),...,dn-1(X)). By convention, ¢g = 1.
o We consider the linear model

D

yx.w) = wTg(x) = 3" wgy(x)

-
Il
o

e y(x,w) is linear in the parameters w, but can be non-linear
in the input state x.
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GENERALISED BASIS FUNCTIONS

Basis functions can, and usually are, non-linear functions of the
inputs. Examples are

e Polynomials up to degree d. In 1 dimension, 1, x, x2,...,x¢

_ )2
o Gaussian basis functions: ¢; = exp —% , Where p; is
the location and s is the lengthscale of the Gaussian.

o Sigmoid functions ¢; = o (<2£), with o(a) =

1
1+exp(-a)
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Figure 3.1 Examples of basis functions, showing polynomials on the left, Gaussians of the form (3.4) in the
centre, and sigmoidal of the form (3.5) on the right.
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MAXIMUM LIKELIHOOD REGRESSION

@ Assume Gaussian noise: t = y(X,w) + ¢, e ~ N(0,57")
o Hence p(tix.w.8) = N(y(x,w).5™)
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MAXIMUM LIKELIHOOD REGRESSION

@ Assume Gaussian noise: t = y(X,w) + ¢, e ~ N(0,57")
o Hence p(tix.w.8) = N(y(x,w).5™)
@ Given observations X, t: (x;, ;)i—1.._n~, the likelihood is then

.....

N
ptX.w.8) = [ [ M(yiw ¢(xi).5™")

i=1



LINEAR REGRESSION MODELS 8/41

MAXIMUM LIKELIHOOD REGRESSION

@ Assume Gaussian noise: t = y(X,w) + ¢, e ~ N(0,57")
o Hence p(tix.w.8) = N(y(x,w).5™)
@ Given observations X, t: (x;, ;)i—1.._n~, the likelihood is then

.....

N
p(tX.w.8) = [ [ N(yiw"g(x:).57")

i=1
giving a log likelihood of

N
Inp(tlw,8) = Y N (t,[w d(x,),87")

n=1

= glnﬁ—%ln(%r)—ﬁED(w) (3.11)

where the sum-of-squares error function is defined by

N
Ep(w) = 3 3t~ w(x)) (3.12)

n=1
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MAXIMUM LIKELIHOOD REGRESSION

@ Compute the gradient w.r.t. w of the log-likelihood, set it to zero
and solve for w.
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MAXIMUM LIKELIHOOD REGRESSION

@ Compute the gradient w.r.t. w of the log-likelihood, set it to zero
and solve for w.

war = (87®) ' @t (3.15)
which are known as the normal equations for the least squares problem. Here ® is an

N x M matrix, called the design matrix, whose elements are given by ®,,; = ¢; (xn),
so that

¢0(X1) ¢1(X1) (blbffl(xl)
P ¢o(.x2) ¢1(.X2) ¢M—:1(X2) (3.16)

o(xn) di(xn) - dra(x)
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@ Looking for the ML solution of the precision 3, we get
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MAXIMUM LIKELIHOOD REGRESSION

@ Compute the gradient w.r.t. w of the log-likelihood, set it to zero
and solve for w.

war = (87®) ' @t (3.15)
which are known as the normal equations for the least squares problem. Here ® is an
N x M matrix, called the design matrix, whose elements are given by ®,,; = ¢; (xn)

so that
¢0(X1) o1 (Xl) co (blbffl(xl)
P ¢(>(.X2) 3 (.Xz) : ¢M—.1(X2) (3.16)

o(xn) di(xn) - dra(x)

@ Looking for the ML solution of the precision 3, we get

N
Z {tn — Wi o(xn)}> (3.21)
ML 1
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MAXIMUM LIKELIHOOD REGRESSION: BIAS TERM
@ The parameter wy is known also as bias term.

At this pOi}lt, we can gaih some insight into the role of the bias parameter wy. If
we make the bias parameter explicit, then the error function (3.12) becomes

Eotw) =130 3wy ey (3.18)
DW_anln wo j:1wjjxn . .
Setting the derivative with respect to w equal to zero, and solving for wy, we obtain
M—1
wo=1- Y w;d; (3.19)

j=1

where we have defined

1 al 1 N
= Nzt"’ ¢ = Nz¢j(xn)' (3.20)
n=1 n=1

Thus the bias wy compensates for the difference between the averages (over the
training set) of the target values and the weighted sum of the averages of the basis
function values.

10/41
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MULTIPLE OUTPUTS

o What if we have a vector of d-outputs rather than a single
one, i.e. what if observations X, T are (x;, t;)/=1..n?

o If we use separate weights for each output dimension,
W = (wj), then the model is

y(x, W) = W'g(x)

which is easily seen to factorise in the different outputs, so
that we need to solve d independent ML problems, giving

Wy = (o"o) 'eo’T

e Generalise to the case in which some coefficients of W are
shared among outputs (i.e., constrained to be equal).
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AN EXAMPLE (BISHOP)

@ As an example, consider data generated by the model
t = sin(2nx) + €, from which we generate few observations:

0 ]
o We want to fit a polynomial model of degree M, where M is

to be chosen:

y(x,w) = wox® + wyx! + .. 4+ wyx"
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AN EXAMPLE (BISHOP)

o Max likelihood solution for different M
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AN EXAMPLE (BISHOP)

@ For M = 9 we face the problem of overfitting: the model is too
complex - ML explains noise rather than data.

o To validate a model, we need test data, different from the train
data. Then we can compute the root mean square error on test
(and train) data.

Erus = J2Ep(wmL)/N

—©— Training
—6— Test

o
o (
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AN EXAMPLE (BISHOP)

@ Overfitting depends also on how many observations: the more
observations, the less overfitting:

@ The fine-tuning of model to data reflects usually in large
coefficients.

M=0 M=1 M=6 M=9
wyy 0.19 0.82 0.31 0.35
w -1.27 7.99 232.37
wj -25.43 -5321.83
w} 17.37 48568.31
w} -231639.30
wk 640042.26
wg -1061800.52
w} 1042400.18
wh -557682.99
wy 125201.43
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REGULARISED MAXIMUM LIKELIHOOD

e One way to avoid overfitting is to penalise solutions with
large values of coefficients w.

@ This can be enforced by introducing a regularisation term
on the error function to be minimised:

ED(W) + /le(W)

e A > 0is the regularisation coefficient, and governs how
strong is the penalty.
e A common choice is

1 1
Ew(w) = EwTw =5 Z w?
J

known as ridge regression, with solution

Wgg = (Al + ¢T¢)_1¢Tt
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REGULARISED MAXIMUM LIKELIHOOD

@ A more general form of the penalty term is
1
Ew(w) = 5 ; lw;|?

@ q = 2is the ridge regression, while g = 1 is the lasso regression.

@ Lasso regression has the property that it produces sparse
models as some coefficients tend to be set to zero. However, it
has no analytic solution.

w2 wy

AN AN
NV i
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EXAMPLE: REGULARISED ML

@ Let’s consider the sine example, and fit the model of degree
M = 9 by ridge regression, for different A’s.

o If we compute the RMSE on a test set, we can see how the error
changes with 2

Training
Test
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TRAIN, VALIDATION, AND TEST DATA

@ The regularisation coefficient 1 is a method parameter. But how
can we set it?

o |deally, we should divide our data in a train set, a test set, and a
validation set, which can be used to set method’s parameters.

@ Often, we do not have all such data, hence we can resort to
cross-validation
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TRAIN, VALIDATION, AND TEST DATA

@ The regularisation coefficient 1 is a method parameter. But how
can we set it?

o |deally, we should divide our data in a train set, a test set, and a
validation set, which can be used to set method’s parameters.

@ Often, we do not have all such data, hence we can resort to
cross-validation

@ n-fold cross-validation: split data set in n blocks, use in turn each
block for validation and the rest for training, average the error on
the nruns.

@ leave one out cross-validation: validate in tuns on a single data
point left out from the training set and average.
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EXPECTED LOSS

o If we have a model p(x, t) of input-output, one way to make a
prediction (choose t* given x*) is by minimising an expected loss
functional

E[L] = / {y(x) — t}*p(x, t) dx dt. (1.87)

@ The solution for the square loss functional is the conditional
expectation

/tp(x., t)dt
o) = e = / tp(t}x) dt = Ef[t]x] (1.89)

@ This can be seen by summing and subtracting E[f|x] inside the
integral, getting

E[L] = /{y E[t|x]}? p(x dx+/{E[t\x ] — t}2p(x) dx. (1.90)

20/41
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BIAS VARIANCE DECOMPOSITION

o If we do not have the full model, but only observe a dataset D,
then we can try to find the best approximant to the true
conditional expectation, y(x, D).

@ To test a method, we can try to generate many datasets and
take the average Ep w.r.t. the dataset. After some computations,
calling h(x) the true conditional expectation:

expected loss = (bias)? + variance + noise (3.41)

where

(ins)? = [ {Eoly(x D)) - 1)) 2p(x) dx G4
variance = /ED [{y(x;D) — Eply(x; D)]}2] p(x)dx (3.43)

noise = /{h(x) —}%p(x,t) dx dt (3.44)
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EXAMPLE: BIAS VARIANCE DECOMPOSITION

left: solutions for

individual datasets

right: averages
over datasets

InA=26

InA=-031

22/41
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EXAMPLE: BIAS VARIANCE DECOMPOSITION

@ For the sine example, we can compute bias and variance as a

function of the regularisation coefficient. The trade off is evident.

0.15
(bias)®
0.12 variance
(bias)2 + variance
0.09 U
0.06
o %
0 : :

23/41
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e BAYESTAN LINEAR REGRESSION
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THE BAYESIAN APPROACH

e Regularisation works by biasing

e One way to bias estimators is to have prior beliefs and
being Bayesian

o Let’s assume the regression weights have a Gaussian prior
w ~ N(0, el) and that the bias is zero

o The posterior is given by Bayes theorem:

P(UX, W, o, 5)p(Wie)

p(wiX,t,a,8) = p(tX. a, B)

25/41
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THE POSTERIOR DISTRIBUTION

@ Hence, the log posterior is
log p(W|X, t, @, 8) = Z[tj wp(x;)]? — aw’w + const

@ As itis a quadratic function in w, it is the log of a Gaussian:
p(wX,t,a,8) = N(w|my, Sn)
with mean and variance
my = SN Tt

SN = +p0T0

o Alternatively: use the formula for the product of two
gaussians.
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THE POSTERIOR DISTRIBUTION

e In general, we can take a general Gaussian prior
p(wimg, Sg) = N(wimg, Sp)

@ This will result in a Gaussian posterior
p(wX,t, a,8) = N(w|my, Sn) with

my = Sn[So 'mg + 50 1]

SN_1 = 30_1 +ﬁ¢'T¢
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POSTERIOR UPDATE

iikelihood prior/posterior data space

i 3
L & €
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THE PREDICTIVE DISTRIBUTION

e Given the posterior, one can find the MAP estimate.
However, in a fully Bayesian treatment, one makes
predictions by integrating out the parameters via their
posterior distribution.

p(tt.a.p) = [ pltit w.a.p)p(wit.a.p)dw
e The predictive distribution is still a Gaussian

p(tit, @, B) = N(timn" ¢(x), o02,(x))
with mean my’¢(x) and variance

o2 (%) = ; T p(x) Snp(X)

o It can be shown that o5, (x) < o§(x) and o%,(x) — 1/8

29/41
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EXAMPLE
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EXAMPLE
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MARGINAL LIKELIHOOD

e The marginal likelihood p(tla,B), appearing at the
denominator in Bayes theorem, can be used to identify
good a and B, known as hyperparameters.

o Intuitively, we can place a prior distribution over « and g,
compute their posterior, and use this in a fully Bayesian
treatment of the regression:

p(a,pBit) o p(tla, B)p(a.B)

o If we assume the posterior is peaked around the mode,
then we can take the MAP as an approximation of the full
posterior for @ and g. If the prior is flat, this will boil down to
the ML solution.

32/41
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MARGINAL LIKELIHOOD

e Hence we need to optimise the marginal likelihood, which
can be computed as:

M N N
log p(tle, B) = —Ioga+ log B— E(mN)——IoglsN |—§|0927r

with

(04
E(my) = gnt — dmy| + EmNTmN

o This optimisation problem can be solved with any
optimisation routine, or with specialised methods.
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OPTIMISING THE MARGINAL LIKELIHOOD

e We will present a fix-point algorithm: we will write the
gradient equations equal to zero as fix-point equations and
iterate until convergence.

e In taking the derivative w.r.t @ or 8, the most challenging
term is the log of the determinant of Sy™' = al + o7 @.

e To deal with it, let 1; be the eigenvalues of B®” @, so that
SN =TT (@ + 42).
@ We then have that

1
a+ A

dlogISn~"1/da =

i

o Moreover, A; are proportional to 8, so that 94;/98 = 2;/B
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OPTIMISING THE MARGINAL LIKELIHOOD

o Now, define

(which measures the number of well determined
parameters)
e By deriving the log-marginal w.r.t. @ and setting derivative
to zero, we obtain:
__ Y
@ = mNTmN ga/(a’ﬂ)
e By deriving the log-marginal w.r.t. g and setting derivative
to zero, we obtain'
1 1
B gs(e.B)

o We start from an |n|t|aI value ag and By and iterate
@nt1 = Gol@n,Bn), Bnr1 = gs(an,Bn) until convergence.

ZN[rn my” ¢(xn)]? =
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BAYESIAN MODEL COMPARISON

o Consider My and M5 two different models, which one is
the best to explain the data D?

e In a Bayesian setting, we may place a prior p(M;) on the
models, and compute the posterior

‘ _ p(DIM)P(M;)
PIMID) = St

o As we typically have additional parameters w, the term
p(DIM;) is the model evidence/ marginal likelihood.

e The ratio p(DIM1)/p(DIM>) is known as Bayes Factor.

36/41
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BAYESIAN MODEL COMPARISON

o In Bayesian model comparison, we can take two
approaches.

e We can compute the predictive distribution for each model
and average it by the posterior model probability

p(tID) = > p(tM;, D)p(MID)
)

o Alternatively, we can choose the model with larger Bayes
Factor. This will pick the correct model on average. In fact,
the average log Bayes factor (assuming M; is the true

model) is
p(DIMy)

fp(DlM )Iogm >0

37/41
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e DUAL REPRESENTATION AND KERNELS
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DUAL REPRESENTATION

o Consider a regression problem with data (x;, y;), and a
linear model w’ ¢(x).

e We can restrict the choice of w to the linear subspace
spanned by ¢(X1),...,#(Xn), as any w, othogonal to this
subspace will give a contribution w, "¢(x;) = 0 on input
points:

N
w= Z ajp(x;)
j=1
e a are known as the dual variables
e By defining the kernel k(xi, X;) := ¢(xi) " ¢(x;), we can write
wig(x) =a’K!

Where Ki is the ith column of the Gram matrix K,
K,'j = k(Xi,Xj).
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DUAL REGRESSION PROBLEM

o In the dual variables, we have to optimise the following
regression equation

N
Eq(a) + 1Ew(a) = ) (t-a’K')? + 1a’Ka
i=1

e By deriving w.r.t a and setting the gradient to zero, we
obtain the solution

a=(K+an't
o At a new input x*, the prediction will then be
y(x*) = k. (K4 al)™

with k. = (k(X*,Xq),.... k(X*,Xn))
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THE KERNEL TRICK

@ The dual objective function depends only on the scalar
product of input vectors

o We can replace the Euclidean scalar product with any
(non-linear) scalar product

e This is usually obtained by giving directly a non-linear
kernel function k(X;, X;) (kernel trick)

o This enables us to work with more general set of basis
functions, even countable. See Gaussian processes.

@ The same dual procedure applies to other algorithms,
notably linear classification and SVMs
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THE KERNEL TRICK

@ The dual objective function depends only on the scalar
product of input vectors

o We can replace the Euclidean scalar product with any
(non-linear) scalar product

e This is usually obtained by giving directly a non-linear
kernel function k(X;, X;) (kernel trick)

o This enables us to work with more general set of basis
functions, even countable. See Gaussian processes.

@ The same dual procedure applies to other algorithms,
notably linear classification and SVMs

@ The computational cost to solve the primal problem is
O(M?®), while the dual costs O(N®). They can be both
prohibitive is N and M are large. In this case, one can
optimise the log likelihood directly, using gradient based
methods.
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