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INTRODUCTION

Data: xi, ti . Output are discrete, either binary or multiclass
(K classes), and are also denoted by yi . Classes are
denoted by C1, . . . ,CK .
Discriminant function: we construct a function
f (x) 2 {1, . . . ,K } associating with each input a class.
Generative approach: We consider a prior over classes,
p(Ck ), and the class-conditional densities p(x|Ck ), from a
parametric family. We learn class-conditional densities
from data, and then compute the class posterior.

p(Ck |x) =
p(x|Ck )p(Ck )

p(x)

Discriminative approach: we learn directly a model for the
class posteriori p(Ck |x), typically as p(Ck |x) = f (w�(x)).
f is called an activation function (and f�1 a link function).



LINEAR CLASSIFIERS LOGISTIC REGRESSION LAPLACE BAYESIAN LOGISTIC REGRESSION OPTIMISATION SVM 4 / 48

ENCODING OF THE OUTPUT

For a binary classification problem, usually we choose
tn 2 {0,1}. The interpretation is that of a “probability” to
belong to class C1.
In some circumstances (perceptron, SVM), we will prefer
the encoding tn 2 {�1,1}.
For a multiclass problem, we usually stick to a boolean
encoding: tn = (tn,1, . . . , tn,K ), with tn,j 2 {0,1}, and tn is in
class k if and only if tn,k = 1 and tn,j = 0, for j , k .
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LINEAR DISCRIMINANT CLASSIFIER

y(x) = wT x + b, decode to class 1 iff y(x) > 0, and to
class 0 if y(x) < 0.
Typically here we use the encoding scheme tn 2 {0,1}, but
also tn 2 {�1,1} works (different solutions, though).
Maximum likelihood training like in regression: minimise
the sum-of-squares error function

ED(w) =
1
2

X

i

(wT xi � ti)2.

Solution is (XT X)�1XT t.
The method can be extended to k classes (see next slide),
but performs poorly in general, because it tries to
approximate a probability in [0,1] with a real number.
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MULTI-CLASS STRATEGIES

Assume we have a binary classifier. We can train K
classifiers, one-versus-the-rest strategy, class Ck versus all
other points (unbalanced).
Alternatively, there is the one-versus-one classifier, trains
K (K � 1)/2 for each pair of classes, decode by majority
voting. Both are ambiguous.
One can train K linear discriminants yk (x) = wk

T x + bk
and decode to j such that yj(x) > yi(x) for each i , j .
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Figure 4.2 Attempting to construct a K class discriminant from a set of two class discriminants leads to am-
biguous regions, shown in green. On the left is an example involving the use of two discriminants designed to
distinguish points in class Ck from points not in class Ck. On the right is an example involving three discriminant
functions each of which is used to separate a pair of classes Ck and Cj .

example involving three classes where this approach leads to regions of input space
that are ambiguously classified.

An alternative is to introduce K(K � 1)/2 binary discriminant functions, one
for every possible pair of classes. This is known as a one-versus-one classifier. Each
point is then classified according to a majority vote amongst the discriminant func-
tions. However, this too runs into the problem of ambiguous regions, as illustrated
in the right-hand diagram of Figure 4.2.

We can avoid these difficulties by considering a single K-class discriminant
comprising K linear functions of the form

yk(x) = wT
k x + wk0 (4.9)

and then assigning a point x to class Ck if yk(x) > yj(x) for all j �= k. The decision
boundary between class Ck and class Cj is therefore given by yk(x) = yj(x) and
hence corresponds to a (D � 1)-dimensional hyperplane defined by

(wk � wj)
Tx + (wk0 � wj0) = 0. (4.10)

This has the same form as the decision boundary for the two-class case discussed in
Section 4.1.1, and so analogous geometrical properties apply.

The decision regions of such a discriminant are always singly connected and
convex. To see this, consider two points xA and xB both of which lie inside decision
region Rk, as illustrated in Figure 4.3. Any point �x that lies on the line connecting
xA and xB can be expressed in the form

�x = �xA + (1 � �)xB (4.11)
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LINEAR DISCRIMINANT - EXAMPLE
186 4. LINEAR MODELS FOR CLASSIFICATION
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Figure 4.4 The left plot shows data from two classes, denoted by red crosses and blue circles, together with
the decision boundary found by least squares (magenta curve) and also by the logistic regression model (green
curve), which is discussed later in Section 4.3.2. The right-hand plot shows the corresponding results obtained
when extra data points are added at the bottom left of the diagram, showing that least squares is highly sensitive
to outliers, unlike logistic regression.

boundary. In Section 7.1.2, we shall consider several alternative error functions for
classification and we shall see that they do not suffer from this difficulty.

However, problems with least squares can be more severe than simply lack of
robustness, as illustrated in Figure 4.5. This shows a synthetic data set drawn from
three classes in a two-dimensional input space (x1, x2), having the property that lin-
ear decision boundaries can give excellent separation between the classes. Indeed,
the technique of logistic regression, described later in this chapter, gives a satisfac-
tory solution as seen in the right-hand plot. However, the least-squares solution gives
poor results, with only a small region of the input space assigned to the green class.

The failure of least squares should not surprise us when we recall that it cor-
responds to maximum likelihood under the assumption of a Gaussian conditional
distribution, whereas binary target vectors clearly have a distribution that is far from
Gaussian. By adopting more appropriate probabilistic models, we shall obtain clas-
sification techniques with much better properties than least squares. For the moment,
however, we continue to explore alternative nonprobabilistic methods for setting the
parameters in the linear classification models.

4.1.4 Fisher’s linear discriminant
One way to view a linear classification model is in terms of dimensionality

reduction. Consider first the case of two classes, and suppose we take the D-
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Figure 4.5 Example of a synthetic data set comprising three classes, with training data points denoted in red
(�), green (+), and blue (�). Lines denote the decision boundaries, and the background colours denote the
respective classes of the decision regions. On the left is the result of using a least-squares discriminant. We see
that the region of input space assigned to the green class is too small and so most of the points from this class
are misclassified. On the right is the result of using logistic regressions as described in Section 4.3.2 showing
correct classification of the training data.

dimensional input vector x and project it down to one dimension using

y = wTx. (4.20)

If we place a threshold on y and classify y � �w0 as class C1, and otherwise class
C2, then we obtain our standard linear classifier discussed in the previous section.
In general, the projection onto one dimension leads to a considerable loss of infor-
mation, and classes that are well separated in the original D-dimensional space may
become strongly overlapping in one dimension. However, by adjusting the com-
ponents of the weight vector w, we can select a projection that maximizes the class
separation. To begin with, consider a two-class problem in which there are N1 points
of class C1 and N2 points of class C2, so that the mean vectors of the two classes are
given by

m1 =
1

N1

�

n � C1

xn, m2 =
1

N2

�

n � C2

xn. (4.21)

The simplest measure of the separation of the classes, when projected onto w, is the
separation of the projected class means. This suggests that we might choose w so as
to maximize

m2 � m1 = wT(m2 � m1) (4.22)

where
mk = wTmk (4.23)

Comparing
linear
discriminant
with logistic
regression,
for 2 and 3
classes
problems.
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FISHER’S DISCRIMINANT

Idea: project data linearly in one dimension, so to separate
as much as possible the two classes. The projection is
y(x) = wT x.
Choose the projection that (a) maximises the separation
between the two classes, either by maximising the
projected class means distance, or by maximising the ratio
between between-class and within-class variances.
mi = 1/N

P
j2Ci

xi, mi = wtmi, class means.
Between class variance (m2 �m1)2 = wT SBw,
SB = (m2 �m1)(m2 �m1)T

Within-class variance wT SWw,
SW =

P
j2C1(xj �m1)(xj �m1)T +

P
j2C2(xj �m2)(xj �m2)T .
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FISHER’S DISCRIMINANT

Maximise the ratio

J(w) =
wT SBw
wT SWw

Deriving and setting the derivative to zero, we get
w / SW

�1(m2 �m1).
Choose the best y0 that separates the projected data.
Classify to C1 if y(x) � y0. Idea: approximate the projected
class distributions p(y |Ck ) as Gaussians and then find y0
s.t. p(C1|y0) = p(C2|y0), i.e. p(y0|C1)p(C1) = p(y0|C2)p(C2).188 4. LINEAR MODELS FOR CLASSIFICATION
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Figure 4.6 The left plot shows samples from two classes (depicted in red and blue) along with the histograms
resulting from projection onto the line joining the class means. Note that there is considerable class overlap in
the projected space. The right plot shows the corresponding projection based on the Fisher linear discriminant,
showing the greatly improved class separation.

is the mean of the projected data from class Ck. However, this expression can be
made arbitrarily large simply by increasing the magnitude of w. To solve this
problem, we could constrain w to have unit length, so that

�
i w2

i = 1. Using
a Lagrange multiplier to perform the constrained maximization, we then find thatAppendix E
w � (m2 �m1). There is still a problem with this approach, however, as illustratedExercise 4.4
in Figure 4.6. This shows two classes that are well separated in the original two-
dimensional space (x1, x2) but that have considerable overlap when projected onto
the line joining their means. This difficulty arises from the strongly nondiagonal
covariances of the class distributions. The idea proposed by Fisher is to maximize
a function that will give a large separation between the projected class means while
also giving a small variance within each class, thereby minimizing the class overlap.

The projection formula (4.20) transforms the set of labelled data points in x
into a labelled set in the one-dimensional space y. The within-class variance of the
transformed data from class Ck is therefore given by

s2
k =

�

n�Ck

(yn � mk)2 (4.24)

where yn = wTxn. We can define the total within-class variance for the whole
data set to be simply s2

1 + s2
2. The Fisher criterion is defined to be the ratio of the

between-class variance to the within-class variance and is given by

J(w) =
(m2 � m1)2

s2
1 + s2

2

. (4.25)

We can make the dependence on w explicit by using (4.20), (4.23), and (4.24) to
rewrite the Fisher criterion in the formExercise 4.5
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THE PERCEPTRON ALGORITHM

For binary classes, proposed by Rosenblatt in 62. Typically
one maps the input data in a higher dimensional space
�(xi), chooses the coding ti 2 {�1,1}, and decodes to C1 if
y(x) = f (wT�(xi)) � 0, where the activation function is the
step function f (a) = 1, if a � 0 and f (a) = �1 if a < 0.
A correctly classified pattern satisfies wT�(xi)ti � 0. A
misclassified pattern instead wT�(xi)ti < 0.
We pick as error function EP(w) = �Pi2MwT�(xi)ti , which
generalises the idea of minimising the number of
misclassified patternsM.
Optimise it by stochastic gradient ascend:

wn+1 = wn + ⌘�(xn)tnI(wn�(xn)tn < 0)

(typically, ⌘ = 1)
If the data is linearly separable (in the feature space �),
then the algorithm converges.
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THE PERCEPTRON ALGORITHM
4.1. Discriminant Functions 195
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Figure 4.7 Illustration of the convergence of the perceptron learning algorithm, showing data points from two
classes (red and blue) in a two-dimensional feature space (�1, �2). The top left plot shows the initial parameter
vector w shown as a black arrow together with the corresponding decision boundary (black line), in which the
arrow points towards the decision region which classified as belonging to the red class. The data point circled
in green is misclassified and so its feature vector is added to the current weight vector, giving the new decision
boundary shown in the top right plot. The bottom left plot shows the next misclassified point to be considered,
indicated by the green circle, and its feature vector is again added to the weight vector giving the decision
boundary shown in the bottom right plot for which all data points are correctly classified.
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LOGIT AND PROBIT REGRESSION (BINARY CASE)

We model directly the conditional class probabilities
p(C1|x) = f (wT�(x)), after a (nonlinear) mapping of the
features �(x) = �1(x), . . . , �m(x).
Common choices for f are the logistic or logit function
�(a) = 1

1+e�a and the probit function
 (a) =

R a
�1N(✓|0,1)d✓.

We will focus on logistic regression.
The non-linear embedding is an important step204 4. LINEAR MODELS FOR CLASSIFICATION
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Figure 4.12 Illustration of the role of nonlinear basis functions in linear classification models. The left plot
shows the original input space (x1, x2) together with data points from two classes labelled red and blue. Two
‘Gaussian’ basis functions �1(x) and �2(x) are defined in this space with centres shown by the green crosses
and with contours shown by the green circles. The right-hand plot shows the corresponding feature space
(�1, �2) together with the linear decision boundary obtained given by a logistic regression model of the form
discussed in Section 4.3.2. This corresponds to a nonlinear decision boundary in the original input space,
shown by the black curve in the left-hand plot.

Bayes’ theorem, represents an example of generative modelling, because we could
take such a model and generate synthetic data by drawing values of x from the
marginal distribution p(x). In the direct approach, we are maximizing a likelihood
function defined through the conditional distribution p(Ck|x), which represents a
form of discriminative training. One advantage of the discriminative approach is
that there will typically be fewer adaptive parameters to be determined, as we shall
see shortly. It may also lead to improved predictive performance, particularly when
the class-conditional density assumptions give a poor approximation to the true dis-
tributions.

4.3.1 Fixed basis functions
So far in this chapter, we have considered classification models that work di-

rectly with the original input vector x. However, all of the algorithms are equally
applicable if we first make a fixed nonlinear transformation of the inputs using a
vector of basis functions �(x). The resulting decision boundaries will be linear in
the feature space �, and these correspond to nonlinear decision boundaries in the
original x space, as illustrated in Figure 4.12. Classes that are linearly separable
in the feature space �(x) need not be linearly separable in the original observation
space x. Note that as in our discussion of linear models for regression, one of the
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LOGISTIC REGRESSION

We assume p(C1|�) = y(�) = �(wT�) where � = �(x) and
�i = �(xi).
As y = y(�(x)) 2 [0,1] we interpret is as the probability of
assigning input x to class 1, so that the likelihood is

p(t|w) =
NY

i=1

yti
i (1 � yi)

1�ti

where yi = �(wT�i).
We need to minimise minus the log-likelihood, i.e.

E(w) = � log p(t|w) = �
NX

i=1

ti log yi + (1 � ti) log(1 � yi)
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NUMERICAL OPTIMISATION

The gradient of E(w) is rE(w) =
PN

i=1(yi � ti)�i . The
equation rE(w) = 0 has no closed form solution, so we
need to solve it numerically.
One possibility is gradient descend. We initialise w0 to any
value and then update it by

wn+1 = wn � ⌘rE(wn)

where the method converges for ⌘ small.
We can also use stochastic gradient descent for online
training, using the update rule for w:

wn+1 = wn � ⌘rn+1E(wn),

with rnE(w) = (yn � tn)�n
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LOGISTIC REGRESSION: OVERFITTING

If we allocate each point x to the class with highest
probability, i.e. maximising �(wT�(x)), then the separating
surface is an hyperplane in the feature space and is given
by the equation wT�(x) = 0.
If the data is linearly separable in the feature space, then
any separable hyperplane is a solution, and the magnitude
of w tends to go to infinity during optimisation. In this case,
the logistic function converges to the Heaviside function.
To avoid this issue, we can add a regularisation term to
E(w), thus minimising E(w) + ↵wT w.
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NEWTON-RAPSON METHOD

As an alternative optimisation, we can use the
Newton-Rapson method, which has better convergence
properties.
The update rule reads:

wnew = wold � ⌘H�1rE(wold)

where H is the Hessian of E(w), and ⌘ the learning rate.
For logistic regression, we have rE(w) = �T (y � t) and
H = �T R�, with R diagonal matrix with elements
Rnn = yn(1 � yn).
It is easy to check that the Hessian is positive definite,
hence the function E(w) is convex and has a unique
minimum.
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MULTI-CLASS LOGISTIC REGRESSION

We can model directly the multiclass conditional
probability, using the soft-max function:

p(Ck |x) = yk (x) =
exp(ak )
P

j exp(aj)

with ak = wk�(x). It holds @yk (x)
@aj

= yk (�kj � yj)

Using the boolean encoding of the outputs, the likelihood is

p(T|w1, . . . ,wK) =
NY

n=1

KY

k=1

p(Ck |�n)
tnk =

NY

n=1

KY

k=1

ytnk
nk

Hence we need to minimise

E(w1, . . . ,wK) = �
NX

n=1

KX

k=1

tnk log ynk
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MULTI-CLASS LOGISTIC REGRESSION

E(w1, . . . ,wK) has gradient

rwjE(w1, . . . ,wK) =
NX

n=1

(ynj � tnj)�n

and Hessian with blocks given by

rwkrwjE(w1, . . . ,wK) = �
NX

n=1

ynk (Ikj � ynj)�n�
T
n

Also in this case the Hessian is positive definite, and we
can use the Newton-Rapson algorithm for optimisation
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LAPLACE APPROXIMATION - 1 DIMENSION

It is a general technique to locally approximate a general
distribution around a mode with a Gaussian.
Consider a 1d distribution p(z) = 1

Z f (z) where
Z =

R
f (z)dz is the normalisation constant.

Pick a mode z0 of f (z), i.e. a point such that d
dz f (z0) = 0.

As the logarithm of the Gaussian density is quadratic, we
consider a Taylor expansion of log f (z) around z0:

log f (z) ⇡ log f (z0) �
1
2

A(z � z0)
2

with A = � d2

dz2 log f (z0)
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LAPLACE APPROXIMATION - 1 DIMENSION

Hence we have f (z) ⇡ f (z0) exp(�1
2A(z � z0)2). Now, we

seek the best Gaussian q(z) approximating p(z) around
the model z0, requiring A > 0. This is clearly given by

q(z) =

 
A
2⇡

! 1
2

exp(�1
2

A(z � z0)
2)

We also have that Z ⇡ f (z0)
⇣

A
2⇡

⌘� 1
2 4.4. The Laplace Approximation 215
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Figure 4.14 Illustration of the Laplace approximation applied to the distribution p(z) � exp(�z2/2)�(20z + 4)
where �(z) is the logistic sigmoid function defined by �(z) = (1 + e�z)�1. The left plot shows the normalized
distribution p(z) in yellow, together with the Laplace approximation centred on the mode z0 of p(z) in red. The
right plot shows the negative logarithms of the corresponding curves.

We can extend the Laplace method to approximate a distribution p(z) = f(z)/Z
defined over an M -dimensional space z. At a stationary point z0 the gradient �f(z)
will vanish. Expanding around this stationary point we have

ln f(z) � ln f(z0) � 1

2
(z � z0)

TA(z � z0) (4.131)

where the M � M Hessian matrix A is defined by

A = � �� ln f(z)|z=z0
(4.132)

and � is the gradient operator. Taking the exponential of both sides we obtain

f(z) � f(z0) exp

�
�1

2
(z � z0)

TA(z � z0)

�
. (4.133)

The distribution q(z) is proportional to f(z) and the appropriate normalization coef-
ficient can be found by inspection, using the standard result (2.43) for a normalized
multivariate Gaussian, giving

q(z) =
|A|1/2

(2�)M/2
exp

�
�1

2
(z � z0)

TA(z � z0)

�
= N (z|z0,A

�1) (4.134)

where |A| denotes the determinant of A. This Gaussian distribution will be well
defined provided its precision matrix, given by A, is positive definite, which implies
that the stationary point z0 must be a local maximum, not a minimum or a saddle
point.

In order to apply the Laplace approximation we first need to find the mode z0,
and then evaluate the Hessian matrix at that mode. In practice a mode will typi-
cally be found by running some form of numerical optimization algorithm (Bishop
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LAPLACE APPROXIMATION - N DIMENSION

In n dimensions, we proceed in the same way. Given a
density p(z) = 1

Z f (z), we find a mode z0 (so that
r log f (z0) = 0, and approximate log f (z) around z0 by
Taylor expansion, obtaining

log f (z) = log f (z0) �
1
2
(z � z0)

T A(z � z0)

where A = �rr log f (z0).
This gives a Gaussian approximation around z0 by

q(z) = N(z|z0,A�1)

Furthermore Z ⇡ (2⇡)n/2

|A|1/2 f (z0)
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MODEL COMPARISON

We can use Laplace approximation for the marginal
likelihood in a model comparison framework.
Consider data D and a modelM depending on parameters
✓. We fix a prior P(✓) over ✓ and compute the posterior by
Bayes theorem:

p(✓|D) =
p(D|✓)p(✓)

p(D)

Here p(D) =
R

p(D|✓)p(✓)d✓ is the marginal likelihood. It
fits in the previous framework by setting Z = p(D), and
f = p(D|✓)p(✓).
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BIC

By Laplace approximation around the maximum
a-posteriori estimate ✓MAP :

log p(D) ⇡ log p(D|✓MAP)+log p(✓MAP)+
M
2

log(2⇡)�1
2

log |A|

where A = �rrp(D|✓MAP)p(✓MAP). The last three terms in
the sum penalise the log likelihood in terms of model
complexity.
A crude approximation of them is

logp(D) ⇡ log p(D|✓MAP) � 1
2

M log N

which is known as Bayesian Information Content, and can
be used to penalise log likelihood w.r.t. model complexity,
to compare different models.


