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INTRODUCTION

e Data: x;, t;. Output are discrete, either binary or multiclass
(K classes), and are also denoted by y;. Classes are
denoted by C4,...,Ck.

e Discriminant function: we construct a function
f(x) € {1,..., K} associating with each input a class.

e Generative approach: We consider a prior over classes,
p(Ck), and the class-conditional densities p(x|Ck), from a
parametric family. We learn class-conditional densities
from data, and then compute the class posterior.

P(XICk)P(Ck)
p(x)

e Discriminative approach: we learn directly a model for the
class posteriori p(Ck|x), typically as p(CklX) = f(we¢(X)).
f is called an activation function (and =" a link function).

p(Cklx) =
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ENCODING OF THE OUTPUT

e For a binary classification problem, usually we choose
t, € {0, 1}. The interpretation is that of a “probability” to
belong to class C;.

o In some circumstances (perceptron, SVM), we will prefer
the encoding t, € {1, 1}.

o For a multiclass problem, we usually stick to a boolean
encoding: th = (tn1,..., Ink), with t,; € {0, 1}, and t, is in
class kifand only if t,x = 1 and t,; = 0O, for j # k.
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LINEAR DISCRIMINANT CLASSIFIER

e y(x) = w’x + b, decode to class 1 iff y(x) > 0, and to
class 0 if y(x) < 0.

o Typically here we use the encoding scheme t, € {0, 1}, but
also t, € {—1, 1} works (different solutions, though).

o Maximum likelihood training like in regression: minimise
the sum-of-squares error function

En(w) = 3 3" (Wi~ )%

e Solution is (X7X)"'X"t.
@ The method can be extended to k classes (see next slide),

but performs poorly in general, because it tries to
approximate a probability in [0, 1] with a real number.
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MULTI-CLASS STRATEGIES

@ Assume we have a binary classifier. We can train K
classifiers, one-versus-the-rest strategy, class Cx versus all
other points (unbalanced).

o Alternatively, there is the one-versus-one classifier, trains
K(K —1)/2 for each pair of classes, decode by majority
voting. Both are ambiguous.

@ One can train K linear discriminants yx(x) = Wi "X + by
and decode to j such that y;(x) > y;(x) for each i # j.
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LINEAR DISCRIMINANT - EXAMPLE
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FISHER’S DISCRIMINANT

o Idea: project data linearly in one dimension, so to separate
as much as possible the two classes. The projection is
y(x) =w'x.

e Choose the projection that (a) maximises the separation
between the two classes, either by maximising the
projected class means distance, or by maximising the ratio
between between-class and within-class variances.

o mj = 1/N Yjcc, Xi, m; = w'm;, class means.
o Between class variance (my — my)? = w’ Sgw,
SB = (m2 — m1)(m2 - m1)T
e Within-class variance w’Syw,
Sw = Tjec, (Xj — M1)(Xj —Mq)T + Tjcc, (Xj — m2)(x; —mg) .
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FISHER’S DISCRIMINANT

o Maximise the ratio

w’'Sgw

Jw) = w7Syw

e Deriving and setting the derivative to zero, we get
w o Sy~ (mg — my).

@ Choose the best y; that separates the projected data.
Classify to Cy if y(X) > yp. Idea: approximate the projected
class distributions p(y|Cx) as Gaussians and then find yp
s.t. p(Cilyo) = p(C2lyn), i-e. p(YoIC1)P(C1) = p(YolC2)p(C2)-
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THE PERCEPTRON ALGORITHM

e For binary classes, proposed by Rosenblatt in 62. Typically
one maps the input data in a higher dimensional space
#(X;), chooses the coding {; € {-1, 1}, and decodes to Cj if
y(x) = f(wT¢(x;)) = 0, where the activation function is the
step function f(a) =1,ifa>0and f(a) = -1ifa<0.

o A correctly classified pattern satisfies w’ ¢(x;)t; > 0. A
misclassified pattern instead w’¢(x;)t; < 0.

e We pick as error function Ep(W) = — Y;c oW ¢(X;)t;, which
generalises the idea of minimising the number of
misclassified patterns M.

o Optimise it by stochastic gradient ascend:

W = W 4 ¢ (Xn) tI(W"$(Xn )ty < O)

(typically, n = 1)
o If the data is linearly separable (in the feature space ¢),
then the algorithm converges.
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THE PERCEPTRON ALGORITHM
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LOGIT AND PROBIT REGRESSION (BINARY CASE)

o We model directly the conditional class probabilities
p(C1lx) = f(w’¢(x)), after a (nonlinear) mapping of the
features ¢(x) = ¢1(X), ..., dm(X).

e Common choices for f are the logistic or logit function
o(a) = 1=5= and the probit function
w(a) = [2 N(610,1)d6.

o We will focus on logistic regression.

@ The non-linear embedding is an important step

.
. e gt 1
1 .s",:-.-'f." ! ”%:\
oo\ ..
0o, .
é2 .
.
0 0.5 s,
[}
e
A
¢ A 5
—1 4 . A
& %
L
o~ 0
.

05 & 1

13/48



LOGISTIC REGRESSION 14/48

LOGISTIC REGRESSION

o We assume p(C1lp) = y(¢) = o(w’¢) where ¢ = ¢(x) and
¢i = ¢(Xi).

o As y = y(¢(x)) € [0, 1] we interpret is as the probability of
assigning input x to class 1, so that the likelihood is

t|W 1_[ yt: 1 -t

where y; = o(w' ;).
o We need to minimise minus the log-likelihood, i.e.

E(w) = —log p(tiw) = Zt,logy, +(1-1;)log(1 - y)
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NUMERICAL OPTIMISATION

o The gradient of E(w) is VE(w) = 3. (y; - t))¢;. The
equation VE(w) = 0 has no closed form solution, so we
need to solve it numerically.

@ One possibility is gradient descend. We initialise wP to any
value and then update it by

wt = w" - pVE(W")

where the method converges for n small.

o We can also use stochastic gradient descent for online
training, using the update rule for w:

wt = w" - v, E(w"),

with V,E(W) = (¥n — th)én
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LOGISTIC REGRESSION: OVERFITTING

o If we allocate each point x to the class with highest
probability, i.e. maximising o-(w’ ¢(x)), then the separating
surface is an hyperplane in the feature space and is given
by the equation w”¢(x) = 0.

o If the data is linearly separable in the feature space, then
any separable hyperplane is a solution, and the magnitude
of w tends to go to infinity during optimisation. In this case,
the logistic function converges to the Heaviside function.

@ To avoid this issue, we can add a regularisation term to
E(w), thus minimising E(W) + awTw.
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NEWTON-RAPSON METHOD

@ As an alternative optimisation, we can use the
Newton-Rapson method, which has better convergence
properties.

e The update rule reads:
wew — Wold _ UH_1 VE(WO/d)

where H is the Hessian of E(w), and ;; the learning rate.
o For logistic regression, we have VE(w) = 7 (y —t) and
H = ¢"R®, with R diagonal matrix with elements
Ron = yn(1 = yn).
o Itis easy to check that the Hessian is positive definite,
hence the function E(w) is convex and has a unique
minimum.
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MULTI-CLASS LOGISTIC REGRESSION

e We can model directly the multiclass conditional
probability, using the soft-max function:

exp(ak)

P(CklX) = yk(X) = Yjexp(a;)

with ax = Wi (X). It holds "y;—;j") = yk(6k - )
@ Using the boolean encoding of the outputs, the likelihood is

N K
p(Tiwq,...,wk) = l_l rlp Cklon )tnk — ]_[ l_[y’l;,%(

n=1 k=1 n=1k=

@ Hence we need to minimise

N K
E(Wi,...,Wk) == D" > tuc10g Yk

n=1 k=1
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MULTI-CLASS LOGISTIC REGRESSION
e E(wq,...,wk) has gradient
N
Vw, E(W1, ..., W) = Z(Ynj — tnj)n
n=1

@ and Hessian with blocks given by

N
VWKVWiE(W19 ce 7WK) = - Z Ynk(/kj - ynj)¢n¢/77-
n=1

@ Also in this case the Hessian is positive definite, and we
can use the Newton-Rapson algorithm for optimisation
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LAPLACE APPROXIMATION - 1 DIMENSION

o Itis a general technique to locally approximate a general

distribution around a mode with a Gaussian.
o Consider a 1d distribution p(z) = 3f(z) where
Z = [ f(z)dz is the normalisation constant.
e Pick a mode zj of f(z), i.e. a point such that d%f(zo) =0.

@ As the logarithm of the Gaussian density is quadratic, we
consider a Taylor expansion of log f(z) around zy:

log f(2) ~ log f(z) - %A(z - 29)?

with A = - log f(z)
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LAPLACE APPROXIMATION - 1 DIMENSION

e Hence we have f(z) ~ f(z) exp(-3A(z - 2)?). Now, we
seek the best Gaussian q(z) approximating p(z) around
the model zy, requiring A > 0. This is clearly given by

1

a2) = (7] expl-3A(z - 207

N =

_1
e We also have that Z ~ f(Zo)(ﬁ) ’
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LAPLACE APPROXIMATION - N DIMENSION

e In ndimensions, we proceed in the same way. Given a
density p(z) = +f(z), we find a mode zq (so that
Vlog f(zp) = 0, and approximate log f(z) around zg by
Taylor expansion, obtaining

log f(2) = I0g f(z0) ~ 5 (2~ 20)  A(z ~ 20)

where A = -VVlog f(zg).
e This gives a Gaussian approximation around zq by

q(z) = N(zlzo,A™")

e Furthermore Z = (lzl;’l—zng(zo)

23/48
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MODEL COMPARISON

@ We can use Laplace approximation for the marginal
likelihood in a model comparison framework.

e Consider data D and a model M depending on parameters
6. We fix a prior £(6) over 6 and compute the posterior by
Bayes theorem:

p(DI6)p(6)
p(D)

e Here p(D) = fp DIO)p(0)do is the marginal likelihood. It
fits in the previous framework by setting Z = p(D), and

= p(DI6)p(6).

p(61D) =

24/48
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BIC

e By Laplace approximation around the maximum
a-posteriori estimate 9yap:

M 1
log p(D) ~ log p(Difmar)+10g p(6map)+ = log(27)-7 log|A|

where A = -VVp(D\0mar)p(6mar). The last three terms in
the sum penalise the log likelihood in terms of model
complexity.

e A crude approximation of them is

1
logp(D) ~ log p(Dibmap) — 5 Mlog N
which is known as Bayesian Information Content, and can

be used to penalise log likelihood w.r.t. model complexity,
to compare different models.



