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THE BAYESIAN WAY

@ To recast logistic regression in a Bayesian framework, we need
to put a prior on p(w) of the coefficients w of o-(w'¢(x)) and
compute the posterior distribution on w by Bayes theorem. Then
we can make predictions by integrating out the parameters.

@ Assume a Gaussian prior p(w) = N(w|mg, Sp). The posterior is
p(wit) « p(w)p(tiw), and the log-posterior is

N

log p(wit) = —%(W—mo)T361 (W—mo)+ " [tilog yi+(1-t) log(1-y)]+¢
i=1

where y; = o(Wp(X;)).

@ Computing the marginal likelihood and the normalisation
constant is analytically intractable, due to quadratic and logistic
terms. Hence we do a Laplace approximation of the posterior.
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LAPLACE APPROXIMATION OF THE POSTERIOR

o Given log p(wlt), we first find the maximum a-posteriori
Wnap, by running a numerical optimisation, and then
obtain the Laplace approximation computing the Hessian
matrix at wyap and inverting it, obtaining

N
SN = —VVlog p(Wit) = So ™" + " ya(1 = ¥n)$(Xn)#(Xn)”

n=1

evaluated at w = wyap.
e Hence, the Laplace approximation of the posterior is

q(w) = N(w|wmap, Sn)
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PREDICTIVE DISTRIBUTION

@ The predictive distribution for class C is given by

p(Cilg,t) fp (Cilp,w,t)g(w)dw = fa(ngb(x))q(w)dw

e This multi-dimensional integral can be simplified by noting
that it depends on w only on the 1-dim projection
a=w/'¢(x), and that g restricted to this direction is still a
Gaussian distribution g(a) with mean and variance

fa = Wmap  ¢(X) 05 = ¢(x)"Sno(X)

o Hence we have

p(Criont) = [ r(a)a(a)da
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PROBIT APPROXIMATION

e The integral p(Cil¢,t) = [ o(a)q(a)da can be
approximated by approxmatmg the logistic function by the
probit: o-(a) = V(Aa), where 1 is obtained by matching
derivatives at zero and is 12 = /8.

o We then use

2y H
and approximate back to the logistic to get
p(Ci1l¢.1) ~ o(k(02)ua)

with k(02) = (1 + n02/8)~"/?
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CONSTRAINED OPTIMISATION
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LAGRANGE MULTIPLIERS

@ Suppose we want to maximise
f(x) subject to the constraint

@ g(x) = 0 defines a surface and
Vg(x) is always orthogonal to it. XA

e In a point of this surface in which
f(x) is optimal, it must hold that
Vf(x) = AVg(x), i.e. the
projection of Vf(x) on the tangent
space of the surface is zero,
otherwise we could increment the
value of f by moving along the
surface g(x) = 0.
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LAGRANGE MULTIPLIERS

e We can then do an vie)
unconstrained optimisation -
maxinf L(x, 1)
X P
of the Lagrangian function
9(x) =0

L(x,2) = f(x) + 29(x)

e Infact, if g(x) # 0, then inf, L(X, 1) = —c0, hence the
Lagrangian optimization problem takes finite values only
on {g(x) = 0}.

e Deriving w.r.t x gives the condition on gradients, deriving
w.r.t A the constraint: setting the derivative to zero, we
enforce the constraint and look for an optimal point.
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KARUSH-KUHN-TUCKER CONDITIONS

@ Suppose we want to optimise
f(x) subject to the constraint
g(x) > 0.

o If an optimum x satisfies g(x) > 0
(inactive constraint), then
Vf(x) = 0and A =0, if instead
g(x) = 0 (active constraint), then
Vf(x) = -AVg(x), 1 > 0 because
an increase of f cannot bring
inside the feasible region.

e In any case 1g(x) = 0 for an optimum point.

e We can then optimise the Lagrangian function
L(x, 1) = f(x) + 2g(x) subject to 1 > 0, g(x) > 0, 1g(x) =0,
known as the Karush-Kuhn-Tucker (KKT) conditions.
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KARUSH-KUHN-TUCKER CONDITIONS

o Also in this case, we can then
solve the unconstrained
optimisation

max inf L(x, )
X 20

of the Lagrangian function

L(x, 1) = f(x) + 29(x)

e Infact, if g(x) > 0, then the inner optimization is solved by
A =0, otherwise, if g(x) < 0, it is solved by 1 = +o0 and the
Lagrangian is —co. On the boundary g(x) = 0, A can take
finite values.

o To minimise f(x), we optimise miny sup ;»q f(X) — 1g(x)

e Lagrange and KKT multipliers can be combined to solved
constrained problems with both equalities and inequalities.
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THE DUAL FORMULATION

e The dual formulation of the constrained minimisation
problem with Lagrangian L(x, 1) = f(x) - X; 4;g;(X) is given
by

L(2) = ,12}} L(x, 1)

o [(2) is a lower bound on f(x). The dual optimisation
problem is to maximise L() subject to KKT conditions.

o If the original problem is convex (single global optimum),
and under regularity conditions on the constraints (e.g.
linear), then the solution of the dual gives exactly the
minimum of the primal.

e For non-convex problems, there can be a duality gap.

e For quadratic objective functions and linear constraints, the
dual objective can be computed easily, because
dL(x, 2)/0x gives a linear system that can be solved to
express x as a function of A’s



SUPPORT VECTOR MACHINES
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KERNEL TRICK FOR CLASSIFICATION

e The trick works similarly as for regression. Consider class
conditionals p(C11x) = o-(w’ ¢(x)).

o We can make the assumption that w = 3.V . an4(xa) (this
is consistent, as the ML solution will belong to the space
spanned by ¢(xy)), thus getting

N
p(Cilx) = O'(Z ank(X, Xn)}

n=1

where we define the kernel function k(x,x’) = ¢(x)"¢(x’)

e We can write also p(C1|x) = o-(a’k(x)). The maximum
likelihood solution can be found using gradient based
methods.
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MAXIMUM MARGIN CLASSIFIERS

o We have 2-class data xp, t,, with f, € {-1,1}. We assume
for the moment that the data is linearly separable in a
feature space after applying the non-linear mapping ¢(x).

o There may be many hyperplanes separating the data. An
effective choice is to select the one maximising the margin,
i.e. the smallest distance between the separating
hyperplane and the data points.

@ Only closest data points are needed to determine it.

y=1 y=-1

y=0 y=0
y=-1
y=1
o

margin
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MAXIMUM MARGIN CLASSIFIERS

o Write y(x) = w’¢(x) + b.
@ The distance between a point and the separating
hyperplane w”¢ + b is |y (x)|/|lw]|.

e As we want to classify correctly all points, it will hold that
thy(Xn) = 0, by the choice of t, encoding.

@ Hence, to find the maximum margin, we need to find w and
b such that:

1 .
max| o m’;n{tnwrcp(xn) + tab}

e The solution is defined up to an arbitrary rescaling of w and
b, so we can set to 1 the margin, obtaining the constraint

thT¢(Xn)+tan1, n:1,...,N
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MAXIMUM MARGIN CLASSIFIERS

e The constraints t,w’¢(Xn) + t,b > 1 known as the
canonical representation. Points for which equality to 1
holds are called active, the others inactive.

e The maximisation above is equivalent to minimise ||w|/°:

15
min <||w
min 5 Wi

subject to canonical constraints. b will be set via the
constraints.

o To solve this quadratic program, we introduce a Langrange
multiplier a,, for each constraint, resulting in the following
Lagrangian

1 N
L(w,b,a) = §||w||2 = > anltaw’ ¢(xXn) + tab - 1]
n=1

which has to be minimised w.r.t w and b, and maximised
w.r.ta.



SVM

THE DUAL FORMULATION OF THE MAXIMUM MARGIN
PROBLEM

e Starting from the Lagrangian L(w, b,a) we compute
derivatives w.r.t. w and b and set them to zero, obtaining
constraints

w= Z antnd(Xn) 0= Z anty

e By substituting them in the Lagrangian, we obtain the dual
representation

5 N 1 N
a) = Z an-— 3 Z Z anamtntmk(Xn, Xm)

n=1 n=1 m=1
subject to the constraints

anZO,n:1,...,N; Zantnzo
n

o K(Xn,Xm) = #(Xn)" ¢(Xm) is the kernel function.

42750
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THE DUAL FORMULATION OF THE MAXIMUM MARGIN
PROBLEM

e This optimisation problem can be solved in O(N?) time. Its
main advantage is that it depends on the kernel, not on
basis functions, hence it can be applied to more general
kernels.

@ The prediction for a new point X is obtained by using the
dual formulation of w, giving

Y(X) =" antak(x,Xn) + b

43750
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SPARSITY OF THE SOLUTION

e The optimisation problem satisfies the KKT conditions:
an>0; ty(xn)—12>0; an[tay(Xa)-1]=0

e This implies that either t,y(xn) = 1 (the vector X is at
minimum distance from the margin) or a, = 0 (it does not
contribute to the predictions).

o Let us indicate with S the set of support vectors.
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DETERMINING b

e From any xp € S, by using f,y(Xn) = 1, we can determine
b by solving

tn Z amtmk(Xn,Xm) + tnb — 1
meS

@ To have a more stable solution, one multiplies by f,, uses
t2 = 1, and averages for the different support vectors:

b= 1z 2| tr= Y antok(Xn. X))

neS meS

451750
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EXAMPLE OF SVM

e Example of data linearly separable in the space defined by
the Gaussian kernel function.

@ Sparsity: only support vectors define the maximum margin
hyperplane: moving the other is irrelevant, as far as they
remain on the same side.

Example of synthetic data from
two classes in two dimensions
showing contours of constant
y(x) obtained from a support
vector machine having a Gaus-
sian kernel function. Also shown
are the decision boundary, the
margin boundaries, and the sup-
port vectors.
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SOFT MARGIN SVM

e If class conditionals overlap, then an exact (non-linear)
separation of training data may result in poor
generalisation. It is better to allow some training points to
be misclassified, by relaxing the constraint f,y(xn) > 1

@ We will do this by introducing N new slack variables &, > 0,
rewriting constraint as thy(Xn) > 1 - &.

e For points correctly classified and
inside the margin, we have &, = 0,
while for other points we have
&n = |th — y(Xn)l. It follows that
misclassified points will have &, > 1,
while &, = 1 only if a point lies in the
separating hyperplane.

e Y ,&nis an upper bound on
misclassified training points.
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SOFT MARGIN SVM

e The primal objective function is modified to penalise the
number of misclassified points:

N
1 2
C; én+ 5wl

o Cis aregularisation term: it controls the trade-off between
correct classification of training points and model
complexity. For C — oo, we recover the previous SVM.

e The Lagrangian L(w, b,a, x) is now given by

N N N
1
C Y én+5IWIP= )" anltaW  d(Xn) + tab— 1+ &0l = 3 pinéi
n-1 n=1 n=1

with ap, un Lagrange multipliers. We omit the KKT
conditions.

48750
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SOFT MARGIN SVM: DUAL FORMULATION

o By taking partial derivatives w.r.t w, b, and &,, we obtain
the dual formulation:

N

N N
[ a) - Z an - % Z Z anamtntmk Xn,Xm)
n=1

n=1 m=1

which has to satisfy the following box constraints

0<a,<C,n=1,...,N; Zantn:o
n

@ In the solution, we can have a, = 0 (points inside the
margin , for which &, = 0), 0 < a, < C (points on the
margin, for which &, = 0), or a, = C (points on the wrong
side of the margin, &, > 0).

@ b can be determined as for the hard margin case, by
restricting to support vectors on the margin.
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SVM: COMMENTS

e The quadratic problem is convex, hence has a unique
minimum, but a classic optimisation can be challenging for
large problems (N large). Specialised methods have been
developed, that try to decompose the problem into simpler
pieces. E.g. Sequential minimal optimisation works by
optimising two a,’s at time.

@ SVM are hard to generalise to multi-class problems
(one-versus-the-rest approach being the typical approach)

e SVM do not have a probabilistic interpretation, and some
ad-hoc processing is required.

@ SVM can be quite sensitive to outliers (misclassified points
deeply inside the other’s class region).
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