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THE BAYESIAN WAY

To recast logistic regression in a Bayesian framework, we need
to put a prior on p(w) of the coefficients w of �(wT�(x)) and
compute the posterior distribution on w by Bayes theorem. Then
we can make predictions by integrating out the parameters.

Assume a Gaussian prior p(w) = N(w|m0,S0). The posterior is
p(w|t) / p(w)p(t|w), and the log-posterior is

log p(w|t) = �1
2

(w�m0)
T S�1

0 (w�m0)+
NX

i=1

[ti log yi+(1�ti) log(1�yi)]+c

where yi = �(w�(xi)).

Computing the marginal likelihood and the normalisation
constant is analytically intractable, due to quadratic and logistic
terms. Hence we do a Laplace approximation of the posterior.
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LAPLACE APPROXIMATION OF THE POSTERIOR

Given log p(w|t), we first find the maximum a-posteriori
wMAP, by running a numerical optimisation, and then
obtain the Laplace approximation computing the Hessian
matrix at wMAP and inverting it, obtaining

SN = �rr log p(w|t) = S0
�1 +

NX

n=1

yn(1 � yn)�(xn)�(xn)T

evaluated at w = wMAP.
Hence, the Laplace approximation of the posterior is

q(w) = N(w|wMAP,SN)
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PREDICTIVE DISTRIBUTION

The predictive distribution for class C1 is given by

p(C1|�, t) =

Z
p(C1|�,w, t)q(w)dw =

Z
�(wT�(x))q(w)dw

This multi-dimensional integral can be simplified by noting
that it depends on w only on the 1-dim projection
a = wT�(x), and that q restricted to this direction is still a
Gaussian distribution q(a) with mean and variance

µa = wMAP
T�(x) �2

a = �(x)T SN�(x)

Hence we have

p(C1|�, t) =

Z
�(a)q(a)da



LINEAR CLASSIFIERS LOGISTIC REGRESSION LAPLACE BAYESIAN LOGISTIC REGRESSION OPTIMISATION SVM 30 / 50

PROBIT APPROXIMATION

The integral p(C1|�, t) =
R
�(a)q(a)da can be

approximated by approximating the logistic function by the
probit: �(a) =  (�a), where � is obtained by matching
derivatives at zero and is �2 = ⇡/8.
We then use

Z
 (a)N(a|µ,�2) =  

 
µ

(��2 + �2)1/2

!

and approximate back to the logistic to get

p(C1|�, t) ⇡ �((�2
a)µa)

with (�2
a) = (1 + ⇡�2

a/8)�1/2
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LAGRANGE MULTIPLIERS

Suppose we want to maximise
f (x) subject to the constraint
g(x) = 0.
g(x) = 0 defines a surface and
rg(x) is always orthogonal to it.
In a point of this surface in which
f (x) is optimal, it must hold that
rf (x) = �rg(x), i.e. the
projection of rf (x) on the tangent
space of the surface is zero,
otherwise we could increment the
value of f by moving along the
surface g(x) = 0.

708 E. LAGRANGE MULTIPLIERS

Figure E.1 A geometrical picture of the technique of La-
grange multipliers in which we seek to maximize a
function f(x), subject to the constraint g(x) = 0.
If x is D dimensional, the constraint g(x) = 0 cor-
responds to a subspace of dimensionality D � 1,
indicated by the red curve. The problem can
be solved by optimizing the Lagrangian function
L(x, �) = f(x) + �g(x).

�f(x)

�g(x)

xA

g(x) = 0

then parallel to the constraint surface g(x) = 0, we see that the vector �g is normal
to the surface.

Next we seek a point x� on the constraint surface such that f(x) is maximized.
Such a point must have the property that the vector �f(x) is also orthogonal to the
constraint surface, as illustrated in Figure E.1, because otherwise we could increase
the value of f(x) by moving a short distance along the constraint surface. Thus �f
and �g are parallel (or anti-parallel) vectors, and so there must exist a parameter �
such that

�f + ��g = 0 (E.3)

where � �= 0 is known as a Lagrange multiplier. Note that � can have either sign.
At this point, it is convenient to introduce the Lagrangian function defined by

L(x, �) � f(x) + �g(x). (E.4)

The constrained stationarity condition (E.3) is obtained by setting �xL = 0. Fur-
thermore, the condition �L/�� = 0 leads to the constraint equation g(x) = 0.

Thus to find the maximum of a function f(x) subject to the constraint g(x) = 0,
we define the Lagrangian function given by (E.4) and we then find the stationary
point of L(x, �) with respect to both x and �. For a D-dimensional vector x, this
gives D +1 equations that determine both the stationary point x� and the value of �.
If we are only interested in x�, then we can eliminate � from the stationarity equa-
tions without needing to find its value (hence the term ‘undetermined multiplier’).

As a simple example, suppose we wish to find the stationary point of the function
f(x1, x2) = 1 � x2

1 � x2
2 subject to the constraint g(x1, x2) = x1 + x2 � 1 = 0, as

illustrated in Figure E.2. The corresponding Lagrangian function is given by

L(x, �) = 1 � x2
1 � x2

2 + �(x1 + x2 � 1). (E.5)

The conditions for this Lagrangian to be stationary with respect to x1, x2, and � give
the following coupled equations:

�2x1 + � = 0 (E.6)
�2x2 + � = 0 (E.7)

x1 + x2 � 1 = 0. (E.8)
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LAGRANGE MULTIPLIERS

We can then do an
unconstrained optimisation

max
x

inf
�

L(x, �)

of the Lagrangian function

L(x, �) = f (x) + �g(x)
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illustrated in Figure E.2. The corresponding Lagrangian function is given by

L(x, �) = 1 � x2
1 � x2

2 + �(x1 + x2 � 1). (E.5)

The conditions for this Lagrangian to be stationary with respect to x1, x2, and � give
the following coupled equations:

�2x1 + � = 0 (E.6)
�2x2 + � = 0 (E.7)

x1 + x2 � 1 = 0. (E.8)

In fact, if g(x) , 0, then inf� L(x, �) = �1, hence the
Lagrangian optimization problem takes finite values only
on {g(x) = 0}.
Deriving w.r.t x gives the condition on gradients, deriving
w.r.t � the constraint: setting the derivative to zero, we
enforce the constraint and look for an optimal point.
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KARUSH-KUHN-TUCKER CONDITIONS

Suppose we want to optimise
f (x) subject to the constraint
g(x) � 0.
If an optimum x satisfies g(x) > 0
(inactive constraint), then
rf (x) = 0 and � = 0, if instead
g(x) = 0 (active constraint), then
rf (x) = ��rg(x), � > 0 because
an increase of f cannot bring
inside the feasible region.

E. LAGRANGE MULTIPLIERS 709

Figure E.2 A simple example of the use of Lagrange multipli-
ers in which the aim is to maximize f(x1, x2) =
1 � x2

1 � x2
2 subject to the constraint g(x1, x2) = 0

where g(x1, x2) = x1 + x2 � 1. The circles show
contours of the function f(x1, x2), and the diagonal
line shows the constraint surface g(x1, x2) = 0.

g(x1, x2) = 0

x1

x2

(x�
1, x

�
2)

Solution of these equations then gives the stationary point as (x�
1, x

�
2) = ( 1

2 , 1
2), and

the corresponding value for the Lagrange multiplier is � = 1.
So far, we have considered the problem of maximizing a function subject to an

equality constraint of the form g(x) = 0. We now consider the problem of maxi-
mizing f(x) subject to an inequality constraint of the form g(x) � 0, as illustrated
in Figure E.3.

There are now two kinds of solution possible, according to whether the con-
strained stationary point lies in the region where g(x) > 0, in which case the con-
straint is inactive, or whether it lies on the boundary g(x) = 0, in which case the
constraint is said to be active. In the former case, the function g(x) plays no role
and so the stationary condition is simply �f(x) = 0. This again corresponds to
a stationary point of the Lagrange function (E.4) but this time with � = 0. The
latter case, where the solution lies on the boundary, is analogous to the equality con-
straint discussed previously and corresponds to a stationary point of the Lagrange
function (E.4) with � �= 0. Now, however, the sign of the Lagrange multiplier is
crucial, because the function f(x) will only be at a maximum if its gradient is ori-
ented away from the region g(x) > 0, as illustrated in Figure E.3. We therefore have
�f(x) = ���g(x) for some value of � > 0.

For either of these two cases, the product �g(x) = 0. Thus the solution to the

Figure E.3 Illustration of the problem of maximizing
f(x) subject to the inequality constraint
g(x) � 0.

�f(x)

�g(x)

xA

xB

g(x) = 0
g(x) > 0

In any case �g(x) = 0 for an optimum point.
We can then optimise the Lagrangian function
L(x, �) = f (x) + �g(x) subject to � � 0, g(x) � 0, �g(x) = 0,
known as the Karush-Kuhn-Tucker (KKT) conditions.
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KARUSH-KUHN-TUCKER CONDITIONS

Also in this case, we can then
solve the unconstrained
optimisation

max
x

inf
��0

L(x, �)

of the Lagrangian function

L(x, �) = f (x) + �g(x)
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In fact, if g(x) > 0, then the inner optimization is solved by
� = 0, otherwise, if g(x) < 0, it is solved by � = +1 and the
Lagrangian is �1. On the boundary g(x) = 0 , � can take
finite values.
To minimise f (x), we optimise minx sup��0 f (x) � �g(x)

Lagrange and KKT multipliers can be combined to solved
constrained problems with both equalities and inequalities.
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THE DUAL FORMULATION

The dual formulation of the constrained minimisation
problem with Lagrangian L(x, �) = f (x) �P

j �j gj(x) is given
by

L̃(�) = inf
x2D

L(x, �)

L̃(�) is a lower bound on f (x). The dual optimisation
problem is to maximise L̃(�) subject to KKT conditions.
If the original problem is convex (single global optimum),
and under regularity conditions on the constraints (e.g.
linear), then the solution of the dual gives exactly the
minimum of the primal.
For non-convex problems, there can be a duality gap.
For quadratic objective functions and linear constraints, the
dual objective can be computed easily, because
@L(x, �)/@x gives a linear system that can be solved to
express x as a function of �’s



OUTLINE

1 LINEAR CLASSIFIERS

2 LOGISTIC REGRESSION

3 LAPLACE APPROXIMATION

4 BAYESIAN LOGISTIC REGRESSION

5 CONSTRAINED OPTIMISATION

6 SUPPORT VECTOR MACHINES



LINEAR CLASSIFIERS LOGISTIC REGRESSION LAPLACE BAYESIAN LOGISTIC REGRESSION OPTIMISATION SVM 38 / 50

KERNEL TRICK FOR CLASSIFICATION

The trick works similarly as for regression. Consider class
conditionals p(C1|x) = �(wT�(x)).
We can make the assumption that w =

PN
n=1 an�(xn) (this

is consistent, as the ML solution will belong to the space
spanned by �(xn)), thus getting

p(C1|x) = �

0
BBBBBB@

NX

n=1

↵nk(x,xn)

1
CCCCCCA

where we define the kernel function k(x,x0) = �(x)T�(x0)
We can write also p(C1|x) = �(aT k(x)). The maximum
likelihood solution can be found using gradient based
methods.
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MAXIMUM MARGIN CLASSIFIERS

We have 2-class data xn, tn, with tn 2 {�1,1}. We assume
for the moment that the data is linearly separable in a
feature space after applying the non-linear mapping �(x).
There may be many hyperplanes separating the data. An
effective choice is to select the one maximising the margin,
i.e. the smallest distance between the separating
hyperplane and the data points.
Only closest data points are needed to determine it.

7.1. Maximum Margin Classifiers 327

y = 1
y = 0

y = �1

margin

y = 1

y = 0

y = �1

Figure 7.1 The margin is defined as the perpendicular distance between the decision boundary and the closest
of the data points, as shown on the left figure. Maximizing the margin leads to a particular choice of decision
boundary, as shown on the right. The location of this boundary is determined by a subset of the data points,
known as support vectors, which are indicated by the circles.

having a common parameter �2. Together with the class priors, this defines an opti-
mal misclassification-rate decision boundary. However, instead of using this optimal
boundary, they determine the best hyperplane by minimizing the probability of error
relative to the learned density model. In the limit �2 � 0, the optimal hyperplane
is shown to be the one having maximum margin. The intuition behind this result is
that as �2 is reduced, the hyperplane is increasingly dominated by nearby data points
relative to more distant ones. In the limit, the hyperplane becomes independent of
data points that are not support vectors.

We shall see in Figure 10.13 that marginalization with respect to the prior distri-
bution of the parameters in a Bayesian approach for a simple linearly separable data
set leads to a decision boundary that lies in the middle of the region separating the
data points. The large margin solution has similar behaviour.

Recall from Figure 4.1 that the perpendicular distance of a point x from a hyper-
plane defined by y(x) = 0 where y(x) takes the form (7.1) is given by |y(x)|/�w�.
Furthermore, we are only interested in solutions for which all data points are cor-
rectly classified, so that tny(xn) > 0 for all n. Thus the distance of a point xn to the
decision surface is given by

tny(xn)

�w� =
tn(wT�(xn) + b)

�w� . (7.2)

The margin is given by the perpendicular distance to the closest point xn from the
data set, and we wish to optimize the parameters w and b in order to maximize this
distance. Thus the maximum margin solution is found by solving

arg max
w,b

�
1

�w� min
n

�
tn

�
wT�(xn) + b

���
(7.3)

where we have taken the factor 1/�w� outside the optimization over n because w
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MAXIMUM MARGIN CLASSIFIERS

Write y(x) = wT�(x) + b.
The distance between a point and the separating
hyperplane wT�+ b is |y(x)|/||w||.
As we want to classify correctly all points, it will hold that
tny(xn) � 0, by the choice of tn encoding.
Hence, to find the maximum margin, we need to find w and
b such that:

max
w,b

"
1
||w|| min

n
{tnwT�(xn) + tnb}

#

The solution is defined up to an arbitrary rescaling of w and
b, so we can set to 1 the margin, obtaining the constraint

tnwT�(xn) + tnb � 1, n = 1, . . . ,N
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MAXIMUM MARGIN CLASSIFIERS

The constraints tnwT�(xn) + tnb � 1 known as the
canonical representation. Points for which equality to 1
holds are called active, the others inactive.
The maximisation above is equivalent to minimise ||w||2:

min
w,b

1
2
||w||2

subject to canonical constraints. b will be set via the
constraints.
To solve this quadratic program, we introduce a Langrange
multiplier an for each constraint, resulting in the following
Lagrangian

L(w,b,a) =
1
2
||w||2 �

NX

n=1

an[tnwT�(xn) + tnb � 1]

which has to be minimised w.r.t w and b, and maximised
w.r.t a.
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THE DUAL FORMULATION OF THE MAXIMUM MARGIN
PROBLEM

Starting from the Lagrangian L(w,b,a) we compute
derivatives w.r.t. w and b and set them to zero, obtaining
constraints

w =
X

n
antn�(xn) 0 =

X

n
antn

By substituting them in the Lagrangian, we obtain the dual
representation

L̃(a) =
NX

n=1

an �
1
2

NX

n=1

NX

m=1

anamtntmk(xn,xm)

subject to the constraints

an � 0, n = 1, . . . ,N;
X

n
antn = 0

k(xn,xm) = �(xn)T�(xm) is the kernel function.
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THE DUAL FORMULATION OF THE MAXIMUM MARGIN
PROBLEM

This optimisation problem can be solved in O(N3) time. Its
main advantage is that it depends on the kernel, not on
basis functions, hence it can be applied to more general
kernels.
The prediction for a new point x is obtained by using the
dual formulation of w, giving

y(x) =
X

n
antnk(x,xn) + b
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SPARSITY OF THE SOLUTION

The optimisation problem satisfies the KKT conditions:

an � 0; tny(xn) � 1 � 0; an[tny(xn) � 1] = 0

This implies that either tny(xn) = 1 (the vector xn is at
minimum distance from the margin) or an = 0 (it does not
contribute to the predictions).
Let us indicate with S the set of support vectors.
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DETERMINING b

From any xn 2 S, by using tny(xn) = 1, we can determine
b by solving

tn
X

m2S
amtmk(xn,xm) + tnb = 1

To have a more stable solution, one multiplies by tn, uses
t2
n = 1, and averages for the different support vectors:

b =
1

NS

X

n2S

0
BBBBBB@tn �

X

m2S
amtmk(xn,xm))

1
CCCCCCA
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EXAMPLE OF SVM

Example of data linearly separable in the space defined by
the Gaussian kernel function.
Sparsity: only support vectors define the maximum margin
hyperplane: moving the other is irrelevant, as far as they
remain on the same side.7.1. Maximum Margin Classifiers 331

Figure 7.2 Example of synthetic data from
two classes in two dimensions
showing contours of constant
y(x) obtained from a support
vector machine having a Gaus-
sian kernel function. Also shown
are the decision boundary, the
margin boundaries, and the sup-
port vectors.

form (6.23). Although the data set is not linearly separable in the two-dimensional
data space x, it is linearly separable in the nonlinear feature space defined implicitly
by the nonlinear kernel function. Thus the training data points are perfectly separated
in the original data space.

This example also provides a geometrical insight into the origin of sparsity in
the SVM. The maximum margin hyperplane is defined by the location of the support
vectors. Other data points can be moved around freely (so long as they remain out-
side the margin region) without changing the decision boundary, and so the solution
will be independent of such data points.

7.1.1 Overlapping class distributions
So far, we have assumed that the training data points are linearly separable in the

feature space �(x). The resulting support vector machine will give exact separation
of the training data in the original input space x, although the corresponding decision
boundary will be nonlinear. In practice, however, the class-conditional distributions
may overlap, in which case exact separation of the training data can lead to poor
generalization.

We therefore need a way to modify the support vector machine so as to allow
some of the training points to be misclassified. From (7.19) we see that in the case
of separable classes, we implicitly used an error function that gave infinite error
if a data point was misclassified and zero error if it was classified correctly, and
then optimized the model parameters to maximize the margin. We now modify this
approach so that data points are allowed to be on the ‘wrong side’ of the margin
boundary, but with a penalty that increases with the distance from that boundary. For
the subsequent optimization problem, it is convenient to make this penalty a linear
function of this distance. To do this, we introduce slack variables, �n � 0 where
n = 1, . . . , N , with one slack variable for each training data point (Bennett, 1992;
Cortes and Vapnik, 1995). These are defined by �n = 0 for data points that are on or
inside the correct margin boundary and �n = |tn � y(xn)| for other points. Thus a
data point that is on the decision boundary y(xn) = 0 will have �n = 1, and points
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SOFT MARGIN SVM

If class conditionals overlap, then an exact (non-linear)
separation of training data may result in poor
generalisation. It is better to allow some training points to
be misclassified, by relaxing the constraint tny(xn) � 1
We will do this by introducing N new slack variables ⇠n � 0,
rewriting constraint as tny(xn) � 1 � ⇠n.

For points correctly classified and
inside the margin, we have ⇠n = 0,
while for other points we have
⇠n = |tn � y(xn)|. It follows that
misclassified points will have ⇠n > 1,
while ⇠n = 1 only if a point lies in the
separating hyperplane.
P

n ⇠n is an upper bound on
misclassified training points.

332 7. SPARSE KERNEL MACHINES

Figure 7.3 Illustration of the slack variables �n � 0.
Data points with circles around them are
support vectors.

y = 1

y = 0

y = �1

� > 1

� < 1

� = 0

� = 0

with �n > 1 will be misclassified. The exact classification constraints (7.5) are then
replaced with

tny(xn) � 1 � �n, n = 1, . . . , N (7.20)

in which the slack variables are constrained to satisfy �n � 0. Data points for which
�n = 0 are correctly classified and are either on the margin or on the correct side
of the margin. Points for which 0 < �n � 1 lie inside the margin, but on the cor-
rect side of the decision boundary, and those data points for which �n > 1 lie on
the wrong side of the decision boundary and are misclassified, as illustrated in Fig-
ure 7.3. This is sometimes described as relaxing the hard margin constraint to give a
soft margin and allows some of the training set data points to be misclassified. Note
that while slack variables allow for overlapping class distributions, this framework is
still sensitive to outliers because the penalty for misclassification increases linearly
with �.

Our goal is now to maximize the margin while softly penalizing points that lie
on the wrong side of the margin boundary. We therefore minimize

C
N�

n=1

�n +
1

2
�w�2 (7.21)

where the parameter C > 0 controls the trade-off between the slack variable penalty
and the margin. Because any point that is misclassified has �n > 1, it follows that�

n �n is an upper bound on the number of misclassified points. The parameter C is
therefore analogous to (the inverse of) a regularization coefficient because it controls
the trade-off between minimizing training errors and controlling model complexity.
In the limit C � �, we will recover the earlier support vector machine for separable
data.

We now wish to minimize (7.21) subject to the constraints (7.20) together with
�n � 0. The corresponding Lagrangian is given by

L(w, b, a) =
1

2
�w�2 +C

N�

n=1

�n �
N�

n=1

an {tny(xn) � 1 + �n}�
N�

n=1

µn�n (7.22)
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SOFT MARGIN SVM

The primal objective function is modified to penalise the
number of misclassified points:

C
NX

n=1

⇠n +
1
2
||w||2

C is a regularisation term: it controls the trade-off between
correct classification of training points and model
complexity. For C ! 1, we recover the previous SVM.
The Lagrangian L(w,b,a, µ) is now given by

C
NX

n�1

⇠n +
1
2
||w||2�

NX

n=1

an[tnwT�(xn)+ tnb�1+ ⇠n]�
NX

n=1

µn⇠n

with an, µn Lagrange multipliers. We omit the KKT
conditions.
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SOFT MARGIN SVM: DUAL FORMULATION

By taking partial derivatives w.r.t w, b, and ⇠n, we obtain
the dual formulation:

L̃(a) =
NX

n=1

an �
1
2

NX

n=1

NX

m=1

anamtntmk(xn,xm)

which has to satisfy the following box constraints

0  an  C, n = 1, . . . ,N;
X

n
antn = 0

In the solution, we can have an = 0 (points inside the
margin , for which ⇠n = 0), 0 < an < C (points on the
margin, for which ⇠n = 0), or an = C (points on the wrong
side of the margin, ⇠n > 0).
b can be determined as for the hard margin case, by
restricting to support vectors on the margin.
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SVM: COMMENTS

The quadratic problem is convex, hence has a unique
minimum, but a classic optimisation can be challenging for
large problems (N large). Specialised methods have been
developed, that try to decompose the problem into simpler
pieces. E.g. Sequential minimal optimisation works by
optimising two an’s at time.
SVM are hard to generalise to multi-class problems
(one-versus-the-rest approach being the typical approach)
SVM do not have a probabilistic interpretation, and some
ad-hoc processing is required.
SVM can be quite sensitive to outliers (misclassified points
deeply inside the other’s class region).
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