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1 Introduction 3

1 Introduction

Multi-phase flows exist in many natural and technological systems. A multiphase flow can be
defined as a flow in which there is the simultaneous presence of materials with different states
or phases (i.e. gas, liquid or solid) or materials in the same state or phase but with different
chemical properties (i.e. liquid-liquid systems such as oil droplets in water). In a multi-phase
flow, one phase is regarded as continuous while the other(s) are dispersed within it. Moreover,
each phase can be laminar or turbulent.
A multi-phase flow should not be confused with multi-component flow. In fact, while in a mul-
ticomponent flow the species are mixed at the molecular level, in a multi-phase flow the species
are mixed at scales much larger than the molecular-length scales and can possess different ve-
locity and temperature fields.
Multi-phase flows can be broadly classified as disperse flows and separated flows. The former
consist of finite particles, drops or bubbles (the so-called disperse phase) distributed in the con-
tinuous phase, the latter include two or more continuous streams of different fluids separated by
interfaces. The dispersed flows can be further categorized in homogeneous flows and bubbly
flows. The homogeneous flow can be regarded as the asymptotic limit of a disperse flow, in
which an infinite number of infinitesimally small particles are present. In this case, the rela-
tive motion between the phases can be neglected. On the contrary, in a bubbly flow even if the
particles are much smaller than the pipe dimensions, the relative motion between the phases is
significant.
Two kinds of separated flows can be recognized, that is fully separated flow and annular flow:
while the former consists of two single phase streams (and occurs at low velocity flow of gas
and liquid), in an annular flow the droplets are an important feature and, therefore, it can be
regarded as only partially separated.
The derivation of the equations for multi-phase flows is considerably more complicated than for
single-phase flows. This can be primarily ascribable to the presence of multiple, deformable and
moving interfaces, across which the fluid properties can vary significantly.
The solution of a multi-phase flow field can be performed by following two different approaches,
that is the two-fluid model and the mixture model. For the two-fluid model, the single-phase fluid
flow governing equations are solved for both phases and are then coupled by setting appropriate
kinematic and dynamic conditions at the interface. In the mixture model, the different phases
are treated as a single fluid with variable properties and the conservation equations are solved
for the mixture.
In theory, a two-phase flow problem can be formulated in terms of the local instant variables.
However, there are considerable mathematical difficulties in following this approach, since a
multiboundary problem would results, for which the positions of the interface is unknown due
to the coupling of the fields and the boundary conditions. Concisely, the great difficulties for
employing the local instant formulation come from the existence of the multiple deformable and
moving interfaces, the fluctuations of variables due to turbulence and to the motions of the in-
terfaces, and the significant discontinuities of properties at interface. Therefore, it is a common
practice to apply some sort of averaging thus to effectively eliminate the local instant fluctua-
tions and obtain the mean values of fluid motions and properties.
For the modeling of a discrete phase (small bubbles, solid particles or drops) co-flowing with a
background fluid, two kinds of models are prevalent, that is the trajectory model and the two-
fluid model. In trajectory models, also known as Lagrangian approaches, the motion of the
disperse phase is determined by following the motion of each particle (or the motion of larger,
representative particles) through a reference frame which moves with the particles themselves.
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4 2 Characterization of multi-phase flows

In two-fluid models, also known as Eulerian approaches, the discrete nature of the disperse
phase is neglected and its effects on the carrier medium are approximated like another fluid act-
ing on the continuous phase. In this case, the reference frame is stationary and the particles pass
through fixed differential control volumes.

2 Characterization of multi-phase flows

In fluid mechanics, a multi-phase flow can be defined as a flow system in which two or more
distinct phases flow simultaneously, having some level of phase separation at a scale well above
the molecular level.
It is worth pointing out the distinction between multiphase flows and multicomponent flows:
while the latter consist of a mixture of chemical species, mixed at the molecular level, the fluids
in a multiphase flow are assumed to be mixed at macroscopic length scales, much larger than
the molecular one. The fluids may interact with each other by means of interfacial forces and
heat and mass transfer across the phase interfaces.
As suggested in [5], two-phase flows are fundamentally multi-scale in nature. At least four dif-
ferent scales can be recognized: the system scale, the macroscopic scale (required for continuum
assumption), the mesoscale (related to local structures) and the microscale scale (related to fine
structures and molecular transport).
The immiscibility of two fluids results from the strong cohesion forces existing between their
molecules, and depends on the nature of the fluids. The easiness of mixing is generally ex-
pressed through the surface tension: the larger the value of this coefficient, the stronger the
resistance to the mixing.
Multi-phase flows can, in general, exist in many different forms. For instance, two-phase flows
can be classified according to the state of the phases as gas-solid flows, liquid-solid flows or
gas-liquid flows. Moreover, a further group can be identified, that is immiscible-liquid mixture:
even though it is not a real two-phase flow, for all practical purposes it can be treated as if it
were a two-phase mixture.
Gas-solid flows regard with the motion of suspended solids or droplets in the gas phase. Gas-
particle flows can be referred to as dispersed flows in which the solid particles constitute the
dispersed phase, while the gas forms the continuous phase. The behaviour of the system de-
pends on the particle number density, and three different regimes can be detected. In dilute
gas-particle flows the influence of the gas flow is the dominant effect and the motion of the
particles is governed by the surface and body forces acting on them. On the contrary, when the
particle number density is sufficiently large, the motion of the particles is mainly influenced by
particle-particle interactions. This kind of flow is referred as dense gas-particle flows. A special
case of the dilute regime is offered by the very dilute gas-particle flows, for which the solid
particles act as tracers and do not affect the gas flow. Examples of gas-solid flows are smoke
and flow in pneumatic conveyers.
Liquid-solid flows deal with the transport of solid particles in a liquid phase and can also be cate-
gorized as dispersed flows, for which the liquid represents the continuous phase. In comparison
to gas-particle flows, the liquid and solid phases are mainly driven by the pressure gradients,
since the density ratio between phases is normally low while there is a significant inter-phase
drag. Examples of liquid-solid flows are provided by the sediment transport of sand in rivers
and the flows in wastewater treatment plants.
The gas-liquid flow is regarded as the most complex type which can be encountered in nature
and industrial processes, since it combines the characteristics of a deformable interface and the
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2 Characterization of multi-phase flows 5

compressibility of the gas phase (bubbles and droplets are free to deform and, therefore, can
assume different geometrical shapes, e.g., spherical, elliptical, cap and so on).
A special case of immiscible-liquid flows is provided by free surface flows, for which a further
complication comes from the presence of well defined interfaces. Free surface flows are usually
treated with both phases considered as continuous.

The singular characteristic of two-phase or immiscible flows is the presence of one or several
interfaces separating each phase or components. Hence, besides the classification based on the
combinations of the phases, two-phase flows can be classified according to the geometry of the
interfaces into three main classes, namely, dispersed flows, separated flows and transitional or
mixed flows, as illustrated in Fig. 1. Since the change of interfacial structures occurs gradually,
transitional flows are characterized by the presence of both separated and dispersed flows. The
transition happens frequently for liquid-vapor mixtures, as a consequence of the phase change
along a channel. As Fig. 1 suggests, for each group several sub-classes can be identified. In the

Figure 1: Classification of two-phase flows. From [10].

Figure 2: Classification of gas-liquid flows. From [9].

following part of this Section, the most common flow regimes for vertical and horizontal pipes
will be illustrated.
With reference to Fig. 2, the different kinds of interfacial distributions in a vertical pipe can
be categorized into five types, that is bubbly flow, cap flow, slug flow, churn-turbulent flow and
annular flow.
In a bubbly flow, the gas phase is distributed in the continuous liquid phase as discrete bub-
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6 2 Characterization of multi-phase flows

bles, smaller than the tube diameter. When the superficial velocity1 of the gas phase increases,
deformed or elongated bubbles become more prevalent and cap bubbles are formed (cap flow
regime), which are precursors to the formation of slug units in the slug flow regime.
The slug flow regime is characterized by the presence of bullet shaped gas bubbles, the so called
Taylor bubbles, elongated in the direction of the channel axis. These bubbles present a char-
acteristic hemispherical cap and abruptly terminate at the bottom edge. Their length can vary
from one diameter up to several channel diameters. Between the channel wall and gas bubble a
thin liquid film is present, which flows in the opposite direction of the plug motion. The Taylor
bubbles are separated by liquid slugs, which can contain, occasionally, some small bubbles [1].
This slug pattern is often avoided in the design since it causes undesirable flow instability [10].
The drag for the bubbles in the slug flow regime differs substantially from that in the bubbly
flow regime, due to the different size and shape of the bubbles.
At even higher gas velocities, large unsteady gas volumes tend to accumulate and produce the
churn-turbulent flow regime. The Churn flow can defined as a slug flow characterized by high
level of disorder: the bubbles are, in fact, narrower and distorted, their diameter is smaller than
the channel’s diameter and the liquid-gas interface is more irregular. The liquid slugs between
two consecutive elongated bubbles are characterized by a high concentration of gas. In this
regime, the liquid phase can flow up and down in an oscillatory manner.
In the annular flow, the gas phase flows along the channel axis, while the liquid flows in the same
direction as a liquid film attached to the channel walls. In the gas core, some liquid droplets can
be detected, which are originated from the rupture of the wavy gas-liquid interface. At even
higher gas velocities, a disperse pattern can be identified, in which a considerable amount of
liquid bubbles flow in the gas core.

Figure 3: Classification of gas-liquid flows. From [10].

In horizontal ducts, the phases tend to separate due to differences in density: therefore, stratified
flows are very often encountered. In Fig. 3, the flow regimes for a gas-liquid flow in a horizontal
duct are illustrated. In the bubbly flow regime, the dispersed gas bubbles tent to migrate towards
the top of the pipe; when the fluid velocity is risen, the turbulence level increases and causes
bubbles to be more uniformly distributed across the tube. Such behaviour is also observed for
the plug flow regime at low gas flow rates. The plug flow is an intermittent regime, since liquid
plugs, free of entrained gas, are separated by zones of elongated gas bubbles. In the stratified

1In a multi-phase flow, the superficial velocity corresponds to the velocity that the fluid would have if it were the
only one flowing in a given cross sectional area.
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2 Characterization of multi-phase flows 7

flow regime, a clear separation of the two phases can be observed, with the liquid flowing along
the lower surface. This flow regime occurs at low liquid and gas velocities. When the gas veloc-
ity is increased, the smooth interface between the two phases becomes wrinkled and, therefore,
the stratified wavy sub-regime can be identified. The amplitude of the waves depends on the
relative velocity between the phases and the properties of the fluid such as density and surface
tension [10]. When the gas velocity is further risen, the wave amplitude increases and waves can
touch the top of the tube: when this occurs, the slug flow regime is established. The liquid slugs
between the air bubbles can contain small bubbles. With respect to the plug flow, this regime
is more chaotic and the interface between the liquid slugs and the gas bubbles is not so sharp.
Also the slug flow can be referred as an intermittent flow.
At higher gas flow rates, a transition to the annular flow regime takes place. In this case, a
liquid film is formed on the pipe wall, somewhat similar to that observed in vertical co-current
flow, with the exception that the film at the bottom may be much thicker than that at the top.
In analogy to the vertical pipe, the interface may be wavy and dispersed liquid droplets can be
detected in the gas core. At even higher gas flow rates, a disperse flow regime is subsequently
formed.

(a) (b)

Figure 4: (a) Flow pattern map obtained by Hewitt and Roberts for two-phase co-current up-
wards flow in a vertical tube. (b) Flow pattern map obtained by Taitel and Dukler for horizontal
co-current flows.

The common practice in representing flow-pattern data is to plot the data as a two-dimensional
flow-pattern map2. Many flow pattern maps have been developed for gas-liquid flow in horizon-
tal and vertical tubes. For vertical tubes with upward flow, the most-used flow pattern map is
that of Hewitt and Roberts3, illustrated in Fig. 4(a), and developed for air-water flows. For hori-

2For further information, please refer to [3]
3In Fig. 4(a), ji represents the volumetric flux for the i-th phase, defined as:

ji =
Gi

ρi
=

ṁi

Aρi

[
m3

m2 · s

]
(1)
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8 2 Characterization of multi-phase flows

zontal and near horizontal tubes, a well known flow map is that proposed by Taitel and Dukler4,
as illustrated in Fig. 4(b).

Figure 5: Effect of an increased air input fraction on a three-phase flow, Jo = 0.46m/s and Jw =
0.32m/s. Photographies taken by the research team of Prof. Sotgia (Politecnico di Milano).

In many engineering applications, three-phases flows are also encountered. As an example, we
can mention the oil transportation in pipelines: in these cases, besides the common practice of
adding some water in order to reduce the pressure drop, an unwanted evaporation of the lighter
hydrocarbons can occur, thus producing a gaseous phase in the pipeline. It is obvious that the
presence of the third phase increases the complexity of the flow pattern. As quoted in [7], a
possible way to study this kind of multi-phase flow is to investigate the influence of a third
phase (air) on liquid-liquid two phase flow. In some cases the three-phase flow can be described
as a liquid-liquid core annular or liquid-liquid stratified flow on which elongated droplets are
present. In other conditions the three-phase flow patterns differs completely from the liquid-
liquid one.
Figure 5 shows the experimental visualizations of a three-phases oil-water-gas flow with the
increase of the gas superficial velocity5. It can be seen that, at low gas input fraction, the three-
phase flow appears as a modification of the reference two-phase one. By increasing the gas flux,
some elongated gas bubbles appear in the upper part of the tube, which gradually increase in
size. At the same time, the interface between oil and water starts to wrinkle. In the limiting

being Gi is the mass flux for the i-th phase
[
kg/(m2 · s)

]
.

4Without going into details, the dimensionless parameters employed in the Teitel-Dukler map are the following:

X2 =
(dp/dz)SL

(dp/dz)SG
Martinelli parameter

T =

√
|(dp/dz)SL|

(ρL − ρG)g cos θ
dispersed bubble flow parameter

F =

√
ρG

ρL − ρG

uSG√
Dg cos θ

modified Froude number

K = F

√
DuSL

νL
wavy flow parameter

with: SL superficial liquid, SG superficial gas, D inner diameter of the tube, θ inclination angle of the pipe.
5Jo: superficial velocity of the oil phase, Jw superficial velocity of the water phase, Jg superficial velocity of the

gas phase.
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3 Numerical modeling of multi-phase flows 9

case, if the gas superficial velocity were further increased, then the oil core would break into a
kind of core of dispersed drops.

The complexity of the motion of a dispersed system is connected to several phenomena which
can occur, as the the change in shape or diameter of the bubbles, coalescence, dispersion and
breakup, collisions between particles and collisions of the particle with the wall. Moreover,
heat and mass transfers across the phases can take place, just like the establishment of turbulent
phenomena.

3 Numerical modeling of multi-phase flows

In multi-phase flows, the presence of interfacial surfaces introduces great difficulties in formu-
lating the problem. From a mathematical point of view, a multiphase flow can be regarded as
a field subdivided into single-phase regions with moving boundaries separating the constituent
phases. The differential balances are valid for each sub-region. From the point of view of
physics, the difficulties encountered in deriving the constitutive equations arise from the pres-
ence of the interfaces, and can be basically ascribable to three aspects. The interfaces are, in fact,
deformable and their motions are unknown: this fact causes complicated coupling between the
field equations of each phase and the interfacial conditions. Moreover, significant discontinu-
ities of properties at interface may occur, which introduce huge local jumps in various variables
in space and time. In addition, fluctuations of the field variables may exist, due to turbulence
and to the motions of the interfaces6.
In theory, it is possible to formulate a two-phase flow problem in terms of the local instant
variables (the so called local instant formulation)7, which is equivalent to a Direct Numerical
Simulation (DNS). However, the microscopic motions and thermal characteristics of the indi-
vidual constituents are, in general, complex and difficult to recover (there is an uncertainty in
finding the exact locations of the constituents at a specific time). Furthermore, for most practical
purposes, the exact prediction of the evolutionary behaviour of a system is not necessary. There-
fore, in the derivation of the effective conservation equations, it is customary to apply some sort
of averaging process8. By proper averaging, the mean values of fluid motions and properties
can be obtained, which effectively eliminate the local instant fluctuations: in this way, the pre-
dictions are restricted to macroscopic phenomena. The averaging procedure can be considered
as low-pass filtering, excluding unwanted high frequency signals from local instant fluctuations
[5].
Generally, averaging may be performed in time, space, over an ensemble or in some combina-
tion of these. With reference to an instantaneous field φ(x, y, z, t), the aforementioned averaging
approaches can be defined as:

• Time average

φ̄ = lim
T→∞

1
T

∫
φ(x, y, z, t)dt φ̄ = φ̄(x, y, z) (2)

6It is worth noting that, even multiphase flows that are not turbulent in the strictest sense will exhibit variations
in the velocities due the flows around particles. When multi-phase flows become turbulent, they will also exhibit
conventional Reynolds stresses.

7The local instant formulation is important for several problems, i.e., bubble’s dynamics, growth or collapse of a
single bubble or a droplet, and ice formation and melting.

8It is worth noting that even in single-phase turbulent flow without moving interfaces it is not possible to obtain
exact solutions expressing local instant fluctuations.
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10 3 Numerical modeling of multi-phase flows

• Space average

〈φ〉V = lim
V→∞

1
V

∫
φ(x, y, z, t)dt 〈φ〉V = 〈φ〉 (t) (3)

• Ensemble average

〈φ〉E = lim
N→∞

1
N

N∑
n=1

φn(x, y, z, t)dt 〈φ〉E = 〈φ〉 (x, y, z, t) (4)

The time averaging is particularly useful for a turbulent two-phase flow or for a dispersed two-
phase flow, since the transport processes are highly dependent on the local fluctuations of vari-
ables about the mean.
As it can be appreciated from Eq.(4), the ensemble averaging is is defined by an arithmetic mean
among a set of N similar samples or systems.

The solution of a multi-phase flow field can be performed by following two different approaches,
that is the two-fluid model and the mixture model. The two-fluid model is formulated by con-
sidering each phase separately: two sets of conservation equations are solved and then coupled
through appropriate conditions at the interface. Two-fluid modeling proceeds by averaging the
local instantaneous conservation equations for mass, momentum and energy over each phase.
On the other hand, the mixture model considers the mixture as a single fluid with variable prop-
erties. The model is expressed in terms of three-mixture conservation equations with one addi-
tional diffusion (continuity) equation, which takes account of the concentration changes9.
Liquid-particle flows can generally be viewed as a “mixed flow” since the densities between the
liquid and solid particles are not rather dissimilar: in this way, the multi-phase problem can be
treated as a single-fluid formulation (mixture model).
On the contrary, in many multi-phase problems associated with gas-particle flows, the two-fluid
formulation is adopted: the disperse phase can be handled by applying either the Eulerian or La-
grangian strategy, while the continuous phase is solved via the Eulerian approach. For bubbly
flows, the two-fluid is invariably employed due to the complex mechanistic behaviours (col-
lision and merging of adjacent bubbles, shearing of the bubbles by the turbulent eddies, and
evaporation/condensation phenomena).
As pointed out in [10], the ability of a two-fluid model to predict a multiphase flow depends on
the goodness of the closure relationships formulated for the various inter-phase interaction prop-
erties, such as the interfacial mass, momentum and energy exchanges. In fact, at the interface,
a particular form of the balance equation should be used, in order to account for the the sharp
changes (or discontinuities) in various variables. For this purpose, the so-called jump conditions
have been developed10, which specify the exchanges of mass, momentum, and energy through
the interface.
In Section 4, the constitutive equations for the two-fluid model are introduced, while the mixture
model is described in Section 5.

9As it will be seen, the further equation is formulated for the volume-average phase indicator function.
10The derivation of the jump conditions is omitted in these notes.
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4 Two-fluid model 11

4 Two-fluid model

The two-fluid model allows, for each point in the space, the coexistence of both phases through
two separate velocity fields and a scalar variable, accounting for the volume fraction occupied
by the reference phase. As already explained, in view of the difficulty in handling the instanta-
neous local values of flow variables, an averaging process is applied to the local instantaneous
conservation equations for mass, momentum and energy over each phase, in order to trace the
macroscopic phenomena of the fluid field.
In this way, a representative element of volume dV is chosen, which is composed by a mixture
of phases: the sub-volume occupied by the k-phase can be indicated as dV k. Afterwards, the
microscopic quantities are first averaged on the representative volume dV , and then time aver-
aged.

4.1 Conservation of Mass

In a multi-phase flow, the local instantaneous equation for the conservation of mass of the k-th
phase can be formulated by taking into account the corresponding equation for a single-phase
flow:

∂ρk

∂t
+∇ · (ρkUk) = 0 (5)

Moreover, to distinguish the different phases that are present within the fluid flow, a phase
indicator function χk(x, y, z, t) can be introduced, defined as:

χk(x, y, z, t) =

{
1, if (x, y, z) is in k-th phase at time t,
0, otherwise

(6)

and

∇χk = nkδ(x− xint, t) (7)

As it can be seen,∇χk is a generalized function which behaves like a Dirac δ function. A gener-
alized function allows to express in a mathematically-corrected form some idealized concepts,
as the density of a point or the intensity of an instantaneous source. This reflects the fact that,
in reality, a physical quantity cannot be measured at a point but only its mean values can be
measured, over sufficiently small neighbourhoods of the given point.
From Eq.(7) it follows that both the partial derivatives of the phase indicator function vanish
away from the interface (i.e.,∇χk 6= 0 only at the interface).
The phase indicator function owns the following properties:

M∑
k=1

χk = 1 (8)

being M the number of phases of the flow, and:

Dχk

Dt
=
∂χk

∂t
+ Uint · ∇χk = 0 (9)

where Uint is the velocity of the interface. If a inter-phase mass transfer occurs across the
interface, the motion of the interface is provided not only by convection but also by the amount
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12 4.1 Conservation of Mass

of mass being transferred between the fields.
The phase indicator function is also useful for defining the volume dV k of the representative
element of volume occupied by the k-phase:

dV k =
∫
dV
χkdV (10)

and, then, the integral of a function f over dV k:∫
dV k

fdV k =
∫
dV
fχkdV (11)

As it will be seen later, the above properties are useful for defining two average operator, a
volume average operator:

〈f〉 =
1
dV

∫
dV
fχkdV (12)

and a mass average operator:

f =

∫
dV ρfχ

kdV∫
dV ρχ

kdV
=

1
〈ρ〉 dV

∫
dV
ρfχkdV (13)

By multiplying Eq.(5) by χk it results:

χk
∂ρk

∂t
+ χk∇ · (ρkUk) = 0 (14)

and then, by considering Eq.(9)11:

∂(χkρk)
∂t

+∇ · (χkρkUk) = ρk
(
Uk −Uint

)
· ∇χk (15)

The averaged form of the conservation of mass can be obtained by applying an averaging pro-
cess12 to Eq.(15):〈

∂(χkρk)
∂t

〉
+
〈
∇ · (χkρkUk)

〉
=
〈
ρk
(
Uk −Uint

)
· ∇χk

〉
⇒

∂
〈
χkρk

〉
∂t

+∇ ·
〈
χkρkUk

〉
=
〈
ρk
(
Uk −Uint

)
· ∇χk

〉
︸ ︷︷ ︸

Γk

(16)

The term on the right-hand side of Eq.(16), Γk, represents the interfacial mass source, corre-
sponding to the mass transfer toward the k phase at the interface. It is outstanding that this term
must be considered only in the event of mass transfer between the phases.
Since no storage or accumulation is realized at the interface, it must result:

M∑
k=1

Γk = 0 (17)

11Some simple mathematical steps are omitted.
12Either the volume averaging or ensemble averaging could be employed to formulate the averaged conservation

equations, since both of them result essentially in the same form of equations. Therefore, the generic averaging
process will be denoted as 〈·〉.
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4.2 Conservation of Momentum 13

Equation (17) expresses the conservation of mass at the interfaces.

Equation 16 was obtained by assuming the averaging process satisfies the following rules:

〈〈a〉〉 = 〈a〉
〈a+ b〉 = 〈a〉+ 〈b〉
〈〈a〉 b〉 = 〈a〉 〈b〉〈
∂a

∂t

〉
=
∂ 〈a〉
∂t〈

∂a

∂xj

〉
=
∂ 〈a〉
∂xj

= ∇〈a〉

(18)

4.2 Conservation of Momentum

Also the local instantaneous equation for the conservation of momentum of the k-th phase can
be formulated by taking into account the corresponding equation for a single-phase flow:

ρk
∂Uk

∂t
+ ρkUk · ∇Uk = −∇pk +∇ · τk +

∑
Fk, body forces (19)

where τk denotes the extra stresses tensor. Examples of body forces are provided by gravity and
electromagnetical forces. The body force due to gravity is the most common one and, therefore,
the last term of Eq.(19) can be formulated as:

Fk, body forces = ρkg (20)

In a way analogous to the derivation of the averaged equation for the conservation of mass, the
averaged equation governing the conservation of momentum can be obtained:

∂
〈
χkρkUk

〉
∂t

+∇ ·
〈
χkρkUk ⊗Uk

〉
= −∇

〈
χkpk

〉
+∇ ·

〈
χkτk

〉
+
〈
χk
〉〈∑

Fk, body forces
〉

+
〈
ρkUk

(
Uk −Uint

)
· ∇χk

〉
︸ ︷︷ ︸

Γk

+
〈
pk
〉〈
∇χk

〉
−
〈
τk · ∇χk

〉
︸ ︷︷ ︸

Ωk

(21)

The term ∇ ·
〈
χkτk

〉
comprises the stress tensor13, while Ωk accounts for the interfacial mo-

mentum source. In particular, Γk =
〈
ρkUk

(
Uk −Uint

)
· ∇χk

〉
represents the interfacial mo-

mentum due to mass exchange across interface, while the quantity
〈
ρk
〉 〈
∇χk

〉
−
〈
τk · ∇χk

〉
stands for the interfacial force density. From a physical consideration, the interfacial force den-
sity contains forces acting on the dispersed phase due to viscous drag, wake and boundary-layer
formations, and the unbalanced pressure distributions leading to the well-known effects of added
or virtual mass, lift and Bassett history contribution14.
The average interfacial momentum balance constraint gives:

M∑
k=1

Ωk ≡ Fσ (22)

13In the event of a turbulent flow, the turbulent component of the stresses is included in τk.
14All these forces will be described later.
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14 4.3 Conservation of Energy

where Fσ is the interfacial momentum source, which is the contribution to the total force on the
mixture given by the surface tension at the interface.

4.3 Conservation of Energy

Among the many different forms governing the conservation of energy, the total enthalpy equa-
tion represents a convenient form that is most frequently employed in multi-phase flow investi-
gations. The local instantaneous equation for the k-th phase can be formulated as:

ρk
∂Hk

∂t
+ ρkUk · ∇Hk = −∂p

k

∂t
−∇ · qk +

∑
Fk, body forces ·Uk + Φk

H (23)

where Φk
H = ∇ · (Uk · τk).

The average form of the energy equation is the following:

∂
〈
χkρkHk

〉
∂t

+∇ ·
〈
χkρkUkHk

〉
= −

∂
〈
χkpk

〉
∂t

−∇ ·
〈
χkqk

〉
+
〈
χk
〉〈∑

Fk, body forces ·Uk
〉

+
〈

Φ
′k
H

〉
+
〈
ρkHk

(
Uk −Uint

)
· ∇χk

〉
+
〈
qk∇χk

〉
+
〈
pk
〉〈∂χk

∂t

〉
+
〈
Φextra

〉
︸ ︷︷ ︸

Πk
H

(24)

The terms
〈

Φ
′k
H

〉
and

〈
Φextra

〉
are the viscous contributions, defined as:

〈
Φ

′k
H

〉
= ∇ ·

〈
χkUk · τk

〉
(25)〈

Φextra
〉

= −
〈
Uk · τk · ∇χk

〉
(26)

The term Πk
H corresponds to the interfacial energy transfer. The quantity

〈
ρkHk

(
Uk −Uint

)
· ∇χk

〉
represents the interfacial energy due to mass exchange across the interface,

〈
qk∇χk

〉
charac-

terizes the flux of heat being transferred into the k-th phase from the other phases normal to the
interface,

〈
ρk
〉 〈∂χk

∂t

〉
depicts the interfacial work due to the pressure, while

〈
Φextra

〉
the extra

stresses acting on the interface.
The interfacial energy balance constraint for the total enthalpy gives:

M∑
k=1

Πk
H ≡ ς (27)

where ς is the interfacial energy source, produced by the work done by the surface tension at the
interface:

ς = Fσ · U int (28)

being U int the interfacial velocity.
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4.4 Effective Conservation Equations 15

4.4 Effective Conservation Equations

The specific forms of the averaged conservation equations illustrated so far involve averages
of products of local instantaneous dependent variables (i.e.,

〈
χkρk

〉
) and, therefore, can not be

solved directly. One possible approach to reduce the averages of products to products of av-
erages is to consider the separation of the mean flow from the fluctuating quantities. This is
analogous to further averaging the governing equations in time in order to suppress the fluctuat-
ing fields15.
In a multi-phase flow analysis, the Favre-averaging approach is usually employed, and two
types of averaged variables can be used. The phase-weighted average for the variable φ can be
defined by:

〈φ〉 =
〈χkφ〉
〈χk〉

(29)

while the mass-weighted average of the variable ψ is the following:

〈ψ〉 =
〈ρkφ〉
〈ρk〉

(30)

The instantaneous volume-averaged or ensemble-averaged variables of φ and ψ can be written
as:

〈φ〉 = 〈φ〉+ φ′′ (31a)

〈ψ〉 = 〈ψ〉+ ψ′′ (31b)

where φ′′ and ψ′′ are the superimposed fluctuations. By multiplying Eq.(31a) and (31b) by
〈
χk
〉

and
〈
ρk
〉
, respectively, it is fair to write:〈
χkφ

〉
=
〈
χk
〉
〈φ〉+

〈
χk
〉
φ′′ (32a)〈

ρkψ
〉

=
〈
ρk
〉
〈ψ〉+

〈
ρk
〉
ψ′′ (32b)

In this way, the average of the product of instantaneous local quantities,
〈
χkφ

〉
, has been trans-

formed into the sum of a product of two average quantities,
〈
χk
〉
〈φ〉, and a product of an

average and a fluctuating quantity
〈
χk
〉
φ′′. In analogy with what was seen for single-phase

turbulent flows, in order to free from the fluctuating quantity, a time average16 can be performed
and, therefore, the above equations can be reduced to:

〈χkφ〉 = 〈χk〉 〈φ〉+ 〈χk〉φ′′ (33a)

〈ρkψ〉 = 〈ρk〉 〈ψ〉+ 〈ρk〉ψ′′ (33b)

Now, on the basis of the definitions of the phase-weighted and mass-weighted averages, it fol-
lows that:

〈χk〉φ′′ = 0 (34a)

〈ρk〉ψ′′ = 0 (34b)

15The necessity of time-averaging the averaged conservation equations is similar to that for turbulent single-phase
flows.

16It is well known that the time-average of the fluctuating components, ψ′′, is zero.
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16 4.4 Effective Conservation Equations

and hence:

〈χk〉φ = 〈χk〉 〈φ〉 (35a)

〈ρk〉φ = 〈ρk〉 〈φ〉 (35b)

Equation (35) provides the relations for transforming an average of products into a product of
averages.
In the event where the governing equations are first volume-averaged and then time-averaged,
suitable forms of conservation equations via the phase-weighted and mass-weighted averages
can be formulated. In this case, a new useful quantity can be introduced, that is the local volume
fraction (or local concentration):

αk =
Vk
V

(36)

αk can be regarded as the ratio of the fractional volume V k of the k-th phase in an arbitrary
small region over the total volume V of the region in question within the two-phase flows. It
also corresponds to the volume-averaged of the phase indicator function, that is, αk =

〈
χk
〉
.

In this way, dropping the bars and parentheses which by default denote the Favre-averaging and
volume-averaging processes, the effective conservation equations written in terms of the local
volume fraction and products of averages are the following:

Conservation of Mass:

∂(αkρk)
∂t

+∇ · (αkρkUk) = Γ
′k (37)

Conservation of Momentum17:

∂(αkρkUk)
∂t

+∇ · (αkρkUk ⊗Uk) =− αk∇pk − pk∇αk +∇ · (αkτk)−∇ · (αkτk′′
)

+ αk
∑

Fk, body forces + Ω
′k

(38)

Conservation of Energy:

∂(αkρkHk)
∂t

+∇ · (αkρkUkHk) =pk
∂αk

∂t
+ αk

∂pk

∂t
−∇ · (αkqk)−∇ · (αkqk′′

H )

+ αk
∑

Fk, body forces ·Uk + Φ“k
H + Π

′k
H

(39)

where the mean total enthalpy is given by:

Hk = hk +
1
2
UkUk +

1
2
U“kU“k (40)

In the above equations, the term Φ“k
H derives from the extra stresses, while Γ

′k, Ω
′k and Π

′k
H are

the interfacial terms generated by the Favre-averaging of the volume-average terms, Γk, Ωk and
Πk
H . In CFD, the interfacial terms Γ

′k, Ω
′k and Π

′k
H can be linearized for numerical treatment.

It is worthwhile noting that, if ensemble averaging is performed on the governing equations,
and fluctuating quantities are subsequently introduced into the equations, the final forms of the
governing equations do not differ from those of the twice-averaged conservation equations [10].

17αk∇pk + pk∇αk = ∇(αkpk)
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4.4.1 Comments on the governing equations

The key feature of the two-fluid model is that it can take into account the dynamic and non-
equilibrium interactions between phases, since in its formulation two independent velocity fields
as well as the two energy equations are allowed. However, in the case of strong coupling be-
tween the phases (e.g., the responses of phases are simultaneous such that they be considered
close to mechanical and thermal equilibrium), the two-fluid model brings into the system un-
necessary complications for practical applications.

The governing equations for multi-phase flows are “very much alike” to their single-phase coun-
terparts, except for the local volume fraction and the additional source terms accounting for the
inter-phase interactions.

The energy flux qk resulting in the total enthalpy energy equation can normally be formulated
by applying Fourier’s law of heat conduction: qk = −λk∇T k.

Two additional turbulent flux terms, the Reynolds stress αkτk
′′

and the Reynolds flux qk
′′
H ,

results in Eq.38 and 39, which can be taken to be equivalent to the turbulent flux terms in single-
phase turbulence problems. For closing the problem, a strategy similar to that already discussed
for single-phase flows can be adopted.
Of course, in the absence of these terms, equations reduce to the description of a laminar fluid.

By examining the governing equations it is outstanding that, in the case of a two-phase flow,
there are 16 unknowns, 8 for each phase (uk, vk, wk, αk, ρk, Hk, T k and pk). Under the
hypotheses that the Reynolds stress and flux, as well as the interfacial exchange terms can be
determined, Eq. 37, 38 and 39 provide a set of five equations for the computation of αk, uk,
vk, wk and Hk, respectively. Moreover, for the evaluation of ρk the algebraic equation of
state, ρk = ρk(T k, pk), can be introduced, while the constitutive equation for the total enthalpy,
Hk = Hk(T k, pk), can be employed for computing T k. A further condition is provided by the
algebraic constraint for the local volume fraction, that is:

M∑
k=1

αk = 1 (41)

All the above cited equations form a set of 15 equations to close the two-fluid model. The re-
maining unknown, pk, is usually computed by setting algebraic constraints on the pressure. As
an example, if the difference between the velocities of the disperse and continuous phase (also
referred to as the slip velocity) is small and no appreciable dispersed phase expansion/contraction
occurs, one can assume that all phases share the same pressure field, that is pk = p.

number Equation Solved variables
6 Momentum U1, V 1,W 1, U2, V 2,W 2

2 Continuity α1, ρ2

2 Energy H1, H2

1
∑
αk = 1 α2

2 Eq. of state ρ1, p1

2 Constitutive Eq. for H T 1, T 2

1 Constraint on p p2

Table 1: Equations employed for the computation of the unknowns for a two-phase flow.

A summary of the equations necessary for the computation of the unknowns for a two-phase
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18 5 Mixture model

fluid is reported in Table 1.

As already mentioned, the success of a two-fluid model is strictly linked to the formulation of
suitable constitutive equations for the interphase exchange terms, that is Γ

′k, Ω
′k and Π

′k
H , which

is not a trivial task. In fact, it is impossible to find a set of equations universally valid for every
flow pattern: therefore, some heuristic models will be employed for specific flow patterns.

5 Mixture model

As already explained, the mixture model is formulated by considering the mixture as a single
fluid with variable properties. In other words, the mixture models englobes the conservation
equations of the different phases into a single equation valid for the mixture. In this way, dy-
namic interaction of the phases does not occur since the interfacial exchange terms are omitted
from the equations.
As pointed out in [5], the mixture model requires some drastic constitutive assumptions causing
some of the important characteristics of two-phase flow to be lost. However, it is just its sim-
plicity that makes it very useful in many engineering applications: in fact, information required
is often the response of the total mixture and not of each constituent phase.
The mixture properties, e.g. density, viscosity and thermal conductivity, are evaluated from the
corresponding properties of the two phases as:

ρm =
2∑

k=1

αkρk, µm =
2∑

k=1

αkµk, λm =
2∑

k=1

αkλk (42)

Moreover, the mixture velocity and enthalpy are treated as a combination of phase-weighted and
mass-weighted variables:

Um =

2∑
k=1

αkρkUk

2∑
k=1

αkρk

=

2∑
k=1

αkρkUk

ρm
, Hm =

2∑
k=1

αkρkHk

2∑
k=1

αkρk

=

2∑
k=1

αkρkHk

ρm
, (43)

The conservation equations for the mixture model of a Newtonian fluid are effectively solved
according to:
Conservation of Mass:

∂ρm

∂t
+∇ · (ρmUm) = 0 (44)

Conservation of Momentum:

∂(ρmUm)
∂t

+∇ · (ρmUm ⊗Um) =−∇p+∇ ·
[
µm(∇Um) + (∇Um)− 2

3
µm∇ ·Umδ

]
−∇ · τm′′

+ ρmg + Fσ

−∇ ·
2∑

k=1

(αkρkUdr,k ⊗Udr,k)
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6 Generic form of the governing equation for the mixture and two-fluid models 19

(45)

Conservation of Energy:

∂(ρmHm)
∂t

+∇ · (ρmUmHm) =∇ · (λm ∇Tm)−∇ · qm′′
H + ς

−∇ ·
2∑

k=1

(αkρk Udr,kHk)
(46)

In defining the above equations, both phases have been assumed to share the same pressure field:
for this reason, the pressure in Eq.(45) is not the phase pressure.
The terms αkτk

′′
and qk

′′
H are connected to the turbulent nature of the flow, as already pointed

out for the effective constitutive equations of the two-fluid model.
The quantity Udr,k represents the drift velocity vector of the k-th phase, defined as the velocity
of the disperse phase relative to that of the volume centre of the mixture, which can be expressed
by Udr,k = Uk−Um. As it can be seen, since the volume fraction αk is present in Eq. (45) and
(46), the model allows the phases to move at different velocities: in order to evaluate the phase
velocities, an algebraic slip model is formulated.
The volume fraction of the the continuous phase can be computed by solving the individual
phase equation (37); afterwards, the volume fraction of the dispersed phase can be evaluated
from the

∑2
k=1 α

k = 1.
In the absence of surface tension effects, the interfacial momentum source term Fσ and the
interface energy source term ς can be neglected. In these circumstances, the governing equations
are essentially the single-phase turbulent flow equations if the turbulent fluxes are retained or
the single-phase laminar flow equations if the turbulent fluxes are ignored.

In the event where further simplification is introduced by assuming that the phase velocities are
equivalent to each other, the mixture model reduces to the homogeneous model. This model is
commonly adopted in most volume of fluid (VOF) computations (i.e., for free surface flows).

6 Generic form of the governing equation for the mixture and two-
fluid models

By employing the general variable φm for the mixture model and φk for the two-fluid model,
the generic forms of the governing equations can be written as:

Mixture model

∂(ρmφm)
∂t

+∇ · (ρmUm ⊗ φm) = ∇ · [Γφm(∇Um)] + Sφm (47)

Two-fluid model

∂(αkρkφk)
∂t

+∇ · (αkρkUk ⊗ φk) = ∇ ·
[
αkΓkφk(∇Uk)

]
+ Skφk (48)
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20 7 Multi-phase models for gas-particle flows

7 Multi-phase models for gas-particle flows

In this Section, the techniques required for solving the motion of individual particles, moving
through a gas phase, will be illustrated. Such systems are generally known as gas-particle flows.
Gas-particle flows can be sub-divided into two sub-classes of flows, namely gas-solid and gas-
droplet flows. The main difference between these two flows is that mass transfer does not occur
in the former but occurs in the latter. An example of gas-solid flow is provided by cyclone
separators while, regarding gas-droplet flows, we can cite the spray combustion of liquid fuel
droplets within chemical combustors.
For the characterization of gas-particle flows, the concept of mass loading ratio is generally
used:

ML =
mp

mg
(49)

where mp and mg are the masses of particle and gas phases, respectively. When the ML ratio
is small, the particles can be treated as passive contaminants.

7.1 Turbulent effects

Most gas-particle flows that are encountered in engineering systems are turbulent in nature.
The interaction of particles with the turbulence of the gas phase is an important for gas-particle
flows, since it leads to an apparently random spread of the particles throughout the flow field.
The interaction between turbulent eddies and particulates is commonly referred to as turbulent
dispersion because of the observed dispersive effect on particulates.
The effect of particle on the turbulence of the continuous phase is strictly linked to their size. In
fact, while large particles tend to enhance turbulence due to the production of turbulent wakes,
small particles are known to suppress the turbulence in the gas phase.
When small particulate is introduced in a turbulent flow, it will remain trapped inside an eddy
for a certain time before the influence of another eddy. Since it is fair to assume that the eddy
properties remain constant or uniform during the entire eddy lifetime18, it is therefore common
to suppose that a trapped particulate will experience a uniform velocity field during its residence
time within an eddy.
The presence of particles can induce significant effects on the turbulence of the continuous
phase. If the particle diameter is much smaller than the Kolmogorov scale, then turbulence
modification is expected to be negligible, on condition that the mass loading ratio ML is suf-
ficiently small: in fact, when the ML ratio is increased, global turbulence modifications may
be induced. On the other hand, if the particle diameter is larger than the Kolmogorov scale, the
particle affects the energy distribution of the surrounding fluid and, for sufficiently large ML
ratio, the relative motion between particles and the carrier fluid leads to an extra dissipation of
the turbulence energy.
Beyond the size of the particulate, there are other factors contributing to the turbulent disper-
sion, as the relative density between the particulate and the fluid, the fluctuating fluid velocity
surrounding the particulate, the particulate relaxation time, the eddy lifetime and particulate

18The eddy lifetime is the maximum time for which a particulate can remain under the influence of a particular
eddy.
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Lagrangian time scale19, and the cross-trajectory effect phenomenon20.
Regarding the first factor, when the particulate density is much greater than that of the sur-
rounding fluid, the inertia force at the fluid-particulate interface will damp the fluctuations in its
velocity compared to the fluctuations of the surrounding fluid. This means that the fluctuating
components of velocity for the particulate will be lower that those of the fluid. This reduction
in the fluctuating velocity is known as the inertia effect, and it is characterized by a time scale
called the particulate relaxation time.
The particulate relaxation time τp corresponds to the rate of response of particulate acceleration
to the relative velocity between the particulate and the surrounding fluid, and can be expressed
as:

τp =
4
3
d2
p

µg
ρp

CD

1
Rep

, Rep =
ρg |Ug −Up| dp

µg︸ ︷︷ ︸
particulate Reynolds number

(50)

where the particle Reynolds number Rep is linked to the structure of the flow around the particle.
In fact, for large Rep, particles tend to generate turbulent wakes which will subsequently modify
the turbulence of the carrier fluid. To quantify the nature of the kinetic equilibrium between the
particles and the surrounding fluid, the Stokes number can be introduced:

St =
τp
τf

(51)

where τf is the fluid integral scale. When St � 1, the particles can be considered to be equi-
librium with the carrier fluid while, for St � 1, the inertia effect of particles becomes more
prevalent and a significant momentum transfer from the particle to the fluid occurs.

7.2 Coupling between the phases

In a multi-phase flow, while the continuous flow always affects the motion of the disperse phase,
the influence of the particulates of the carrier medium depends on the concentration of the
disperse phase. In this sense, three forms of phase coupling can be recognized:

• One-way coupling. The fluid phase influences the disperse phase via aerodynamic drag
and turbulence transfer, but the particulate phase does not affect the gas phase (i.e., the
particles act as passive contaminants). In this way, the flow field of the continuous phase
can be computed irrespective of the particle trajectories: the fluid velocities hence com-
puted then can be introduced into the equations of motion of the particles, in order to
determine their trajectories. This kind of coupling is an acceptable approximation for
flows with low dispersed phase loadings for which the Stokes number is St� 1.

• Two-way coupling. The inertia effects of particles become important and both the fluid
phase and the disperse phase are influenced each other: the disperse phase reduces mean
momentum and turbulent kinetic energy of the carrier medium. This case is encountered
for large Stokes numbers (St � 1). Two-way coupling requires the inclusion of particle
source terms in the fluid momentum equations (the momentum sources could be due to

19The particulate Lagrangian time scale is roughly the time the particulate maintains its initial velocity before
undergoing a turbulent collision and changing its velocity.

20The particulate does not remain trapped inside an eddy for the entire eddy lifetime but experiences a premature
migration to another eddy. This happens when the minimum crossing time (i.e., the time taken to cross an eddy) is
smaller than the eddy lifetime.
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22 7.3 Eulerian and Lagrangian

turbulent dispersion forces or drag). The particle source terms are generated for each
particle as they are tracked through the flow.

• Four-way coupling. When the particle number density is sufficiently large, also the inter-
actions among the particles are important; for their modeling, the Kinetic Theory of Gas
is employed. The terminology “four-way” comes from the fact that if a particle A influ-
ences a particle B then, for the third law of dynamics, particle B must influence particle
A.

Figure 6: Classification of gas-liquid flows. From [10].

One useful way for determining which kind of coupling should be adopted is the use of the
particle-turbulence modulation map, suggested by Elghobashi and illustrated in Fig.6. The El-
ghobashi’s map reports the particle volume fraction αp21 along the x-axis, and the ratio between
the particle relaxation time and the characteristics time of collisions, τp/τc, along the y-axis.
The dilute regime is defined for τp/τc � 1 while the dense regime is for τp/τc � 1.
For dilute gas-particle flows, the fluid influence is the dominant effect since the time between
two collisions is large enough for the motion of particles to be controlled by the fluid. Hence, a
one-way coupling is sufficient for modeling the multi-phase flow. On the other hand, in dense
gas-particle flows, the motion of particles is controlled by particle-particle collisions and inter-
actions, because they do not have sufficient time to recover their own behaviour between two
collisions. The motion of particles in a fluidized bed is one example of a dense gas-particle
flow.
It is worth noting that no gas-particle flow can be completely dilute or dense, but rather one
regime or the other may be more descriptive of the physical phenomenon in a specific case.

7.3 Eulerian and Lagrangian

As already said, the discrete particulates (small bubbles, particles or drops) co-flowing with a
background fluid may be treated as either discrete or continuous phase. Therefore, two different
approaches can be used for describing the particle phase, that is the Lagrangian and the Eule-
rian approach.

21The particle volume fraction αp corresponds to the ratio of the volume Vp occupied by the particulate phase
over the total volume V of the region of interest.
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In the Lagrangian modality, which is sometimes referred to as non-continuum model, the motion
of individual particles (or of a cloud of them) is tracked throughout the computational domain
and the forces acting on them, which can alter the trajectory, are considered. Particulate trajec-
tory is normally determined by solving the equation describing Newton’s second law of motion
through the instantaneous Eulerian fluid velocity field. In the Lagrangian approach, the refer-
ence frame employed for describing the particles’ motion moves with the particles themselves.
For dilute gas-particle applications, it is also possible to treat the particles as a continuous phase
similar to the gas phase. In the Eulerian approach the reference frame is stationary and the
particles pass through fixed differential control volumes. In this case, the particle motion is
predicted by solving a set of continuum conservation equations which represent both gas and
particle species (two-fluid model). For this reason, this approach is also known as continuum
model.
In both cases, the background fluid is always solved in the Eulerian reference frame: therefore,
it is common to speak of Eulerian-Lagrangian approach and Eulerian-Eulerian approach.
In Section 7.3.1 the Eulerian-Lagrangian approach is introduced, while in Section 7.3.2 the
Eulerian-Eulerian modality is described.

7.3.1 Eulerian-Lagrangian framework

The Eulerian-Lagrangian approach resides in the effective coupling between a Eulerian field
description for the solution of the surrounding fluid, and a Lagrangian scheme for determining
the particulate trajectories within the continuous phase. The reference frame moves with the
particulates, and the instantaneous position of a particle can be obtained as a function of the
previous location and the elapsed time. The Eulerian part of this approach coincides with the
solution of the continuous phase: in this case, the transport equations based on the two-fluid
model can be adopted. The trajectories of the particulates are independently recovered later,
through the use of convenient models.
The effects of inter-phase interactions in the continuous phase transport equations are modeled
by summing the sources and sinks of representative trajectories. In the following Sections,
the governing equations to resolve dilute gas-particle flows will be illustrated. As it can be
appreciated from Fig. 6, the particle volume fraction for dilute gas-particle flows is much lower
than unity, e.g. αp < 10−3, and, therefore, a gas volume fraction close to unity can be assumed.

The trajectory equation The trajectory of a particulate can be derived from the particulate
momentum equation, which, in turn, can be deduced from Newton’s second law of motion as

ρpUp︸ ︷︷ ︸
mp

DUp
ins

Dt
= SV p︸︷︷︸∑

F

(52)

where mp is the particulate mass, ρp the particulate density, Vp the particulate volume and
Up
ins ≡ (upins, v

p
ins, w

p
ins) the instantaneous particulate velocity. Equation (52) is an ordinary

differential equation.
On the left-hand side of Eq.(52), the Lagrangian time derivative is essentially the material
derivative of the particulate velocity, while on the right-hand side the source term SV p rep-
resents the sum of forces acting on the particulate, which can be of four kinds: (i) forces that
act on the particulate due to its motion, (ii) forces that act on the particulate due to the motion
of the surrounding fluid, (iii) forces that act on the particulate irrespective of the fact that it is
moving or is immersed in a flowing fluid and (iv) forces that act on any object immersed in fluid
irrespective of the motion. The forces that can act on the particulate are the following:
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• Drag force. In most practical flows, the drag force is the most important force exerted on
the particulate by the surrounding fluid. The drag force is induced by both the pressure
distribution around the body (form drag) and by the viscous stress (skin friction). For
spherical particles, the drag force can be formulated as:

Fdrag =
π

8
ρgd2

pCD(Ug
ins − Up

ins) |U
g
ins − Up

ins| (53)

where the superscript g refers to the continuous phase.

• Virtual or added mass force. It is originated from the difference in acceleration between
the fluid and the particulate; it becomes dominant when there is a significant difference in
the density of the fluid and the particulate:

FAdded = 0.5 ρgUp
d(Ug

ins − Up
ins)

dt
(54)

• Basset force. It addresses the temporal delay in boundary layer development as the relative
velocity changes with time. It is also known as the history term, and is defined as:

FBasset = 6 d2
p

√
πρgµg

t∫
0

d(Ug
ins − Up

ins)
dt

dt′√
t− t′

(55)

• Magnus force. It arises when a rotating particulate is subjected to a non-rotating fluid,
especially at high Reynolds number: a whirlpool of fluid is created around the particle
and a force perpendicular to the line of motion is established:

FMagnus =
π

8
ρgd3

p ωp eijk n1,j(Ug
ins − Up

ins) (56)

where n1,j is a unit vector in the direction of the angular momentum vector ωp, while eijk
is the order tensor ( eijk = 1 if i, j and k are different and in cyclic order, eijk = −1 if i,
j and k are different and in anti-cyclic order and eijk = 0 if any two indices are the same.

• Lift force. Small particles in a shear field experience a lift force perpendicular to the
direction of flow. The shear lift originates from the inertia effects in the viscous flow
around. The expression for the inertia shear lift was first obtained by Saffman:

FLift = 1.615µ1/2d2
p (Ug

ins − Up
ins)

√
ρgG

µg
(57)

where G is the magnitude of the velocity gradient in a shear flow.

• Body force due to gravity. The gravitational effects can be considered as:

FBody = ρpUpg (58)

• Bouyancy force. It arises from the possible difference in densities between the fluid and
the particulate:

FBuoyancy = −ρgUpg (59)
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• Pressure gradient force. It is the force required to accelerate the fluid which would occupy
the particulate volume if the particulate were absent:

FPressure = −ρgUp
DUg

ins

Dt
(60)

For the special case of dilute flow applications, especially when the particulate characteristic
dimension is smaller than the Kolmogorov’s length scale, the particulate-to-fluid density ratios
are greater than 200 and the turbulent intensities are lower than 20%, the particulate can be
assumed to be spherical in shape. Under these conditions, only the drag, gravity and buoyancy
forces can be considered and, thus, Eq.(52) can be simplified as:

DUp
ins

Dt
=

1
τp

(Ug
ins −Up

ins) +
(

1− ρg

ρp

)
g (61)

where τp is the particle relaxation time.
The trajectory of the particle is recovered through the following relation:

Dx
Dt

= Up
ins (62)

As it results from Eq.(61), for the computation of the instantaneous velocity of the particulate,
Up
ins, the instantaneous velocity of the continuous phase, Ug

ins, is needed for determining the
instantaneous source term. The instantaneous velocity of the gas phase is computed as:

Ug
ins = Ug + U′′g (63)

As it was discussed in the previous Sections, the solution of the Favre-averaged form of the
transport equation for the continuous phase generally yields the mean values, and not the fluc-
tuating ones.
In turbulent flows, if the fluctuating component of the fluid velocity is ignored while solving
Eq.(61), the particulate dispersion due to turbulent velocity fluctuations will be neglected and
only the convection of the particulates due to the mean flow will be taken into account. In this
case, particles with the same physical properties and initial conditions (e.g., introduced in the
same point of the domain) will cover the same trajectories. Such models, known as determinis-
tic models, can only be applied to flows with very low turbulence levels.
For highly turbulent flows, in order to incorporate the dispersive effect of turbulent fluctuations
on the particulate motion, it is necessary to employ stochastic models: in this way, particu-
lates with the same physical properties and initial conditions do not necessary cover the same
trajectory. For models based on the eddy lifetime concept, the eddy-particulate interaction is
accounted by assigning a fluctuating velocity, U

′′g, to a fluid eddy, which is assumed to remain
constant during the lifetime of the eddy. The fluctuating velocity U

′′g of an eddy is randomly
sampled from a Probability Density Function (PDF); the particle turbulent dispersion can be
correlated with the flow turbulent kinetic energy k as it follows:

U
′′g = ζ

√
2
3
k (64)

where ζ is a Gaussian random number. At the end of each time step, a new fluctuating fluid
velocity is sampled from a new PDF.
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By working with small time steps, for which the instantaneous fluid velocity and particle re-
laxation time can be assumed to be constant, Eq.(61) can be analytically integrated in order to
compute the time step velocity of the particulate as:

(Up
ins)

n+1 = (Up
ins)

n
e−∆T/τp +

[
Ug
ins +

(
1− ρg

ρp

)
gτp

](
1− e−∆T/τp

)
(65)

where ∆t is the time step. After having computed the velocity Up
ins, the position of the partic-

ulate can be determined by22:

(xp)n+1 = (xp)n e−∆T/τp + 0.5 ∆T
[
(Up

ins)
n+1 + (Up

ins)
n
]

(66)

In the Lagrangian framework, also heat and mass-transfer processes can be handled, from the
corresponding conservation equations:

mpcp
DTp
Dt

= STp (67)

Dmp

Dt
= Smp (68)

where STp and Smp denote the heat and mass transfer between the particulate and surrounding
fluid, respectively.

Governing equations for the continuous phase In the absence of heat transfer, the averaged
form of the conservation equations for the continuous phase, based on the two-fluid model for a
turbulent flow, are the following:

Conservation of Mass

∂ρg

∂t
+∇ · (ρg Ug) = 0 (69)

Conservation of Momentum

∂ρgUgi
∂t

+
∂

∂xj
(ρgUgj U

g
i ) =

∂

∂xj

(
µg + µgT

) ∂Ugi
∂xi

+ SUg
i

(70)

In the momentum equations, the source or sink terms are given by:

SUg
i

= −∂p
′g

∂xi
+

∂

∂xj

(
µg + µgT

) ∂Ugj
∂xi

+ eSpU if (71)

in which p′g is the modified averaged pressure, defined as:

p′g = pg +
2
3
ρgkg +

2
3
(
µg + µgT

)
∇ ·Ug (72)

22In this case, a second order Crank-Nicolson scheme has been applied.
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while SpU is the average momentum source or sink due to the motion of particles influencing the
surrounding gas in a computational cell and, in the case of two-way coupling between the gas
and particles, is expressed as:

SpU = n

〈
−mp

(
DUp

ins

Dt
− g

)〉
(73)

Up
ins represents the instantaneous velocity of the particle, mp the mass of the particle, n the

mean number of particulates per unit volume, and the parentheses 〈〉 denotes the mean overall
particulate trajectory realizations.
When the particle volume fractions are less than 10−6 (as in the very dilute particle regime) SpU
can be set to zero and, therefore, the problem can be simplified to a one-way coupling.

7.3.2 Eulerian-Eulerian framework

The Eulerian-Eulerian approach solves the disperse phase as an ensemble of individual discrete
phases flowing in the system. The Eulerian reference frame is stationary, and thus the fluid
passes through fixed differential control volumes. The flow field of the continuous phase is
obtained by solving the transport equations in a given coordinate system.
On the basis of the two-fluid model, the transport equations for the conservation of mass and
momentum of the particle phase become:

Conservation of Mass

∂ρbp

∂t
+∇ · (ρbp Up) = 0 (74)

Conservation of Momentum

∂ρbpUp

∂t
+∇ · (ρbpUp ⊗Up) = ∇ · τp

′′
+ FG + FD + FWM (75)

For dilute applications, it is common to take the bulk density ρbp equivalent to αpρp, where αp

is the particle volume fraction.
The three additional source or sink terms in the momentum equation represent the gravity force
FG, the drag force FD and the wall-momentum transfer force FWM , which is due to particle-
wall collision. The gravity force can be expressed as:

FG = ρbpg (76)

while the drag force23:

FD = ρbp
f(Ug −Up)

τp
, τp =

ρpd2
p

18µg
(77)

The factor f appearing in Eq.(77) is a correction coefficient, which depends on the particulate
Reynolds number.

23The drag force is due to the slip velocity between the gas and particle phase.
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8 Interface capturing techniques

The methods for computing free surfaces and fluid interfaces between two immiscible fluids
can be classified into two categories, the surface methods and the volume methods. The working
principles of the two methods are illustrated in Fig. 7.
As explained in [10], the surface methods track the interface explicitly, by marking it with
special marker points (particles) or by attaching it to a mesh surface which is then forced to
move with the interface. In surface methods, the two-fluid approach is employed.
In the case of volume methods, both fluids are treated as single continuum. The fluids on either
side of the interface are marked by either particles of negligible mass or an indicator function
[10]. Marker particles can be spread over all fluid occupied regions and made to move with the
fluid velocity. A cell containing an interface can be easily detected, since it contains markers but
presents at least one neighboring cell with no markers. In order to get a well-defined interface,
the number of particles must be sufficiently high. Therefore, although this method is enough
simple, it suffers from a significant increase in required computer storage and time to move all
the points to new locations [4].
For the methods based on a moving grid, the interface is treated as a sharp boundary whose
motion is followed. On the contrary, for the methods based on fixed grids, the interface is moved
through a fixed (Eulerian) grid. The advantage fixed-grid methods is that they can handle strong
topological deformations of the interface such as merging and fragmentation.

Figure 7: Methods for representing the behaviour of immiscible fluid separated by an interface.
From [10].

8.1 Volume methods

Two approaches valid for fixed-grids are introduced, the Level-set method and the Volume of
fluid method (VOF). The former has the advantage of its simplicity, but it can be not conserva-
tive, especially in the case of coarse grids. On the other hand, the conservation of mass is the
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strong point of the VOF.

8.1.1 Level-set method

In the level-set method, the interface is defined by a level-set function φ, which is null at the
interface, positive on one side and negative on the other. The φ function can be defined as the
signed shortest distance of point x from the interface at time t, that is φ = ±d(x, t). The level-
set function is continuous on the domain and, therefore, can be differentiated everywhere.
Based on the calculated velocity field Um, the front evolves as a solution of a transport equation
for φ:

∂φ

∂t
+ Um · ∇φ = S (78)

which can be alternatively written in a conservative form:

∂φ

∂t
+∇ · (Umφ) = φ∇ ·Um + S (79)

In the above equations, S = ṁ|∇φ| and ṁ is the mass flux of a phase at the interface divided
by its density. S is null in the absence of any mass transfer due to phase change across the
interface.
With the level-set formulation, the generic fluid property b(x, t) (density, viscosity, specific
heat or thermal conductivity) is calculated by interpolating the corresponding values of the two
phases, b1 and b2:

b(x, t) = (1−Hε(φ(x, t)))b1 +Hε(φ(x, t))b2 (80)

in which Hε is the Heaviside function, properly modified thus to be continuous.
As pointed out in [5], during the solution of the transport equation for φ, the level-set function
does not remain a signed distance function at later times, which can lead to interface smearing,
numerical diffusion and difficulties in preserving the mass conservation. Therefore, in order to
fix these problems, some re-initialization techniques are employed: φ is reinitialized regularly
in the vicinity of φ = 0, so that |∇φ| = 1.
For the discretization of the advection term of Eq. (79) a non-diffusive differencing scheme
must be adopted. Moreover, if the mesh is not sufficiently fine, it would be useful to adopt
higher-order schemes so that the sharp shape of the interface is maintained and its smearing
avoided.

8.1.2 Volume of fluid (VOF) model

The volume of fluid (VOF) model is a interface-capturing technique applied to a fixed Eulerian
mesh. In this method, the motion of the interface is not tracked directly, but the volume fraction
of one phase is evolved in time: the interface is then reconstructed according to the values
assumed by the volume fraction itself.
The VOF can be applied to immiscible fluids with clearly defined interface, when the shape
of the interface is of interest. This method is inappropriate if bubbles are small compared to
the control volume (e.g., bubble columns). Moreover, it can not resolve details of the interface
smaller than the mesh size.
In the VOF model, a single set of momentum equations is shared by the fluids (Mixture model
formulation), and the volume fraction of one fluid is tracked throughout the domain.
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The VOF formulation relies on the fact that the different phases are not interpenetrating. The
method assumes that each control volume contains only one phase, or the interface between
phases. For distinguishing the two fluids, a scalar indicator function, F , named Colour function,
is employed. Let us suppose that this function is defined according to the phase i (usually the
liquid phase). Then it can be said that the colour function corresponds to the volume fraction of
the phase i within the volume V. Conventionally, the indicator function is denoted as:

F = lim
V→∞

1
V

∫ ∫ ∫
χk(x, y, z, t) dV =

〈
χk
〉

(81)

From this definition it can be easily deduced that the colour function is defined between zero
and unity. A value of one indicates the presence of the phase i, while a value of zero indicates
that the cell is occupied by the second fluid. If a cell contains the interface, then F assumes a
value intermediate between 0 and 1, which corresponds to the proportion of phase i present in
the control volume. From this, it can be inferred that F is a discontinuous function.
Besides the identification of the cells containing a boundary, the F function can be even used
to define the position of the interface. In fact, the gradient of F can be used to identify the
direction normal to the interface (since F is a step function, spacial care must be exercised in
the definition of its derivatives). When the normal direction is known, then a line cutting the cell
can be traced, which approximates the interface.
Since in the VOF method a Mixture formulation is used, a single set of equations can be written
for the two-phase system. The density and the dynamic viscosity can be calculated through the
indicator function, F :

ρ(F ) = ρlF + ρg(1− F ) (82)

µ(F ) = µlF + µg(1− F ) (83)

To track the evolution of the interface, an advection equation for the volume fraction F need to
be solved24:

∂F

∂t
+∇ · (FU) = 0 (84)

in which U is the velocity of the fluid. Equation (84) says that the volume fraction advects
with the velocity computed in the flow field. It is worth noting that the advection of the volume
fraction corresponds to the computation of a mass flux through a cell face: the shapes of the
interfaces and the advection of the volume fraction should be exactly calculated to conserve the
mass of each phase and to keep a sharp definition of the interfaces.
VOF algorithms consists of three major parts [2]:

• an interface reconstruction method, which provides an explicit description of the interface
in each cell based on void fractions at the current time step;

• an advection algorithm, which calculates the distribution of F at the next time step by
solving an advection equation and using the present reconstructed interface and velocity
field;

• a surface tension model, which takes into account the surface tension effects at the inter-
face.

24This equation is valid under the assumption of incompressible flow.
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The success of a VOF method is strongly connected to the numerical scheme used for the ad-
vection of the F . A first order upwind scheme introduces an artificial diffusion and smears
the interface (the interface is not located in correspondence of only one cell but its extension
increases with time). The numerical diffusion can be overcome by employing higher order
schemes: however, a second order scheme can be unstable and induce unrealistic oscillations of
the interface profiles.
In the years, several techniques have been proposed for reconstructing the interface, which can
be basically grouped into two categories, the piecewise constant approximation and the piece-
wise linear approximation. Belong to the former group, the Simple Line Interface Calculation
(SLIC) algorithm of Noh and Woodward (1976) and the Donor-acceptor method of Hirt and
Nichols (1981) [4]. The piecewise linear approximation group includes the PLIC method of
Youngs (1982), and its improved versions, named FLAIR, LVIRA, FLVIRA. Some of the afore-
mentioned methods are summarized in Fig. 10.

Figure 8: Some methods for interface reconstruction. From [8].

In the SLIC method, the reconstructed interface is constituted by a sequence of line segments
aligned with the grid. The interface can assume different configurations for each sweep direc-
tion (x and y axes).

The Donor-Acceptor Method uses information about F downstream as well as upstream of a
flux boundary. The donor cell is a control volume which provides the fluid, while the accep-
tor cell is the control volume that receives the fluid. Let us consider the case of a uniform 2D
structured grid of size δx and δy. The total flux of fluid and void volume crossing the face of a
computational cell, per unit cross sectional area and in the time δt, is equal to V = Uδt, where
U is the normal velocity at the face. The sign of U determines the donor and acceptor cells: if
U is positive, the donor cell is on the left of the acceptor cell. The amount of F fluxed across
the cell face in one time step is:

δFδy = min [FAD |V | δy + CF, FDδxδy] (85)

CF = max [(1− FAD) |V | δy − (1− FD)δxδy, 0] (86)

In the above equations, D and A represent a donor and an acceptor cell, respectively, while the
subscript AD refers to either A or D, depending on the orientation of the interface relative to
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the direction of flow: the acceptor cell is used when the interface is advected mostly normal to
itself [6].
The min function in Eq. (85) ensures that the amount of fluid transferred to the acceptor cell,
FAD |V | δy+CF , is always lower than the amount of fluid available in the donor cell, FDδxδy.
The term CF represents an additional flux: the max function guarantees that the amount of
void, (1−FAD) |V |, to be fluxed is not higher than that existing in the donor cell, (1−FD)δxδy.
After having determined the amount of F advected, the volume fraction in the donor cell de-
creases by the same amount while that in the acceptor cell increases by the same amount.
In order to clarify the ideas, please refer to Fig. 9, which refers to a case where AD = A (the
donor cell is on the left). In this case, the quantity of fluid which must be transfered from D
to A is higher to that leaving the A cell, FAUδtδy. The extra quantity of fluid to be fluxed to
A corresponds to CF . For the case considered, the void leaving the A cell is higher than the
amount of void transfered from D to A.
In essence, the VOF method by Hirt and Nichols uses first-order upwind and downwind fluxes
combined in such a way as to ensure stability of the numerical calculation and at the same time
as to minimize diffusion [5].

�uid to be transfered from D to A

�uid leaving A, = FAUδtδy

excess �uid to be transferred from D to A, = CF 

Uδt
δx

δy

Fluid phase

Uδt
δx

δy

Void phase

void leaving A, = (1-FA)Uδtδy

maximum void present in D, = (1-FD)δxδy

�uid

Figure 9: Donor-acceptor method for the case AD = A. The donor cell is on the left.

Youngs’ PLIC method uses a more accurate interface reconstruction than that the Hirt-
Nichols’ one, since it fits the interface through oblique lines or piecewise linear segments. In this
case, within each cell the interface can be defined as a straight line expressed by the equation:

nxx+ nyy = β (87)

being ~n = (nx, ny) the normal vector to the interface, and β a constant. Firstly, the normal
vector ~n is computed, usually starting from the gradient of the volume fraction of each control
volume (the interface will be perpendicular to ~n). Then, the correct placement of the interface
line has to be determined, by calculating the value of β: basically, the fraction of the cell area
cut by the linear segment and occupied by the reference phase must equal the volume fraction.
In Fig. 10 the possible polygon areas that can be realized with the PLIC algorithm, within a
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Figure 10: Possible candidates of interface reconstruction with the PLIC algorithm in a struc-
tured rectangular mesh cell. From [10].

rectangular mesh cell, are illustrated.
It is worth noting that, in the PLIC method, the interface is not required to be a continuous chain
of segments. The method of Youngs was shown to be very robust and efficient, but only of
first-order accuracy [2].
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9 Multi-phase modeling in ANSYS CFX

Two distinct multiphase flow models are available in ANSYS CFX, an Eulerian-Eulerian mul-
tiphase model and a Lagrangian Particle Tracking multiphase model.

Two distinct models are available for Eulerian-Eulerian multiphase flow: the homogeneous
model and the inter-fluid transfer or inhomogeneous model. The former is applicable when all
the fluids share the same velocity fields, as well as other fields (e.g., temperature, turbulence...),
the latter should be used when each fluid possesses its own flow field and the fluids interact via
interphase transfer terms. Therefore, one solution field for each separate phase exists.
For the inhomogeneous model, three different sub-models are available, that is the particle
model, the mixture model and the free surface model.
The particle model can be applied when one of the phases is continuous and the other is dis-
persed (e.g., gas bubbles in a liquid, liquid droplets in a gas or in immiscible liquid, solid parti-
cles in a gas or in a liquid). In this model, the particles or droplets are assumed to be spherical.
The mixture model treats both phases symmetrically and requires both phases to be continuous.
It can be used to model, for example, Churn flows.
The free surface model is applicable to free surface flows. In this case, in presence of entrain-
ment of one phase inside another, also the mixture model may be used.
For the inhomogeneous model, the constraint on the volume fractions αk is combined with the
phasic continuity equations thus to obtain a transported volume conservation equation.
For further details on the Eulerian model, please refer to Multiphase Flow Theory in the CFX-
Solver Theory Guide and to Multiphase Flow Modeling in the CFX-Solver Modeling Guide.

The Particle Transport model is capable of modeling dispersed phases (solid particles, droplet,
or bubble ) which are discretely distributed in a continuous phase. Each phase is computed from
separated simulations, and source terms are introduced to account for the effects of the particles
on the continuous phase. Examples of this kind of motion are provided by the motion of water
droplets, generated from a liquid sprays in a cooling tower, in air, the motion of solid particles
in air in the case of pneumatic transport of solids, and the transport of airborne particulates.
For further details on the Lagrangian model, please refer to Particle Transport Theory in the
CFX-Solver Theory Guide and to Particle Transport Modeling in the CFX-Solver Modeling
Guide.
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Nomenclature

CD Drag coefficient
D Tube diameter [m]
Fσ Interfacial momentum source term
G Mass flux

[
kg/m2 · s

]
G Magnitude of the velocity gradient in a stress flow
H Total enthalpy
M Number of phases
ML Mass loading ratio
N Number of samples, see Eq.(4)
Re Reynolds number
St Stokes number
T Time
T Temperature, see Eq.(??)
U Velocity
V Volume

dp Particulate diameter
f Correction factor, see Eq.(77)
j Volumetric flux

[
m3/m2 · s

]
m Mass
ṁ Mass flow rate
n Mean number of particulates per unit volume
p Pressure
q Exchanged heat
t, t′ Time
x Spatial coordinate
y Spatial coordinate
z Spatial coordinate

α Local volume fraction
Γk Interfacial mass source term for phase k
Γ

′k Interfacial mass source term for phase k (after Favre and time averaging)
δ Kronecker delta
λ Thermal conductivity
µ Dynamic viscosity
Πk Interfacial energy source term for phase k
Π

′k Interfacial energy source term for phase k (after Favre and time averaging)
ρ Density
ς Interfacial energy source term
τ Extra stress tensor
τf Fluid integral scale
τp Particulate relaxation time
φ Generic transport variable
φ“ Fluctuating component of 〈φ〉
χ Phase indicator function
ψ Generic transport variable
ψ“ Fluctuating component of 〈ψ〉
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ω Angular momentum vector
Ωk Interfacial momentum source term for phase k
Ω

′k Interfacial momentum source term for phase k (after Favre and time averaging)

Superscripts

bp Bulk
d Drift
g Gas
int Interphase
k Phase
m Mmxture
p Particulate

Subcripts

D Drag
E Ensemble average
G Gravity
p Particulate
k Phase
SG Superficial gas
SL Superfical liquid
V Space average
WM Wall-momentum transfer
f Fluid phase
j Phase
ins Instantaneous
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