

MULTI-PHASE FLOWS CHARACTERIZATION AND NUMERICAL MODELING

Ing. Paola Ranut, PhD Prof. Enrico Nobile

pranut@units.it

UNIVERSITY OF TRIESTE DEPARTMENT OF ENGINEERING AND ARCHITECTURE

CHARACTERIZATION 000000

NUMERICAL MODELING

Gas-particle flows

Ansys CFX 0000000

OUTLINE

2 NUMERICAL MODELING

4 ANSYS CFX

CHARACTERIZATION

DEFINITION

- Flow system in which two or more distinct phases flow simultaneously, having some level of phase separation at a scale well above the molecular level;
- Not to be confused with a multicomponent flow (mixture of chemical species, mixed at the molecular level).

<complex-block>

CHARACTERIZATION

NUMERICAL MODELING

GAS-PARTICLE FLOWS

ANSYS CFX

CHARACTERIZATION

DEFINITION

- Flow system in which two or more distinct phases flow simultaneously, having some level of phase separation at a scale well above the molecular level;
- Not to be confused with a multicomponent flow (mixture of chemical species, mixed at the molecular level).

CLASSIFICATION: COMBINATION OF PHASES

- gas-solid flows (dense, dilute, very-dilute)
- liquid-solid flows
- gas-liquid flows \rightarrow most complex (deformable interface)
- immiscible-liquid mixture (not a real multiphase flow)

CLASSIFICATION: GEOMETRY OF THE INTERFACE

- disperse flows \rightarrow gas-solid / liquid-solid flows
- separated flows \leftrightarrow interfaces
 - fully separated
 - annular (partially separated)
- transitional (mixed) flows

GAS-LIQUID FLOW IN A VERTICAL PIPE

CHARACTERIZATION	Numerical modeling	Gas-particle flows 000000000000000000000000000000000000	Ansys CFX 0000000
GAS-LIOUID FLOW IN	N A HORIZONTAL PIPE		

FLOW PATTERN MAPS

CHARACTERIZATION	NUMERICAL MODELING	GAS-PARTICLE FLOWS	ANSYS CFX
00000	000000000000000000000000000000000000000	00000000000000000	0000000
P			

THREE-PHASE FLOWS

FIGURE: Effect of an increased air input fraction on a three-phase flow, $J_o = 0.46$ m/s and $J_w = 0.32$ m/s. Photographies taken by the research team of Prof. Sotgia (Politecnico di Milano).

ANSYS CFX

INTRODUCTION

- A multiphase flow can be considered as a field subdivided into single-phase regions with moving boundaries separating the constituent phases
- Differential balances hold for each sub-region

DIFFICULTIES

- Presence of interfacial surfaces (deformable, in movement)
 - movement is produced by both **convection** and **inter-phase mass transfer**
 - \Rightarrow coupling between field equations of each phase and interfacial conditions
- Discontinuities of properties at interface
 - local jumps in space and time
- Local instant fluctuations (time + space) of the variables (due to motion of interfaces + turbulence)

CHARACTERIZATION	NUMERICAL MODELING	GAS-PARTICLE FLOWS
000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000

INTRODUCTION

TWO STATEGIES

The fluctuation of the variables is space and time allows to follow two different strategies:

- Local instant formulation
 - local instant variables (fluctuations)
 - DNS
 - E.g. evolution of a bubble
- Averaging strategy
 - macroscopic phenomena
 - mean values of fluid motion + properties
 - the local instant description of each phases is replaced by a collective description of the phases
 - the macroscopic properties can be derived by the local instantaneous properties by means of appropriate averaging procedures.

INTRODUCTION

AVERAGING

• Time average

$$\bar{\phi} = \lim_{T \to \infty} \frac{1}{T} \int \phi(x, y, z, t) dt \quad \bar{\phi} = \bar{\phi}(x, y, z)$$
(1)

• Space average

$$\langle \phi \rangle_V = \lim_{V \to \infty} \frac{1}{V} \int \phi(x, y, z, t) dt \quad \langle \phi \rangle_V = \langle \phi \rangle(t)$$
 (2)

• Ensemble average

$$\langle \phi \rangle_E = \lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^N \phi_n(x, y, z, t) dt \quad \langle \phi \rangle_E = \langle \phi \rangle (x, y, z, t)$$
(3)

0	N7		ALL AND A DEST
CHARACTERIZATION	NUMERICAL MODELING	GAS-PARTICLE FLOWS	ANSYS CFX
000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	0000000
NUMERICAL APPR	OACHES		

APPROACHES

- *Two-fluid model* \rightarrow Each phase is considered separately:
 - two sets of averaged conservation equations
 - appropriate conditions at the interface
- *Mixture model* \rightarrow Mixture modeled as a single fluid with variable properties.
 - 3 conservation equations
 - 1 additional diffusion (continuity) equation (\leftrightarrow concentration changes)

EXAMPLES

- Liquid-particle flows
 - Mixture model ($\rho_S \approx \rho_L$)
- Gas-particle flows
 - Two-fluid model (often)
 - Disperse phase: *Eulerian* or *Lagrangian* strategy

AVERAGING PROCEDURE

- At microscopic level: in each subregion or phase, the governing equations are the classical balance laws of continuum mechanics
- In practice, only averaged values of microscopic properties are measured
- Moreover, since the solution of the flow field at the microscale is complex

CHARACTERIZATION 000000	Numerical modeling	Gas-particle flows	Ansys CFX 0000000	
TWO-FLUID MODEL:	FOUNDAMENTALS			

Basically, a **phase indicator function** is introduced in the constitutional equations, χ^k $\chi^k(\mathbf{x},t) = \begin{cases} 1, & \text{if } \mathbf{x} \text{ is in } k\text{-th phase at time } t, \\ 0, & \text{otherwise} \end{cases}$ (4) $\nabla \chi^k = \mathbf{n}^k \delta(\mathbf{x} - \mathbf{x}^{int}, t)$ (5) $\nabla \chi^k$ is a *generalized function*^a and behaves like a Dirac δ function. $\Rightarrow \nabla \chi^k \neq 0$ only at the interface $\Rightarrow \chi^k$ is introduced for convenience, thus to handle some quantities appearing only at the interface. $\sum_{k=1}^{M} \chi^k = 1$ $\frac{D\chi^k}{D_t} = \frac{\partial \chi^k}{\partial t} + \mathbf{U}^{int} \cdot \nabla \chi^k = 0$

^{*a*}A generalized function allows to express in a mathematically-corrected form some idealized concepts, as the density of a point or the intensity of an instantaneous source. This reflects the fact that, in reality, a physical quantity cannot be measured at a point but only its mean values can be measured, over sufficiently small neighbourhoods of the given point.

(6)

TWO-FLUID MODEL: FOUNDAMENTALS

Moreover, χ^k is useful for defining

• the volume dV^k of the REV dV occupied by the k-phase:

$$dV^k = \int_{dV} \chi^k dV$$

• the integral of a function f over dV^k

$$\int_{dV^k} f dV^k = \int_{dV} f \chi^k dV$$

The above properties are useful for defining two average operators:

• volume average operator

$$\langle f \rangle = \frac{1}{dV} \int_{dV} f \chi^k dV$$

• mass average operator

$$\bar{f} = \frac{\int_{dV} \rho f \chi^k dV}{\int_{dV} \rho \chi^k dV} = \frac{1}{\langle \rho \rangle dV} \int_{dV} \rho f \chi^k dV$$

Characterization 000000	Numerical modeling	Gas-particle flows	Ansys CFX 0000000		
Two-fluid model: Conservation of mass					

CONSERVATION OF MASS

$$rac{\partial
ho^k}{\partial t} +
abla \cdot (
ho^k \mathbf{U}^k) = 0$$

By multiplying continuity eq. by χ^k + considering $\frac{\partial \chi^k}{\partial t} + \mathbf{U}^{int} \cdot \nabla \chi^k = 0$

Local instant formulation:

$$\frac{\partial(\chi^k \rho^k)}{\partial t} + \nabla \cdot (\chi^k \rho^k \mathbf{U}^k) = \rho^k \left(\mathbf{U}^k - \mathbf{U}^{int} \right) \cdot \nabla \chi^k \tag{7}$$

Instantaneous averaged equation (volume or ensemble averaging):

$$\left\langle \frac{\partial(\chi^{k}\rho^{k})}{\partial t} \right\rangle + \left\langle \nabla \cdot (\chi^{k}\rho^{k}\mathbf{U}^{k}) \right\rangle = \left\langle \rho^{k} \left(\mathbf{U}^{k} - \mathbf{U}^{int} \right) \cdot \nabla \chi^{k} \right\rangle$$
$$\Rightarrow \frac{\partial \left\langle \chi^{k}\rho^{k} \right\rangle}{\partial t} + \nabla \cdot \left\langle \chi^{k}\rho^{k}\mathbf{U}^{k} \right\rangle = \left\langle \rho^{k} \left(\mathbf{U}^{k} - \mathbf{U}^{int} \right) \cdot \nabla \chi^{k} \right\rangle$$
(8)

0

 $= \Gamma^k$ Interfacial Mass Source

$$\sum_{k=1}^{M} \Gamma^{k} =$$

(9)

TWO-FLUID MODEL: CONSERVATION OF MOMENTUM

CONSERVATION OF MOMENTUM

$$\rho^{k} \frac{\partial \mathbf{U}^{k}}{\partial t} + \rho^{k} \mathbf{U}^{k} \cdot \nabla \mathbf{U}^{k} = -\nabla \rho^{k} + \nabla \cdot \tau^{k} + \sum \mathbf{F}^{k, \text{ body forces}}$$

Instantaneous averaged equation:

$$\frac{\partial \langle \chi^{k} \rho^{k} \mathbf{U}^{k} \rangle}{\partial t} + \nabla \cdot \langle \chi^{k} \rho^{k} \mathbf{U}^{k} \otimes \mathbf{U}^{k} \rangle =
- \nabla \langle \chi^{k} \rho^{k} \rangle
+ \nabla \cdot \langle \chi^{k} \tau^{k} \rangle
+ \langle \chi^{k} \rangle \langle \sum \mathbf{F}^{k, \ body \ forces} \rangle
+ \langle \rho^{k} \mathbf{U}^{k} (\mathbf{U}^{k} - \mathbf{U}^{int}) \cdot \nabla \chi^{k} \rangle \quad (\leftrightarrow \ due \ to \ mass \ exchange)
+ \langle \rho^{k} \rangle \langle \nabla \chi^{k} \rangle - \langle \tau^{\mathbf{k}} \cdot \nabla \chi^{k} \rangle \quad (= \ Interface \ Force \ Density)$$

$$= \Omega^{k} \ Interfacial \ Momentum \ Source
\sum_{k=1}^{M} \Omega^{k} = F_{\sigma}$$
(10)

Characterization 000000	Numerical modeling	Gas-particle flows	Ansys CFX 0000000
TWO-FLUID MODEL:	CONSERVATION OF EN	ERGY	

$$\begin{split} & \rho^{k} \frac{\partial H^{k}}{\partial t} + \rho^{k} \mathbf{U}^{k} \cdot \nabla H^{k} = -\frac{\partial p^{k}}{\partial t} - \nabla \cdot \mathbf{q}^{k} + \sum \mathbf{F}^{k, \ body \ forces} \cdot \mathbf{U}^{k} + \underbrace{\Phi_{H}^{k}}_{H} \qquad (11) \\ \Phi_{H}^{k} = \nabla \cdot (\mathbf{U}^{k} \cdot \tau^{k}) \\ & \Phi_{H}^{k} = \nabla \cdot (\mathbf{U}^{k} \cdot \tau^{k}) \\ & \text{Viscous term} \\ \hline \frac{\partial \left\langle \chi^{k} \rho^{k} H^{k} \right\rangle}{\partial t} + \nabla \cdot \left\langle \chi^{k} \rho^{k} \mathbf{U}^{k} H^{k} \right\rangle = \\ & - \frac{\partial \left\langle \chi^{k} p^{k} \right\rangle}{\partial t} - \nabla \cdot \left\langle \chi^{k} \mathbf{q}^{k} \right\rangle \\ & + \left\langle \chi^{k} \right\rangle \left\langle \sum \mathbf{F}^{k, \ body \ forces} \cdot \mathbf{U}^{k} \right\rangle + \underbrace{\left\langle \Phi_{H}^{\prime k} \right\rangle}_{k} \\ & + \left\langle \rho^{k} H^{k} \left(\mathbf{U}^{k} - \mathbf{U}^{int} \right) \cdot \nabla \chi^{k} \right\rangle + \left\langle q^{k} \nabla \chi^{k} \right\rangle + \left\langle \phi^{k} \frac{\partial \chi^{k}}{\partial t} \right\rangle + \underbrace{\left\langle \Phi^{extra} \right\rangle}_{k} \\ & = \Pi_{H}^{k} \ \text{Interfacial Energy Source} \end{split}$$

TWO-FLUID MODEL: CONSERVATION EQUATIONS

SUMMARY: INSTANTANEOUS AVERAGED EQUATIONS

$$\frac{\partial \left\langle \chi^k \rho^k \right\rangle}{\partial t} + \nabla \cdot \left\langle \chi^k \rho^k \mathbf{U}^k \right\rangle = \mathbf{\Gamma}^k \tag{13}$$

$$\frac{\partial \left\langle \chi^{k} \rho^{k} \mathbf{U}^{k} \right\rangle}{\partial t} + \nabla \cdot \left\langle \chi^{k} \rho^{k} \mathbf{U}^{k} \otimes \mathbf{U}^{k} \right\rangle = -\nabla \left\langle \chi^{k} p^{k} \right\rangle + \nabla \cdot \left\langle \chi^{k} \tau^{k} \right\rangle + \left\langle \chi^{k} \right\rangle \left\langle \sum \mathbf{F}^{k, \ body \ forces} \right\rangle + \Omega^{k} \tag{14}$$

$$\frac{\partial \left\langle \chi^{k} \rho^{k} H^{k} \right\rangle}{\partial t} + \nabla \cdot \left\langle \chi^{k} \rho^{k} \mathbf{U}^{k} H^{k} \right\rangle = -\frac{\partial \left\langle \chi^{k} p^{k} \right\rangle}{\partial t} - \nabla \cdot \left\langle \chi^{k} \mathbf{q}^{k} \right\rangle + \left\langle \chi^{k} \right\rangle \left\langle \sum \mathbf{F}^{k, \ bodyf.} \cdot \mathbf{U}^{k} \right\rangle + \left\langle \Phi_{H}^{\prime k} \right\rangle + \Pi_{H}^{k}$$
(15)

$$\sum_{k=1}^{M} \Gamma^k = 0 \tag{16}$$

$$\sum_{k=1}^{M} \Omega^k \equiv F_{\sigma} \tag{17}$$

$$\sum_{k=1}^{M} \Pi_{H}^{k} \equiv \varsigma = F_{\sigma} \cdot U^{int}$$
⁽¹⁸⁾

(20)

TWO-FLUID MODEL: CONSERVATION EQUATIONS

TIME AVERAGING		
	$\langle \phi \rangle = \overline{\langle \phi \rangle} + \phi^{\prime \prime} \qquad / \cdot \left\langle \chi^k \right\rangle$	
	$\left\langle \chi^{k}\phi ight angle =\left\langle \chi^{k} ight angle \overline{\left\langle \phi ight angle }+\left\langle \chi^{k} ight angle \phi^{\prime\prime}$	
Time averaging:	$\overline{\left\langle \chi^k \phi \right\rangle} = \overline{\left\langle \chi^k \right\rangle \overline{\left\langle \phi \right\rangle}} + \overline{\left\langle \chi^k \right\rangle \phi^{\prime\prime}}$	
	$\overline{\left\langle \chi^k \phi \right\rangle} = \overline{\left\langle \chi^k \right\rangle} \overline{\left\langle \phi \right\rangle} + \overline{\left\langle \chi^k \right\rangle} \phi^{\prime \prime}$	
By knowing that:	$\overline{\langle \phi \rangle} = \frac{\overline{\langle \chi^k \phi \rangle}}{\sqrt[4]{\langle \chi^k \rangle}}$	
$\overline{\langle},$	$\overline{\left\langle \begin{array}{c} k \\ \phi \end{array} \right\rangle} = \overline{\left\langle \begin{array}{c} \chi \\ k \end{array} \right\rangle} \overline{\left\langle \phi \right\rangle} \qquad \overline{\left\langle \begin{array}{c} \chi \\ \phi \end{array} \right\rangle} = 0$	
The same holds for the mass-weighted average: $\sqrt{\frac{1}{1000000000000000000000000000000000$	$\overline{\langle k \phi \rangle} = \overline{\langle \rho^k \rangle} \overline{\langle \phi \rangle} \qquad \overline{\langle \rho^k \rangle \phi''} = 0$	
Now we are ready to write the volume and time aver	aged equations.	

Characterization 000000	CHARACTERIZATION NUMERICAL MODELING 0000000 000000000000000000000000000000000000		Ansys CFX 0000000
TWO-FLUID MODEL:	CONSERVATION EOUA	TIONS	

TWO-FLUID MODEL: EFFECTIVE CONSERVATION EQUATIONS Conservation of Mass: $\frac{\partial\left\langle \chi^{k}\rho^{k}\right\rangle }{\partial t}+\nabla\cdot\left\langle \chi^{k}\rho^{k}\mathbf{U}^{k}\right\rangle =\Gamma^{k}$ $\overline{\left\langle \, \chi^k \rho^k \right\rangle} = \overline{\left\langle \, \chi^k \right\rangle} \, \overline{\left\langle \, \rho^k \right\rangle}$ $\overline{\left\langle \chi^k \rho^k \mathbf{U}^k \right\rangle} = \overline{\left\langle \chi^k \right\rangle} \overline{\left\langle \rho^k \mathbf{U}^k \right\rangle} = \overline{\left\langle \chi^k \right\rangle} \overline{\left\langle \rho^k \right\rangle} \overline{\left\langle \mathbf{U}^k \right\rangle}$ A new quantity can be introduced, that is the local volume fraction (or local concentration): $lpha^k = rac{V_k}{V} = \left\langle \chi^k ight angle \qquad \chi^k :$ phase indicator function (19) By dropping bars and parentheses: $\frac{\partial (\alpha^k \rho^k)}{\partial t} + \nabla \cdot (\alpha^k \rho^k \mathbf{U}^k) = {\Gamma'}^k$

(23)

TWO-FLUID MODEL: CONSERVATION EQUATIONS

TWO-FLUID MODEL: EFFECTIVE CONSERVATION EQUATIONS

$$lpha^k = rac{V_k}{V} = \left\langle \chi^k
ight
angle \qquad \chi^k:$$
 phase indicator function

Conservation of Mass:

$$\frac{\partial(\alpha^k \rho^k)}{\partial t} + \nabla \cdot (\alpha^k \rho^k \mathbf{U}^k) = {\Gamma'}^k$$

Conservation of Momentum:

$$\frac{\partial(\alpha^{k}\rho^{k}\mathbf{U}^{k})}{\partial t} + \nabla \cdot (\alpha^{k}\rho^{k}\mathbf{U}^{k}\otimes\mathbf{U}^{k}) = -\alpha^{k}\nabla p^{k} - p^{k}\nabla\alpha^{k} + \nabla \cdot (\alpha^{k}\tau^{k}) - \nabla \cdot (\alpha^{k}\tau^{k'}) + \alpha^{k}\sum \mathbf{F}^{k, b.f.} + \mathbf{\Omega}^{\prime k}$$
(21)

 $\sum_{k=1}^{M} \alpha^k = 1$

Conservation of Energy:

$$\frac{\partial(\alpha^{k}\rho^{k}H^{k})}{\partial t} + \nabla \cdot (\alpha^{k}\rho^{k}\mathbf{U}^{k}H^{k}) = p^{k}\frac{\partial\alpha^{k}}{\partial t} + \alpha^{k}\frac{\partial p^{k}}{\partial t} - \nabla \cdot (\alpha^{k}\mathbf{q}^{k}) - \nabla \cdot (\alpha^{k}\mathbf{q}^{k''}) + \alpha^{k}\sum \mathbf{F}^{k, \ body \ forces} \cdot \mathbf{U}^{k} + \Phi_{H}^{"k} + \Pi_{H}^{'k}$$
(22)

Algebraic constraint on α :

MIXTURE MODEL

MIXTURE MODEL

The dynamic interaction of the phases in neglected, since the interfacial exchange term are omitted.

The mixture is modeled as a single fluid with variable properties

$$\boldsymbol{\nu}^{m} = \sum_{k=1}^{2} \alpha^{k} \rho^{k}, \quad \boldsymbol{\mu}^{m} = \sum_{k=1}^{2} \alpha^{k} \mu^{k}, \quad \boldsymbol{\lambda}^{m} = \sum_{k=1}^{2} \alpha^{k} \boldsymbol{\lambda}^{k}$$
$$\boldsymbol{U}^{m} = \frac{\sum_{k=1}^{2} \alpha^{k} \rho^{k} \boldsymbol{U}^{k}}{\sum_{k=1}^{2} \alpha^{k} \rho^{k}}, \quad \boldsymbol{H}^{m} = \frac{\sum_{k=1}^{2} \alpha^{k} \rho^{k} \boldsymbol{H}^{k}}{\sum_{k=1}^{2} \alpha^{k} \rho^{k}}$$

Conservation of Mass:

$$\frac{\partial \rho^m}{\partial t} + \nabla \cdot (\rho^m \mathbf{U}^m) = 0$$

Conservation of Momentum:

$$\frac{\partial(\rho^{m}\mathbf{U}^{m})}{\partial t} + \nabla \cdot (\rho^{m}\mathbf{U}^{m} \otimes \mathbf{U}^{m}) = -\nabla p + \nabla \cdot \left[\mu^{m}(\nabla \mathbf{U}^{m}) + (\nabla \mathbf{U}^{m}) - \frac{2}{3}\mu^{m}\nabla \cdot \mathbf{U}^{m}\delta\right]$$
$$-\nabla \cdot \tau^{m''} + \rho^{m}\mathbf{g} + \mathbf{F}_{\sigma}$$
$$-\nabla \cdot \sum_{k=1}^{2} (\alpha^{k}\rho^{k}\mathbf{U}^{dr,k} \otimes \mathbf{U}^{dr,k})$$
Drift velocity $\mathbf{U}^{dr,k} = \mathbf{U}^{k} - \mathbf{U}^{m}$

MIXTURE MODEL

MIXTURE MODEL

$\frac{Conservation of Mass:}{\frac{\partial \rho^{m}}{\partial t}} + \nabla \cdot (\rho^{m} \mathbf{U}^{m}) = 0$ (24) $\frac{Conservation of Momentum:}{\frac{\partial (\rho^{m} \mathbf{U}^{m})}{\partial t}} + \nabla \cdot (\rho^{m} \mathbf{U}^{m} \otimes \mathbf{U}^{m}) = -\nabla p + \nabla \cdot \left[\mu^{m} (\nabla \mathbf{U}^{m}) + (\nabla \mathbf{U}^{m}) - \frac{2}{3} \mu^{m} \nabla \cdot \mathbf{U}^{m} \delta \right] \\ - \nabla \cdot \tau^{m''} + \rho^{m} \mathbf{g} + \mathbf{F}_{\sigma}$ (25) $- \nabla \cdot \sum_{k=1}^{2} (\alpha^{k} \rho^{k} \mathbf{U}^{dr, k} \otimes \mathbf{U}^{dr, k}) \\ Drift velocity \quad \mathbf{U}^{dr, k} = \mathbf{U}^{k} - \mathbf{U}^{m}$ (26) $\frac{\partial (\rho^{m} H^{m})}{\partial t} + \nabla \cdot (\rho^{m} \mathbf{U}^{m} H^{m}) = \nabla \cdot (\lambda^{m} \nabla T^{m}) - \left(\nabla \cdot \mathbf{q}_{H}^{m''} \right) + \left(\mathbf{s} - \nabla \cdot \sum_{k=1}^{2} (\alpha^{k} \rho^{k} \mathbf{U}^{dr, k} H^{k}) \right)$ (26) $\frac{Algebraic constraint on \alpha:}{\sum_{k=1}^{2} \alpha^{k} = 1}$ (27)

CHARACTERIZATION	NUMERICAL MODELING	GAS-PARTICLE FLOWS	ANSYS CFX
000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	0000000
MIXTURE MODEL			

HOMOGENEOUS MODEL

- Simplification of the Mixture model valid when the phases move at the same velocity $\Rightarrow \mathbf{U}^{dr,k} = 0$
- It can be used for:
 - finely dispersed flows
 - flows with separated phases (e.g., stratified or wavy flows, free surface flows)

GAS-PARTICLE FLOWS

GENERIC FORM OF THE GOVERNING EQUATIONS

TWO-FLUID MODEL

 $\frac{\partial(\alpha^{k}\rho^{k}\phi^{k})}{\partial t} + \nabla \cdot (\alpha^{k}\rho^{k}\mathbf{U}^{k}\otimes\phi^{k}) = \nabla \cdot \left[\alpha^{k} \mathbf{\Gamma}_{\phi^{k}}^{k}(\nabla\mathbf{U}^{k})\right] + S_{\phi^{k}}^{k}$ (28)

MIXTURE MODEL

$$\frac{\partial(\rho^{m}\phi^{m})}{\partial t} + \nabla \cdot (\rho^{m}\mathbf{U}^{m}\otimes\phi^{m}) = \nabla \cdot \left[\Gamma_{\phi^{m}}(\nabla\mathbf{U}^{m})\right] + S_{\phi^{m}}$$
(29)
Diffusion coefficiant

EULERIAN - EULERIAN APPROACHES IN ANSYS CFX

ANSYS CFX: HOMOGENEOUS VS INHOMOGENEOUS

GAS BUBBLES IN WATER

			HOMOGENEOUS MO	ODEL	INHOMO	GENEOUS MODE	EL
asic Settings Fluid	Models Fluid Specific Models	Fluid Pair Models	Fluid Pair	8	Fluid Par		
Multiphase		Ξ	Air Water		Air Water		
Homogeneous M	odel	•					
Option	None	~					
Heat Transfer		8	Air Water	P	Air Water	oefficient	,
Homogeneous Mi	odel		Surf Tension Coeff 0.072 [Nm^1]		Surf Tension Coeff	0.072 [Nm^-1]	
Option	Isothermal	¥	Johambara Transfer		John Terescill Coefficient	loove [if in 1]	
Fluid Temperature	25 [C]		Ontion None		Option	Particle Model	~
Turbulence		8	Maes Transfer	B	Minimum Volume	Fraction for Area Density	
Homogeneous M	odel		Ontion		Momentum Transfer		1
Option	Fluid Dependent	M			Drag Force		
Combustion		8			Option	Grace	×
Option	None	~	/		Volume Fraction	Correction Exponent	8
Thermal Radiation		8	Particle Model		Value	2	_
Dotion	None	~	None Particle Model	/	Non-drag forces		E
	Madal				Lift Force None	March	
C Decoromogrado	Houde				Wall Lubrication En	None	1
					Turbulent Dispersio	n Force - Favre Averaged Drag Force -	
			Momentum transfer	is caused by	Turbulence Transfer		
			forces acting on the	interface	Option	Sato Enhanced Eddy Viscosity	*
			in the dealing of the		Mass Transfer		and
					Option	None	~

C	ΗA	R.	A	C	ΓI	ER	Ľ	Z.	A'	Γ	I	0	1
\sim	\sim	\sim	\sim	\sim	\sim	<u> </u>							

Numerical modeling

GAS-PARTICLE FLOWS

ANSYS CFX

EULERIAN VS LAGRANGIAN

TWO STRATEGIES

The continuous phase is always treated in an Eulerian manner.

The discrete particulate can be treated as both a continuous or a discrete phase. Therefore, two different approaches exist:

EULERIAN - EULERIAN

- Particles are regarded as a continuous phase
- Two-fluid model
- The reference frame is stationary

EULERIAN - LAGRANGIAN

- The motion of individual particles (or of a cloud, *parcel*, of them) is tracked throughout the domain
- The reference frame moves with the particles
- Position and velocity of the particle is a function of time only
 - The time average is done by following a certain particle for a chosen time interval
- Forces acting on particles are considered
 - Position and velocity of the particle are computed from Newton's 2nd Law (force balance)
- If the number of particles is large, a statistical approach is adopted.

EULERIAN VS LAGRANGIAN

summation of particle volumes in a CV to compute volume fraction associated with a node x_i

cell-averaged particle characteristics centered at the continuous-phase grid nodes

-> PDEs for the dispersed phase

convenient to use the same grid for both phases, thus to treat the interphase terms in the same manner

LAGRANGIAN

PHASE COUPLING AND NUMERICAL STRATEGY

- Polidisperse one-way coupling
 - LAGR: very efficient
 - EULER: computationally intensive (\longleftrightarrow multiple Eulerian particle fields)
- Two-way coupling
 - LAGR: can be one order of magnitude less efficient
 - EULER: numerically convenient (same grid for continuous and disperse phase \implies no interpolation errors)
- Four-way coupling
 - LAGR: more accurate
 - EULER / LAGR(parcel): if the number of particles in the system is large (≥ 10⁵) and/or the collision frequency is high, ⇒ more practical to capture only the mean effects
- Wall interactions
 - LAGR: accurately captured (the distance from the particle centroid to the wall is directly computed)
 - EULER / LAGR(parcel): not efficient (the vast majority of the particles are many particle diameters away from the wall)

CHARACTERIZATION	NUMERICAL MODELING	GAS-PARTICLE FLOWS	ANSYS CFX			
000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	0000000			
FULERIAN-LAGRANGIAN FRAMEWORK						

EULERIAN-LAGRANGIAN FRAMEWORK

TRAJECTORY EQUATION

$$\underbrace{\rho^p V_p}_{m_p} \frac{D \mathbf{U}_{ins}^p}{Dt} = \underbrace{S_{V^p}}_{\sum \mathbf{F}}$$

(30)

Forces acting on the particulate:

- *Drag force*: induced by the surrounding fluid (pressure field + viscous stress);
- Virtual or added mass force: difference in acceleration fluid/particulate;
- Lift force
- Body force due to gravity
- *Bouyancy force*: difference in density between phases; almost always important.
- Magnus force: rotating particulate in a non-rotating fluid
- Pressure gradient force
- Basset force: temporal delay in boundary layer development as the relative velocity changes with time

CHARACTERIZATION

GAS-PARTICLE FLOWS

ANSYS CFX

EULERIAN-LAGRANGIAN FRAMEWORK

$\frac{\rho^{p} v_{p}}{m_{p}} \frac{D \mathbf{U}_{ins}^{p}}{Dt} = \underbrace{S_{VP}}{\sum \mathbf{F}}$ For dilute regimes $\alpha^{p} < 10^{-3}$: $\frac{D \mathbf{U}_{ins}^{p}}{Dt} = \frac{1}{(\tau_{p})} \left(\mathbf{U}_{ins}^{g} \right) - \mathbf{U}_{ins}^{p} \right) + \left(1 - \frac{\rho^{g}}{\rho^{p}} \right) \mathbf{g}$ Particle response time $\mathbf{U}_{ins}^{g} = \mathbf{U}^{g} + \mathbf{U}^{\prime \prime g} \qquad \text{Instant velocity} \qquad (31)$

- The Favre-averaged form of the transport equations for the continuous phase generally yields the mean values
- The key problem in many Lagrangian-tracking models is to adequately estimate the unknown fluctuating component of the fluid velocity at every particulate location, as it travels in discrete time steps through the computational domain.

0000	00 (000000000000000000000000000000000000000	000000000000000000000000000000000000000	0000000
Eui	lerian-Lagrangi	AN FRAMEWORK		
	TRAJECTORY EQUATION (DII	LUTE REGIME)		
	For $\alpha^p < 10^{-3}$:	$\frac{D\mathbf{U}_{ins}^{p}}{Dt} = \frac{1}{\tau_{p}} \left(\mathbf{U}_{ins}^{g} - \mathbf{U}_{ins}^{p} \right) + \left(1 - \frac{1}{\tau_{p}} \left(\mathbf{U}_{ins}^{g} - \mathbf{U}_{ins}^{p} \right) \right)$	$-\frac{ ho^g}{ ho^p} ight)\mathbf{g}$	

$$\mathbf{U}_{ins}^{g} = \mathbf{U}^{g} + \mathbf{U}^{\prime \prime g}$$

• Omitting $\mathbf{U}''{}^g \leftrightarrow$ ignoring the particulate dispersion due to turbulent velocity fluctuation

Particulates with same physical properties/initial conditions \Rightarrow identical trajectories (*Deterministic models*)

● On the contrary, turbulent fluctuations ⇒ different trajectories even for particulates with the same physical properties/initial conditions (*Stochastic models*)

1

- when the particulate enters an eddy, the eddy's fluctuating velocity U''^g is added to U^g
- U''^g is randomly sampled from a Probability Density Function: $U''^g = \zeta \sqrt{\frac{2}{3}k}$

NUMERICAL MODELING

- at the end of each time step, a new fluctuating fluid velocity is sampled from a new PDF
- With stochastic models the computational burden increases

EULERIAN-LAGRANGIAN FRAMEWORK

GOVERNING EQUATIONS FOR THE CONTINUOUS PHASE (DILUTE REGIME)

For dilute regimes $\alpha^p < 10^{-3}$:

Conservation of Mass

 $\frac{\partial \rho^g}{\partial t} + \nabla \cdot (\rho^g \mathbf{U}^g) = 0$ (33)

Conservation of Momentum

$$\frac{\partial \rho^{g} U_{i}^{g}}{\partial t} + \frac{\partial}{\partial x_{j}} (\rho^{g} U_{j}^{g} U_{i}^{g}) = \frac{\partial}{\partial x_{j}} \left(\mu^{g} + \mu_{T}^{g} \right) \frac{\partial U_{i}^{g}}{\partial x_{i}} + S_{U_{i}^{g}}$$
(34)

$$S_{U_i^g} = -\frac{\partial p'^g}{\partial x_i} + \frac{\partial}{\partial x_j} \left(\mu^g + \mu_T^g \right) \frac{\partial U_j^g}{\partial x_i} + S_{U_i}^p$$
(35)

 p'^{g} is a modified averaged pressure.

Particles' influence on the gas phase

If
$$\alpha^p < 10^{-6} \Rightarrow \mathbf{S}_U^p = 0$$

ONE WAY coupling

GOVERNING EQUATIONS

- dilute gas-particle applications
- a set of continuum conservation equations, representing both the gas and particle species, is solved

On the basis of the *two-fluid model*:

Conservation of Mass:

$$\frac{\partial \rho^{bp}}{\partial t} + \nabla \cdot (\rho^{bp} \mathbf{U}^p) = 0$$
(36)

Conservation of Momentum:

$$\frac{\partial \rho^{bp} \mathbf{U}^{bp}}{\partial t} + \nabla \cdot (\rho^{bp} \mathbf{U}^{bp} \mathbf{U}^{p}) = \nabla \cdot \tau + \mathbf{F}_{G} + \mathbf{F}_{D} + \mathbf{F}_{WM}$$
(37)

Particle-wall interaction

For dilute applications:

$$\rho^{bp} = \alpha^{p} \rho^{p} = \frac{V_{p}}{V} \rho^{p} \qquad \alpha^{p} : local volume fraction$$
(38)

INTERFACE CAPTURING METHODS

CHARACTERIZATION

Numerical modeling

GAS-PARTICLE FLOWS

ANSYS CFX 000000C

VOLUME METHODS: VOLUME OF FLUID

VOLUME OF FLUID

- Fixed grid
- One-fluid formulation (Mixture model)
- Conservative
- Can not resolve details of the interface < than the mesh size
- The interface is tracked in an indirect way: the volume fraction of a phase is evolved in time
- A scalar indicator function *F* (*Colour function*) is defined for one particular fluid (liquid), corresponding to the volume fraction :

$$F = \lim_{V \to \infty} \frac{1}{V} \int \int \int \chi^{k}(x, y, z, t) \, dV = \left\langle \chi^{k} \right\rangle$$
(39)

- F = 1: fluid 1
- F = 0: fluid 2
- 0 < F < 1: interface present

VOLUME OF FLUID

• A *one-fluid* formulation is used:

$$\rho(F) = \rho_l F + \rho_g (1 - F) \tag{40}$$

$$\mu(F) = \mu_l F + \mu_g (1 - F)$$
(41)

• An advection equation for the volume fraction *F* need to be solved

$$\frac{\partial F}{\partial t} + \nabla \cdot (F\mathbf{U}) = 0 \tag{42}$$

- The VOF algorithm consists of three major parts:
 - *interface reconstruction* method: explicit description of the interface in each cell, based on *F* at the current time step;
 - *advection algorithm*: computation of the distribution of *F* at the next time step (Eq. (42)) by using the reconstructed interface and the current velocity field;
 - *surface tension model*: to account for the surface tension effects at the interface.

The success of a VOF method is strongly connected to the numerical scheme used for the advection of the F.

INTERFACE RECONSTRUCTION

- Sequence of line segments aligned with the grid
- The interface can assume different configurations for each sweep direction (*x* and *y*)

Characterization 000000	Numerical modeling	GAS-PARTICLE FLOWS	Ansys CFX 0000000
VOLUME METHODS:	VOLUME OF FLUID		

NOTE

$$\delta F \delta y = \min \left[F_{AD} \left| \mathbf{U} \delta t \right| \, \delta y + CF, \ F_D \delta x \delta y \right]$$
$$CF = \max \left[(1 - F_{AD}) \left| \mathbf{U} \delta t \right| \, \delta y - (1 - F_D) \delta x \delta y, \ 0 \right]$$

The Donor-Acceptor VOF method uses first-order upwind and downwind fluxes combined in such a way as to ensure stability of the numerical calculation and at the same time as to minimize diffusion

CHARACTERIZATION	NUMERICAL MODELING	GAS-PARTICLE FLOWS	ANSYS CFX
000000	000000000000000000000000000000000000000	00000000000000000	0000000
VOLUME METHODS:	LEVEL-SET METHOD		

LEVEL-SET METHOD)

- The interface is defined by a level-set function $\phi = \pm d(x, t)$ (signed shortest distance of point *x* from the interface at time *t*)
- Transport equation for ϕ

$$\frac{\partial \phi}{\partial t} + \mathbf{U}^m \cdot \nabla \phi = S \tag{45}$$

• The generic fluid property $b(\mathbf{x}, t)$ is calculated by interpolating the values of the two phases, b_1 and b_2 :

$$b(\mathbf{x},t) = (1 - H_{\varepsilon}(\phi(\mathbf{x},t)))b_1 + H_{\varepsilon}(\phi(\mathbf{x},t))b_2$$
(46)

- During the solution of Eq. (45), ϕ may not remain a signed distance function at later times:
 - interface smearing, numerical diffusion and difficulties in preserving the mass conservation
 - re-initialization techniques for ϕ
- For the interpolation of the advective term $\mathbf{U}^m \cdot \nabla \phi$:
 - a non-diffusive scheme must be adopted
 - if the mesh is not sufficiently fine \Rightarrow higher-order schemes \Rightarrow no smearing.

Ansys CFX: Domain \rightarrow Basic Settings

Outline Domain: Def	ault Domain				×	3				
Details of Default Domai	in in Flow An	alysis 1				1				
Basic Settings Fluid	Models F	luid Specific Models	Fluid Pair Models	Particle Injection Region	ns In 🔹					
-Location and Type-						i l				
Location	B1.P3									
Domain Type	Eluid Domain)								
Coordinate Frame	Coord 0				v					
-Fluid and Particle Defin	nitions									
Sand fully coupled										
Sand one way coup	led									
water					×					
Sand fully coupled—							Particle Transp	port Solid		~
Option	Material Li	brary			~		Continuous Fl	uid		
Material	Sand Fully	/ Coupled					Dispersed Flui	d		
- Morphology		•					Particle Transp	oort Fluid		
Option	Particle 1	Fransport Solid			-		Particle Transp Polydispersed	oort Solid Eluid		
- Particle Diame	ter Dictributic						Droplets (Pha	se Change)		
Particle Shape	e Factors		_							
- Particle Diame	ter Change				±		Normal in Diam	eter by Mass		×
							Uniform in Diar	meter by Number		
Domain Models							Uniform in Dia	meter by Mass		
Pressure							Normal in Dian	neter by Number		
Reference Pressure	1 [atm]						Rosin Rammler	rocor by Mass		
- Buoyapoy Model							Nukiyama Tan	asawa		
- babyancy moder							Discrete Dialite	eter Distribution		
Option	Non Buoya	int			×			Minimum Diameter	50e-6 [m]	
Domain Motion								Maximum Diamotor	500e-6 [m]	
Option	Stationary				~			maximum Diameter	2006-0 [m]	
Mesh Deformation								Mean Diameter	250e-6 [m]	
Option	None				~			Std. Deviation	70e-6 [m]	
L										

000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000
CHARACTERIZATION	NUMERICAL MODELING	GAS-PARTICLE FLOWS	ANSYS CFX

Outline Doma	in: Default Doma	in			×
Details of Default I	Domain in Flow	Analysis 1			
Basic Settings	Fluid Models	Fluid Specific Models	Fluid Pair Models	Particle Injection Regions	< >
-Heat Transfer-				[Э-,
Option	None			~	
Turbulence					5
Option	k-Epsilor	1		~ .	.
Wall Function	Scalable			~	
_Advanced Tur	bulence Control-			Đ	Ь
Combustion				[3
Option	None			~	
- Thermal Radiat	ion			[35
Option	None			~	
Electromag	netic Model			[Ð

Сн

ANSYS CFX: DOMAIN \rightarrow FLUID SPECIFIC MODELS

Pacia Sottings	Ehrid Modola	Eluid Specific Models	Fluid Dair Modela	Darticla Injection Regions	In ()
basic becongs	Fiuld Models		Fiuld Pair Models	Particle Injection Regions	TU V
Fluid					
Sand fully co	oupled				
Sand one wa	ay coupled				
-Sand fully cou	pled				
Erosion Mode	el				
Option	None	e		~	
- Particle Pour	th Wall Model				
- Particle Koug	in wai Moder				
Option	None	•		*	

CHARACTERIZATION	NUMERICAL MODELING	GAS-PARTICLE FLOWS	ANSYS CFX	
000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	0000000	

ANSYS CFX: DOMAIN \rightarrow Fluid Pair Models

asic Settings	Fluid Models	Fluid Specific Models	Fluid Pair Models	Particle Injection Regions	In < 🕨		
Fluid Pair							
Water Sand article Couplii - Surface	I fully coupled	nt				Fully Coupled Fully Coupled One-way Coupling	
-Drag Force Option				¥		None	~
	isation Blend Fact	tor				Schiller Naumann	
-Non-drag f	orces					Ishii Zuber	
⊂Virtual Ma	iss Force - None -				±	Particle Transport Drag Coefficient	
Turbulent	Dispersion Force	- None			±	· · · ·	
Pressure	Gradient Force - I	None					
Particle	Breakup				÷		

Particle-particle Interactions: allowable only for the Fully Coupled option

CHARACTERIZATION 000000

NUMERICAL MODELING

ANSYS CFX: B.C. \rightarrow Particles' injection

utline Domain: Def	ault Domain Boundary: Inlet	
ils of Inlet in Defaul	: Domain in Flow Analysis 1	
asic Settings 📗 Bour	dary Details Fluid Values Sources Plot Option	ns
Boundary Conditions -		Ξ
Sand fully coupled		
Sand one way coup	ed	
-Sand fully coupled-		
Particle Behaviour -	have been a second s	
Mass And Momentu	naviour -	
- Hass And Homenica	Carth Uhl, Carranasha	
Option	Cart. vei. Components	×
U	0 [m s^-1]	
٧	0 [m s^-1]	
w	Wprof	
Particle Position		
Option	Uniform Injection	~
- Particle Locati	Ins	
-Number Of Positio	15	
Option	Direct Specification	~
Number	200	
Particle Mass Flow		
Mass Flow Rate	0.01 [kg s^-1]	
Particle Diamete	r Distribution	Ŧ

CHARACTERIZATION	
~~~~~	

NUMERICAL MODELING

Gas-particle flows

ANSYS CFX

# ANSYS CFX: B.C. $\rightarrow$ Wall

asic Settings Bo	undary Details	Fluid Values	Sources	Plot Options	
Boundary Condition	د	1			Π
Sand fully couple	- d				
Sand one way co	u unled				
Sand one may co	apica				
- Sand fully coupled					
-Wall Interaction -					
wai triceraction-					
Option	Equation (	Dependent			*
Velocity					Ξ
Option	Restitutio	n Coerficient			<b>*</b>
Perpendicular Coe	ff. 0.8				
Parallel Coeff.	1.0				
👝 🛄 Minimum Im	pact Angle				
- Erosion Mode					Ŧ
- Particle Roug	h Wall Model —				Ē
- Mass Flow At	sorption				Ē
					_

# AVAILABLE TUTORIALS IN ANSYS CFX

n.	Description	Туре
9	Free surface	Eulerian-Eulerian, Homogeneous
11	Butterfly valve	Eulerian-Lagrangian
		Particle Tracking
18	Airlift reactor	Eulerian-Eulerian, Inhomogeneous
		Bubble dispersion in water