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Structure of the Presentation



3University of Trieste, May 2, 2013

� LTH, led by Prof. H.-M. Prasser, is divided in three groups:
• Experimental group, Leader: D. Paladino;

• Modeling and Simulation group, Leader: B. Niceno;

• Severe Accident Group, Leader: T. Lind.

Scope and Strategy of LTH

� Fundamental research on cross-cutting TH issues from Gen II to IV

• Fields: reactor, plant and, containment Thermal-Hydraulics (TH), severe accidents.

• Tools: unique (home-grown) experimental and analytical capabilities.

� LTH strives for excellence in fluid dynamic instrumentation.

� Embraces collaboration with other institutes and universities.

� Supports and integrates education.

Introduction
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Experimental Group 
� PANDA experimental facility

• Unique large-scale experimental 
model of a LWR, combined with 
extensive instrumental capabilities. 

• Large scale. Compared to SBWR:
– Height: 1:1 (25 m);
– Volume: 1:25;
– Power: 1:25.

• Dense network of (combined) 
gas composition and temperature 
measurements.

• Enhanced quality of PIV, novel 
velocity, temperature and 
concentration sensors.
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Severe Accident Group  

� ARTIST: 

Aerosol ReTention In STeam generator

� PWR steam generator tube rupture:
• Frequent occurrence in design basis (DB);

• Low frequency in severe accident (SA);

• Potential for significant release of radioactivity due to 
by-pass of the containment in DB and SA.

• ARTIST provides data for radioactive aerosol 

retention in SG secondary side: 
– Aerosol retention in dry secondary side;

– Aerosol retention in flooded secondary side;

– Droplet retention under DBA conditions.
ARTIST
Facility

Introduction
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� Unlike Experimental and Severe Accident groups, MSG does not 

have its flagship (big) facilities, and will never have any.

� Instead on size, we focus on computer power and 

thematic diversity, and that means:

• We work on multiple scales;

• We work on issues relevant for four generations of Nuclear Power Plants (NPP);

• We collaborate on twelve national and international projects;

• We are strongly devoted to collaboration (within LTH, NES, PSI, ETHZ and beyond);

• We use nine different codes for simulation, third party and in-house;

• We are devoted to education (giving lectures at ETHZ, host master students).

Scope and Strategy of MSG  

Introduction
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� NPP generations covered by MSG

Generation I

Early Prototype 
Reactors

Commercial Power 
Reactors

Advanced Light 
Water Reactors Evolutions from 

Generation III 
offering improved 
passive safety and 

economics

• Shippingport
• Dresden
• Fermi 1

• PWR and BWR (LWR)
• CANDU
• All Swiss NPPs

• AP1000 Westinghouse
• ABWR GE
• EPR AREVA

• APR1000 Westinghouse
• ESBWR
• KERENA (AREVA)

Generation II Generation III Generation III+ Generation IV

Many Generations  

Modeling and Simulation Group

• Highly economical, safe 
• Minimal waste and 
risk of proliferation 

Future Theoretical 
Nuclear Reactors

1950             1960             1970             1980         1990             2000             2010             2020     2030
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� Spatial scales covered by MSG

Modeling and Simulation Group

System Integrated Component Micro Nano

Dynamic response 
of entire systems

Three-dimensional 
effects on systems

Insight into multiphase 
and turbulent effects 

on components

Basic study of phase 
change, turbulence 

and interface 
dynamics

Basic study of 
inter-phase 
phenomena 

System Codes
(RELAP5)

Containment Code
(GOTHIC)

Computational Fluid Dynamics (CFD)
(FLUENT, OpenFOAM, PSI-Boil, …)

Direct Numerical Simulation (DNS)
(PSI-Boil)

Molecular Dynamic 
(MD) simulations

GROMACS
LAMMPS

Multiple Scales  
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� SETH and SETH 2 (Int., Gen 3)

• Gas distribution inside the containment; system and containment.

� ERCOSAM (Int., Gen 2-3)

• Containment thermal-hydraulics of current and future LWRs; containment. 

� PLiM II – PLiM IV (Nat., Gen 2, with LNM)

• Thermal mixing leading to fatigue; component scale.

� NURESIM, NURISP and NURESAFE (Int., Gen 2)

• Loss Of Coolant Accident (LOCA); component scale.

• Pressurized Thermal Shock (PTS); integral part and component scale.

• Departure from Nucleate Boiling (DNB); micro-scale.

Modeling and Simulation Group

Involvement in Many Projects  
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� SiC for fuel cladding (Nat., Gen 2-4, with LNM)

• Replacement of Zr alloys by SiC for cladding; component scale.

� PINE-II (Int., Gen 4, with LNM)

• Innovative fuel designs; component scale.

� Applied projects with utilities: 

• Spent fuel basin analysis for Kernkraftwerk (KK) Beznau;

• PTS for KK Goesgen;

• H2 distribution in containments for KK Goesgen;

� Applied non-nuclear project 

• Stirred chemical reactor vessel simulations for ThyssenKrupp Uhde.

Modeling and Simulation Group

Involvement in Many Projects  
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� MOTHER (Int., Gen 2) 

• Thermal mixing leading to fatigue; component scale.

� THINS (Int., Gen 4):

• Mixing of gases at very high density ratios; component scale;

• Modeling of supercritical fluids; component scales.

� MSMA (Nat., Gen 2-3)

• Basic study of boiling phenomena, micro and nano scales.

� PASSPORT (Nat., Gen 2-3, with LRS)

• Development and validation of a novel computational methodology

for the performance assessment of LWR safety systems. 

Modeling and Simulation Group

ENSI

Involvement in Many Projects  
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Modeling and Simulation Group
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� System Scale 

• ATLAS Facility

� Integrated Component Scale

• Containment analysis in PANDA

� Component Scale

• Mixing in T-junctions

� Micro Scale

• Modeling of boiling

� Nano Scale

• Molecular Dynamic (MD) simulations

Technical Contents

The Technical Content – Divided by Spatial Scales  
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Line-Break in the ATLAS Facility

System Scale Analysis

� Summary of the exercise:

• International Standard Problem 50 (ISP-50) exercise is 

sponsored by NEA/CSNI and focuses on the 50% (6 inch) 

of the cross section Direct Vessel Injection (DVI) line 

break scenario offering relevant integral effect test data.

• The ISP-50 helps to better understand the behavior of 

nuclear reactor systems with the DVI.

• Offers data for validation of system codes.

• A total of 19 organizations are participating in the ISP-50

• MSG is taking part in this activity for the transient 

calculations using the RELAP5 code.
ATLAS facility

Sharabi
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� Main outcomes
• The time trend of the break mass flow rate is well reproduced.

• Underestimation of the break flow in the two-phase discharge flow regime.

System Scale Analysis
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Line-Break in the ATLAS Facility
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� Importance

Integrated Component Analysis

Build-Up / Break-Up of Stratification in Containment 

PWR during normal operation

Steam 
Generators

Reactor 
Vessel

Core

Containment
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� Importance
• In case of a line break, leg releases steam …

Hot leg breaks, releasing steam

Integrated Component Analysis

Build-Up / Break-Up of Stratification in Containment 

Steam

Line 
Break
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� Importance
• In case of a line break, leg releases steam …

• … leading to an increase of pressure.

Released steam builds the pressure 
in the containment up.

Integrated Component Analysis

Build-Up / Break-Up of Stratification in Containment 

Bulk 
Condensation

Steam
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� Importance
• In case of a line break, leg releases steam …

• … leading to an increase of pressure.

• Steam condenses on the walls to some extent.

Released steam builds the pressure 
in the containment up.

Integrated Component Analysis

Build-Up / Break-Up of Stratification in Containment 
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� Importance
• In case of a line break, leg releases steam …

• … leading to an increase of pressure.

• Steam condenses on the walls to some extent.

• The core might melt down later, releasing H2 …

Core releases H2
(and other non-condensables)

Integrated Component Analysis

Build-Up / Break-Up of Stratification in Containment 
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Core

H2
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� Importance
• In case of a line break, leg releases steam …

• … leading to an increase of pressure.

• Steam condenses on the walls to some extent.

• The core might melt down later, releasing H2 …

• H2 mixes with steam, but because it is lighter

Core releases H2
(and other non-condensables)

Integrated Component Analysis

Build-Up / Break-Up of Stratification in Containment 
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� Importance
• In case of a line break, leg releases steam …

• … leading to an increase of pressure.

• Steam condenses on the walls to some extent.

• The core might melt down later, releasing H2 …

• H2 mixes with steam, but because it is lighter …

• … its concentration rises on top …

A stratified layer of H2
forms on top of the containment

Integrated Component Analysis

Build-Up / Break-Up of Stratification in Containment 
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� Importance
• In case of a line break, leg releases steam …

• … leading to an increase of pressure.

• Steam condenses on the walls to some extent.

• The core might melt down later, releasing H2 …

• H2 mixes with steam, but because it is lighter

• … its concentration rises on top …

• … which may lead to deflagration.

High concentrarion of H2
may lead to deflagration

Integrated Component Analysis

Build-Up / Break-Up of Stratification in Containment 

H2

Steam H2and
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� Importance
• In case of a line break, leg releases steam …

• … leading to an increase of pressure.

• Steam condenses on the walls to some extent.

• The core might melt down later, releasing H2 …

• H2 mixes with steam, but because it is lighter

• … its concentration rises on top …

• … which may lead to deflagration.

• We perform containment analysis to study 

measures to avoid high concentration build-up 

of H2. Various measures to avoid break-up 
the stratified layers of H2

Integrated Component Analysis

Build-Up / Break-Up of Stratification in Containment 
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� Stratification break-up by a vertical jet 
• Typical model used for analysis of SETH-2 tests:

– 3D and 2D coarse representation of both vessels

– cells in Vessel 1: ~ 0.1 to 0.2 m each side

– cells in Vessel 2: larger cells 

– ~ 600 cells for the interconnecting pipe

– k-ε turbulence model

Containment Analysis with GOTHIC  

PANDA vessels used in present 
experiment

� The complex scenario during an accident, goes 

in two phases, which can be studied separately
• Stratification build-up (SETH project)

• Stratification break-up (SETH 2 project)

Integrated Component Analysis

Papini Andreani
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Pressurized Thermal Shock

� TOPFLOW-PTS

• Models thermal mixing in a reactor’s cold leg after injection of emergency coolant.

ECC

PS

DC

DCout

PSin
ECCin

CL

PSOUT

ECC

PS

DC

DCout

PSin
ECCin

CL

PSOUT

Sketch of the TOPLFLOW-PTS facility Simulated evolution of temperature in the 
cold leg, in TOPLFLOW-PTS  facility

Integrated Component Analysis

Niceno Saxena
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Mixing in T-junctions

� Relevance:

• Mixing of streams at different temperatures can lead to temperature fluctuations, 
which may lead to thermal fatigue.

De-ionised
water

Tap water

Measuring 
gridHoneycombs

� Experimental approach:

• Use analogy of temperature and
scalar transport, analyze streams
with different conductivities.

� Numerical approach:

• Check state-of-the art turbulence 
modeling strategy (LES in FLUENT)

Experimental Setup For Mixing in T-junctions

Component Scale

Sharabi SmithNiceno
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SimulationExperiment

Mixing in T-junctions

� Distributions of conductivity and its fluctuations in planes: 

x/D = 1.0

x/D = 2.2

x/D = 4.6

Component Scale

SimulationExperiment
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Mixing in T-junctions

� Distributions of conductivity and its fluctuations in horizontal lines: 

Component Scale
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Real T-junction Cases

Temperature at 65 s          … Temperature at 85 s

…
FLUENT ABAQUS

Component Scale

� Coupling with ABAQUS

• During the FLUENT CFD simulation, transient temperatures in the solid and 
pressures at the fluid-solid interface are exported to ABAQUS format at a frequency 
of 40 Hz, using subroutines developed earlier within the PLiM projects. 

• A database with transient results from 65 s – 85 s is transferred to LNM
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SC-Water-cooled Reactor (SCWR)

� One of the Gen-IV reactor concepts.

� Generates electricity at lower cost.

� High conversion ratio.

� Elimination of dryout.

� Realization of the core in 

the fast neutron spectrum.

� Potential for waste transmutation.

Heat Transfer at Super-Critical Pressures

www.gen-4.org

SharabiNiceno
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SC Water: State of Matter

� Continuous change from
liquid-like to 

gas-like state.

� No liquid-gas boundary, 

no surface tension.

� It shares characteristic

of liquid and of gas

• It is disolving like liquid, 

but has good diffusivity
like gasDiagram’s courtesy of Vijay Jain, Dalhousie University 

Heat Transfer at Super-Critical Pressures
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SC Fluid Properties

� Thermo-physical properties
vary strongly in the vicinity of 
pseudo-critical temperature.

� Different heat transfer regimes
• Normal – convective heat 

transfer to subcritical fluids.
• Improved – leading to reduction 

of wall temperature.
• Deteriorated – leading to rise 

of wall temperature.
SC-water density and heat capacity 

variation with temperature

Heat Transfer at Super-Critical Pressures
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Heat Transfer at Super-Critical Pressures
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� It would be economic to apply RANS, but it doesn't predict the 
heat transfer deterioration in SC water very well �

Turbulence Modeling by RANS

G

G

q q

Heat Transfer at Super-Critical Pressures
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� Features
• Cartesian grid, finite volume method with staggered arrangement

• CIP-CSL2 method for surface tracking (third order accuracy)

• Algebraic Multi-Grid (AMG) solution procedure; scales with problem size,

• Immersed Boundary Method (IBM) to handle complex geometries).

For LES, we use PSI-BOIL, a home-grown tool

T-junction simulation Boiling simulationFlows in rod-bundles

Heat Transfer at Super-Critical Pressures

Niceno
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Concerns

� Small enough y+ could 
difficult to achieve with IBM

� With cylindrical coordinates, 

problem could be reaching 

fine enough (RΔθ)+

Solution

� Focus on plane channel with 

same hydraulic diameter

IBM Grid Cylindrical Grid

Pipe Plane Channel

Heat Transfer at Super-Critical Pressures
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Computational domain

� Streamwise (x): L = 1 [m]
� Normal (y): H = 3.14 [mm]

� Spanwise (z): W = 2 [mm]

Computational grid

� Resolution: 4096 48 64
� In wall units:

• y+ =   0.09

• Δx+ = 70

• Δz+ =   9

Elongated domain, stiff equations

Hard for pressure solution.  

We could solve only with AMG

solver, using CG-IC with fill-in.

Heat Transfer at Super-Critical Pressures
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Inlet conditions

� Obtained by copying one planar realization of the velocity field 
from inside of the back to the inlet of the computational domain.

Statistics

� Flow development:   130 000 time steps  =  2.6 [s]  =    90 [LETOT]

� Gathering statistics:   80 000 time steps  =  1.6 [s]  =    55 [LETOT]
� Total:                          210 000 time steps  =  4.2 [s]  =  145 [LETOT]

Heat Transfer at Super-Critical Pressures
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Wall Temperatures

Results

� Relief: heat transfer deterioration effect present in the channel �

G

G

q q

� Wall temperatures predicted well with LES
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Mean Values

Streamwise velocity <u’> Temperature <T’> Density <ρ’>
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Reynolds Stresses

Streamwise <ρ’u”u”> Normal <ρ’v”v”> Spanwise <ρ’w”w”>
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Kinetic Energy, Dissipation, Production

k <ρ’ui”ui”> <ρ>-1 ε <τij’dui”/dxj> <ρ>-1 Pk <ρ’ui”uj”> dUi/dxj
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Production due to Buoyancy

g <ρ’ u’> g <ρ’ v’> g <ρ’ h’>
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Turbulent Heat Fluxes

g <ρ’u”h”> g <ρ’v”h”> g <ρ’w”h”>
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� Multi-Scale Modeling Analysis 

• Sponsored by Swissnuclear (prize Project of the Year awarded for 2008)

• Goal: development of physically based boiling closure laws for CFD …

• derived from improved understanding of the physics of boiling from experiments
and numerical simulations at different scales.

• An integral part: new DNS tool with interface tracking PSI-BOIL.

nanomolecular micro meso

IMPROVE

Boiling Simulations

Micro Scale

Niceno AndreaniBadilloSato
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Validation  (single air bubble in oil)

Boiling – Interface Tracking

Micro Scale

� CIP-CSL2 method with local sharpening scheme

• Highly accurate scheme for convection term using gradient of variable.

• Exactly conservative method.

Sato
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Micro Scale

VOF by Koebe
Front tracking by Dijkhuizen
Front tracking by Hua
Level set by Shu
CIP-CSL2+LS

Contaminated
Water VOF by Koebe

Front tracking by Dijkhuizen
Front tracking by Hua



49University of Trieste, May 2, 2013

� Saturated pool boiling. 

Grid h [μm] No. Cell
Coarse 125  150 000
Medium 83  350 000
Fine 63 1 200 000

Micro Scale

Boiling – Results

• Boundary Condition
– Bottom wall: Temp. = 106.2 °C
– Contact angle = 38°

• Initial Condition
– Bubble shape: hemisphere
– Bubble diameter = 0.25mm

• Computational parameters:

Sato Lal
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Time (s)

H
ea

tf
lu

x
(W

/m
2 )

0 0.05 0.1 0.15 0.2 0.25 0.30

5000

10000

15000

20000

Coarse
Medium
Fine

T: 100.2 104.8

Experiment Simulation

Diameter [mm] 2.1 ~ 2.4 2.4
Period [sec] 0.035 ~ 0.043 0.05

No experimental uncertainty is given.

� Bubble departure diameter and frequency

Boiling – Results

Micro Scale
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� Motivation
• At micro-scale, triple-line is one computational cell

• But in reality, it is a very dynamic region, where many important phenomena take 
place, such as most intensive mass transfer, variable surface tension, etc.

• In order to build better model for micro-scale, we conduct analysis of the triple line at 

nano-scales, i.e. we perform MD simulations.

Below a Vapor Bubble

Nano Scale

vapor

vapor
liquid

liquid

solidsolid

Krohn Badillo
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� Theory of MD

• Hamiltonian

• Newtonian

• Taylor series

• Van der Vaals and Coulomb:

• Leonard-Jones potential:

Nano Scale
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Molecule models used in this study

Below a Vapor Bubble
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� Validation

• Liquid-vapor equlibrium

Below a vapor bubble

� Results

• Droplet sitting on a solid

• With further increase in resolution 
(number of molecules) we may 
deduce the existence of the micro-
region and contact angle.

Nano Scale
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� MSG works on a number of topics, ranging in spatial scale

(system to nano) and scope (Gen II – Gen IV reactors).

�Associated with that, the number of project in which we are 

involved is also relatively big.

� In order to cover this wide range of topics and projects, 

the group has evolved.  (Since 2007: from 3 to 13 members.)

� Recruitment was facilitated by:

• Involvement in education (lectures at ETHZ);

• Dedication to networking, through international projects we are involved in.

Concluding Remarks

Modeling and Simulation Group


