

Paul Scherrer Institut, Switzerland

An Overview of Modeling and Simulation Activities in the Laboratory for Thermal-Hydraulics (LTH)

B. Niceno

Laboratory of Thermal-Hydraulic, Nuclear Energy and Safety, PSI Laboratory of Nuclear Energy Systems, Institute of Energy Technology, ETH Zurich

University of Trieste, May 2, 2013

Outline

Structure of the Presentation

Introduction – Modeling and Simulation Group (MSG) embedding

- Scope and Strategy of LTH
- Scope and Strategy of MSG

Technical contents – divided by the spatial scales

- System scale
- Integrated Components scale
- Component scale
- Component scale, Generation IV
- Micro scale
- Nano scale

Concluding remarks

Introduction

Scope and Strategy of LTH

- ***** LTH, led by Prof. H.-M. Prasser, is divided in three groups:
 - Experimental group,
 - Modeling and Simulation group,
 - Severe Accident Group,
- Fundamental research on cross-cutting TH issues from Gen II to IV
 - Fields: reactor, plant and, containment Thermal-Hydraulics (TH), severe accidents.
 - **Tools**: unique (home-grown) experimental and analytical capabilities.
- ***** LTH strives for excellence in fluid dynamic instrumentation.
- Embraces collaboration with other institutes and universities.
- Supports and integrates education.

Leader: D. Paladino;

Leader: B. Niceno;

Leader: T. Lind.

Introduction

Experimental Group

PANDA experimental facility

- Unique large-scale experimental model of a LWR, combined with extensive instrumental capabilities.
- Large scale. Compared to SBWR:
 - Height: 1:1 (25 m);
 - Volume: 1:25;
 - **Power**: 1:25.
- **Dense network** of (combined) gas composition and temperature measurements.
- Enhanced quality of PIV, novel velocity, temperature and concentration sensors.

Thermocouple distribution

PANDA scale

PIV measurement

Dense measurement network

Introduction

Severe Accident Group

ARTIST:

Aerosol ReTention In STeam generator

- PWR steam generator tube rupture:
 - Frequent occurrence in design basis (DB);
 - Low frequency in severe accident (SA);
 - Potential for significant release of radioactivity due to by-pass of the containment in DB and SA.
 - ARTIST provides data for radioactive aerosol retention in SG secondary side:
 - Aerosol retention in dry secondary side;
 - Aerosol retention in **flooded secondary** side;
 - **Droplet retention** under DBA conditions.

Scope and Strategy of MSG

- Unlike Experimental and Severe Accident groups, MSG does not have its flagship (big) facilities, and will never have any.
- Instead on size, we focus on computer power and thematic diversity, and that means:
 - We work on **multiple scales**;
 - We work on issues relevant for **four generations** of Nuclear Power Plants (NPP);
 - We collaborate on **twelve** national and international **projects**;
 - We are strongly devoted to **collaboration** (within LTH, NES, PSI, ETHZ and beyond);
 - We use **nine different codes** for simulation, **third party** and **in-house**;
 - We are devoted to **education** (giving lectures at ETHZ, host master students).

Many Generations

NPP generations covered by MSG

	r			
Generation I	Generation II	Generation III	Generation III+	Generation IV
Early Prototype Reactors	Commercial Power Reactors	Advanced Light Water Reactors	Evolutions from Generation III offering improved passive safety and economics	Future Theoretical Nuclear Reactors
ShippingportDresdenFermi 1	 PWR and BWR (LWR) CANDU All Swiss NPPs 	 AP1000 Westinghouse ABWR GE EPR AREVA 	 APR1000 Westinghouse ESBWR KERENA (AREVA) 	 Highly economical, safe Minimal waste and risk of proliferation
1950 1960	1970 1980	1990	2000 2010	2020 2030

Modeling and Simulation Group

Multiple Scales

Spatial scales covered by MSG

Sys	tem	Integrated	Component	Micro	Nano
Dynamic r of entire s	esponse systems	Three-dimensional effects on systems	Insight into multiphase and turbulent effects on components	Basic study of phase change, turbulence and interface dynamics	Basic study of inter-phase phenomena
System (REL	Codes AP5)	Computational Flui (FLUENT, OpenFC	d Dynamics (CFD) DAM, PSI-Boil, …)		Molecular Dynamic (MD) simulations
	Containment Code		Direct Numerical Simulation (DNS)		LAMMPS

Involvement in Many Projects

- SETH and SETH 2 (Int., Gen 3)
 - Gas distribution inside the containment; system and containment.
- ERCOSAM (Int., Gen 2-3)
 - Containment thermal-hydraulics of current and future LWRs; containment.
- PLiM II PLiM IV (Nat., Gen 2, with LNM)
 - Thermal mixing leading to fatigue; component scale.
- NURESIM, NURISP and NURESAFE (Int., Gen 2)
 - Loss Of Coolant Accident (LOCA); component scale.
 - Pressurized Thermal Shock (PTS); integral part and component scale.
 - **Departure from Nucleate Boiling (DNB)**; micro-scale.

Involvement in Many Projects

- SiC for fuel cladding (Nat., Gen 2-4, with LNM)
 - Replacement of Zr alloys by SiC for cladding; component scale.
- PINE-II (Int., Gen 4, with LNM)
 - Innovative fuel designs; component scale.
- Applied projects with utilities:
 - Spent fuel basin analysis for Kernkraftwerk (KK) Beznau;
 - PTS for KK Goesgen;
 - H₂ distribution in containments for KK Goesgen;
- Applied non-nuclear project
 - Stirred chemical reactor vessel simulations for ThyssenKrupp Uhde.

Involvement in Many Projects

MOTHER (Int., Gen 2)

• Thermal mixing leading to **fatigue**; component scale.

THINS (Int., Gen 4):

- Mixing of **gases** at very high density ratios; component scale;
- Modeling of **supercritical** fluids; component scales.
- ***** MSMA (Nat., Gen 2-3)
 - Basic study of **boiling phenomena**, micro and nano scales.
- PASSPORT (Nat., Gen 2-3, with LRS)
 - Development and validation of a **novel computational methodology** for the performance assessment of LWR safety systems.

Modeling and Simulation Group

The Technical Content – Divided by Spatial Scales

System Scale

- ATLAS Facility
- Integrated Component Scale
 - Containment analysis in **PANDA**
- Component Scale
 - Mixing in **T-junctions**
- Micro Scale
 - Modeling of **boiling**
- Nano Scale
 - Molecular Dynamic (MD) simulations

Line-Break in the ATLAS Facility

Summary of the exercise:

- International Standard Problem 50 (ISP-50) exercise is sponsored by NEA/CSNI and focuses on the 50% (6 inch) of the cross section Direct Vessel Injection (DVI) line break scenario offering relevant integral effect test data.
- The ISP-50 helps to better **understand** the behavior of nuclear reactor **systems with the DVI**.
- Offers data for validation of system codes.
- A total of **19 organizations** are participating in the ISP-50
- MSG is taking part in this activity for the transient calculations using the **RELAP5** code.

ATLAS facility

Line-Break in the ATLAS Facility

Main outcomes

- The time trend of the break mass flow rate is well reproduced.
- Underestimation of the break flow in the two-phase discharge flow regime.

Time trend of the break mass flow rate

Importance

PWR during normal operation

Importance

• In case of a line break, leg releases steam ...

Hot leg breaks, releasing steam

Importance

- In case of a line break, leg releases steam ...
- ... leading to an **increase** of **pressure**.

Released steam builds the pressure in the containment up.

Importance

- In case of a line break, leg releases steam ...
- ... leading to an increase of pressure.
- Steam condenses on the walls to some extent.

Released steam builds the pressure in the containment up.

Importance

- In case of a line break, leg releases steam ...
- ... leading to an increase of pressure.
- Steam condenses on the walls to some extent.
- The core might melt down later, releasing H_2 ...

Core releases H₂ (and other non-condensables)

Importance

- In case of a line break, leg releases steam ...
- ... leading to an increase of pressure.
- Steam condenses on the walls to some extent.
- The core might melt down later, releasing $H_2 \dots$
- H₂ mixes with steam, but because it is lighter

Core releases H₂ (and other non-condensables)

Importance

- In case of a line break, leg releases steam ...
- ... leading to an increase of pressure.
- Steam condenses on the walls to some extent.
- The core might melt down later, releasing $H_2 \dots$
- H₂ mixes with steam, but because it is lighter ...
- ... its concentration rises on top ...

A stratified layer of H₂ forms on top of the containment

Importance

- In case of a line break, leg releases steam ...
- ... leading to an increase of pressure.
- Steam condenses on the walls to some extent.
- The core might melt down later, releasing $H_2 \dots$
- H₂ mixes with steam, but because it is lighter
- ... its concentration rises on top ...
- ... which may lead to **deflagration**.

High concentrarion of H₂ may lead to deflagration

Importance

- In case of a line break, leg releases steam ...
- ... leading to an increase of pressure.
- Steam condenses on the walls to some extent.
- The core might melt down later, releasing $H_2 \dots$
- H₂ mixes with steam, but because it is lighter
- ... its concentration rises on top ...
- ... which may lead to deflagration.
- We perform containment analysis to study measures to avoid high concentration build-up of H₂.

Various measures to avoid break-up the stratified layers of H₂

Containment Analysis with GOTHIC

- The complex scenario during an accident, goes in two phases, which can be studied separately
 - Stratification **build-up** (SETH project)
 - Stratification break-up (SETH 2 project)

Stratification break-up by a vertical jet

- Typical **model** used for analysis of SETH-2 tests:
 - **3D** and **2D** coarse representation of both vessels
 - cells in Vessel 1: ~ 0.1 to 0.2 m each side
 - cells in Vessel 2: larger cells
 - ~ 600 cells for the interconnecting pipe
 - k-ε turbulence model

Andreani

PANDA vessels used in present experiment

Integrated Component Analysis

Pressurized Thermal Shock

TOPFLOW-PTS

Saxena

• Models thermal mixing in a reactor's cold leg after injection of emergency coolant.

cold leg, in TOPLFLOW-PTS facility

Mixing in T-junctions

Relevance:

 Mixing of streams at different temperatures can lead to temperature fluctuations, which may lead to thermal **fatigue**.

Component Scale

Experimental approach:

• Use **analogy** of temperature and scalar transport, analyze streams with different **conductivities**.

Numerical approach:

- Check state-of-the art turbulence modeling strategy (LES in FLUENT)
- **Experimental Setup For Mixing in T-junctions**

Measuring Honeycombs Tap water grid De-ionised

Mixing in T-junctions

***** Distributions of conductivity and its fluctuations in planes:

University of Trieste, May 2, 2013

Mixing in T-junctions

***** Distributions of conductivity and its fluctuations in horizontal lines:

University of Trieste, May 2, 2013

Real T-junction Cases

Coupling with ABAQUS

- During the FLUENT CFD simulation, transient temperatures in the solid and pressures at the fluid-solid interface are exported to ABAQUS format at a frequency of 40 Hz, using subroutines developed earlier within the PLiM projects.
- A database with transient results from 65 s 85 s is transferred to LNM

SC-Water-cooled Reactor (SCWR)

- One of the Gen-IV reactor concepts.
- Generates electricity at lower cost.
- High conversion ratio.
- Elimination of dryout.
- Realization of the core in the fast neutron spectrum.
- Potential for waste transmutation.

Niceno

SC Water: State of Matter

Diagram's courtesy of Vijay Jain, Dalhousie University

- Continuous change from liquid-like to gas-like state.
- No liquid-gas boundary, no surface tension.
- It shares characteristic of liquid and of gas
 - It is disolving like liquid, but has good diffusivity like gas

SC Fluid Properties

- Thermo-physical properties vary strongly in the vicinity of pseudo-critical temperature.
- Different heat transfer regimes
 - Normal convective heat transfer to subcritical fluids.
 - Improved leading to reduction of wall temperature.
 - **Deteriorated** leading to rise of wall temperature.

SC-water density and heat capacity variation with temperature

Heat Transfer at Super-Critical Pressures

Modeling Issues Rising From Reynolds Analogy

 $lpha_{ ext{eff}}=\mu_{ ext{eff}}$ / Pr $_{t}$

Prandtl close to unity

- In most gasses
- Reynolds analogy holds
- Wall functions ...
- ... or ∆+ < 1

Prandtl greater than unity

- Supercritical fluids
- Reynolds analogy invalid
- Wall functions **mustn't** be used
- ... or <u>∆</u>+ << 1

Turbulence Modeling by RANS

It would be economic to apply RANS, but it doesn't predict the heat transfer deterioration in SC water very well

For LES, we use PSI-BOIL, a home-grown tool

Features

- Niceno
- Cartesian grid, finite volume method with staggered arrangement
- **CIP-CSL2** method for surface tracking (third order accuracy)
- Algebraic Multi-Grid (AMG) solution procedure; scales with problem size,
- Immersed Boundary Method (IBM) to handle complex geometries).

Concerns

- Small enough y⁺ could difficult to achieve with IBM
- With cylindrical coordinates, problem could be reaching fine enough (RΔθ)+

Solution

Focus on plane channel with same hydraulic diameter

Computational domain

- Streamwise (x): L = 1 [m]
- ✤ Normal (y): H = 3.14 [mm]
- Spanwise (z): W = 2 [mm]

Computational grid

- ✤ Resolution: 4096 × 48 × 64
- In wall units:
 - y⁺ = **0.09**
 - ∆x⁺ = **70**
 - <u>∆z</u>+ = **9**

Elongated domain, stiff equations Hard for pressure solution. We could solve only with AMG solver, using CG-IC with fill-in.

Computational Points in the Viscous Sub-layer

Inlet conditions

Obtained by copying one planar realization of the velocity field from inside of the back to the inlet of the computational domain.

Statistics

- ✤ Flow development: 130 000 time steps = 2.6 [s] = 90 [LETOT]
- Gathering statistics: 80 000 time steps = 1.6 [s] = 55 [LETOT]
- Total: 210 000 time steps = 4.2 [s] = 145 [LETOT]

Results

Wall temperatures predicted well with LES

✤ Relief: heat transfer deterioration effect present in the channel ☺

Mean Values

University of Trieste, May 2, 2013

Reynolds Stresses

University of Trieste, May 2, 2013

Kinetic Energy, Dissipation, Production

Production due to Buoyancy

Turbulent Heat Fluxes

Micro Scale

Boiling Simulations

Multi-Scale Modeling Analysis

Niceno

Andreani

- Sponsored by Swissnuclear (prize Project of the Year awarded for 2008)
- Goal: development of **physically based boiling closure laws** for CFD ...
- derived from improved understanding of the physics of boiling from experiments and numerical simulations at different scales.

• An integral part: new **DNS** tool with interface tracking **PSI-BOIL**.

Boiling – Interface Tracking

CIP-CSL2 method with local sharpening scheme

Sato

- Highly accurate scheme for convection term using gradient of variable.
- Exactly **conservative** method.

Case		(a)	(b)	(c)	(d)
Condition	Е	116	116	116	116
	Μ	848	266	41.1	5.51
Computed					
	Re	2.85	4.31	7.80	13.7
Exp eriment	t	0			
	Re	2.47	3.57	7.16	13.3

Validation (single air bubble in oil)

Micro Scale

Micro Scale

Boiling – Results

Saturated pool boiling.

- Boundary Condition
 - Bottom wall: Temp. = 106.2 °C
 - Contact angle = 38°

Initial Condition

- Bubble shape: hemisphere
- Bubble diameter = 0.25mm

Computational parameters:

Grid	h [µm]	No. Cell
Coarse	125	150 000
Medium	83	350 000
Fine	63	1 200 000

Lal

Boiling – Results

Bubble departure diameter and frequency

Nano Scale

Below a Vapor Bubble

Motivation

Krohn

- At micro-scale, triple-line is one computational cell
- But in reality, it is a very **dynamic region**, where many important phenomena take place, such as most intensive mass transfer, variable surface tension, etc.

• In order to build better **model** for micro-scale, we conduct analysis of the triple line at nano-scales, i.e. we perform MD simulations.

Below a Vapor Bubble

Theory of MD

- Hamiltonian $\mathcal{H} = f(\vec{r}^N, \vec{P}^N) = \mathcal{K}(\vec{P}) + \mathcal{U}(\vec{r})$
- Newtonian $\frac{\partial^2 x_i}{\partial t^2} = \frac{F_{x,i}}{m_i}$

Molecule models used in this study

- Taylor series $r(t+dt) = r(t) + v(t)\delta t + \frac{1}{2}a(t)\delta t^2 + ...$
- Van der Vaals and Coulomb: $U(r_{ij}) = U_{short}(r_{ij}) + U_{Coulomb}(r_{ij}) = \sum_{i \in I} \sum_{j \in 2} U_{short}(r_{ij}) + \sum_{i \in I} \sum_{j \in 2} \frac{q_i q_j}{r_{ij}}$
- Leonard-Jones potential:

$$U^{LJ}(r_{ij}) = \left(\frac{A}{r_{ij}}\right)^{12} - \left(\frac{B}{r_{ij}}\right)^{6}$$

Nano Scale

Below a vapor bubble

Validation

• Liquid-vapor equiibrium

Results

• Droplet sitting on a solid

• With further increase in resolution (number of molecules) we may deduce the existence of the microregion and contact angle.

Concluding Remarks

- MSG works on a number of topics, ranging in spatial scale (system to nano) and scope (Gen II – Gen IV reactors).
- Associated with that, the number of project in which we are involved is also relatively big.
- In order to cover this wide range of topics and projects, the group has evolved. (Since 2007: from 3 to 13 members.)

Recruitment was facilitated by:

- Involvement in education (lectures at ETHZ);
- Dedication to **networking**, through international **projects** we are involved in.