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~“psi™ Outline

Structure of the Presentation

¢ Introduction — Modeling and Simulation Group (MSG) embedding
» Scope and Strategy of LTH

 Scope and Strategy of MSG

¢ Technical contents - divided by the spatial scales
» System scale

* Integrated Components scale

e Component scale

e Component scale, Generation IV
» Micro scale

» Nano scale

“*Concluding remarks
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- = Introduction

Scope and Strategy of LTH
“* LTH, led by Prof. H.-M. Prasser, is divided in three groups:

 Experimental group, Leader: D. Paladino;
* Modeling and Simulation group, Leader: B. Niceno;
» Severe Accident Group, Leader: T. Lind.

“* Fundamental research on cross-cutting TH issues from Gen Il to IV
* Fields: reactor, plant and, containment Thermal-Hydraulics (TH), severe accidents.

 Tools: unique (home-grown) experimental and analytical capabilities.

» LTH strives for excellence in fluid dynamic instrumentation.
+» Embraces collaboration with other institutes and universities.

» Supports and integrates education.

University of Trieste, May 2, 2013
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o -

Introduction

Experimental Group
“» PANDA experimental facility

 Unique large-scale experimental
model of a LWR, combined with
extensive instrumental capabilities.

o Large scale. Compared to SBWR:
— Height: 1:1 (25 m);
— Volume: 1:25;
— Power: 1:25.

» Dense network of (combined)
gas composition and temperature
measurements.

 Enhanced quality of PIV, novel
velocity, temperature and
concentration sensors.

Thermocouple
distribution

PANDA scale

. Dense measurement
PIV measurement network

University of Trieste, May 2, 2013
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- = Introduction

Severe Accident Group

“» ARTIST:
Aerosol ReTention In STeam generator

“* PWR steam generator tube rupture:
* Frequent occurrence in design basis (DB);
 Low frequency in severe accident (SA);

» Potential for significant release of radioactivity due to
by-pass of the containment in DB and SA.
» ARTIST provides data for radioactive aerosol
retention in SG secondary side:
— Aerosol retention in dry secondary side;
— Aerosol retention in flooded secondary side;

A
— Droplet retention under DBA conditions. ARU-{S
Facility

University of Trieste, May 2, 2013
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- - Introduction

Scope and Strategy of MSG
+ Unlike Experimental and Severe Accident groups, MSG does not
have its flagship (big) facilities, and will never have any.

¢ Instead on size, we focus on computer power and

thematic diversity, and that means:
» \We work on multiple scales;
» We work on issues relevant for four generations of Nuclear Power Plants (NPP);
» We collaborate on twelve national and international projects;
 We are strongly devoted to collaboration (within LTH, NES, PSI, ETHZ and beyond);
» We use nine different codes for simulation, third party and in-house;

» We are devoted to education (giving lectures at ETHZ, host master students).

University of Trieste, May 2, 2013
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o= Modeling and Simulation Group

Many Generations
“* NPP generations covered by MSG
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o= Modeling and Simulation Group

Multiple Scales

s Spatial scales covered by MSG

System Integrated Component Micro Nano
Dynamic response Three-dimensional Insight into multiphase Basic study of phase Basic study of
of entire systems effects on systems and turbulent effects change, turbulence inter-phase

on components and interface phenomena

dynamics

System Codes Computational Fluid Dynamics (CFD) Molecular Dynamic
(RELAPS5) (FLUENT, OpenFOAM, PSI-Boll, ...) (MD) simulations
: _ _ _ _ GROMACS
Containment Code Direct Numerical Simulation (DNS) LAMMPS
(GOTHIC) (PSI-Bail)

University of Trieste, May 2, 2013 8
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o= Modeling and Simulation Group

Involvement in Many Projects

< SETH and SETH 2 (Int., Gen 3)
 Gas distribution inside the containment; system and containment.
< ERCOSAM (Int., Gen 2-3)

» Containment thermal-hydraulics of current and future LWRs; containment.

< PLIM Il - PLiM IV (Nat., Gen 2, with LNM) swissnuclear

 Thermal mixing leading to fatigue; component scale. HocarEpergySectomafsseeene

“* NURESIM, NURISP and NURESAFE (Int., Gen 2)

» Loss Of Coolant Accident (LOCA); component scale.

 Pressurized Thermal Shock (PTS); integral part and component scale.

» Departure from Nucleate Boiling (DNB); micro-scale.

University of Trieste, May 2, 2013
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Pl Modeling and Simulation Group

Involvement in Many Projects

% SiC for fuel cladding (Nat., Gen 2-4, with LNM) swissnuclear

Muclear Energy Section of swisselectnc

» Replacement of Zr alloys by SiC for cladding; component scale.

% PINE-II (Int., Gen 4, with LNM) swissnuc/ear
« Innovative fuel designs; component scale. e EnergSecion o s
»» Applied projects with utilities:

» Spent fuel basin analysis for Kernkraftwerk (KK) Beznau;
« PTS for KK Goesgen; a}PO

* H, distribution in containments for KK Goesgen;
» Applied non-nuclear project ‘ ! |
« Stirred chemical reactor vessel simulations for ThyssenKrupp Uhde.

University of Trieste, May 2, 2013 10
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Pl Modeling and Simulation Group

Involvement in Many Projects

< MOTHER (Int., Gen 2) ﬁ
 Thermal mixing leading to fatigue; component scale.

¢ THINS (Int., Gen 4):

 Mixing of gases at very high density ratios; component scale;

» Modeling of supercritical fluids; component scales.

“* MSMA (Nat., Gen 2-3) swissnuclear

« Basic study of boiling phenomena, micro and nano scales. Nudear Energy Secion of sisselecic
“» PASSPORT (Nat., Gen 2-3, with LRS)
« Development and validation of a novel computational methodology ENSI

for the performance assessment of LWR safety systems.

University of Trieste, May 2, 2013 11
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Modeling and Simulation Group
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~pe Technical Contents

The Technical Content — Divided by Spatial Scales

> System Scale
o ATLAS Facility

¢ Integrated Component Scale

 Containment analysis in PANDA

“» Component Scale
e Mixing in T-junctions
» Micro Scale
» Modeling of boiling
*+ Nano Scale

» Molecular Dynamic (MD) simulations

University of Trieste, May 2, 2013
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“Psl_ System Scale Analysis

Line-Break in the ATLAS Facility l

“»» Summary of the exercise: Sharabi
* International Standard Problem 50 (ISP-50) exercise is
sponsored by NEA/CSNI and focuses on the 50% (6 inch)
of the cross section Direct Vessel Injection (DVI) line
break scenario offering relevant integral effect test data.
» The ISP-50 helps to better understand the behavior of
nuclear reactor systems with the DVI.

» Offers data for validation of system codes.

« Atotal of 19 organizations are participating in the ISP-50

» MSG is taking part in this activity for the transient

calculations using the RELAPS code.

University of Trieste, May 2, 2013 14
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o e System Scale Analysis

Line-Break in the ATLAS Facility

¢+ Main outcomes
 The time trend of the break mass flow rate is well reproduced.
 Underestimation of the break flow in the two-phase discharge flow regime.

i : subcdoled brkak flow I I I
" " " " | | | | | | |
RCP loop configuration in ATLAS with DVI break - - __:___:___:___:___:___.___L__.___
: ! | | | | | break flow )
| . . . | | Calculations
6 [I' two-phase break flow — |~ — — r[ Experimems] -
DVI-02 DVI-01 | | | | | | |
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Time trend of the break mass flow rate
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SRS Integrated Component Analysis

Build-Up / Break-Up of Stratification in Containment

o |mportance Containment

Steam
Generators

Reactor
Vessel

N MMM

PWR during normal operation

University of Trieste, May 2, 2013 16
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- {» Integrated Component Analysis

Build-Up / Break-Up of Stratification in Containment

** Importance

* In case of a line break, leg releases steam ...
Steam
N
)
e

- %/ e W

AN

Hot leg breaks, releasing steam

A\

University of Trieste, May 2, 2013 17
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- {» Integrated Component Analysis

Build-Up / Break-Up of Stratification in Containment

** Importance
* In case of a line break, leg releases steam ...
e ... leading to an increase of pressure.

N MMM

Released steam builds the pressure
in the containment up.

University of Trieste, May 2, 2013 18
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- {» Integrated Component Analysis

Build-Up / Break-Up of Stratification in Containment

** Importance
* In case of a line break, leg releases steam ...
* ... leading to an increase of pressure.
» Steam condenses on the walls to some extent.

Wall Condensation

N MMM

Released steam builds the pressure
in the containment up.

University of Trieste, May 2, 2013 19
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el Integrated Component Analysis

Build-Up / Break-Up of Stratification in Containment

** Importance
* In case of a line break, leg releases steam ...
* ... leading to an increase of pressure.
 Steam condenses on the walls to some extent.
 The core might melt down later, releasing H, ...

A\

Core releases H,
(and other non-condensables)

University of Trieste, May 2, 2013 20
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el Integrated Component Analysis

Build-Up / Break-Up of Stratification in Containment

** Importance
* In case of a line break, leg releases steam ...
* ... leading to an increase of pressure.
 Steam condenses on the walls to some extent.
« The core might melt down later, releasing H, ...
 H, mixes with steam, but because it is lighter

AN

Core releases H,
(and other non-condensables)

A\

University of Trieste, May 2, 2013 21
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el Integrated Component Analysis

Build-Up / Break-Up of Stratification in Containment

** Importance
* In case of a line break, leg releases steam ...
* ... leading to an increase of pressure.
 Steam condenses on the walls to some extent.
« The core might melt down later, releasing H, ...
 H, mixes with steam, but because it is lighter ...

e ... its concentration rises on top ...

AN\

A stratified layer of H,
forms on top of the containment

N

University of Trieste, May 2, 2013 22
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el Integrated Component Analysis

Build-Up / Break-Up of Stratification in Containment

** Importance
* In case of a line break, leg releases steam ...
* ... leading to an increase of pressure.
 Steam condenses on the walls to some extent.
« The core might melt down later, releasing H, ...
 H, mixes with steam, but because it is lighter

e ... Its concentration rises on top ...
e ... which may lead to deflagration.

AN

High concentrarion of H,
may lead to deflagration

A\

University of Trieste, May 2, 2013 23
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el Integrated Component Analysis

Build-Up / Break-Up of Stratification in Containment

** Importance
* In case of a line break, leg releases steam ...

Sprays

* ... leading to an increase of pressure.

 Steam condenses on the walls to some extent.
« The core might melt down later, releasing H, ...
 H, mixes with steam, but because it is lighter

e ... Its concentration rises on top ...

Recombiners

* ... which may lead to deflagration.
» We perform containment analysis to study

measures to avoid high concentration build-up

Of Hy. Various measures to avoid break-up
the stratified layers of H,

University of Trieste, May 2, 2013 24
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o= Integrated Component Analysis

Containment Analysis with GOTHIC ,
»» The complex scenario during an accident, goes &

Papini Andreani

in two phases, which can be studied separately
o Stratification build-up  (SETH project)
o Stratification break-up  (SETH 2 project)

+» Stratification break-up by a vertical jet
* Typical model used for analysis of SETH-2 tests:
— 3D and 2D coarse representation of both vessels
—cells in Vessel 1: ~ 0.1 to 0.2 m each side

— cells in Vessel 2: larger cells

— ~ 600 cells for the interconnecting pipe

— k-¢ turbulence model PANDA vessels used in present
experiment

University of Trieste, May 2, 2013 25
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psl Integrated Component Analysis

Pressurized Thermal Shock = g

» TOPFLOW-PTS /u..__; Niceo Saxena

» Models thermal mixing in a reactor’s cold leg after injection of emergency coolant.

=

PsOUT

Sketch of the TOPLFLOW-PTS facility Simulated evolution of temperature in the
cold leg, in TOPLFLOW-PTS facility

University of Trieste, May 2, 2013 26
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o » Component Scale

Mixing in T-junctions

++» Relevance: Niceno Sharabi Smith

 Mixing of streams at different temperatures can lead to temperature fluctuations,
which may lead to thermal fatigue.

<> Experimental approach: 1§ -

i

Measuring

« Use analogy of temperature and .’z * Honeycombs oid
scalar transport, analyze streams . | e
with different conductivities. '

“»* Numerical approach:

Bl De-ionised /: @.;‘é.‘ =

o (A water [ ;\
modeling strategy (LES in FLUENT) Sl A< -
Experimental Setup For Mixing in T-junctions

» Check state-of-the art turbulence

University of Trieste, May 2, 2013 27
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~pe Component Scale

Mixing in T-junctions

¢ Distributions of conductivity and its fluctuations in planes: N;

xD=1.0

x/D=22

xD=46 - l

002 002
L L 1 L 1 L
2 -0.02 -0.01 0 Y 0.01 0.02 -0.02 0.01 0 0.01 0.02
002 002
0014 001
N0 N 0
=001 001
002 v 002
L 1 L L L L L
-0.02 01 0 0.0 0.02

Experiment  Simulation Experiment  Simulation

University of Trieste, May 2, 2013 28
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o

Component Scale

Mixing in T-junctions

| e

L.

¢ Distributions of conductivity and its fluctuations in horizontal lines:
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~pe Component Scale

Real T-junction Cases
*» Coupling with ABAQUS

 During the FLUENT CFD simulation, transient temperatures in the solid and
pressures at the fluid-solid interface are exported to ABAQUS format at a frequency
of 40 Hz, using subroutines developed earlier within the PLiM projects.

» A database with transient results from 65 s — 85 s is transferred to LNM

4 R

FLUENT |[—> —>| ABAQUS

Temperature at 65 s Temperature at 85 s/

University of Trieste, May 2, 2013 30



e« m Heat Transfer at Super-Critical Pressures

SC-Water-cooled Reactor (SCWR) ﬁ l

Ni Sharabi
<% One of the Gen-IV reactor concepts. o o

s Generates electricity at lower cost. _

+ High conversion ratio.

¢ Elimination of dryout.

]
b

s+ Realization of the core in

the fast neutron spectrum. —=—|
< Potential for waste transmutation. _ h .
www.gen-4.org

31
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a--{w Heat Transfer at Super-Critical Pressures

SC Water: State of Matter

—~ 3,500

3,000

2,500

2,000

1,500

Enthalpy - (kJ/kg)

1,000

500

600
(O Steam(Gas) 500
O —
o
2,
O - E
= 400 &
Mix. Of Steam & Water, = =
2
= O
£
Saturated line E 300
2
G
O Water 200
Sub-Critical |Super Critical

* Thermodynamic quantity

Diagram’s courtesy of Vijay Jain, Dalhousie University

100
10 20 30

Pressure(MPa)

¢ Continuous change from
liquid-like to
gas-like state.

“* No liquid-gas boundary,
no surface tension.

¢+ It shares characteristic

of liquid and of gas

* ltis disolving like liquid,
but has good diffusivity
like gas

University of Trieste, May 2, 2013
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a--{w Heat Transfer at Super-Critical Pressures

SC Fluid Properties -

“» Thermo-physical properties
vary strongly in the vicinity of
pseudo-critical temperature. :

500 625 650 675 700 725 750 775 800

Temperature, K
«* Different heat transfer regimes ——
* Normal - convective heat E
transfer to subcritical fluids.
* Improved - leading to reduction
of wall temperature. N A\,,
® Deteriorated - leading to rise 0 62 ;50 6 w0 75 w0 15 800
of wall temperature. femperature €

v
o
o

300

Density, kg/m3

Specific heat, kl/kg K

SC-water density and heat capacity
variation with temperature

University of Trieste, May 2, 2013 33
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a--{w Heat Transfer at Super-Critical Pressures

Modeling Issues Rising From Reynolds Analogy

[PI‘ZV/OZ] [aefleuefflprt]

v i V Prandtl close to unity
. * Inmost gasses
¥ L * Reynolds analogy holds

J VS“ 6" T *  Wall functions ...
& \ \ * LLorA+<1
'Y Y Prandtl greater than unity

- * Supercritical fluids
'y * Reynolds analogy invalid
U I * Wall functions mustn't be used

\ S *  LLOorA+<<1

University of Trieste, May 2, 2013
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a--{w Heat Transfer at Super-Critical Pressures

Turbulence Modeling by RANS

s It would be economic to apply RANS, but it doesn't predict the
heat transfer deterioration in SC water very well ®

o
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a--{w Heat Transfer at Super-Critical Pressures

For LES, we use PSI-BOIL, a home-grown tool ﬁ

Niceno

s Features
* Cartesian grid, finite volume method with staggered arrangement
* CIP-CSL2 method for surface tracking (third order accuracy)
* Algebraic Multi-Grid (AMG) solution procedure; scales with problem size,
* Immersed Boundary Method (IBM) to handle complex geometries).

T-junction simulation Flows in rod-bundles Boiling simulation

University of Trieste, May 2, 2013 36
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a--{w Heat Transfer at Super-Critical Pressures

Concerns

<+ Small enough y* could
difficult to achieve with IBM

“+ With cylindrical coordinates,

problem could be reaching
fine enough (RAB)+ IBM Grid Cylindrical Grid

N

Solution

*» Focus on plane channel with
same hydraulic diameter =

Pipe Plane Channel

University of Trieste, May 2, 2013 37
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w Heat Transfer at Super-Critical Pressures

==

Computational domain

< Streamwise (x): L=1 m] Elongated domain, stiff equations
< Normal (y): H=3.14[mm] - Hard for pressure solution.

% Spanwise (z); W=2 [mm]

We could solve only with AMG
solver, using CG-IC with fill-in.

_/

Computational grid
<+ Resolution: 4096 x 48 x 64 t T
< In wall units: of ' :?

* v = 0.09 i - :
* Ax*=70 Z ______________ . “““““—E
* Az'= 9 ) e )

 SUTE S D |

Computational Point (j)

University of Trieste, May 2, 2013 38
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« [ Heat Transfer at Super-Critical Pressures

Inlet conditions

“* Obtained by copying one planar realization of the velocity field
from inside of the back to the inlet of the computational domain.

COPY

il

—h

S—

iy I
Yo |-

[N

Y

Statistics
<+ Flow development: 130 000 time steps = 2.6 [s] = 90 [LETOT]
<% Gathering statistics: 80 000 time steps = 1.6 [s] = 55 [LETOT]

*» Total: 210 000 time steps = 4.2 [s]

145 [LETOT]

University of Trieste, May 2, 2013 39
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o= Wall Temperatures

Results

“» Wall temperatures predicted well with LES

G Downward Flow . Upward Flow .
G=509 [kg/m"s]; T, =300 ['C]; q,=420 [W/m"] G=509 [kg/m"s]; T, =300 [°C]; g, =420 [W/m"]
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O 920 340 360 380 400 420 240 460 480 500 520 = 350 400 450 500 550 600 650 700

Wall Temperature [C] Wall Temperature [C]

®

)

» Relief: heat transfer deterioration effect present in the channel ©
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Mean Values
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= Reynolds Stresses
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—

m» Kinetic Energy, Dissipation, Production
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g<p’v>

[
= roduction due to Buoyancy
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— [urbulent Heat Fluxes
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- Micro Scale

Boiling Simulations

’:’ MUItl'Scale M0d9|lng AnaIyS|S Stk _ Niceno Andreaﬁi
» Sponsored by Swissnuclear (prize Project of the Year awarded for 2008)
 Goal: development of physically based boiling closure laws for CFD ...

« derived from improved understanding of the physics of boiling from experiments
and numerical simulations at different scales.

4 )

molecular nano micro

IMPROVE

-
* Anintegral part: new DNS tool with interface tracking PSI-BOIL.
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- Micro Scale

Boiling — Interface Tracking

«* CIP-CSL2 method with local sharpening scheme " Sao

« Highly accurate scheme for convection term using gradient of variable.

 Exactly conservative method.

Case (2) (b) (¢) (d)
Condition E 115 115 116 116
M 41.1 5.51

- ) O D
0 6 n o

Validation (single air bubble in oil)

Fxperiment

Re
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- Micro Scale

EOTVOS NUMBER, Eo
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o]

Micro Scale

Boiling — Results

+» Saturated pool boiling.

» Boundary Condition
— Bottom wall: Temp. =106.2 °C
— Contact angle = 38°

e |nitial Condition
— Bubble shape: hemisphere
— Bubble diameter = 0.25mm

o Computational parameters:

Grid h [um] No. Cell

Coarse 125 150 000
Medium 83 350 000
Fine 63 1200 000
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- Micro Scale

Boiling — Results

+ Bubble departure diameter and frequency

20000
15000 |
E
=
ElOOOOf
3 Coarse
5000 |- Medium
I Fine
Ok11111111111111111111111111111]
0 0.05 0.1 0.15 0.2 0.25 0.3

Time (s)

Experiment  Simulation

Diameter  [mm] 21~24 2.4
Period [sec] 0.035~0.043 0.05

No experimental uncertainty is given.

University of Trieste, May 2, 2013

50



PAUL SCHERRER INSTITUT

- Nano Scale

Below a Vapor Bubble

+* Motivation Krohn Badillo
At micro-scale, triple-line is one computational cell
 Butin reality, it is a very dynamic region, where many important phenomena take
place, such as most intensive mass transfer, variable surface tension, etc.

vapor

——

e —— —
Wall-affected liquid-vapor
region interface

liquid

* In order to build better model for micro-scale, we conduct analysis of the triple line at
nano-scales, i.e. we perform MD simulations.
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- = Nano Scale

Below a Vapor Bubble
¢+ Theory of MD

e Hamiltonian # =f(r",P") =% (P)+u(r)

e Newtonian % _Fy Molecule models used in this study
2 m.

- Taylor series r(t+dt)=r(t)+v(t)st +%a(t)5t2 .

« Van der Vaals and Coulomb:  U(r;) = U, () + Uouioms (1) = Z;Z;ushort(rij )+ Z;,Z;, q‘fi
* Leonard-Jones potential: uv(r,) = [é} _ [EJ
" y
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- Nano Scale

Below a vapor bubble
+» Validation * Results
* Liquid-vapor equlibrium * Droplet sitting on a solid

PPPPP

o With further increase in resolution
e | (number of molecules) we may
7 deduce the existence of the micro-

PPPPPP

region and contact angle.
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- = Modeling and Simulation Group

Concluding Remarks

“* MSG works on a number of topics, ranging in spatial scale
(system to nano) and scope (Gen Il - Gen IV reactors).

“»Associated with that, the number of project in which we are
involved is also relatively big.

¢ In order to cover this wide range of topics and projects,
the group has evolved. (Since 2007: from 3 to 13 members.)

“* Recruitment was facilitated by:
* Involvement in education (lectures at ETHZ);

« Dedication to networking, through international projects we are involved in.
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