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Figure 2.1 A car moves back and forth along a straight line. Because we are interested only in the
car’s translational motion, we can model it as a particle. Several representations of the information
about the motion of the car can be used. Table 2.1 is a tabular representation of the information.

(a) A pictorial representation of the motion of the car. (b) A graphical representation (position—time
graph) of the motion of the car.



60 —

The blue line between

positions ® and

approaches the green

40

tangent line as point ® is

moved closer to point ®.

Figure 2.3 (a) Graph representing the motion of the car in Figure 2.1. (b) An enlargement of the
upper-left-hand corner of the graph.



Figure 2.4 (Example 2.8) (a) Position—
time graph for a particle having an x coor-
dinate that varies in time according to the
expression x = —4t + 2¢2. (b) The particle
moves in one dimension along the x axis.

Figure 2.5 Position-time graph
for a particle under constant
velocity. The value of the constant
velocity is the slope of the line.



The car moves with
different velocities at

points ® and ®.

The slope of the green line is
the instantaneous acceleration

of the car at point 8 (Eq. 2.10).

The slope of the blue
line connecting @ and
is the average
acceleration of the car

during the time interval
At = t— ¢ (Eq. 2.9).

Figure 2.6 (a) A car, modeled
as a particle, moving along the

x axis from @ to ®, has velocity
v att= t;and velocity v at t =
. (b) Velocity—time graph (red-
brown) for the particle moving in
a straight line.



The acceleration at any time
equals the slope of the line
tangent to the curve of v,
versus £ at that time.

le
T l
l® O
b
Figure 2.7 (a) The velocity-time a
graph for a particle moving along . ]
the xaxis. (b) The instantaneous Flgure 2.8 (Conceptual Example 2.5) (a) Position—time graph
acceleration can be obtained from for an object moving along the x axis. (b) The velocity—time graph
the velocity—time graph. for the object is obtained by measuring the slope of the position—

time graph at each instant. (c) The acceleration—time graph for
the object is obtained by measuring the slope of the velocity—time
graph at each instant.



This car moves at
constant velocity (zero
acceleration).

This car has a constant
acceleration in the
direction of its velocity.

This car has a
constant acceleration
in the direction
opposite its velocity.

b

b

The acceleration at (&) is equal to

the slope of the green tangent
line at t = 2 s, which is —20 m/s2.

v, (m/s)

40
30 ®
20

10

0 t(s)

Figure 2.10 Motion diagrams
of a car moving along a straight
roadway in a single direction.

a =P = =)

U — —>
B e ‘oo

a <= -

The velocity at each instant is
indicated by a red arrow, and the
constant acceleration is indicated
by a purple arrow.
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Figure 2.11 A particle under
constant acceleration @, moving
along the x axis: (a) the position—
time graph, (b) the velocity—time
graph, and (c) the acceleration—
time graph.

Figure 2.12 (Quick Quiz 2.6)
Parts (a), (b), and (c) are v —~t graphs
of objects in one-dimensional
motion. The possible accelerations
of each object as a function of time
are shown in scrambled order in (d),
(e), and (f).

a




Figure 2.13 (Example 2.8) A speeding car passes a hid-
den trooper.
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Figure 2.16 The velocity-time
curve for a particle moving with
constant velocity v,;. The displace-
ment of the particle during the
time interval ¢, — ¢;is equal to the
area of the shaded rectangle.

At

L

n

Figure 2.15 Velocity versus time
for a particle moving along the

x axis. The total area under the
curve is the total displacement of
the particle.



The displacement of the
Y particle is the vector A¥.

N
,.\® AY
[} l/

N
~, Path of
particle

X

Figure 4.1 A particle moving
in the xy plane is located with
the position vector T drawn from
the origin to the particle. The
displacement of the particle as it
moves from @ to ® in the time
interval At = {, — {;is equal to the
—

— —
vector AY¥ = 1, — 1,

As the end point approaches @), At
approaches zero and the direction

of A¥ approaches that of the green

line tangent to the curve at @)

Direction of V at @

0

Figure 4.2 Asa particle moves
between two points, its average
velocity is in the direction of the
displacement vector AT, By defini-
tion, the instantaneous velocity at
® is directed along the line tan-
gent to the curve at ®.

As the end point of the path is
moved from B to ®'to @', the
respective displacements and
corresponding time intervals
become smaller and smaller.



Figure 4.3 A particle moves from position ® to
position ®. Its velocity vector changes from v, to v,.
The vector diagrams at the upper right show two
ways of determining the vector AV from the initial
and final velocities.

The horizontal red vectors, C““O“‘O----‘———C—--C-- L
> s >
X

representing the x - > >
component of the velocity, V
are the same length in a
both parts of the figure,
which demonstrates that
motion in two dimensions

.
b deled * t_— -
bt | @@ @
r\ = =
b |

9
__g*———CL'"' )

perpendicular directions. > > > >

Figure 4.4 (a) A puck moves
across a horizontal air hockey
table at constant velocity in the x
direction. (b) After a puff of air

in the y direction is applied to the
puck, the puck has gained a y com-
ponent of velocity, but the x com-
ponent is unaffected by the force
in the perpendicular direction.



> -

Figure 4.5 Vector representa-
tions and components of (a) the
velocity and (b) the position of a
particle under constant accelera-
tion in two dimensions.




Figure 4.6 (Example 4.1) Motion diagram for the particle.



The y component of
velocity is zero at the
Y peak of the path.

The x component of
velocity remains
constant because
there is no
acceleration in the x
direction.

The projectile is launched
with initial velocity v;.

Figure 4.7 The parabolic path
of a projectile that leaves the ori-
gin with a velocity ¥,. The velocity
vector V changes with time in
both magnitude and direction.
This change is the result of accel-
eration @ = ¢ in the negative

y direction.



O

Figure 4.8 The position vector
?f of a projectile launched from
the origin whose initial velocity
at the origin is v,. The vector V,t
would be the displacement of the
projectile if gravity were absent,
and the vector 5gt” is its vertical
displacement from a straight-line
path due to its downward gravita-
tional acceleration.

y

Figure 4.9 A projectile launched
over a flat surface from the origin
at ¢, = 0 with an initial velocity

v,. The maximum height of the
projectile is A, and the horizontal
range is R. At @, the peak of the
trajectory, the particle has coordi-
nates (R/2, h).



Complementary
values of the initial
angle 0, result in the
same value of R.

100 150 200

Figure 4.10 A projectile
launched over a flat surface from
the origin with an initial speed
of 50 m/s at various angles of
projection.



The velocity of the projectile (red
arrows) changes in direction and
magnitude, but its acceleration

(purple arrows) remains constant. J
Target ( vi—5
2 X d ~ T ‘
2 .S
< &~ ! 152
= 9 O& ad g I 2 gt
= :
8 \):ﬁ ad : XT tan Ol
2 LT T T T T e
S z= Point of yAT
€ Gun O 0 collision f
© X
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Figure 4.12 (Example 4.3) (a) Multiflash photograph of the projectile-target demonstration. If the gun
is aimed directly at the target and is fired at the same instant the target begins to fall, the projectile will
hit the target. (b) Schematic diagram of the projectile-target demonstration.



) v; = 20.0 m/s
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£5.0 m

Figure 4.14 (Example 4.5) A ski jumper leaves
the track moving in a horizontal direction.

Figure 4.13
(Example 4.4) A
stone is thrown from
the top of a building.
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Figure 4.15 (a) A car moving along a circular path at con-
stant speed experiences uniform circular motion. (b) As a
particle moves along a portion of a circular path from ® to
®, its velocity vector changes from V; to 7f. (c) The construc-
tion for determining the direction of the change in velocity
AV, which is toward the center of the circle for small Ar.



N

Path of

Figure 4.16 The motion of a
particle along an arbitrary curved
path lying in the xy plane. If the
velocity vector V (always tangent
to the path) changes in direction
and magnitude, the components
of the acceleration @ are a tan-
gential component a,and a radial
component a,.



a, = 0.300 m/s?

o)

Figure 4.17 (Example 4.7) (a) A car passes over a rise that
is shaped like an arc of a circle. (b) The total acceleration
vector @ is the sum of the tangential and radial acceleration
vectors a,and a,.
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~—5—]
& The woman standing on the
beltway sees the man moving with
a slower speed than does the
A p woman observing the man from
| | o—x, the stationary floor.
-5 0 +5 T
B P
' : — xp
0 +5 +10

Figure 4.18 Different observers /
make different measurements.

(a) Observer A is located 5 units /
to the right of Observer B. Both

observers measure the position of

a particle at P. (b) If both observ-

ers see themselves at the origin of Figure 4.19 Two observers mea-
their own coordinate system, they sure the speed of a man walking
disagree on the value of the posi- on a moving beltway.

tion of the particle at P.
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Figure 4.20 A particle located
at Pis described by two observers,
one in the fixed frame of refer-
ence S, and the other in the
frame Sg, which moves to the right
with a constant velocity Vgs. The
vector Tp, is the particle’s position
vector relative to S, and ¥py is its
position vector relative to Sg.

Z

Figure 4.21 (Example 4.8) (a) A boat aims directly across a
river and ends up downstream. (b) To move directly across the
river, the boat must aim upstream.



Contact forces

Field forces

—— e —-]

Figure 5.1 Some examples of
applied forces. In each case, a force
is exerted on the object within the
boxed area. Some agent in the
environment external to the boxed
area exerts a force on the object.

—— — — — — — —



- -
When F; and Fy
are applied
together in the

A dow_qward A dow&ward same direction, When fl is downward and FQ
force F, force Fy the spring is horizontal, the combination
elongates the elongates the elongates by of the two forces elongates the
spring 1.00 cm. spring 2.00 cm. 3.00 cm. spring by 2.24 cm.

v

=i

Figure 5.2 The vector nature
of a force is tested with a spring
scale.
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Airflow

\‘> Electric blower

Figure 5.3 On an air hockey
table, air blown through holes y
in the surface allows the puck
to move almost without friction.
If the table is not accelerating,
a puck placed on the table will
remain at rest.

Figure 5.4
(Example 5.1) A
hockey puck moving
on a frictionless sur-
face is subject to two
o -
forces F, and Fo,.
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n = tm n = tm N

A A AB=F,_
— - 1 ®
;\ Fij9 = —Fy HV
- -
i‘)12 F X Fg - FEm - v—»
Foy ¢ = FEm

f‘) - -

\ m V] VF,=Fg,
1 F.r

Figure 5. 5 Newton’s third law.
The force F12 exerted by object 1
on object 2 is equal in magnitude
and opposite in direction to

the force F 01 €xerted by object 2
on object 1.

Figure 5.6 (a) When a computer monitor is at rest on a table,
the forces acting on the monitor are the normal force i and
the gravitational force F The reaction to 1 is the force Frnt
exerted by the monitor on the table. The reaction to F is the
force F nE €xerted by the monitor on the Earth. (b) A force
diagram shows the forces on the monitor. (c) A free-body diagram
shows the monitor as a black dot with the forces acting on it.
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Figure 5.7 (a) A lamp sus-

pended from a ceiling by a chain . =
of negligible mass. (b) The forces N Flgure 5.9 When aforce F
acting on the lamp are the gravi- \J F, pushes vertically downward on
tational force F,and the force T another object, the normal force
exerted by the chain. b 1 on the object is greater than the

I itati ] fi n=F + F
Figure 5.8 (a) A crate being gravitationat force: n = Ly

pulled to the right on a friction-
less floor. (b) The free-body dia-
gram representing the external
forces acting on the crate.
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Figure 5.10 (Example 5.4) (a) A traffic light suspended by
cables. (b) The forces acting on the traffic light. (c) The free-body
diagram for the knot where the three cables are joined.
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Figure 5.11 (Example 5.6) (a) A car on a frictionless incline. (b) The free-
body diagram for the car. The black dot represents the position of the center
of mass of the car. We will learn about center of mass in Chapter 9.



Figure 5.12 (Example 5.7) (a) A force is
applied to a block of mass m;, which pushes on
a second block of mass m,. (b) The forces act-
ing on m,. (c) The forces acting on m,.



When the elevator accelerates When the elevator accelerates

upward, the spring scale reads downward, the spring scale
a value greater than the reads a value less than the
weight of the fish. weight of the fish.

) 4 v

Figure 5.13 (Example 5.8) A fish is weighed on a spring scale in
an accelerating elevator car.
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Figure 5.14 (Example 5.9) The
Atwood machine. (a) Two objects
connected by a massless inextensible
string over a frictionless pulley.

(b) The free-body diagrams for the
two objects.

Figure 5.15 (Example 5.10) (a) Two objects

connected by a lightweight cord strung over a

frictionless pulley. (b) The free-body diagram
for the ball. (c) The free-body diagram for the
block. (The incline is frictionless.)



For small applied
forces, the magnitude
of the force of static
friction equals the
magnitude of the
applied force.

When the magnitude of
the applied force
exceeds the magnitude
of the maximum force of
static friction, the trash
can breaks free and
accelerates to the right.

[ M‘l
“ . Motion
[
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0 |«<— Static region —»<«— Kinetic region —»

Figure 5.16 (a) and (b) When
pulling on a trash can, the direc-
tion of the force of friction f
between the can and a rough sur-
face is opposite the direction of
the applied force F. (c) A graph of
friction force versus applied force.
Notice that f, .. > f;.

Figure 5.17 (Quick Quiz 5.7)

A father slides his daughter on a
sled either by (a) pushing down
on her shoulders or (b) pulling up
on a rope.



Figure 5.18 (Example 5.11) The
external forces exerted on a block
lying on a rough incline are the grav-
itational force mg, the normal force
n, and the force of friction f,. For
convenience, the gravitational force
is resolved into a component mg sin 60
along the incline and a component
mg cos 6 perpendicular to the
incline.

n Motion

mg
Figure 5.19 (Example 5.12) After
the puck is given an initial velocity
to the right, the only external forces
acting on it are the gravitational
force mg, the normal force 1, and
the force of kinetic friction ?k.



Figure 5.20 (Example 5.13) (a) The external force ¥ applied

as shown can cause the block to accelerate to the right. (b, c) Dia-
grams showing the forces on the two objects, assuming the block

accelerates to the right and the ball accelerates upward.



A force f‘), , directed
toward the center
of the circle, keeps
the puck moving
in its circular path.

/
/
/
/

/

Figure 6.1 An overhead view of a
puck moving in a circular path in a
horizontal plane.

—_————

When the
string breaks,
the puck
moves in the
direction
tangent

to the circle.

Figure 6.2 The string holding the
puck in its circular path breaks.



Figure 6.3 (Example 6.1) (a) A
conical pendulum. The path of the
ball is a horizontal circle. (b) The
forces acting on the ball.

—
s
-

Figure 6.4 (Example 6.3) (a) The force
of static friction directed toward the center

of the curve keeps the car moving in a cir-
cular path. (b) The forces acting on the car.
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Figure 6.5 (Example 6.4) A car
moves into the page and is round-
ing a curve on a road banked at an
angle 6 to the horizontal. When
friction is neglected, the force that
causes the centripetal accelera-
tion and keeps the car moving in
its circular path is the horizontal
component of the normal force.




Bottom

Figure 6.6 (Example 6.5) (a) A child rides on a Ferris wheel.
(b) The forces acting on the child at the bottom of the path.
(c) The forces acting on the child at the top of the path.



The net force exerted on
the particle is the vector
sum of the radial force
and the tangential force.

©
Figure 6.8 (Quick Quiz6.2) A

bead slides along a curved wire.

Figure 6.7 When the net force acting on a par-
ticle moving in a circular path has a tangential
component 2 F,, the particle’s speed changes.



Figure 6.9 (Example 6.6) The forces acting on a
sphere of mass m connected to a cord of length Rand
rotating in a vertical circle centered at O. Forces acting
on the sphere are shown when the sphere is at the top
and bottom of the circle and at an arbitrary location.



From the passenger’s frame of
reference, a force appears to push
her toward the right door, but it is
a fictitious force.

4

Fictitious
force

Relative to the reference frame of
the Earth, the car seat applies a
real force (friction) toward the
left on the passenger, causing her
to change direction along with
the rest of the car.

) 4

Figure 6.10 (a) A car approach-
ing a curved exit ramp. What
causes a passenger in the front
seat to move toward the right-
hand door? (b) Passenger’s frame
of reference. (c) Reference frame
of the Earth.



By the time ; that the ball arrives at the other side
of the platform, your friend is no longer there to
catch it. According to this observer, the ball follows
a straight-line path, consistent with Newton’s laws.

From your friend’s point of view, the ball veers to
one side during its flight. Your friend introduces a
fictitious force to explain this deviation from the
expected path.

4 W
Friend at
t=0 Friend at Ba_ll at
\ L=t =1

<y /

/»

I

/

\

Ball
t

at
=0

Figure 6.11 You and your friend stand at the edge of a rotating circular platform. You throw the
ball at £ = 0 in the direction of your friend. (a) Overhead view observed by someone in an inertial ref-
erence frame attached to the Earth. The ground appears stationary, and the platform rotates clock-
wise. (b) Overhead view observed by someone in an inertial reference frame attached to the platform.
The platform appears stationary, and the ground rotates counterclockwise.



. . . . A noninertial observer riding in the car says that the net
An inertial observer at rest outside the car claims that the 8 Y

. . . . force on the sphere is zero and that the deflection of the
acceleration of the sphere is provided by the horizontal phere sz - >

= cord from the vertical is due to a fictitious force Fgious
component of T. =

that balances the horizontal component of T.

Inertial

Noninertial
observer

observer

Figure 6.12 (Example 6.7) A small sphere suspended from the ceiling of a boxcar accelerating to the right is deflected as shown.
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Figure 6.13 (a) A small sphere
falling through a liquid. (b) A
motion diagram of the sphere as
it falls. Velocity vectors (red) and
acceleration vectors (violet) are
shown for each image after the
first one. (c) A speed-time graph
for the sphere.

® O¢

C
-— -— — - - =

C

- - <

C

o

The sphere approaches a
maximum (or terminal)
speed vr.

I
|
I
I
I
I
|
-

DN

The time constant 7 is the
time at which the sphere
reaches a speed of 0.632v7.
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Figure 6.14 (a) An object
falling through air experiences
a resistive force R and a gravi-
tational force F = mg. (b) The
object reaches terminal speed
when the net force actlng on it is
zero, that is, when R = — F or
R = mg.



0.18 0.18

0.16 [ The data points do not lie 0.16
Z 0.14 - along a straight line, but Z 0.14F
9 0.12 | instead suggest a curve. g 0.12f
S 0.10 S 0.10f The fit of the straight line
_qg) 0.08 _qg) 0.08 \ to the data points indicates
g 0.06 %’ 0.06 - that the resistive force is
& 0.04 & 0.04 proportional to the terminal

0.02 0.02 speed squared.

0.00 l J 0.00 l | | | | J

3 4 0 2 4 6 8 10 12
Terminal speed (m/s) Terminal speed squared (m/ 5)?
B b

Figure 6.16 (Example 6.10) (a) Relationship between the resistive force acting on falling coffee filters and their terminal speed.
(b) Graph relating the resistive force to the square of the terminal speed.



Figure 7.2 An object undergoes
a displacement A¥ under t_l)le
action of a constant force F.

Fis the only force
that does work on
the block in this
situation.

Figure 7.3 An object is dis-
placed on a frictionless, horizon-
tal surface. The normal force n
and the gravitational force mg di
no work on the object.

Figure 7.4 (Quick Quiz 7.2)

A block is pulled by a force in four
different directions. In each case,
the displacement of the block

is to the right and of the same
magnitude.



Figure 7.5 (Example 7.1) A
vacuum cleaner being pulled
at an angle of 30.0° from the

horizontal.

= ABcos 6

Figure 7.6 The scalar product
- - —
A - B equals the magnitude of A
multiplied by B cos 6, which is the
projection of B onto A.



The total work done for the
displacement from x; to xyis
approximately equal to the sum
of the areas of all the rectangles.

v
F Area =F, Ax

x )C ~\'*~

The work done by the component
F, of the varying force as the par-
ticle moves from x; to x,is exactly
equal to the area under the curve.

v
F

X

Work

X
Xy

Figure 7.7 (a) The work done on
a particle by the force component
F, for the small displacement Axis
F, Ax, which equals the area of the
shaded rectangle. (b) The width Ax
of each rectangle is shrunk to zero.

The net work done by this force
is the area under the curve.

F.(N) /
®
/

5—

©

x (m)

|
|
|
|
|
0 | L | |
I 2 3 4
Figure 7.8 (Example 7.4) The
force acting on a particle is constant
for the first 4.0 m of motion and then

decreases linearly with x from xg =
4.0 m to xg = 6.0 m.



e When xis positive
(stretched spring), the
| spring force is directed
x to the left.

When xis zero
(natural length of the

|
|
:
|
|
|

x force is zero.
fs | .
— When x is negative Flgure 7.9 The force exerted
| : . . .
HWW‘ | ! (compressed spring), by a spring on a block varies with
| 1 i W i
. x the spring force is the block’s position x relative to
| directed to the right. R ..
| the equilibrium position x = 0.
S

| (a) x1is positive. (b) xis zero. (c) x
is negative. (d) Graph of F versus

The work done by the  x for the block—spring system.

spring force on the

block as it moves from

—Xax 10 0 is the area

X of the shaded triangle,

L2

3 k% max-




If the process of moving the
block is carried out very slowly,
then Fapp is equal in magnltude
and opposite in direction to F

at all times.

Fapp Fs
- >
TR ‘
X = "Xmax %= 0

Figure 7.10 A block moves from
X; = "Xy o X, =0 on a frlctlon-

less surface as a force F
applied to the block.

aPP

The elongation d is
caused by the weight mg mg
of the attached object.

Figure 7.11 (Example 7.5) Deter-
mining the force constant k of a

spring.
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Figure 7.12 An object undergo-
ing a displacement AT = Axi and
a change in velocity under the .
action of a constant net force > F.

=)
2

mg

Figure 7.13 (Example 7.6) A
block pulled to the right on a fric-
tionless surface by a constant hori-
zontal force.



Figure 7.14 (Conceptual Example 7.7) A refrigerator attached to
a frictionless, wheeled hand truck is moved up a ramp at constant
speed.



The work done by
the agent on the
book-Earth system is
mgyy — Mgy;.

v

=

a
A;) pp

Figure 7.15 An external agent
lifts a book slowly from a height y,
to a height y,.
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Figure 7.16 A spring on a frictionless, horizontal surface is compressed a distance x,,,, when a
block of mass m is pushed against it. The block is then released and the spring pushes it to the right,
where the block eventually loses contact with the spring. Parts (a) through (e) show various instants in
the process. Energy bar charts on the right of each part of the figure help keep track of the energy in
the system.
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Figure 7.17 (Quick Quiz 7.7)

A ball connected to a massless
spring suspended vertically. What
forms of potential energy are asso-
ciated with the system when the
ball is displaced downward?
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Figure 7.18 (a) A book sliding
to the right on a horizontal sur-
face slows down in the presence of
a force of kinetic friction acting to
the left. (b) An energy bar chart
showing the energy in the system
of the book and the surface at the
initial instant of time. The energy
of the system is all kinetic energy.
(c) While the book is sliding,

the kinetic energy of the system
decreases as it is transformed to
internal energy. (d) After the
book has stopped, the energy of
the system is all internal energy.



The work done in moving the
book is greater along the brown
path than along the blue path.
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Figure 7.19 The work done
against the force of kinetic fric-

tion depends on the path taken as
the book is moved from ® to ®.

The restoring force exerted by the
spring always acts toward x = 0,
the position of stable equilibrium.
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Figure 7.20 (a) Potential energy
as a function of x for the friction-
less block-spring system shown in
(b). For a given energy E of the sys-
tem, the block oscillates between
the turning points, which have the
coordinates x = *x, ..



Figure 7'21 A plot of Uver.51.15 Positive slope Negative slope
x for a particle that has a position x < 0 x>0

of unstable equilibrium located
at x = 0. For any finite displace-
ment of the particle, the force on
the particle is directed away from

x=0. 0
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Figure 7.22 (Example 7.9) Potential energy curve associated
with a molecule. The distance xis the separation between the two
atoms making up the molecule.



























