Unconstrained Optimization

UNCONSTRAINED OPTIMIZATION

We generalize the results for a single variable to the case of many variables

Consider the problem:

```
max_x f(x) subject to x \in S
```

where x is a vector

Proposition

Let f be a differentiable function of n variables defined on the set S. If the point x in the interior of S is a local or global maximizer or minimizer of f then

 $f'_i(x) = 0 \ for \ i = 1, ..., n.$

Then the condition that all partial derivatives are equal to zero is a necessary condition for an interior optimum (and therefore for an optimum in an unconstrained optimization where each element of x could be any of the real numbers.

Conditions under which a stationary point is a local optimum

Let *f* be a function of *n* variables with continuous partial derivatives of first and second order, defined on the set *S*. Suppose that x^* is a stationary point of *f* in the interior of *S* (so that $f'_i(x^*) = 0$ for all *i*).

If $H(x^*)$ is negative definite then x^* is a local maximizer. If x^* is a local maximizer then $H(x^*)$ is negative semidefinite. If $H(x^*)$ is positive definite then x^* is a local minimizer. If x^* is a local minimizer then $H(x^*)$ is positive semidefinite.

where H(x) denotes the Hessian of f at x.

Conditions under which a stationary point is a global optimum

Suppose that the function f has continuous partial derivatives in a convex set S and x^* is a stationary point of f in the interior of S (so that $f'_i(x^*) = 0$ for all i).

1. If f is concave then x^* is a global maximizer of f in S if and only if it is a stationary point of f

2. if f is convex then x^* is a global minimizer of f in S if and only if it is a stationary point of f.

H(z) is negative semidefinite for all $z \in S \Rightarrow [x \text{ is a global maximizer of } f \text{ in } S \text{ if and only if } x \text{ is a stationary point of } f]$

H(z) is positive semidefinite for all $z \in S \Rightarrow [x \text{ is a global minimizer of } f \text{ in } S \text{ if and only if } x \text{ is a stationary point of } f],$

where H(x) denotes the Hessian of *f* at *x*.

Example 1: Unconstrained Maximization with two variables

For example Utility = U(x, y) or Output = F(K, L)

Now try to find the values of x and y which maximise a function f(x, y)

Three steps:

- 1. Set **both** 1st order conditions equal to zero $f_x = 0$ and $f_y = 0$
- (the slope of the function with respect to both variables must be simultaneously zero)
- 2. Solve the equations simultaneously for x and y
- However this is a necessary but not sufficient condition (saddle points, points of inflection)

However this is a necessary but not sufficient condition (saddle points, points of inflection)

3. Second order conditions (for maximization)

$$H = \begin{pmatrix} f_{xx} & f_{xy} \\ f_{xy} & f_{yy} \end{pmatrix}$$

$$f_{xx} \leq 0$$
, $f_{yy} \leq 0$ and $f_{xx}f_{yy} - f_{xy}^2 \geq 0$

Note: Second order conditions (for minimization) are $f_{xx} \ge 0$, $f_{yy} \ge 0$ and $f_{xx}f_{yy} - f_{xy}^2 \ge 0$

$$f(x,y) = 4x - 2x^{2} + 2xy - y^{2}$$

1. (i). $f_{x} = 4 - 4x + 2y = 0$
(ii). $f_{y} = 2x - 2y = 0$

2. Solve: from (ii) we have x = yinsert into (i) to get 4 - 4x + 2x = 0 or 4 = 2x or x = 2so y = x = 2

3. $H = \begin{pmatrix} f_{xx} & f_{xy} \\ f_{xy} & f_{yy} \end{pmatrix} = \begin{pmatrix} -4 & 2 \\ 2 & -2 \end{pmatrix}$ The first order leading principal minor is $f_{xx} = -4 < 0$ The second order leading principal minor is

$$f_{xx}f_{yy} - f_{xy}^2 = (-4)(-2) - (2)^2 = 4 > 0$$

Then the matrix H is negative definite f is (strictly) concave, so we have a maximum point where x = 2and y = 2

Example 2

Maximize
$$f(x) = -x_1^2 - 2x_2^2$$

The first order conditions are:

$$\begin{bmatrix} \frac{\partial f}{\partial x_1} \\ \frac{\partial f}{\partial x_2} \end{bmatrix} = \begin{pmatrix} -2x_1 \\ -4x_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

Is this a maximum? – it will be if function is concave 1. H is,

$$H = \begin{pmatrix} \frac{\partial^2 f}{\partial x_1^2} & \frac{\partial^2 f}{\partial x_1 \partial x_2} \\ \\ \frac{\partial^2 f}{\partial x_2 \partial x_1} & \frac{\partial^2 f}{\partial x_2^2} \end{pmatrix} = \begin{pmatrix} -2 & 0 \\ 0 & -4 \end{pmatrix}$$

From H find the leading principal matrices by eliminating:

1. The last n-1 rows and columns – written as $D_1 = (-2)$

2. The last n-2 rows and columns – written as $D_2 = H$ Compute the determinants of these leading principal matrices.

1.
$$|D_1| = -2$$

2. $|H| = 8$

Then the matrix H is negative definite

f is (strictly) concave

the values of x which satisfy FOC (0 and 0) give a maximum.

Example 3

Total revenue R = $12q_1 + 18q_2$ Total Cost = $2q_1^2 + q_1q_2 + 2q_2^2$ Find the values of q_1 and q_2 that maximise profit Profit = revenue - cost = $12q_1 + 18q_2 - (2q_1^2 + q_1q_2 + 2q_2^2)$

The first order conditions are:

$$\begin{pmatrix} \frac{\partial \pi}{\partial q_1} \\ \frac{\partial \pi}{\partial q_2} \end{pmatrix} = \begin{pmatrix} 12 - 4q_1 - q_2 \\ 18 - q_1 - 4q_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

Solving for q_1 and q_2 gives $q_1 = 2$ and $q_2 = 4$ Is this a maximum? —it will be if function is concave The Hessian is

$$H = \begin{pmatrix} \frac{\partial^2 \pi}{\partial q_1^2} & \frac{\partial^2 \pi}{\partial q_1 \partial q_2} \\ \frac{\partial^2 \pi}{\partial q_2 \partial q_1} & \frac{\partial^2 \pi}{\partial q_2^2} \end{pmatrix} = \begin{pmatrix} -4 & -1 \\ -1 & -4 \end{pmatrix}$$

From H find the leading principal matrices by eliminating:

1.The last n-1 rows and columns – written as $D_1 = (-4)$

2.The last n-2 rows and columns – written as $D_2 = H$ Compute the determinants of these leading principal matrices.

$$|D_1| = -4$$

2. |H| = (-4) * (-4) - 1 = 15

So H is negative definite, then f is (strictly) concave and the values for q_1 and q_2 maximise profits

Example with three variables

Maximize
$$f(x) = -x_1^2 - 2x_2^2 - x_3^2$$

The first order conditions are:

$$\begin{pmatrix} \frac{\partial f}{\partial x_1} \\ \frac{\partial f}{\partial x_2} \\ \frac{\partial f}{\partial x_3} \end{pmatrix} = \begin{pmatrix} -2x_1 \\ -4x_2 \\ -2x_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

The Hessian is:

$$H = \begin{pmatrix} \frac{\partial^2 f}{\partial x_1^2} & \frac{\partial^2 f}{\partial x_1 \partial x_2} & \frac{\partial^2 f}{\partial x_1 \partial x_3} \\ \frac{\partial^2 f}{\partial x_2 \partial x_1} & \frac{\partial^2 f}{\partial x_2^2} & \frac{\partial^2 f}{\partial x_2 \partial x_3} \\ \frac{\partial^2 f}{\partial x_3 \partial x_1} & \frac{\partial^2 f}{\partial x_3 \partial x_2} & \frac{\partial^2 f}{\partial x_3^2} \end{pmatrix} = \begin{pmatrix} -2 & 0 & 0 \\ 0 & -4 & 0 \\ 0 & 0 & -2 \end{pmatrix}$$
13

From H find the leading principal matrices by eliminating:

1. The last n-1 rows and columns – $D_1 = (-2)$

2. The last n-2 rows and columns $-D_2 = \begin{pmatrix} -2 & 0 \\ 0 & -4 \end{pmatrix}$ 3. The last 0 rows and columns $-D_3 = H$

1. Compute the determinants of these leading principal matrices.

1.
$$|D_1| = -2$$
,
2. $|D_2| = 8$
3. $|H| = -16$

H is negative definite, then f is (strictly) concave

Summing up – two variable maximization

1. Differentiate f(x) and solve the first order conditions are:

$$\begin{bmatrix} \frac{\partial f}{\partial x_1} \\ \frac{\partial f}{\partial x_2} \end{bmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

2. Check concavity of f to see if the conditions represent a maximum.

- a. We compute the Hessian
- b. We check if it is negative definite
- c. i.e. check if, for all x_1 and x_2 ,

$$\frac{\partial^{2} f}{\partial x_{1}^{2}} < 0 \quad \text{and} \quad \begin{vmatrix} \frac{\partial^{2} f}{\partial x_{1}^{2}} & \frac{\partial^{2} f}{\partial x_{1} \partial x_{2}} \\ \frac{\partial^{2} f}{\partial x_{2} \partial x_{1}} & \frac{\partial^{2} f}{\partial x_{2}^{2}} \end{vmatrix} or \begin{vmatrix} f_{11} & f_{12} \\ f_{21} & f_{22} \end{vmatrix} = f_{11} f_{22} - f_{21} f_{12} > 0$$

$$15$$

3. If these conditions hold, H is negative definite, f is strictly concave and the stationary point is a maximum

4. If these conditions are violated by equality, i.e. are equal to zero, check the conditions for semi definiteness

$$\frac{\partial^2 f}{\partial x_1^2} \le 0 \qquad \frac{\partial^2 f}{\partial x_2^2} \le 0 \qquad \begin{vmatrix} f_{11} & f_{12} \\ f_{21} & f_{22} \end{vmatrix} = f_{11}f_{22} - f_{21}f_{12} \ge 0$$

5. If these conditions hold, H is negative semidefinite, f is concave and the stationary point is a maximum

6. If these conditions are violated, we need further investigation

Summing up – 3 variable maximization

1. Differentiate f(x) and solve the the first order conditions are:

$$\begin{pmatrix} \frac{\partial f}{\partial x_1} \\ \frac{\partial f}{\partial x_2} \\ \frac{\partial f}{\partial x_3} \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

2. Check concavity of f to see if the conditions represent a maximum.

a. We compute the Hessian

b. We check if it is negative definite

b.We check if it is negative definite

$$\frac{\partial^2 f}{\partial x_1^2} < 0 \qquad \qquad \left| \begin{array}{c} \frac{\partial^2 f}{\partial x_1^2} & \frac{\partial^2 f}{\partial x_1 \partial x_2} \\ \frac{\partial^2 f}{\partial x_2 \partial x_1} & \frac{\partial^2 f}{\partial x_2^2} \end{array} \right| or \begin{vmatrix} f_{11} & f_{12} \\ f_{21} & f_{22} \end{vmatrix} = f_{11}f_{22} - f_{21}f_{12} > 0$$

$$\begin{vmatrix} f_{11} & f_{12} & f_{13} \\ f_{21} & f_{22} & f_{23} \\ f_{31} & f_{32} & f_{33} \end{vmatrix} = f_{11} \begin{vmatrix} f_{22} & f_{23} \\ f_{32} & f_{33} \end{vmatrix} - f_{12} \begin{vmatrix} f_{21} & f_{23} \\ f_{31} & f_{33} \end{vmatrix} + f_{13} \begin{vmatrix} f_{21} & f_{22} \\ f_{31} & f_{32} \end{vmatrix} < 0$$

3. If these conditions hold, H is negative definite, f is strictly concave and the stationary point is a maximum4. If these conditions are violated by equality, i.e. are equal to zero, check the conditions for semi definiteness

$$\begin{aligned} f_{11} &\leq 0, f_{22} \leq 0 \ f_{33} \leq 0 \\ \begin{vmatrix} f_{11} & f_{12} \\ f_{21} & f_{22} \end{vmatrix} \geq 0 \begin{vmatrix} f_{11} & f_{13} \\ f_{31} & f_{33} \end{vmatrix} \geq 0 \begin{vmatrix} f_{22} & f_{23} \\ f_{32} & f_{33} \end{vmatrix} \geq 0 \\ \begin{vmatrix} f_{11} & f_{12} & f_{13} \\ f_{21} & f_{22} & f_{23} \\ f_{31} & f_{32} & f_{33} \end{vmatrix} \leq 0 \end{aligned}$$

5. If these conditions hold, H is negative semidefinite, f is concave and the stationary point is a maximum
6. If these conditions are violated, we need further investigation

Important properties

```
Consider the problem

max_x f(x) subject to x \in S

and let x^* be its solution

1) x^* is the solution of the following problem:

max_x g(f(x)) subject to x \in S

where g(.) is a no decreasing function
```

2) The following problem is equivalent $min_x - f(x)$ subject to $x \in S$