
Unconstrained Optimization



We generalize the results for a single variable to the case of 

many variables

Consider the problem:

����	�	(�)	�	
���	��	�	 ∈ �

where x is a vector

Proposition 

Let f be a differentiable function of n variables defined on the set 

S. If the point x in the interior of S is a local or global maximizer

or minimizer of f then 
		��

�(�) 	= 	0	���	�	 = 	1, … , �.

Then the condition that all partial derivatives are equal to zero is

a necessary condition for an interior optimum (and therefore for

an optimum in an unconstrained optimization where each

element of x could be any of the real numbers.
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UNCONSTRAINED OPTIMIZATION
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Let f be a function of n variables with continuous partial

derivatives of first and second order, defined on the set S.

Suppose that x* is a stationary point of f in the interior of S (so

that f i'(x*) = 0 for all i).

If H(x*) is negative definite then x* is a local maximizer.

If x* is a local maximizer then H(x*) is negative semidefinite.

If H(x*) is positive definite then x* is a local minimizer.

If x* is a local minimizer then H(x*) is positive semidefinite.

where H(x) denotes the Hessian of f at x.

Conditions under which a stationary point is a local optimum
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Suppose that the function f has continuous partial

derivatives in a convex set S and x* is a stationary point of f

in the interior of S (so that f i'(x*) = 0 for all i).

1. if f is concave then x* is a global maximizer of f in S if and

only if it is a stationary point of f

2. if f is convex then x* is a global minimizer of f in S if and

only if it is a stationary point of f .

Conditions under which a stationary point is a global optimum
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H(z) is negative semidefinite for all z ∈ S ⇒ [x is a global

maximizer of f in S if and only if x is a stationary point of f ]

H(z) is positive semidefinite for all z ∈ S ⇒ [x is a global

minimizer of f in S if and only if x is a stationary point of f ],

where H(x) denotes the Hessian of f at x.



Example 1: Unconstrained Maximization with two variables

For example Utility = U(x, y) or Output = F(K, L)

Now try to find the values of x and y which maximise a 

function �(�, �)

Three steps:

1. Set both 1st order conditions equal to zero fx = 0 and fy = 0

(the slope of the function with respect to both variables must

be simultaneously zero)

2.  Solve the equations simultaneously for x and y

However this is a necessary but not sufficient condition 

(saddle points, points of inflection)
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However this is a necessary but not sufficient condition 

(saddle points, points of inflection)

3. Second order conditions (for maximization)

� =
fxx fxy

fxy fyy

fxx < 0,  fyy < 0  and fxxfyy – f2xy > 0

Note: Second order conditions (for minimization)  are

fxx ≥ 0,  fyy ≥ 0 and fxxfyy – f2xy > 0
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f(x,y) = 4x – 2x2 + 2xy – y2

1. (i). fx = 4 – 4x + 2y = 0

(ii). fy = 2x – 2y = 0

2. Solve: from (ii) we have x = y

insert into (i) to get 4 – 4x + 2x = 0 or 

4 = 2x or x = 2

so y = x = 2

3. � =
fxx fxy

fxy fyy
=

−4 2
2 −2

The first order leading principal minor is fxx = -4 < 0

The second order leading principal minor is 

fxxfyy– f2xy = (-4)(-2) – (2)2 = 4>0

Then the matrix H is negative definite

f is (strictly) concave, so we have a maximum point where x = 2

and y = 2



Example 2

Maximize f(x) = – x1
2 – 2 x2

2

The first order conditions are:

Is this a maximum? – it will be if function is concave

1. H is,
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From H find the leading principal matrices by eliminating:

1. The last n-1 rows and columns – written as D1 = (-2)

2. The last n-2 rows and columns – written as D2 = H

Compute the determinants of these leading principal

matrices.

1. |!1	| 	= 		−2

2. |�	| 	= 	8

Then the matrix H is negative definite

f is (strictly) concave

the values of x which satisfy FOC (0 and 0) give a maximum.
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Example 3

Total revenue R = 12q1 + 18q2

Total Cost = 2q1
2 + q1q2 +2q2

2

Find the values of q1 and q2 that maximise profit

Profit = revenue – cost = 12q1 + 18q2 - (2q1
2 + q1q2 +2q2

2 )

The first order conditions are:

Solving for q1 and q2 gives q1 = 2 and q2 =4

Is this a maximum? –it will be if function is concave
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The Hessian is

From H find the leading principal matrices by eliminating:

1.The last n-1 rows and columns – written as D1 = (-4)

2.The last n-2 rows and columns – written as D2 = H

Compute the determinants of these leading principal

matrices.

1.	 !1 = −4

2. |�| 	= 	 (−4) ∗ (−4) − 	1 = 15

So H is negative definite, then f is (strictly) concave and the

values for q1 and q2 maximise profits
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Example with three variables

Maximize	�(�) 	= 	−�1
2 − 2

	
�2

2 − �3
2

The first order conditions are:

The Hessian is:
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From H find the leading principal matrices by eliminating:

1. The last n-1 rows and columns – !1	
=	 (−2)

2. The last n-2 rows and columns – !2	
=

−2 0

0 −4
3. The last 0 rows and columns – !3	

= 	�

1. Compute the determinants of these leading principal

matrices.

1. |!1	| = 	−2,

2. |!2	| = 	8

3. � =	−16

H is negative definite, then f is (strictly) concave
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Summing up – two variable maximization

1. Differentiate f(x) and solve the first order conditions are:

2. Check concavity of f to see if the conditions represent a

maximum.

a. We compute the Hessian

b. We check if it is negative definite

c. i.e. check if, for all �*	 and �+,

and
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3. If these conditions hold, H is negative definite, f is

strictly concave and the stationary point is a maximum

4. If these conditions are violated by equality, i.e. are

equal to zero, check the conditions for semi definiteness

5. If these conditions hold, H is negative semidefinite, f is

concave and the stationary point is a maximum

6. If these conditions are violated, we need further

investigation
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Summing up – 3 variable maximization

1. Differentiate f(x) and solve the the first order conditions are:

2. Check concavity of f to see if the conditions represent a

maximum.

a. We compute the Hessian

b. We check if it is negative definite
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b.We check if it is negative definite
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3. If these conditions hold, H is negative definite, f is strictly

concave and the stationary point is a maximum

4. If these conditions are violated by equality, i.e. are equal to

zero, check the conditions for semi definiteness

5. If these conditions hold, H is negative semidefinite, f is

concave and the stationary point is a maximum

6. If these conditions are violated, we need further

investigation
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Important properties

Consider	the	problem

����	�	(�)	�	
���	��	�	 ∈ �

and let �∗ be its solution

1) �∗ is the solution of the following problem:

����	:(�	 � )	�	
���	��	�	 ∈ �

where : . is a no decreasing function

2) The following problem is equivalent

����	 − �	(�)	�	
���	��	�	 ∈ �
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