
Sistema di Propulsione Lanciatori

MATRICE DEI SISTEMI

Trieste, 7 Novembre 2011

(SOTTO)-SISTEMI

- Attitude Determination and Control **Approach**
- Sensors and Actuators

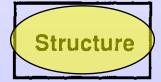
- · Orbit Determination Approach
- · Orbit Control Approach

- · Passive vs Active
- Radiator Area

Mission **Operations** Concept

Launch

System


Ground

Support System

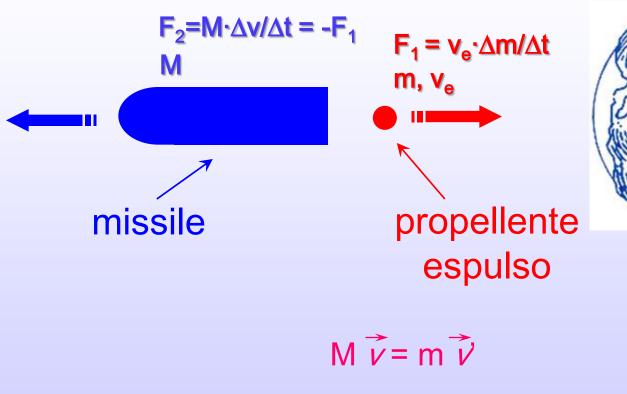
- · Power Production Techniques
- · Solar Array Configuration and Size
- Battery Capacity and Depth of Discharge

- · Required Stiffness
- Types of Structures
- Mass Distribution
- Materials
- Interfaces

- · Propulsion Technology
- · Mass and Tankage
- · Thruster Sizing

- · Required Performance
- · EIRP and G/T
- · Telemetry and Command Link Performance

Utilizzo


- Operazioni di lancio
- Trasferimenti orbitali
- Mantenimento della missione
- Controllo di assetto

Categorie:

- Propulsione gas freddo
- Reazioni chimiche
- Accelerazione ioni / elettroni

Principio di funzionamento 1/4

Conservazione del momento

Principio di funzionamento 2/4

$$dp/dt = d(M\nu)/dt = M d\nu/dt + \nu_e dM/dt = F_1 + F_2 = 0$$

$$velocità gas$$

$$F_1 = -F_2 \Rightarrow M d\nu/dt = -\nu_e dM/dt$$

$$massa totale a$$

$$combustibile esaurito$$

$$equazione dei razzi$$

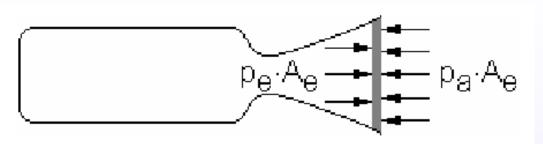
$$velocità razzo a$$

$$combustibile esaurito$$

$$F = \nu_e dM/dt \dots$$

$$F = \nu_e dM/dt \dots$$

$$F = \nu_e dM/dt + A_e(p_e - p_a)$$


$$(thrust)$$

$$superficie pressione gas pressione$$

$$ugello in uscita atmosferica$$

Principio di funzionamento 3/4

$$F = v_e dM/dt + A_e(p_e - p_a)$$

$$p_e > p_a$$

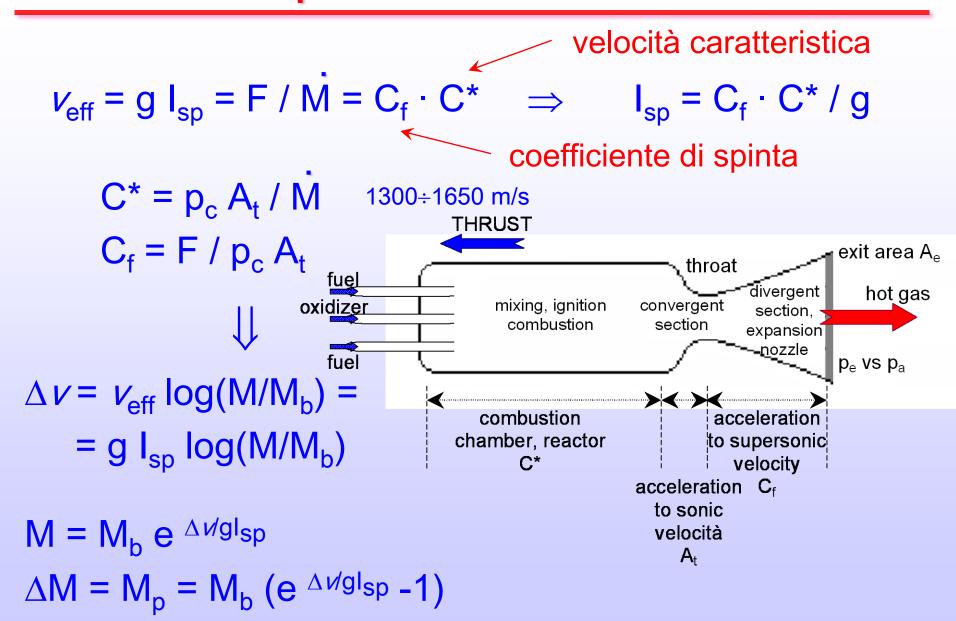
under-expansion

$$p_e = p_a$$

ideal expansion

$$p_e < p_a$$

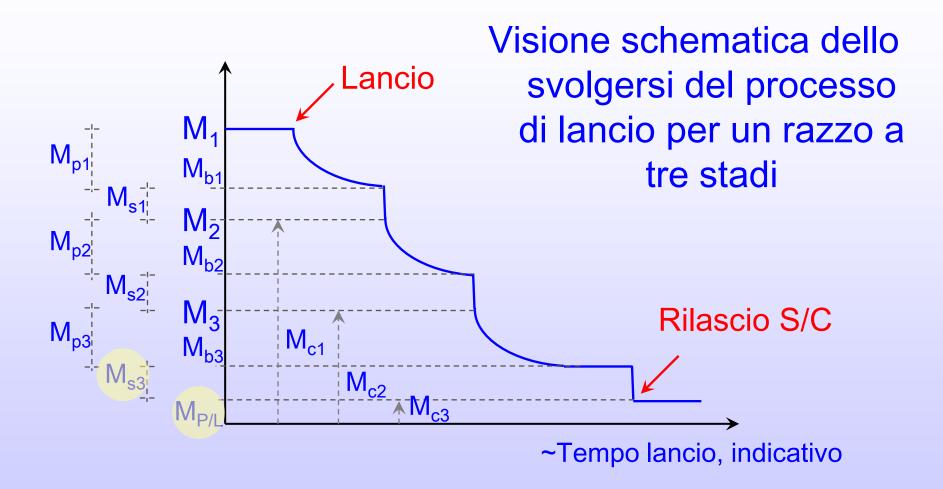
over-expansion


$$I_{sp} = F / g dM/dt = F / gM$$

Impulso Specifico

$$= v_{\rm eff} / g$$

$$I_{sp} = K \sqrt{T_c/\mu}$$
 (propulsione chimica)


Principio di funzionamento 4/4

Trieste, 7 Novembre 2011

Razzi a Multistadi 1/3

Razzi a Multistadi 2/3

Razzi a Multistadi 3/3

Esercizio:

razzo a 3 stadi massa iniziale 100 t

frazione di carico $\lambda_i = 0.279$ (ogni stadio)

massa propellente consumato / massa iniziale del solo stadio (struttura+prop.): a = 0.831 (ogni stadio)

Calcolare masse propellenti e componenti ad ogni

stadio

(trucco: calcolare

$$(1-a)x(1-\lambda)=?)$$

Trieste, 7 Novembre 2011

stadio	m _i	$m_{s,i}$	$m_{p,i}$	$m_{c,i}$
1	100.0	12.2	59.9	27.9
2	27.9	3.4	16.7	7.8
3	7.8	0.9	4.7	2.2
P/L	2.2			

Equazione dei Razzi (cont.)

```
M_{\text{stage}} = M_p + M_{\text{inerte}}
                   f_{inerte} = M_{inerte} / M_{stage}
              f_{prop} = M_p / M_{stage} = 1 - f_{inerte}
 M_{inerte} = M_p f_{inerte} / (1 - f_{inerte})
 M_{\text{finale}} = M_{\text{inerte}} + m_{\text{PL}} payload / dry mass
 M_{\text{iniziale}} = M_{\text{finale}} + M_{\text{p}} = M_{\text{finale}} e^{\Delta V / gl_{\text{Sp}}}
                               m_{PL} (e \Delta V/gl_{sp} -1)(1- f_{inerte})
              M_p =
                                     1 - finerte e AV/glsp
                       f_{inerte} = 0.08 \div 0.32 (prop. liquidi)
                                = 0.06 \div 0.14 (prop. solidi)
                                = 0.60 \div 0.75 (attitude control)
Trieste, 7 Novembre 2011
```

Ultimo stadio

Equazione dei Razzi (cont.)*

Hohmann Transfer 150 / 600 km.

Calcolare i ∆v

Supponendo che I_{sp} = 320 s, $m_{P/L}$ =1604.25 kg, f_{inerte} = 17% e la durata della spinta sia di 45 s:

- Calcolare la massa del propellente necessaria
 - (con margini 22%)
- La spinta totale e l'accelerazione corrispondente

loooodalla				
System	Mass (kg)			
Payload	550			
Structure	300			
Thermal	33			
Power	386			
TeleCom	54			
ADCS	72			
Tot	1395			
Margin (15%)	209.25			
S/C Dry mass	1604.25			

Effetti gravita' e attrito atmosferico

- Gravita' terrestre
 - o Lancio verticale: $\Delta v_g = gt$
 - o t ~100 s $\Rightarrow \Delta v \sim 1$ km/s

- > Attrito atmosferico
 - o F ~ $\frac{1}{2}$ ρ A V^2 C_D
 - $o \Delta v_a \sim 1/3 \Delta v_g$

Struttura

- Struttura leggera ma resistente: acciaio, leghe Al, titanio
- Resistenza vs peso: serbatoi sferici (cilindrici)
- Attrito atmosferico: sezione razzo piccola
- Attrito atmosferico: forma aerodinamica a cono

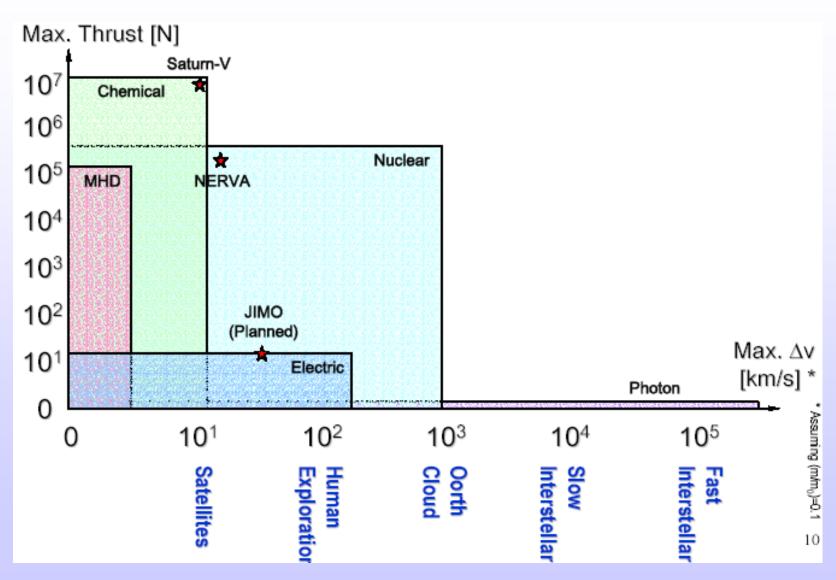
Classificazione

- Gas freddo
- Reazioni chimiche
 - Propellente liquido
 - Propellente solido
 - Propellente ibrido
- Accelerazione ioni/elettroni/plasma
- Reazioni nucleari
- Vele solari
- **>**

Budget di velocità

Determina la scelta del sistema di propulsione!

$$\Delta V = \Delta V_g + \Delta V_{drag} + \Delta V_{orbit} + \Delta V_{attitude}$$

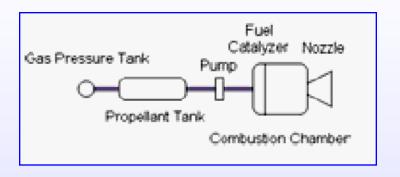

Mission	Description	Typical ∆v [km/s]
LEO, GEO, Planetary Targets	Satellites, Robotic missions	10-15
Human Planetary Exploration	Fast, direct trajectory	30 – 200
100 - 1,000 AU (Distance Sun-Earth)	Interstellar precursor mission	100
10,000 AU	Mission to Oorth cloud	1,000
Slow Interstellar	4.5 light-years in 40 years	30,000
Fast Interstellar	4.5 light-years in 10 years	120,000

Sistemi di Propulsione 1/2

Propulsion System		Specific	Maximum	Maximum
		Impulse [s]	Δv [km/s] *	Thrust [N]
Chemical	Solid	250 - 310	5.7 – 7.1	10 ⁷
	Liquid	300 - 500	6.9 – 11.5	10 ⁷
MHD		< 200	4.6	10 ⁵
Nuclear	Fission	500 - 800	11.5 - 20.7	10 ⁶
	Fusion	10,000 - 100,000	230 - 2,300	10 ⁵
	Antimatter	60,000	1,381	10 ²
Electric	Electrothermal	150 - 1,200	3.5 – 27.6	10 ¹
	Electrostatic	1,200 - 10,000	27.6 - 230	3x10 ⁻¹
	Electromagnetic	700 - 5,000	16.1 – 115	10 ²
Propellantless	Photon Rocket	3x10 ⁷	unlimited	10 ⁻⁴
Breakthrough		?	?	?

^{*} Assuming (m/m₀)=0.1 ⇒ Spacecraft consists of 90% Propellant

Sistemi di Propulsione 2/2



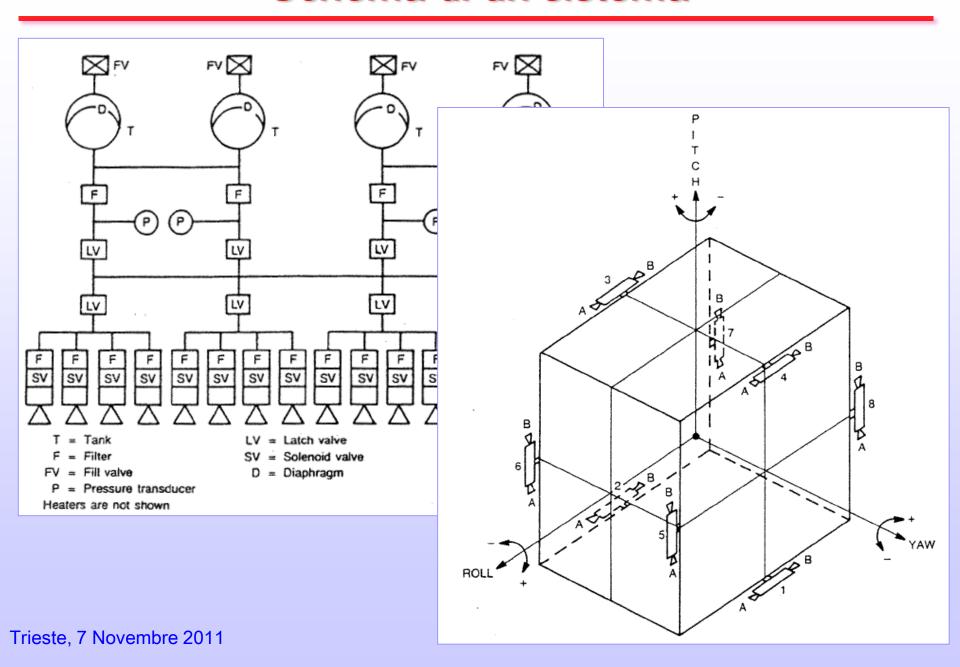

Trieste, 7 Novembre 2011

Propellente Liquido

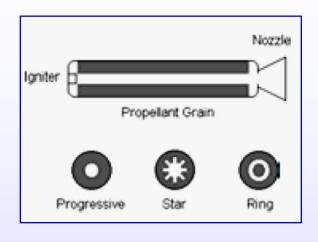
Monopropellente

Bipropellente

Idrazina (N_2H_4) : 220-230 s

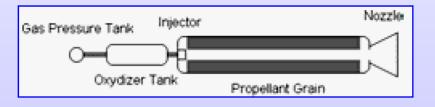

 H_2O_2 : 180 s

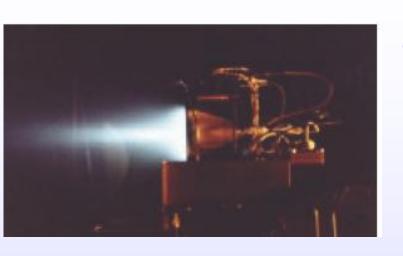
Н	N	\bigcirc)_	+	Н	F
	I A	U	3	•	11	Ш


Fuel	Oxydizer	Average Density [g/cm³]	Specific Impulse [s]
Kerosine (RP-1)	Oxygen (O ₂)	1.02	300 – 360
Hydrogen (H ₂)	Oxygen (O ₂)	0.35	415 – 470
Unsymmetrical Dimethyl Hydrazin (UDMH)	Nitrogen Tetroxide (N ₂ O ₄)	1.20	300 – 340
Hydrogen (H ₂)	Fluorine (F ₂)	0.42	450 - 480

Trieste, 7 Novembre 2011

Schema di un sistema


Sistemi Solidi e Ibridi

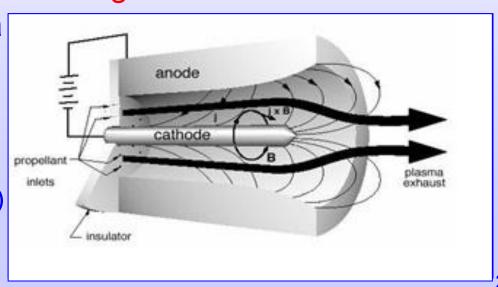

Sistema solido

- Combustibile:
 - o alluminio polverizzato
- Ossidante:
 - o perclorato di ammonio (NH₄ClO₄)

Sistema ibrido

Accelerazione Ioni/Plasma

Plasma: quarto stato della materia formato da ioni e elettroni


Gli elettroni non sono legati agli ioni ⇒

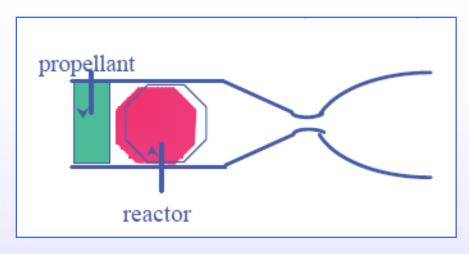
Plasma conduce correnti elettriche ⇒

Permette accelerazione diretta del propellente *plasma* tramite campi elettromagnetici

- Generazione di ioni/plasma
- Accelerazione del plasma
- Neutralizzazione del fascio

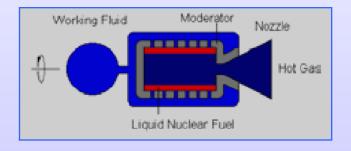
$$I_{sp} = K \sqrt{Vi/m} \pmod{4500 \text{ s}}$$
$$I_{sp} \max \sim 25000 \text{ s}$$

Smart 1



Motore a ioni alimentato da pannelli solari

- Lancio: agosto 2003
- Orbita: GTO to L1
- Ellissi polare attorno alla Luna



Sistemi Nucleari

Il reattore aggiunge energia (calore) al propellente

Il propellente viene scaricato attraverso l'ugello (nozzle)

Trieste, 7 Novembre 2011 26

Vele Solari 1/4

Pressione di radiazione solare:

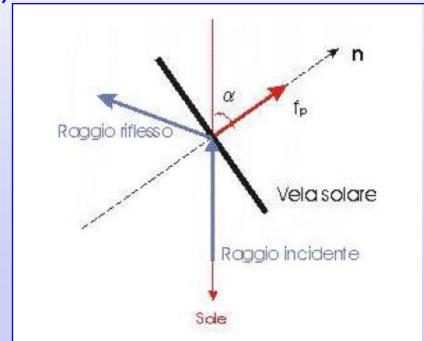
o
$$P_{\phi} = W_{\phi} / c = L_{\phi} / (4\pi r^2 c) = K/c (r_o/r)^2$$

(K = 1368 W/m², r_o = 1 AU = 1.5×10¹¹ m, K = $L_{\phi} / 4\pi r_o^2$)

ο
$$P_{\phi} = L_{\phi} / (3\pi R_{\phi}^2 c) (1 - (1 - (R_{\phi}/r)^2)^{3/2})$$

($R_{\phi} = 6.96 \times 10^8 m$)

Pianeti	Distanza dal Sole	Flusso Solare	Pressione di
	(semiasse maggiore dell'orbita)	$[W/m^2]$	radiazione solare
	[U A]		$[\mathrm{N}/\mathrm{m}^2]$
¥ Mercurio	0.387	9134	$3.046 \ 10^{-5}$
9 Venere	0.723	2617	$8.729 \ 10^{-6}$
č Terra	1	1368	$4.563 \ 10^{-6}$
of Marte	1.524	589.0	$1.965 \ 10^{-6}$
4 Giove	5.203	50.53	$1.686 \ 10^{-7}$
ち Saturno	9.539	15.03	$5.015 \ 10^{-8}$
8 Urano	19.182	3.718	$1.240\ 10^{-8}$
Ψ Nettuno	30.057	1.514	$5.051 10^{-9}$
♀ Plutone	39.75	0.8657	$2.888 10^{-9}$


Vele Solari 2/4

Vela perfetta:

o $\mathbf{f}_{P,*}$ = 2S/m $P_*(r) \cos^2 \alpha \mathbf{n}$ (S = superficie vela, m = massa vela, α = angolo puntamento)

o $\mathbf{f}_{P,\phi} = 2\eta \text{ S/m K/c } (\mathbf{r}_{o}/\mathbf{r})^{2} \cos^{2}\alpha \mathbf{n} = A/\mathbf{r}^{2} \cos^{2}\alpha \mathbf{n}$

(η = efficienza di riflessione R_{<math>⇔} = 0.85-0.9)

Vele Solari 3/4

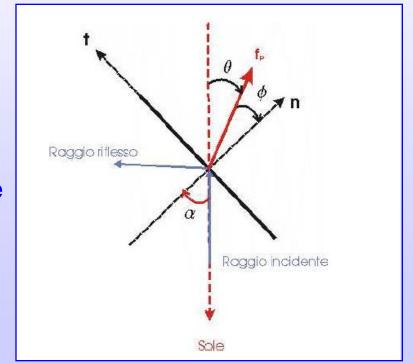
Modello ottico:

riflessione speculare

– emissione

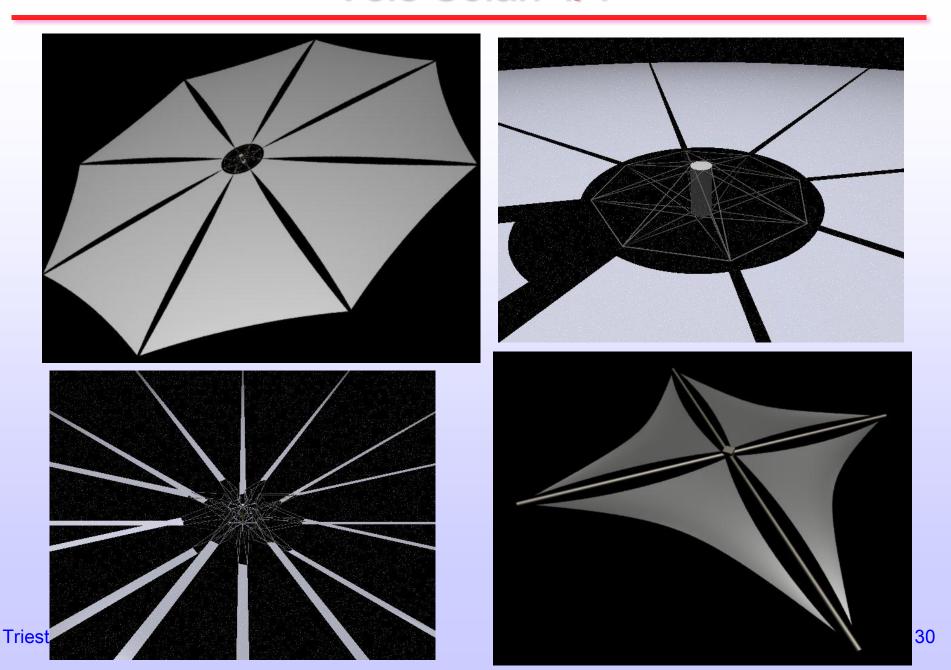
o
$$\mathbf{f}_{P,\diamondsuit} = \mathbf{f}_{i} + \mathbf{f}_{rs} + \mathbf{f}_{ru} + \mathbf{f}_{e}$$

riflessione uniforme


o $\mathbf{f}_{P,*} = P_*(\mathbf{r}) \text{ S/m} \left((b_2 \cos^2 \alpha + \rho(1-s)B_f \cos \alpha) \mathbf{n} + b_1 \sin \alpha \cos \alpha \mathbf{t} \right) + \dots$

$$a+\rho = 1$$

 $b_1 = 1 - \rho s$
 $b_2 = 1 + \rho s$


 ρ = coefficiente di riflessione

s = frazione fotoni riflessi specularmente

$$\begin{array}{l} f_{i} : \cos^{2}\!\alpha \; \boldsymbol{n} + \sin\!\alpha \; \cos\!\alpha \; \boldsymbol{t} \\ f_{rs} : \; \rho s \; (\cos^{2}\!\alpha \; \boldsymbol{n} - \sin\!\alpha \; \cos\!\alpha \; \boldsymbol{t}) \\ f_{ru} : \; \rho \; (1-s) \; B_{f} \; \cos\!\alpha \; \boldsymbol{n} \\ f_{e} : \; T^{4} \; \boldsymbol{n}.. \end{array}$$

Vele Solari 4/4

