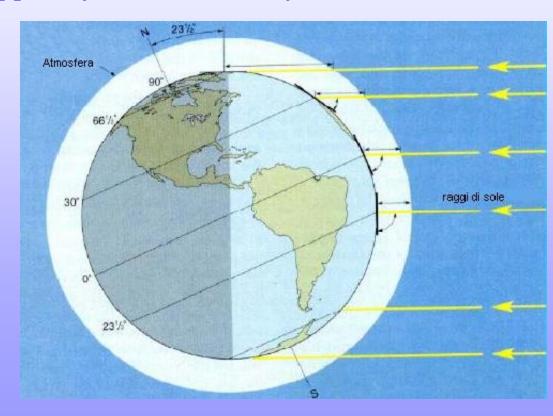
SOMMARIO

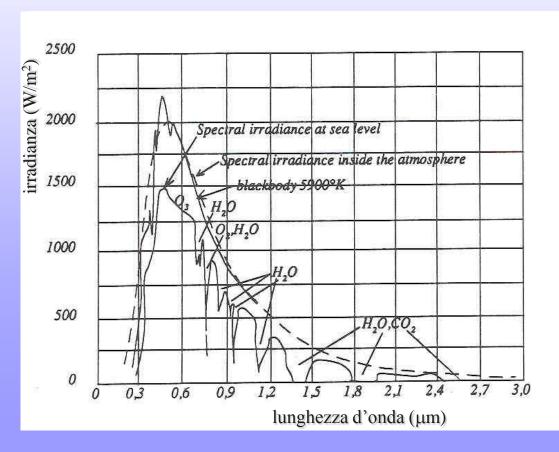

- Le Misure con le Celle Solari
- Le Misure con il Magnetometro

Lo Spettro del Sole 1/3

L'energia emessa dal Sole che arriva sulla Terra è espressa in termini di Costante Solare:

energia che incide in 1 s su una superficie di 1 m² posta ortogonale alla direzione del Sole, appena fuori dall'atmosfera terrestre

La Costante Solare varia tra 1326 W/m² e 1418 W/m² 1368 W/m²


Lo Spettro del Sole 2/3

Per considerare gli effetti dell'atmosfera, si definisce la massa d'aria unitaria AM1 Air Mass One che rappresenta lo spessore di atmosfera perpendicolare alla superficie terrestre e misurato a livello del mare

Al di fuori dall'atmosfera: AMO Air Mass Zero

Spettro:

InfraRosso	52 %
Visibile	41%
NUV	<7%
EUV	0.1%
Radio	0.1%
X	<0.1%

Trieste, 16 novembre 2011

Lo Spettro del Sole 3/3

Sito web http://snowdog.larc.nasa.gov/jin/rtset.html

Coupled Ocean and Atmosphere Radiative Transfer (COART)

OUTPUT:

Integrated fluxes (W/m²) from 0.25 to 4 μm in spectral resolution of 0.01 μm TOA, Surface, 0.4 km above surface

INPUT:

JulianDay: 76, GMT (hour): 15.00, Latitude: 45.644 N, Longitude: 13.836 E

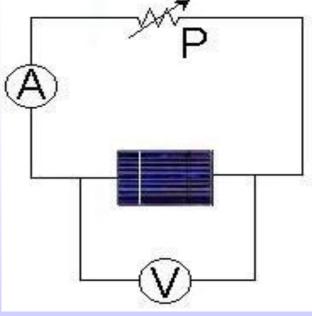
Select an atmospheric model: MID-LATITUDE WINTER

Dati in uscita:

θ	H(km)	Total Down	
68.7	100.000	5.009E+02	$\Rightarrow \alpha = 62.2\%$
68.7	0.000	3.117E+02	attenuazione atmosferica

Moltiplicando la costante solare per l'attenuazione α o correggendo "total down" per θ , troviamo la potenza che incide sulla cella: P ~ 850 W/m²

If checked, input your integrated ozone amount (atm-cm): 0.350 (1 atm-cm=1000 Dobson)				
You can also change these trace gas amounts by a factor (1.0 for no change) of> CO ₂ : 1.0				
CH ₄ : 1.0				
<u> </u>				
Select Mixed layer aerosol: MODTRAN Maritime & Stratospheric aerosol:				
No aerosol				
Select a method to specify aerosol loading (To be ignored if "No aerosol" selected above):				
○ by Visibility (km): 23.0				
If checked, input aerosol optical properties in the table below (not required to fill all elements,				
undefined numbers will be fit in by the selected model above): λ (um):				
AOT:				
SSA:				
g:				
If checked, upload aerosol phase function file:				
Select Cloud: No Cloud Bottom(km): 3 Top(km): 4 ; size RE(um): 20				
● LWP(g/m²): 200 or ○ OpticalDepth(0.6um): 10. (RE is effective size for nonspheric				
or optical pepti(o, outil). (KE is effective size for nonspheric				
Ocean				
Wind speed(m/s): Depth (m): 100 Bottom albedo: 0.2 Chl (mg/m³): 0.2 (Chlorophyll)				
Particle scattering coefficient (m ⁻¹): $b_p(\lambda) = b_0(550/\lambda)^n x [Chl]^k$; Input b_0 : 0.45, n : 0.6				
and k : 0.62				
Particle scattering phase function Petzold Average(bb/b=0.0183) If use F-F func., input bb/b				
I die 1 1 faite, input 6 m s.				
☐ If checked, input absorption a (m ⁻¹): (Override the default parameterization)				
If checked, input your a440 _{now} (m ⁻¹): 0.20 (DOM absorption coefficient at 440nm)				
☐ If checked, ignore surface roughness and assume Flat ocean surface.				
*Note: Input <i>Depth=0</i> will ignore the ocean and ocean inputs above (no water, same as atmosphere-land case).				
Submit Form Reset Form Not clear on some input? Read "The Input" section Here				
For comments/questions contact <i>Zhonghai Jin</i> , but to read this NOTE first may help you.				
Responsible NASA Official: Dr. Thomas Charlock Questions: Zhonghai Jin Last Updated: 2004/04/22 NASA Privacy Statement Feedback on Langley Products and Services				


L'Esperimento 1/2

La disposizione della cella dev'essere ortogonale al Sole: si appoggia la base di un cilindretto cavo a un vetrino parallelo alla struttura. Quando vediamo nell'ombra della base il Sole ("ombra a cerchietto") i raggi sono ortogonali alla struttura

A parte c'è un fotodiodo a cui viene connesso un voltmetro per controllare che la cella sia sempre ortogonale al Sole, facendo attenzione che la tensione letta sia sempre massima

Cella al Silicio Si

- dimensioni:
- degradamento all'anno: 3.75%
- degradazione inerente I_d: 1

V - voltmetro

A - amperometro

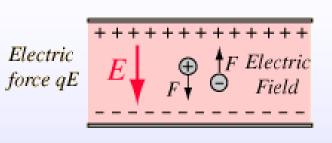
P – potenziometro

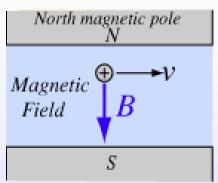
& resistenze

L'Esperimento 2/2

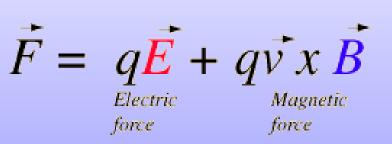
Moltiplicando P=850 W/m² per l'area della cella abbiamo la potenza che incide sulla cella: P_{s teorica} ~ xxx W

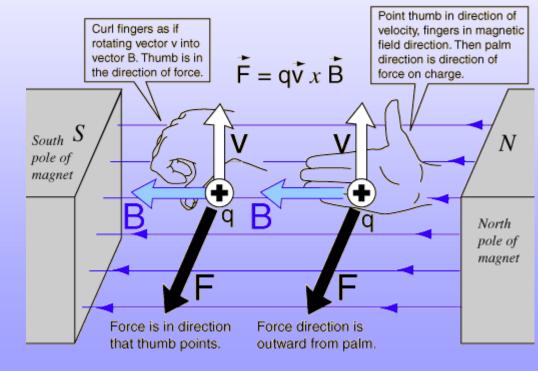
Parametri caratteristici:

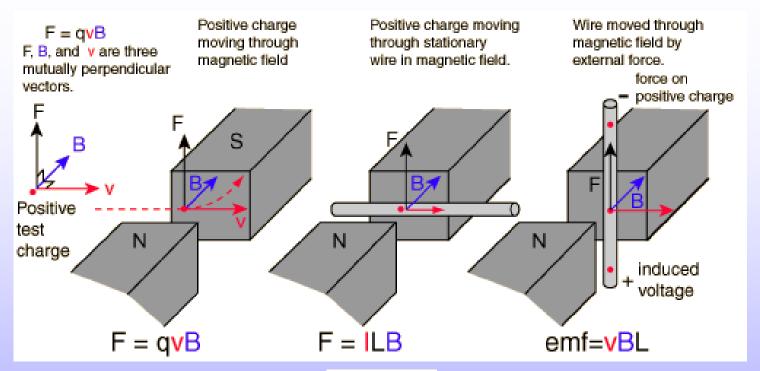

V_{oc} = Open Circuit Voltage - tensione se la corrente non passa attraverso il circuito = xxx V


I_{sc} = Short Circuit Current - corrente dove il voltaggio è zero = xxx A

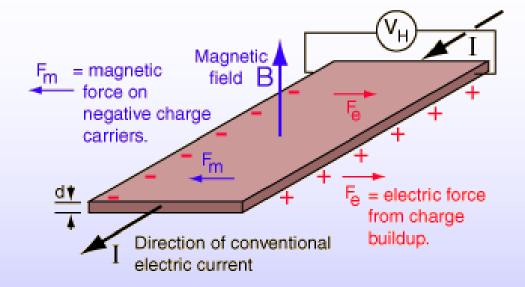
$$\Rightarrow$$
 P_{s misurata} = area sotto la curva ~ V_{oc} × I_{sc} = xxx W

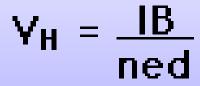

$$\Rightarrow$$
 η = $P_{s \text{ misurata}} / P_{s \text{ teorica}} = ~ 15 \%$

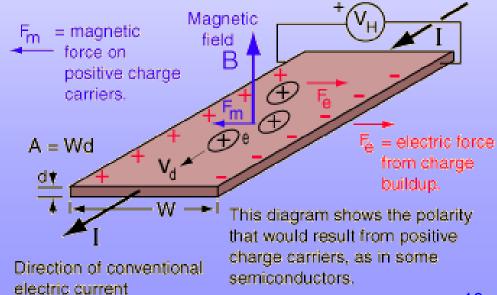

Effetto Hall 1/5

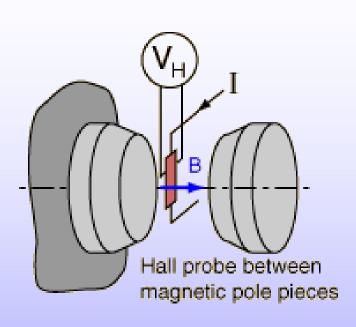


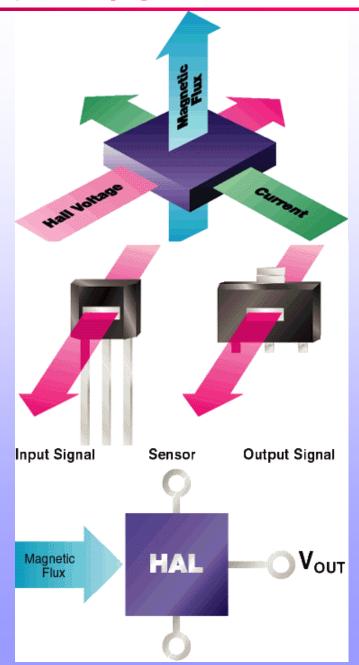
Magnetic force of magnitude qvBsinθ perpendicular to both v and B, away from viewer.



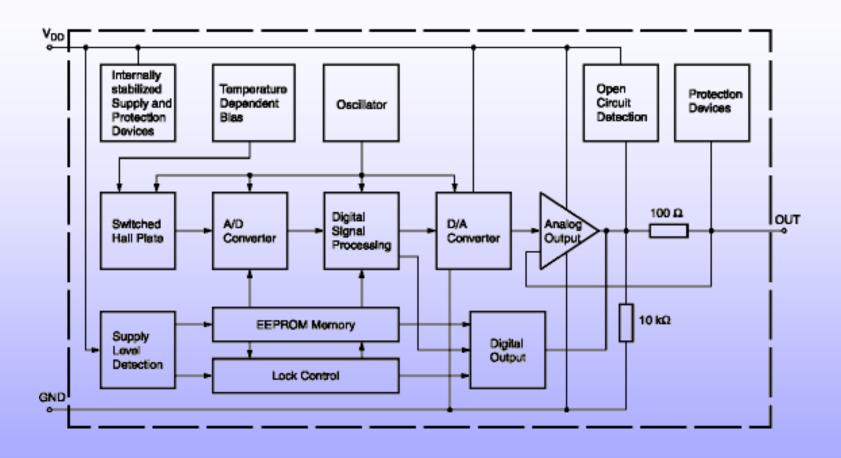

Effetto Hall 2/5




Effetto Hall 3/5

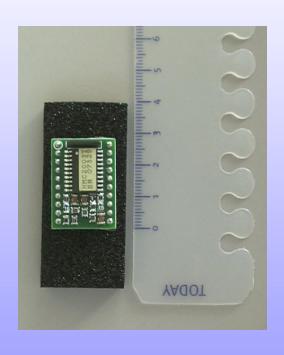


Effetto Hall 4/5



The polarity of the Hall voltage for a copper probe shows that electrons are the charge carriers.

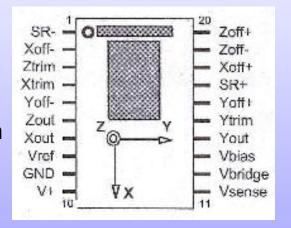
 $n_{rame} = 8.47 \cdot 10^{28} e^{-/m^3}$


Effetto Hall 5/5

Magnetometro 1/5

COMPORTAMENTO E TARATURA DEL SENSORE MAGNETICO

HONEYWEEL HMC2003

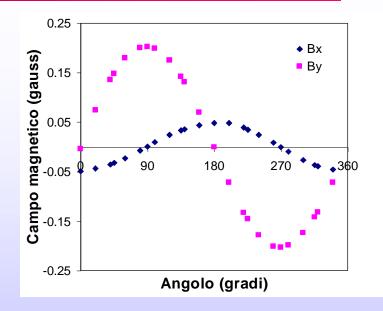

misure sui tre assi

• range: 2 gauss

• sensibilità: 40 μgauss

• dimensioni: 28,4 mm × 19,1 mm

• peso: 4 g


• 1 volt ⇔ 1 gauss

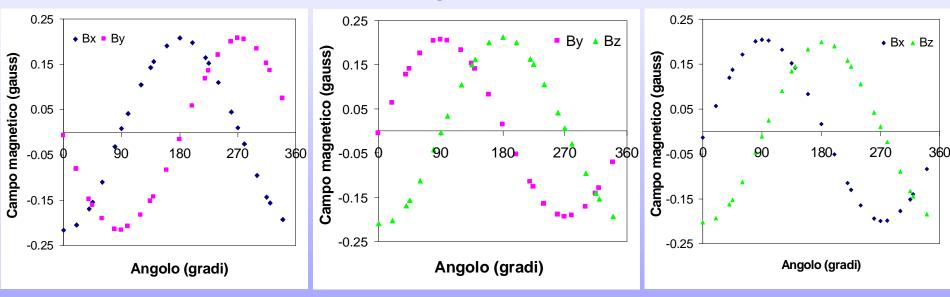
• offset: 2.3 2.5 volt

Magnetometro 2/5


IL CIRCUITO

- attivazione del circuito di set/reset
- ➤ costruzione di una struttura cubica per permettere la rotazione del sensore sui piani x-y, y-z e x-z

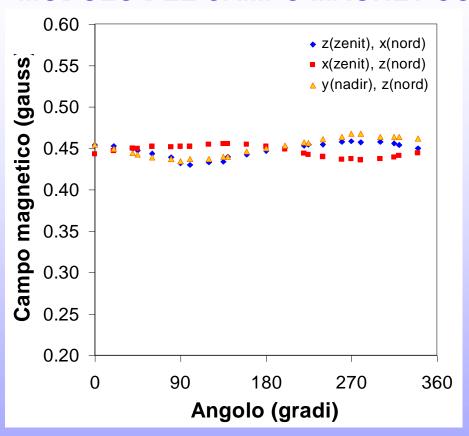
LA STRUTTURA DI TEST

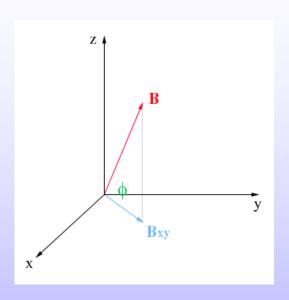


Magnetometro 3/5

Le misure effettuate sulle tre seguenti configurazioni

- rotazione sul piano x-y
- rotazione sul piano y-z
- rotazione sul piano x-z


hanno permesso di ricavare gli andamenti delle componenti di B

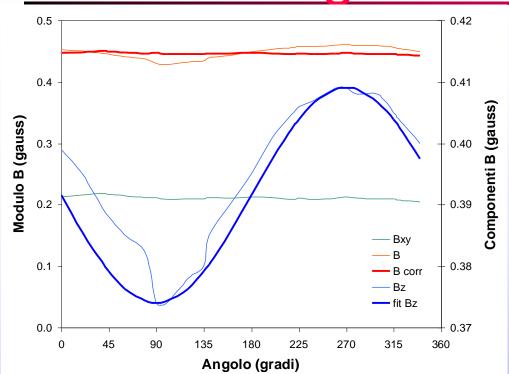


e di ricavare gli offset relativi ai tre assi

Magnetometro 4/5

MODULO DEL CAMPO MAGNETICO

Componenti tangenziali e radiale


Inclinazione di B rispetto al suolo

 $\phi_{HMC2003} = 58$

 $\phi_{IGRF} = 61$

Magnetometro 5/5

Misura simultanea:

- magnetometro di Scienze Geologiche,
 Ambientali e Marine: B = 0.474 gauss
- magnetometro HMC2003:

$$B_{HMC2003} = 0.460$$
 gauss

= 0.466 gauss (dopo correzione)

 α = angolo tra gli assi z e z' α = 4.7

Componente sottostimata del 2.4%

CONFRONTO CON UNO STRUMENTO GIÀ TARATO

Trieste, 16 novembre 2011