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Abstract

Researchers have begun to mine social network data in order
to predict a variety of social, economic, and health related
phenomena. While previous work has focused on predict-
ing aggregate properties, such as the prevalence of seasonal
influenza in a given country, we consider the task of fine-
grained prediction of the health of specific people from noisy
and incomplete data. We construct a probabilistic model that
can predict if and when an individual will fall ill with high
precision and good recall on the basis of his social ties and
co-locations with other people, as revealed by their Twitter
posts. Our model is highly scalable and can be used to pre-
dict general dynamic properties of individuals in large real-
world social networks. These results provide a foundation for
research on fundamental questions of public health, including
the identification of non-cooperative disease carriers (“Ty-
phoid Marys”), adaptive vaccination policies, and our under-
standing of the emergence of global epidemics from day-to-
day interpersonal interactions.

Introduction

Recent work has demonstrated that micro-blogging data can
be used to predict a variety of phenomena, including movie
box-office revenues (Asur and Huberman 2010), elections
(Tumasjan et al. 2010), and flu epidemics (Lampos, De Bie,
and Cristianini 2010). Most research to date has focused on
predicting aggregate properties of the population from the
activity of the bloggers. A different kind of problem one can
pose, however, is to predict the behavior or state of particu-
lar individuals within the social network. For instance, one
could try to predict whether a person will go to a movie or
vote for a particular candidate based on micro-blog data. The
individual’s own data may or may not be accessible. At one
extreme, the task is to predict his behavior or state by con-
sidering only data from other people. For example, Sadilek,
Kautz, and Bigham (2012) show that a person’s location can
be predicted with a high degree of accuracy based on only
the geo-tagged posts (a.k.a. tweets) of his friends on Twitter.

This paper explores fine-grained prediction of the health
of individuals on the basis of such social network data—
an important instance of the general problem of modeling
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dynamic properties of participants in large real-world so-
cial networks. We begin by building upon previous work on
classification of health-related text messages (Culotta 2010;
Paul and Dredze 2011a; Sadilek, Kautz, and Silenzio 2012),
to learn a robust SVM classifier that infers the health state of
a person based on the content of his tweets. We then learn a
conditional random field (CRF) model that predicts an indi-
vidual’s health status, using features derived from the tweets
and locations of other people. Performance of the CRF is
significantly enhanced by including features that are not
only based on the health status of friends, but are also based
on the estimated encounters with already sick, symptomatic
individuals in the dataset, including non-friends. Thus, the
model is able to capture the role of location in the spread
of an infectious disease, the impact of the duration of co-
location on disease transmission, as well as the delay be-
tween a contagion event and the onset of the symptoms. Us-
ing the Viterbi algorithm to infer the most likely sequence
of a subject’s health states over time, we are able to predict
the days a person is ill with 0.94 precision and 0.18 recall.
These results far outperform alternative models.

This work is an important step towards the development
of automated methods that identify disease vectors, trace the
transmission between concrete individuals, and ultimately
help us understand and predict the spread of infectious dis-
eases with fine granularity. It provides a foundation for
research on fundamental questions of public health, such
as: How does an epidemic on a population scale emerge
from low-level interactions between people in the course
of their everyday lives? Can we identify a potentially non-
cooperative individual who is a vector of a dangerous dis-
ease, i.e., a “Typhoid Mary”? What is the interaction be-
tween friendship, location, and co-location in the spread of
communicable diseases?

Our results also prove useful for deploying sickness pre-
vention resources, and for applications that help an individ-
ual maintain his or her health. For example, a person pre-
dicted to be at high risk of the flu could be specifically en-
couraged to get the flu vaccine, and recommendations can be
made about which places pose a high risk of getting infected.
Finally, the kinds of models we explore are not limited to the
health domain. The close relationship between the spread of
disease and information in general is well known (Easley
and Kleinberg 2010). For example, by changing the map-



New York City Dataset

Unique users 632,611
Unique geo-active users 6,237
Tweets total 15,944,084
GPS-tagged tweets 4,405,961
GPS-tagged tweets by geo-active users 2,535,706
GPS-tagged tweets by geo-active users 2,047
that show a symptom of an illness

Distinct visited locations 57,109
“Follows” relationships 102,739
between geo-active users

“Friends” relationships 31,874
between geo-active users

Table 1: Summary statistics of the data collected from NYC. Geo-
active users are ones who geo-tag their tweets relatively frequently
(more than 100 times per month). Note that following reciprocity
is about 31%, which is consistent with previous findings (Kwak et
al. 2010). The number of distinct visited locations is calculated as
the number of cells (100 by 100 meters) of the NYC grid that have
been visited by at least one geo-active individual.

ping from text to features, the same approach can be used
to model and predict the transmission of political ideas, pur-
chasing preferences, or practically any other behavioral phe-
nomena.

The Data

Our experiments are based on data obtained from Twitter, a
popular micro-blogging service where people post message
updates at most 140 characters long. The forced brevity en-
courages frequent mobile updates, as we show below. Rela-
tionships between users on Twitter are not necessarily sym-
metric. One can follow (subscribe to receive messages from)
a user without being followed back. When users do recipro-
cate following, we say they are friends on Twitter. There is
anecdotal evidence that Twitter friendships have a substan-
tial overlap with offline friendships (Gruzd, Wellman, and
Takhteyev 2011). Twitter launched in 2006 and has been ex-
periencing an explosive growth since then. As of June 2011,
over 300 million accounts are registered on Twitter.

Using the Twitter Search API!, we collected a sample of
public tweets that originated from the New York City (NYC)
metropolitan area. The collection period was one month long
and started on May 18, 2010. Using a Python script, we peri-
odically queried Twitter for all recent tweets within 100 kilo-
meters of the NYC city center. Altogether, we have logged
nearly 16 million tweets authored by more than 630 thou-
sand unique users (see Table 1). To put these statistics in
context, the entire NYC metropolitan area has an estimated
population of 19 million people.? Since this work studies the
effects of people’s location and co-location on disease trans-
mission, we concentrate on accounts that posted more than
100 GPS-tagged tweets during the one-month data collec-
tion period. We refer to them as geo-active users, and our
dataset contains 6,237 such individuals.

Uhttp://search.twitter.com/api/
Zhttp://www.census.gov/popest/metro/
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Figure 1: Visualization of a sample of friends in New York City.
The red links between users represent friendships, and the col-
ored pins show their current location on a map. We see the high-
lighted person X complaining about her health, and hinting about
the specifics of her ailment. This work investigates to what extent
can we predict the day-to-day health of individuals by considering
their physical encounters and social interactions with people like
X.

Methodology and Models

Given that five of your online friends have flu-like symp-
toms, and that you have recently met eight people, possibly
strangers, who complained about having runny noses and
headaches, how accurately can we predict that you will soon
become ill as well? In the remainder of this paper, we pro-
pose and evaluate a model that provides answers to such
questions across a large sample of people participating in
online social media (see Fig. 1).

In this section, we first review our method for automatic
detection of Twitter messages that suggest the author con-
tracted an infectious disease? (Sadilek, Kautz, and Silenzio
2012). We then develop a CRF model that leverages the la-
beled tweets and makes accurate predictions about people’s
health state.

Detecting Illness-Related Messages

In order to train and evaluate a predictive model of personal
health, we first need to identify ill individuals, and estimate
the time when they became contagious. We focus on self-
reported symptoms and complaints that appear in the text
of Twitter status updates. Our prior work has shown we can
identify them with high precision as well as high recall, even
though such messages are rare (Sadilek, Kautz, and Silenzio
2012). We achieve this by learning a linear support vector
machine (SVM) binary classifier Cy while directly optimiz-
ing the area under the ROC curve (Joachims 2005). This
SVM is robust even in the presence of strong class imbal-
ance, where for every health-related message there are more
than 1,000 unrelated ones. This is a necessary precondition

3In this paper, such diseases include those with symptoms that
overlap with, but are not necessarily limited to, influenza-like ill-
ness (http://en.wikipedia.org/wiki/Influenza-like_illness).
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Figure 2: A diagram of our cascade learning of our SVM classifier
Cy that we use to detect tweets indicating an infectious sickness of
the author. The [ and | symbols denote thresholding of the clas-
sification score, where we select the bottom 10% of the scores pre-
dicted by C,, (i.e., tweets that are normal with high probability), and
the top 10% of scores predicted by C; (i.e., likely “sick” tweets).

Positive Features Negative Features

[ Feature | Weight [[ Feature | Weight |
sick 0.9579 sick of 0.4005
headache | 0.5249 you 0.3662
flu 0.5051 lol 0.3017
fever 0.3879 love 0.1753
feel 0.3451 1 feel your 0.1416
coughing 0.2917 so sick of 0.0887
being sick | 0.1919 bieber fever 0.1026
better 0.1988 smoking 0.0980
being 0.1943 1’m sick of 0.0894
stomach 0.1703 pressure 0.0837
and my 0.1687 massage 0.0726
infection 0.1686 ilove 0.0719
morning 0.1647 pregnant 0.0639

Table 2: Example positively and negatively weighted significant
features of our SVM model Cy.

for further progress, as false negatives and false positives
cannot be traded-off against each other in this domain—they
both carry equal importance. In this work, we use Cy to dis-
tinguish between tweets indicating the author is afflicted by
an infectious ailment (we call such tweets “sick™), and all
other tweets (called “other” or “normal”).

We need to obtain sufficient amount of labeled training
data in order to learn Cy. We do this by first training two
“helper” SVMs, C; and C,, on a dataset of 5,128 tweets, each
labeled as either “sick” or “other” by multiple Amazon Me-
chanical Turk workers and carefully checked by the authors.
C; is highly penalized for inducing false positives (mistak-
enly labeling a normal tweet as “sick”), whereas C, is heav-
ily penalized for creating false negatives (labeling symp-
tomatic tweets as normal). After training, we used C; and
C, to label a set of 1.6 million tweets that are likely health-
related, but contain some noise. We obtained both datasets
from Paul and Dredze (2011a), and they are completely dis-
joint from our NYC data.

The intuition behind this cascading process, illustrated in
Fig. 2, is to extract tweets that are with high confidence
about sickness with Cs, and tweets that are almost certainly
about other topics with C, from the corpus of 1.6 million
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tweets. We further supplement the final corpus with mes-
sages from a sample of 200 million tweets (also disjoint
from all other corpora considered here) that C, classified
as “other” with high probability. We apply thresholding on
the classification score to reduce the noise in the cascade, as
shown in Fig. 2.

As SVM features, we use all unigram, bigram, and tri-
gram word tokens that appear in the training data. For ex-
ample, a tweet “I feel sick.” is represented by the following
feature vector:

(i,feel, sick,i feel, feel sick,i feel sick) .

Before tokenization, we convert all text to lower case, strip
punctuation and special characters, and remove mentions
of user names (the “@” tag) and re-tweets (analogous to
email forwarding). However, we do keep hashtags (such as
“#sick’), as those are often relevant to the author’s health
state, and are particularly useful for disambiguation of short
or ill-formed messages. Table 2 lists examples of significant
features found in the process of learning Cy.

Evaluation of C; on a held-out set shows 0.98 preci-
sion and 0.97 recall. Furthermore, the correlation between
the prevalence of infectious diseases predicted by Cy and
the predictions made by Google Flu Trends specifically for
New York City is 0.73. The official Center for Disease
Control and Prevention data for NYC is not available with
sufficiently fine granularity, but previous work has shown
that Google’s predictions closely correspond to the offi-
cial statistics for larger geographical areas (Ginsberg et al.
2008). Google Flu Trends may have greater specificity to
“influenza-like illness”, whereas our approach may be less
specific, but more sensitive to detect other, related infec-
tious processes exhibiting these nonspecific features in Twit-
ter content.

Predicting the Spread of Disease

Human contact is the single most important factor in the
transmission of infectious diseases (Clayton, Hills, and
Pickles 1993). Since the contact is often indirect, such as
via a doorknob, we focus on a more general notion of co-
location. We consider two individuals co-located if they visit
the same 100 by 100 meter cell within a time window (slack)
of length 7. For clarity, we show results for 7 12 hours,
but we obtained virtually identical prediction performance
for T € {1,...,24} hours. We use the 100m threshold, as that
is the typical lower bound on the accuracy of a GPS sen-
sor in obstructed areas, such as Manhattan. Since we focus
on geo-active individuals, we can calculate co-location with
high accuracy. The results below are for a condition, where
we consider a person ill up to four days after they write a
“sick” tweet. As with the parameter 7, it is important to
note that the results are consistent over a wide range of dura-
tion of contagiousness (from 1 to 7 days). Few diseases with
influenza-like symptoms are contagious for periods of time
beyond these bounds.

Statistical analysis of the data shows that avoiding en-
counters with infected people generally decreases your
chances of becoming ill, whereas a large amount of con-
tact with them makes an onset of a disease almost certain



Figure 3: This conditional random field models the health of an
individual over a number of days (/). The observations for each
day (o;) include day of week, history of sick friends in the near
past, the intensity of recent co-location with sick individuals, and
the number of such individuals encountered.

(Sadilek, Kautz, and Silenzio 2012). We find a definite ex-
ponential relationship between the intensity of co-location
and the probability of getting ill. Similarly, by interpreting
a Twitter friendship as a proxy for unobservable phenomena
and interactions, we see that the likelihood of becoming ill
increases as the number of infected friends grows. For ex-
ample, having more than 5 sick friends increases one’s like-
lihood of getting sick by a factor of 3, as compared to prior
probability, and even more with respect to the probability
given no sick friends. Additionally, we model the joint in-
fluence of co-location and social ties, and conclude that the
latent impact of friendships is weaker (linear in the number
of sick friends), but nonetheless important, as some observed
patterns cannot be explained by co-location alone (Sadilek,
Kautz, and Silenzio 2012).

Our goal now is to leverage the interplay of co-location
and friendships to predict the health state of any individ-
ual on a given day. For this purpose, we learn a dynamic
conditional random field (CRF), a discriminative undirected
graphical model (Lafferty 2001). CRFs have been success-
fully applied in a wide range of domains from language un-
derstanding to robotics. They can systematically outperform
alternative approaches, such as hidden Markov models, in
domains where it is unrealistic to assume that observations
are independent given the hidden state.

In our approach, each person X is captured by one dy-
namic CRF model with a linear chain structure shown in
Fig. 3. Each time slice ¢ contains one hidden binary random
variable (X is either “healthy” or “sick” on day ¢), and a
25-element vector of observed discrete random variables o,
given by

0y (weekday,co,...,C7,uo, . ,u7,fo,...,f7),

where ¢, denotes the number of estimated encounters (co-
locations) with sick individuals n days ago. For example,
the value of c¢; indicates the number of co-location events
a person had a day ago (1 — 1), and c¢o shows co-location
count for the current day #. Analogously, u, and f,, denote
the number of unique sick individuals encountered, and the
number of sick Twitter friends, respectively, n days ago. For
all random variables in our model, we use a special missing
value to represent unavailable data.
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Before we turn to our experiments, we will discuss the
limitations that apply to any indirect method of modeling
public health.

Limitations Our observations are limited by the preva-
lence of public tweets in which users talk about their health,
and by our ability to identify them in the flood of other types
of messages. Both these factors contribute to the fact that
the number of infected individuals is systematically under-
estimated, but evaluation of Cy suggests that the latter effect
is small. We can approximate the magnitude of this bias us-
ing the statistics presented earlier. We see that about 1 in 30
residents of NYC appears in our dataset. If we strictly focus
on the geo-active individuals, the ratio is roughly 1:3,000.
However, the results in this paper indicate, that by leverag-
ing the latent effects of our observations, such a sampling
ratio is sufficient to predict the health state of a large frac-
tion of the users with high precision.

We note that currently used methods suffer from similar
biasing effects. For example, infected people who do not
visit a doctor, or do not respond to surveys are virtually in-
visible to the traditional methods. Similarly, efforts such as
Google Flu Trends can only observe individuals who search
the web for certain types of content when sick. A fully com-
prehensive coverage of a population will require a combina-
tion of diverse methods, and application of Al techniques—
like the ones presented in this work—capable of inferring
the missing information.

Experiments and Results

In this section, we evaluate our approach in a number of ex-
perimental conditions, compare the results of our CRF mod-
els with a baseline, and discuss insights gained. We perform
6237-fold cross-validation (the number of geo-active users),
where in order to make predictions for a given user, we train
and test the CRF while treating all other users as observed.
We report results aggregated over all cross-validation runs.

While the structure of the CRF model remains constant
across our experiments, we consider two types of infer-
ence: Viterbi decoding, and the forwards-backwards algo-
rithm (smoothing). While the former finds the most likely
sequence of hidden variables (health states) given obser-
vations, the latter infers each state by finding maximal
marginal probabilities. The tree structure of our CRF allows
for scalable, yet exact, learning and inference by applying
dynamic programming (Sutton and McCallum 2006), while
the rich temporal features capture longer-range dependen-
cies in the data. L1 regularization is used to limit the num-
ber of parameters in our model. Maximum-likelihood pa-
rameter estimation is done via quasi-Newton method, and
we are guaranteed to find a global optimum since the likeli-
hood function is convex.

As a baseline, we consider a model that draws its predic-
tions from a Bernoulli distribution with the “success” pa-
rameter p set to the prior probability of being sick learned
from the training data.

Fig. 4 summarizes the performance of our models
(Bernoulli baseline, and CRF with Viterbi and forwards-
backwards inference, respectively) in terms of precision and
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Figure 4: Summary of results. Each plot shows the precision and recall of our three models for predictions made with hindsight (x = 0),
and up to 8 days into the future (x = 8). We see that when leveraging the effect of social ties or co-locations individually (plots (a) and (b),
respectively) the CRF models perform inconsistently as we make predictions further into the future. By contrast, when considering friendships
and co-location jointly (c), the performance stabilizes and improves, achieving up to 0.94 precision and 0.18 recall (AUC of 0.85).

recall along two main dimensions. The first dimension is the
type of features the CRF leverges: only information about
sick friends (plus weekday) is observed in Fig. 4a; only co-
location (plus weekday) is leveraged in Fig. 4b; and the full
observation set oy is available in Fig. 4c. The second dimen-
sion is the time for which we make predictions, shown on
the horizontal axes (x) in Fig. 4. For x 0, the plots show
the performance when inferring the most likely health state
for the entire observation sequence (i.e., up to the present
day). For x > 0, we show the precision and recall when pre-
dicting x days into the future, where observations are not
available. (As described in the previous section, variables
corresponding to future observations are simply set to the
special “missing” value.)

We see that the results of our CRFs significantly outper-
form the baseline model. When leveraging the effect of so-
cial ties or co-locations individually (Figs. 4a and 4b, respec-
tively), the CRF models perform inconsistently as we make
predictions further into the future. By contrast, when con-
sidering friendships and co-location jointly, the performance
stabilizes and improves, achieving up to 0.94 precision and
0.18 recall (Fig. 4c).

In general, we see that Viterbi decoding results in bet-
ter precision and worse recall, whereas forwards-backwards
inference yields slightly worse precision, but improves re-
call. The relatively low recall indicates that about 80% of
infections occur without any evidence in social media as re-
flected in our features. For example, there are a number of
instances of users getting ill even though they had no recent
encounters with sick individuals and all their friends have
been healthy for a long time.

Clearly, there are complex events and interactions that
take place “behind the scenes”, which are not directly
recorded in online social media. However, this work posits
that these latent events often exhibit themselves in the activ-
ity of the sample of people we can observe. For instance, we
have seen that having online social ties to infected people
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significantly increases one’s chances of becoming ill in the
near future (Sadilek, Kautz, and Silenzio 2012). However,
we do not believe that the social ties themselves cause or
even facilitate the spread of an infection. Instead, the Twit-
ter friendships are proxies and indicators for a complex set
of phenomena that may not be directly accessible. For ex-
ample, friends often eat out together, meet in classes, share
items, and travel together. While most of these events are
never explicitly mentioned online, they are crucial from the
disease transmission perspective. However, their likelihood
is modulated by the structure of the social ties, allowing us
to reason about contagion.

Related Work

Since the famous cholera study by John Snow (1855), much
work has been done in capturing the mechanisms of epi-
demics. There is ample previous work in computational epi-
demiology on building relatively coarse-grained models of
disease spread via differential equations and graph theory
(Anderson and May 1979; Newman 2002), by harnessing
simulated populations (Eubank et al. 2004), and by analysis
of official statistics (Grenfell, Bjornstad, and Kappey 2001).
Such models are typically developed for the purposes of as-
sessing the impact a particular combination of an outbreak
and a containment strategy would have on humanity or ecol-
ogy (Chen, David, and Kempe 2010). However, the above
works focus on simulated populations and hypothetical sce-
narios. By contrast, we address the problem of predicting
the health of real-world populations composed of individu-
als embedded in a fine social structure. As a result, our work
is a major step towards prediction of actual threats and the
emergence of disease outbreaks.

In the context of social media, Krieck et al. (2011) ex-
plore augmenting the traditional notification channels about
a disease outbreak with data extracted from Twitter. By man-
ually examining a large number of tweets, they show that
self-reported symptoms are the most reliable signal in de-



tecting if a tweet is relevant to an outbreak or not. This is
because people often do not know what their true problem is
until diagnosed by an expert, but they can readily write about
how they feel. Researchers have also concentrated on cap-
turing the overall trend of a particular disease outbreak, typ-
ically influenza, by monitoring social media (Culotta 2010;
Lampos, De Bie, and Cristianini 2010; Chunara, Andrews,
and Brownstein 2012). Freifeld et al. (2010) use information
actively submitted by cell phone users to model aggregate
public health. However, scaling such systems poses consid-
erable challenges.

Other researchers focus on a more detailed modeling of
the language of the tweets and its relevance to public health
in general (Paul and Dredze 2011a), and to influenza surveil-
lance in particular (Collier, Son, and Nguyen 2011). Paul et
al. develop a variant of topic models that captures the symp-
toms and possible treatments for ailments, such traumatic
injuries and allergies, that people discuss on Twitter. In a
follow-up work Paul and Dredze (2011b) begin to consider
the geographical patterns in the prevalence of such ailments,
and show a good agreement of their models with official
statistics and Google Flu Trends.

Even the state of the art systems suffer from two major
drawbacks. First, they produce only coarse, aggregate statis-
tics, such as the expected number of people afflicted by flu in
Texas. Furthermore, they often perform mere passive mon-
itoring, and prediction is severely limited by the low res-
olution of the aggregate approach, or by scalability issues.
By contrast, the primary contribution of this paper is a fine-
grained analysis of the interplay among human mobility, so-
cial structure, and disease transmission. Our framework al-
lows us to make predictions about likely events of contagion
between specific individuals without active user participa-
tion.

Conclusions and Future Work

This work is the first to take on prediction of the spread of
infectious diseases throughout a real-world population with
fine granularity. We focus on self-reported symptoms that
appear in people’s Twitter status updates, and show that al-
though such messages are rare, we can identify them with
systematically high precision and high recall.

The key contribution of this work is a scalable probabilis-
tic model that demonstrates that the health of a person can
be accurately inferred from her location and social interac-
tions observed via social media. Furthermore, we show that
future health states can be predicted with consistently high
accuracy more than a week into the future. For example, over
10% of cases of sickness are predicted with 90% confidence
even a week before they occur. For predictions one day into
the future, our model covers almost 20% of cases with the
same confidence.

An early identification of infected individuals is espe-
cially crucial in preventing and containing devastating dis-
ease outbreaks. Important work by Eubank et al. (2004)
shows that by far the most effective way to fight an epi-
demic in urban areas is to quickly confine infected individ-
uals to their homes. However, this strategy is truly effective
only when applied early on in the outbreak. The speed of
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Figure 5: Visualization of a sample of Twitter users (yellow pins)
at an airport. The highlighted person X says he will be back in
16 days and mentions specific friends for whom this message
is relevant. We immediately see the people at the airport who
could have come into contact with X. This work shows that we
can accurately predict the health of X from his co-location with
other individuals and the heath of his friends. However, additional
information can be inferred using methods developed by previ-
ous work (Crandall et al. 2010; Backstrom and Leskovec 2011;
Cho, Myers, and Leskovec 2011; Sadilek, Kautz, and Bigham
2012). It can be expected that putting all this information together
will yield even stronger and more comprehensive predictions about
the spread of an infection.

targeted vaccination ranks second in effectiveness. This pa-
per shows that finding some of these key symptomatic indi-
viduals, along with other people that may have already con-
tracted the disease, can be done effectively and in a timely
manner through social media.

In future work, we will focus on larger geographical ar-
eas (including airplane travel), while maintaining the same
level of detail (i.e., social ties between concerete individuals
and their fine-grained location). This will allow us to model
and predict the emergence of global epidemics from the day-
to-day interactions of individuals, and subsequently answer
questions such as “How did the current flu epidemic in city
A start and where did it come from?” and “How likely I am
to catch a cold if I visit the mall?”

For example, Fig. 5 illustrates an instance in our dataset,
where a sick person at an airport posts a message, and we can
see other people nearby with whom he could have come into
contact. Prior work has developed a repertoire of powerful
Al techniques for revealing hidden social ties and predicting
user location—two features heavily leveraged by our pub-
lic health model. Therefore, there are opportunities for great
synergy in these areas.

Finally, while this paper concentrates on “traditional” in-
fectious diseases, such as flu, similar techniques can be ap-
plied to study mental health disorders, such as depression,
that have strong contagion patterns as well.
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