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Chapter 1

Markov Chains

1.1 Definitions and Examples

The importance of Markov chains comes from two facts: (i) there
are a large number of physical, biological, economic, and social phe-
nomena that can be described in this way, and (ii) there is a well-
developed theory that allows us to do computations. We begin with
a famous example, then describe the property that is the defining
feature of Markov chains

Example 1.1. Gambler’s ruin. Consider a gambling game in
which on any turn you win $1 with probability p = 0.4 or lose $1
with probability 1 − p = 0.6. Suppose further that you adopt the
rule that you quit playing if your fortune reaches $N . Of course, if
your fortune reaches $0 the casino makes you stop.

Let Xn be the amount of money you have after n plays. I claim
that your fortune, Xn has the “Markov property.” In words, this
means that given the current state, any other information about the
past is irrelevant for predicting the next state Xn+1. To check this
for the gambler’s ruin chain, we note that if you are still playing
at time n, i.e., your fortune Xn = i with 0 < i < N , then for any
possible history of your wealth in−1, in−2, . . . i1, i0

P (Xn+1 = i+ 1|Xn = i,Xn−1 = in−1, . . . X0 = i0) = 0.4

since to increase your wealth by one unit you have to win your next
bet. Here we have used P (B|A) for the conditional probability of
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4 CHAPTER 1. MARKOV CHAINS

the event B given that A occurs. Recall that this is defined by

P (B|A) =
P (B ∩ A)

P (A)

Turning now to the formal definition,

Definition 1.1. We say that Xn is a discrete time Markov chain
with transition matrix p(i, j) if for any j, i, in−1, . . . i0

P (Xn+1 = j|Xn = i,Xn−1 = in−1, . . . , X0 = i0) = p(i, j) (1.1)

This equation, also called the “Markov property” says that the
conditional probability Xn+1 = j given the entire history Xn =
i,Xn−1 = in−1, . . . X1 = i1, X0 = i0 is the same as the conditional
probability Xn+1 = j given only the previous state Xn = i. This is
what we mean when we say that “any other information about the
past is irrelevant for predicting Xn+1.”

In formulating (1.1) we have restricted our attention to the tem-
porally homogeneous case in which the transition probability

p(i, j) = P (Xn+1 = j|Xn = i)

does not depend on the time n. Intuitively, the transition probability
gives the rules of the game. It is the basic information needed to
describe a Markov chain. In the case of the gambler’s ruin chain,
the transition probability has

p(i, i+ 1) = 0.4, p(i, i− 1) = 0.6, if 0 < i < N

p(0, 0) = 1 p(N,N) = 1

When N = 5 the matrix is

0 1 2 3 4 5

0 1.0 0 0 0 0 0
1 0.6 0 0.4 0 0 0
2 0 0.6 0 0.4 0 0
3 0 0 0.6 0 0.4 0
4 0 0 0 0.6 0 0.4
5 0 0 0 0 0 1.0

or the chain by be represented pictorially as
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.6 .6 .6 .6
→ → → →0 1 2 3 4 5← ← ← ←.4 .4 .4 .4

→
1

←
1

Example 1.2. Ehrenfest chain. This chain originated in physics
as a model for two cubical volumes of air connected by a small hole.
In the mathematical version, we have two “urns,” i.e., two of the
exalted trash cans of probability theory, in which there are a total
of N balls. We pick one of the N balls at random and move it to
the other urn.

Let Xn be the number of balls in the “left” urn after the nth
draw. It should be clear that Xn has the Markov property; i.e., if
we want to guess the state at time n + 1, then the current number
of balls in the left urn Xn, is the only relevant information from the
observed sequence of states Xn, Xn−1, . . . X1, X0. To check this we
note that

P (Xn+1 = i+ 1|Xn = i,Xn−1 = in−1, . . . X0 = i0) = (N − i)/N

since to increase the number we have to pick one of the N−i balls in
the other urn. The number can also decrease by 1 with probability
i/N . In symbols, we have computed that the transition probability
is given by

p(i, i+ 1) = (N − i)/N, p(i, i− 1) = i/N for 0 ≤ i ≤ N

with p(i, j) = 0 otherwise. When N = 4, for example, the matrix is

0 1 2 3 4

0 0 1 0 0 0
1 1/4 0 3/4 0 0
2 0 2/4 0 2/4 0
3 0 0 3/4 0 1/4
4 0 0 0 1 0

In the first two examples we began with a verbal description
and then wrote down the transition probabilities. However, one
more commonly describes a k state Markov chain by writing down
a transition probability p(i, j) with
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(i) p(i, j) ≥ 0, since they are probabilities.

(ii)
∑

j p(i, j) = 1, since when Xn = i, Xn+1 will be in some state
j.

The equation in (ii) is read “sum p(i, j) over all possible values of
j.” In words the last two conditions say: the entries of the matrix
are nonnegative and each ROW of the matrix sums to 1.

Any matrix with properties (i) and (ii) gives rise to a Markov
chain, Xn. To construct the chain we can think of playing a board
game. When we are in state i, we roll a die (or generate a random
number on a computer) to pick the next state, going to j with
probability p(i, j).

Example 1.3. Weather chain. Let Xn be the weather on day n
in Ithaca, NY, which we assume is either: 1 = rainy, or 2 = sunny.
Even though the weather is not exactly a Markov chain, we can
propose a Markov chain model for the weather by writing down a
transition probability

1 2
1 .6 .4
2 .2 .8

Q. What is the long-run fraction of days that are sunny?

The table says, for example, the probability a rainy day (state 1) is
followed by a sunny day (state 2) is p(1, 2) = 0.4.

Example 1.4. Social mobility. Let Xn be a family’s social class
in the nth generation, which we assume is either 1 = lower, 2 =
middle, or 3 = upper. In our simple version of sociology, changes of
status are a Markov chain with the following transition probability

1 2 3
1 .7 .2 .1
2 .3 .5 .2
3 .2 .4 .4

Q. Do the fractions of people in the three classes approach a limit?

Example 1.5. Brand preference. Suppose there are three types
of laundry detergent, 1, 2, and 3, and let Xn be the brand chosen
on the nth purchase. Customers who try these brands are satisfied
and choose the same thing again with probabilities 0.8, 0.6, and
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0.4 respectively. When they change they pick one of the other two
brands at random. The transition probability is

1 2 3
1 .8 .1 .1
2 .2 .6 .2
3 .3 .3 .4

Q. Do the market shares of the three product stabilize?

Example 1.6. Inventory chain. We will consider the conse-
quences of using an s, S inventory control policy. That is, when
the stock on hand at the end of the day falls to s or below we order
enough to bring it back up to S which for simplicity we suppose
happens at the beginning of the next day. Let Dn+1 be the demand
on day n+ 1. Introducing notation for the positive part of a real
number,

x+ = max{x, 0} =

{
x if x > 0

0 if x ≤ 0

then we can write the chain in general as

Xn+1 =

{
(Xn −Dn+1)

+ if Xn > s

(S −Dn+1)
+ if Xn ≤ s

In words, if Xn > s we order nothing, begin the day with Xn units.
If the demand Dn+1 ≤ Xn we end the day with Xn+1 = Xn−Dn+1.
If the demand Dn+1 > Xn we end the day with Xn+1 = 0. If Xn ≤ s
then we begin the day with S units, and the reasoning is the same
as in the previous case.

Suppose now that an electronics store sells a video game system
and uses an invenotry policy with s = 1, S = 5. That is, if at the
end of the day, the number of units they have on hand is 1 or 0,
they order enough new units so their total on hand at the beginning
of the next day is 5. If we assume that

k = 0 1 2 3
P (Dn+1 = k) .3 .4 .2 .1
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then we have the following transition matrix:

0 1 2 3 4 5
0 0 0 .1 .2 .4 .3
1 0 0 .1 .2 .4 .3
2 .3 .4 .3 0 0 0
3 .1 .2 .4 .3 0 0
4 0 .1 .2 .4 .3 0
5 0 0 .1 .2 .4 .3

To explain the entries, we note that when Xn ≥ 3 then Xn−Dn+1 ≥
0. When Xn+1 = 2 this is almost true but p(2, 0) = P (Dn+1 = 2
or 3). When Xn = 1 or 0 we start the day with 5 units so the end
result is the same as when Xn = 5.

In this context we might be interested in:

Q. Suppose we make $12 profit on each unit sold but it costs $2
a day to store items. What is the long-run profit per day of this
inventory policy? How do we choose s and S to maximize profit?

Example 1.7. Repair chain. A machine has three critical parts
that are subject to failure, but can function as long as two of these
parts are working. When two are broken, they are replaced and
the machine is back to working order the next day. To formulate a
Markov chain model we declare its state space to be the parts that
are broken {0, 1, 2, 3, 12, 13, 23}. If we assume that parts 1, 2, and 3
fail with probabilities .01, .02, and .04, but no two parts fail on the
same day, then we arrive at the following transition matrix:

0 1 2 3 12 13 23
0 .93 .01 .02 .04 0 0 0
1 0 .94 0 0 .02 .04 0
2 0 0 .95 0 .01 0 .04
3 0 0 0 .97 0 .01 .02
12 1 0 0 0 0 0 0
13 1 0 0 0 0 0 0
23 1 0 0 0 0 0 0

If we own a machine like this, then it is natural to ask about the
long-run cost per day to operate it. For example, we might ask:

Q. If we are going to operate the machine for 1800 days (about 5
years), then how many parts of types 1, 2, and 3 will we use?
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Example 1.8. Branching processes. These processes arose from
Francis Galton’s statistical investigation of the extinction of family
names. Consider a population in which each individual in the nth
generation independently gives birth, producing k children (who are
members of generation n+1) with probability pk. In Galton’s appli-
cation only male children count since only they carry on the family
name.

To define the Markov chain, note that the number of individuals
in generation n, Xn, can be any nonnegative integer, so the state
space is {0, 1, 2, . . .}. If we let Y1, Y2, . . . be independent random
variables with P (Ym = k) = pk, then we can write the transition
probability as

p(i, j) = P (Y1 + · · ·+ Yi = j) for i > 0 and j ≥ 0

When there are no living members of the population, no new ones
can be born, so p(0, 0) = 1.

Galton’s question, originally posed in the Educational Times of
1873, is

Q. What is the probability line of a man becomes extinct?, i.e., the
process becomes absorbed at 0?

Reverend Henry William Watson replied with a solution. Together,
they then wrote an 1874 paper entitled On the probability of ex-
tinction of families. For this reason, these chains are often called
Galton-Watson processes.

Example 1.9. Wright–Fisher model. Thinking of a population
of N/2 diploid individuals who have two copies of each of their
chromosomes, or of N haploid individuals who have one copy, we
consider a fixed population of N genes that can be one of two types:
A or a. In the simplest version of this model the population at time
n+ 1 is obtained by drawing with replacement from the population
at time n. In this case if we let Xn be the number of A alleles at
time n, then Xn is a Markov chain with transition probability

p(i, j) =

(
N

j

)(
i

N

)j (
1− i

N

)N−j

since the right-hand side is the binomial distribution for N indepen-
dent trials with success probability i/N .
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In this model the states 0 and N that correspond to fixation of
the population in the all a or all A states are absorbing states, so it
is natural to ask:

Q1. Starting from i of the A alleles and N − i of the a alleles, what
is the probability that the population fixates in the all A state?

To make this simple model more realistic we can introduce the
possibility of mutations: an A that is drawn ends up being an a
in the next generation with probability u, while an a that is drawn
ends up being an A in the next generation with probability v. In
this case the probability an A is produced by a given draw is

ρi =
i

N
(1− u) +

N − i
N

v

but the transition probability still has the binomial form

p(i, j) =

(
N

j

)
(ρi)

j(1− ρi)
N−j

If u and v are both positive, then 0 and N are no longer absorbing
states, so we ask:

Q2. Does the genetic composition settle down to an equilibrium
distribution as time t→∞?

As the next example shows it is easy to extend the notion of a
Markov chain to cover situations oin which the future evolution is
independent of the past when we know the last two states.

Example 1.10. Two-stage Markov chains. In a Markov chain
the distribution of Xn+1 only depends on Xn. This can easily be
generalized to case in which the distribution of Xn+1 only depends
on (Xn, Xn−1). For a concrete example consider a basketball player
who makes a shot with the following probabilities:

1/2 if he has missed the last two times
2/3 if he has hit one of his last two shots
3/4 if he has hit both of his last two shots

To formulate a Markov chain to model his shooting, we let the states
of the process be the outcomes of his last two shots: {HH,HM,MH,MM}
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where M is short for miss and H for hit. The transition probability
is

HH HM MH MM
HH 3/4 1/4 0 0
HM 0 0 2/3 1/3
MH 2/3 1/3 0 0
MM 0 0 1/2 1/2

To explain suppose the state is HM , i.e., Xn−1 = H and Xn = M .
In this case the next outcome will be H with probability 2/3. When
this occurs the next state will be (Xn, Xn+1) = (M,H) with prob-
ability 2/3. If he misses an event of probability 1/3, (Xn, Xn+1) =
(M,M).

The Hot Hand is a phenomenon known to everyone who plays
or watches basketball. After making a couple of shots, players are
thought to “get into a groove” so that subsequent successes are more
likely. Purvis Short of the Golden State Warriors describes this more
poetically as

“You’re in a world all your own. It’s hard to describe. But
the basket seems to be so wide. No matter what you do,
you know the ball is going to go in.”

Unfortunately for basketball players, data collected by Tversky and
Gliovich (Chance vol. 2 (1989), No. 1, pages 16–21) shows that this
is a misconception. The next table gives data for the conditional
probability of hitting a shot after missing the last three, missing the
last two, . . . hitting the last three, for nine players of the Philadel-
phia 76ers: Darryl Dawkins (403), Maurice Cheeks (339), Steve
Mix (351), Bobby Jones (433), Clint Richardson (248), Julius Erv-
ing (884), Andrew Toney (451), Caldwell Jones (272), and Lionel
Hollins (419). The numbers in parentheses are the number of shots
for each player.



12 CHAPTER 1. MARKOV CHAINS

P (H|3M) P (H|2M) P (H|1M) P (H|1H) P (H|2H) P (H|3H)
.88 .73 .71 .57 .58 .51
.77 .60 .60 .55 .54 .59
.70 .56 .52 .51 .48 .36
.61 .58 .58 .53 .47 .53
.52 .51 .51 .53 .52 .48
.50 .47 .56 .49 .50 .48
.50 .48 .47 .45 .43 .27
.52 .53 .51 .43 .40 .34
.50 .49 .46 .46 .46 .32

In fact, the data supports the opposite assertion: after missing a
player is more conservative about the shots that they take and will
hit more frequently.
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1.2 Multistep Transition Probabilities

The transition probability p(i, j) = P (Xn+1 = j|Xn = i) gives the
probability of going from i to j in one step. Our goal in this section
is to compute the probability of going from i to j in m > 1 steps:

pm(i, j) = P (Xn+m = j|Xn = i)

As the notation may already suggest, pm will turn out to the be the
mth power of the transition matrix, see Theorem 1.1.

To warm up we recall the transition probability of the social
mobility chain:

1 2 3
1 .7 .2 .1
2 .3 .5 .2
3 .2 .4 .4

and consider the following concrete question:

Q1. Your parents were middle class (state 2). What is the proba-
bility that you are in the upper class (state 3) but your children are
lower class (state 1)?

Solution. Intuitively, the Markov property implies that starting
from state 2 the probability of jumping to 3 and then to 1 is given
by

p(2, 3)p(3, 1)

To get this conclusion from the definitions, we note that using the
definition of conditional probability,

P (X2 = 1, X1 = 3|X0 = 2) =
P (X2 = 1, X1 = 3, X0 = 2)

P (X0 = 2)

=
P (X2 = 1, X1 = 3, X0 = 2)

P (X1 = 3, X0 = 2)
· P (X1 = 3, X0 = 2)

P (X0 = 2)

=
P (X2 = 1|X1 = 3, X0 = 2)

P (X1 = 3|X0 = 2)

By the Markov property (1.1) the last expression is

P (X2 = 1|X1 = 3) · P (X1 = 3|X0 = 2) = p(2, 3)p(3, 1)

Moving on to the real question:
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Q2. What is the probability your children are lower class (1) given
your parents were middle class (2)?

Solution. To do this we simply have to consider the three possible
states for Wednesday and use the solution of the previous problem.

P (X2 = 1|X0 = 2) =
3∑

k=1

P (X2 = 1, X1 = k|X0 = 2) =
3∑

k=1

p(2, k)p(k, 1)

= (.3)(.7) + (.5)(.3) + (.2)(.2) = .21 + .15 + .04 = .21

There is nothing special here about the states 2 and 1 here. By
the same reasoning,

P (X2 = j|X0 = i) =
3∑

k=1

p(i, k) p(k, j)

The right-hand side of the last equation gives the (i, j)th entry of
the matrix p is multiplied by itself.

To explain this, we note that to compute p2(2, 1) we multiplied
the entries of the second row by those in the first column: . . .

.3 .5 .2
. . .

.7 . .
.3 . .
.2 . .

 =

 . . .
.40 . .
. . .


If we wanted p2(1, 3) we would multiply the first row by the third
column: .7 .2 .1

. . .

. . .

. . .1
. . .2
. . .4

 =

. . .15
. . .
. . .


When all of the computations are done we have.7 .2 .1

.3 .5 .2

.2 .4 .4

.7 .2 .1
.3 .5 .2
.2 .4 .4

 =

.57 .28 .15
.40 .39 .21
.34 .40 .26


All of this becomes much easier if we use a scientific calculator

like the T1-83. Using 2nd-MATRIX we can access a screen with
NAMES, MATH, EDIT at the top. Selecting EDIT we can enter
the matrix into the computer as say [A]. The selecting the NAMES
we can enter [A] ∧ 2 on the computation line to get A2. If we use
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this procedure to compute A20 we get a matrix with three rows that
agree in the first six decimal places with

.468085 .340425 .191489

Later we will see that An converges to a matrix with all three rows
equal to (22/47, 16/47, 9/47).

To explain our interest in Am we will now prove:

Theorem 1.1. The m step transition probability P (Xn+m = j|Xn =
i) is the mth power of the transition matrix p.

The key ingredient in proving this is the Chapman–Kolmogorov
equation

pm+n(i, j) =
∑

k

pm(i, k) pn(k, j) (1.2)

Once this is proved, Theorem 1.1 follows, since taking n = 1 in (4.1),
we see that

pm+1(i, j) =
∑

k

pm(i, k) p(k, j)

That is, the m+1 step transition probability is the m step transition
probability times p. Theorem 1.1 now follows.

Why is (4.1) true? To go from i to j in m+ n steps, we have to go
from i to some state k in m steps and then from k to j in n steps.
The Markov property implies that the two parts of our journey are
independent.

•
•
•
•

•
•
•
•

•
•
•
•

   
   

  

```````̀
aaaaaaaa

aaaaaaaa

```````̀

   
   

  

i
j

time 0 m m+ n

Proof of (4.1). We do this by combining the solutions of Q1 and
Q2. Breaking things down according to the state at time m,

P (Xm+n = j|X0 = i) =
∑

k

P (Xm+n = j,Xm = k|X0 = i)
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Using the definition of conditional probability as in the solution of
Q1,

P (Xm+n = j,Xm = k|X0 = i) =
P (Xm+n = j,Xm = k,X0 = i)

P (X0 = i)

=
P (Xm+n = j,Xm = k,X0 = i)

P (Xm = k,X0 = i)
· P (Xm = k,X0 = i)

P (X0 = i)

= P (Xm+n = j|Xm = k,X0 = i) · P (Xm = k|X0 = i)

By the Markov property (1.1) the last expression is

= P (Xm+n = j|Xm = k) · P (Xm = k|X0 = i) = pm(i, k)pn(k, j)

and we have proved (4.1).

Having established (4.1), we now return to computations.

Example 1.11. Gambler’s ruin. Suppose for simplicity that N =
4 in Example 1.1, so that the transition probability is

0 1 2 3 4
0 1.0 0 0 0 0
1 0.6 0 0.4 0 0
2 0 0.6 0 0.4 0
3 0 0 0.6 0 0.4
4 0 0 0 0 1.0

To compute p2 one row at a time we note:

p2(0, 0) = 1 and p2(4, 4) = 1, since these are absorbing states.

p2(1, 3) = (.4)2 = 0.16, since the chain has to go up twice.

p2(1, 1) = (.4)(.6) = 0.24. The chain must go from 1 to 2 to 1.

p2(1, 0) = 0.6. To be at 0 at time 2, the first jump must be to 0.

Leaving the cases i = 2, 3 to the reader, we have

p2 =


1.0 0 0 0 0
.6 .24 0 .16 0
.36 0 .48 0 .16
0 .36 0 .24 .4
0 0 0 0 1


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Using a calculator one can easily compute

p20 =


1.0 0 0 0 0

.87655 .00032 0 .00022 .12291

.69186 0 .00065 0 .30749

.41842 .00049 0 .00032 .58437
0 0 0 0 1


0 and 4 are absorbing states. Here we see that the probability of
avoing absorption for 20 steps is 0.00054 from state 3, 0.00065 from
state 2, and 0.00081 from state 1. Later we will see that

lim
n→∞

pn =


1.0 0 0 0 0

57/65 0 0 0 8/65
45/65 0 0 0 20/65
27/65 0 0 0 38/65

0 0 0 0 1


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1.3 Classification of States

We begin with some important notation. We are often interested in
the behavior of the chain for a fixed initial state, so we will introduce
the shorthand

Px(A) = P (A|X0 = x)

Later we will have to consider expected values for this probability
and we will denote them by Ex.

Let Ty = min{n ≥ 1 : Xn = y} be the time of the first return
to y (i.e., being there at time 0 doesn’t count), and let

ρyy = Py(Ty <∞)

be the probability Xn returns to y when it starts at y. Intuitively,
the Markov property implies that the probability Xn will return at
least twice to y is ρ2

yy, since after the first return, the chain is at y,
and the Markov property implies that the probability of a second
return following the first is again ρyy.

To show that the reasoning in the last paragraph is valid, we have
to introduce a definition and state a theorem.

Definition 1.2. We say that T is a stopping time if the occur-
rence (or nonoccurrence) of the event “we stop at time n,” {T = n}
can be determined by looking at the values of the process up to that
time: X0, . . . , Xn.

To see that Ty is a stopping time note that

{Ty = n} = {X1 6= y, . . . , Xn−1 6= y,Xn = y}

and that the right-hand side can be determined from X0, . . . , Xn.
Since stopping at time n depends only on the values X0, . . . , Xn,

and in a Markov chain the distribution of the future only depends on
the past through the current state, it should not be hard to believe
that the Markov property holds at stopping times. This fact can be
stated formally as:

Theorem 1.2. Strong Markov property. Suppose T is a stop-
ping time. Given that T = n and XT = y, any other information
about X0, . . . XT is irrelevant for predicting the future, and XT+k,
k ≥ 0 behaves like the Markov chain with initial state y.
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Why is this true? To keep things as simple as possible we will show
only that

P (XT+1 = z|XT = y, T = n) = p(y, z)

Let Vn be the set of vectors (x0, . . . , xn) so that if X0 = x0, . . . , Xn =
xn, then T = n and XT = y. Breaking things down according to
the values of X0, . . . , Xn gives

P (XT+1 = z,XT = y, T = n) =
∑
x∈Vn

P (Xn+1 = z,Xn = xn, . . . , X0 = x0)

=
∑
x∈Vn

P (Xn+1 = z|Xn = xn, . . . , X0 = x0)P (Xn = xn, . . . , X0 = x0)

where in the second step we have used the multiplication rule

P (A ∩B) = P (B|A)P (A)

For any (x0, . . . , xn) ∈ A we have T = n and XT = y so xn = y.
Using the Markov property, (1.1), and recalling the definition of Vn

shows the above

P (XT+1 = z, T = n,XT = y) = p(y, z)
∑
x∈Vn

P (Xn = xn, . . . , X0 = x0)

= p(y, z)P (T = n,XT = y)

Dividing both sides by P (T = n,XT = y) gives the desired result.

Definition 1.3. Let T 1
y = Ty and for k ≥ 2 let

T k
y = min{n > T k−1

y : Xn = y} (1.3)

be the time of the kth return to y.

The strong Markov property implies that the conditional prob-
ability we will return one more time given that we have returned
k − 1 times is ρyy. This and induction implies that

Py(T
k
y <∞) = ρk

yy (1.4)

At this point, there are two possibilities:

(i) ρyy < 1: The probability of returning k times is ρk
yy → 0 as

k → ∞. Thus, eventually the Markov chain does not find its way
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back to y. In this case the state y is called transient, since after
some point it is never visited by the Markov chain.

(ii) ρyy = 1: The probability of returning k times ρn
yy = 1, so the

chain returns to y infinitely many times. In this case, the state y is
called recurrent, it continually recurs in the Markov chain.

To understand these notions, we turn to our examples, beginning
with

Example 1.12. Gambler’s ruin. Consider, for concreteness, the
case N = 4.

0 1 2 3 4
0 1 0 0 0 0
1 .6 0 .4 0 0
2 0 .6 0 .4 0
3 0 0 .6 0 .4
4 0 0 0 0 1

We will show that eventually the chain gets stuck in either the
bankrupt (0) or happy winner (4) state. In the terms of our re-
cent definitions, we will show that states 0 < y < 4 are transient,
while the states 0 and 4 are recurrent.

It is easy to check that 0 and 4 are recurrent. Since p(0, 0) = 1,
the chain comes back on the next step with probability one, i.e.,

P0(T0 = 1) = 1

and hence ρ00 = 1. A similar argument shows that 4 is recurrent.
In general if y is an absorbing state, i.e., if p(y, y) = 1, then y is
a very strongly recurrent state – the chain always stays there.

To check the transience of the interior states, 1, 2, 3, we note that
starting from 1, if the chain goes to 0, it will never return to 1, so
the probability of never returning to 1,

P1(T1 =∞) ≥ p(1, 0) = 0.6 > 0

Similarly, starting from 2, the chain can go to 1 and then to 0, so

P2(T2 =∞) ≥ p(2, 1)p(1, 0) = 0.36 > 0

Finally for starting from 3, we note that the chain can go immedi-
ately to 4 and never return with probability 0.4, so

P3(T3 =∞) ≥ p(3, 4) = 0.4 > 0
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Generalizing from our experience with the gambler’s ruin chain,
we come to a general result that will help us identify transient states.

Definition 1.4. We say that x communicates with y and write
x→ y if there is a positive probability of reaching y starting from x,
that is, the probability

ρxy = Px(Ty <∞) > 0

Note that the last probability includes not only the possibility of
jumping from x to y in one step but also going from x to y after
visiting several other states in between. The following property is
simple but useful. Here and in what follows, lemmas are a means to
prove the more important conclusions called theorems. To make it
easier to locate things, theorems and lemmas are numbered in the
same sequence.

Lemma 1.1. If x→ y and y → z, then x→ z.

Proof. Since x → y there is an m so that pm(x, y) > 0. Similarly
there is an n so that pn(y, z) > 0. Since pm+n(x, z) ≥ pm(x, y)pn(y, z)
it follows that x→ z.

Theorem 1.3. If ρxy > 0, but ρyx < 1, then x is transient.

Proof. Let K = min{k : pk(x, y) > 0} be the smallest number of
steps we can take to get from x to y. Since pK(x, y) > 0 there must
be a sequence y1, . . . yK−1 so that

p(x, y1)p(y1, y2) · · · p(yK−1, y) > 0

Since K is minimal all the yi 6= y (or there would be a shorter path),
and we have

Px(Tx =∞) ≥ p(x, y1)p(y1, y2) · · · p(yK−1, y)(1− ρyx) > 0

so x is transient.

We will see later that Theorem 1.3 allows us to to identify all
the transient states when the state space is finite. An immediate
consequence of Theorem 1.3 is

Lemma 1.2. If x is recurrent and ρxy > 0 then ρyx = 1.

Proof. If ρyx < 1 then Lemma 1.3 would imply x is transient.
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In some cases it is easy to identify recurrent states.

Example 1.13. Social mobility. Recall that the transition prob-
ability is

1 2 3
1 .7 .2 .1
2 .3 .5 .2
3 .2 .4 .4

To begin we note that no matter where Xn is, there is a probability
of at least .1 of hitting 3 on the next step so P3(T3 > n) ≤ (.9)n.
As n → ∞, (.9)n → 0 so P3(T3 < ∞) = 1, i.e., we will return to 3
with probability 1. The last argument applies even more strongly
to states 1 and 2, since the probability of jumping to them on the
next step is always at least .2. Thus all three states are recurrent.

The last argument generalizes to the give the following useful
fact.

Lemma 1.3. Suppose Px(Ty ≤ k) ≥ α > 0 for all x in the state
space S. Then

Px(Ty > nk) ≤ (1− α)n

To be able to analyze any finite state Markov chain we need some
theory. To motivate the developments consider

Example 1.14. A Seven-state chain. Consider the transition
probability:

1 2 3 4 5 6 7
1 .3 0 0 0 .7 0 0
2 .1 .2 .3 .4 0 0 0
3 0 0 .5 .5 0 0 0
4 0 0 0 .5 0 .5 0
5 .6 0 0 0 .4 0 0
6 0 0 0 0 0 .2 .8
7 0 0 0 1 0 0 0

To identify the states that are recurrent and those that are transient,
we begin by drawing a graph that will contain an arc from i to j if
p(i, j) > 0 and i 6= j. We do not worry about drawing the self-loops
corresponding to states with p(i, i) > 0 since such transitions cannot
help the chain get somewhere new.
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In the case under consideration we draw arcs from 1→ 5, 2→ 1,
2→ 3, 2→ 4, 3→ 4, 4→ 6, 4→ 7, 5→ 1, 6→ 4, 6→ 7, 7→ 4.

5 3 7

1 2 4 6
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The state 2 communicates with 1, which does not communicate
with it, so Theorem 1.3 implies that 2 is transient. Likewise 3 com-
municates with 4, which doesn’t communicate with it, so 3 is tran-
sient. To conclude that all the remaining states are recurrent we
will introduce two definitions and a fact.

Definition 1.5. A set A is closed if it is impossible to get out, i.e.,
if i ∈ A and j 6∈ A then p(i, j) = 0.

In Example 1.14, {1, 5} and {4, 6, 7} are closed sets. Their union,
{1, 4, 5, 6, 7} is also closed. One can add 3 to get another closed set
{1, 3, 4, 5, 6, 7}. Finally, the whole state space {1, 2, 3, 4, 5, 6, 7} is
always a closed set.

Among the closed sets in the last example, some are obviously
too big. To rule them out, we need a definition.

Definition 1.6. A set B is called irreducible if whenever i, j ∈ B,
i communicates with j.

The irreducible closed sets in the Example 1.14 are {1, 5} and {4, 6, 7}.
The next result explains our interest in irreducible closed sets.

Theorem 1.4. If C is a finite closed and irreducible set, then all
states in C are recurrent.

Before entering into an explanation of this result, we note that The-
orem 1.4 tells us that 1, 5, 4, 6, and 7 are recurrent, completing our
study of the Example 1.14 with the results we had claimed earlier.

In fact, the combination of Theorem 1.3 and 1.4 is sufficient to
classify the states in any finite state Markov chain. An algorithm
will be explained in the proof of the following result.
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Theorem 1.5. If the state space S is finite, then S can be written
as a disjoint union T ∪R1 ∪ · · · ∪Rk, where T is a set of transient
states and the Ri, 1 ≤ i ≤ k, are closed irreducible sets of recurrent
states.

Proof. Let T be the set of x for which there is a y so that x → y
but y 6→ x. The states in T are transient by Theorem 1.3. Our next
step is to show that all the remaining states, S − T , are recurrent.

Pick an x ∈ S − T and let Cx = {y : x → y}. Since x 6∈ T it
has the property if x → y, then y → x. To check that Cx is closed
note that if y ∈ Cx and y → z, then Lemma 1.1 implies x → z so
z ∈ Cx. To check irreducibility, note that if y, z ∈ Cx, then by our
first observation y → x and we have x→ z by definition, so Lemma
1.1 implies y → z. Cx is closed and irreducible so all states in Cx

are recurrent. Let R1 = Cx. If S − T −R1 = ∅, we are done. If not,
pick a site w ∈ S − T −R1 and repeat the procedure.

* * * * * * *

The rest of this section is devoted to the proof of Theorem 1.4.
To do this, it is enough to prove the following two results.

Lemma 1.4. If x is recurrent and x→ y, then y is recurrent.

Lemma 1.5. In a finite closed set there has to be at least one re-
current state.

To prove these results we need to introduce a little more theory.
Recall the time of the kth visit to y defined by

T k
y = min{n > T k−1

y : Xn = y}

and ρxy = Px(Ty <∞) the probability we ever visit y at some time
n ≥ 1 when we start from x. Using the strong Markov property as
in the proof of (1.4) gives

Px(T
k
y <∞) = ρxyρ

k−1
yy . (1.5)

Let N(y) be the number of visits to y at times n ≥ 1. Using (1.5)
we can compute EN(y).

Lemma 1.6. ExN(y) = ρxy/(1− ρyy)
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Proof. Accept for the moment the fact that for any nonnegative
integer valued random variable X, the expected value of X can be
computed by

EX =
∞∑

k=1

P (X ≥ k) (1.6)

We will prove this after we complete the proof of Lemma 1.6. Now
the probability of returning at least k times, {N(y) ≥ k}, is the
same as the event that the kth return occurs, i.e., {T k

y < ∞}, so
using (1.5) we have

ExN(y) =
∞∑

k=1

P (N(y) ≥ k) = ρxy

∞∑
k=1

ρk−1
yy =

ρxy

1− ρyy

since
∑∞

n=0 θ
n = 1/(1− θ) whenever |θ| < 1.

Proof of (1.6). Let 1{X≥k} denote the random variable that is 1 if
X ≥ k and 0 otherwise. It is easy to see that

X =
∞∑

k=1

1{X≥k}.

Taking expected values and noticing E1{X≥k} = P (X ≥ k) gives

EX =
∞∑

k=1

P (X ≥ k)

Our next step is to compute the expected number of returns to
y in a different way.

Lemma 1.7. ExN(y) =
∑∞

n=1 p
n(x, y).

Proof. Let 1{Xn=y} denote the random variable that is 1 if Xn = y,
0 otherwise. Clearly

N(y) =
∞∑

n=1

1{Xn=y}.

Taking expected values now gives

ExN(y) =
∞∑

n=1

Px(Xn = y)
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With the two lemmas established we can now state our next main
result.

Theorem 1.6. y is recurrent if and only if

∞∑
n=1

pn(y, y) = EyN(y) =∞

Proof. The first equality is Lemma 1.7. From Lemma 1.6 we see
that EyN(y) = ∞ if and only if ρyy = 1, which is the definition of
recurrence.

With this established we can easily complete the proofs of our
two lemmas .

Proof of Lemma 1.4 . Suppose x is recurrent and ρxy > 0. By
Lemma 1.2 we must have ρyx > 0. Pick j and ` so that pj(y, x) > 0
and p`(x, y) > 0. pj+k+`(y, y) is probability of going from y to y
in j + k + ` steps while the product pj(y, x)pk(x, x)p`(x, y) is the
probability of doing this and being at x at times j and j + k. Thus
we must have

∞∑
k=0

pj+k+`(y, y) ≥ pj(y, x)

(
∞∑

k=0

pk(x, x)

)
p`(x, y)

If x is recurrent then
∑

k p
k(x, x) = ∞, so

∑
m p

m(y, y) = ∞ and
Theorem 1.6 implies that y is recurrent.

Proof of Lemma 1.5. If all the states in C are transient then Lemma
1.6 implies that ExN(y) <∞ for all x and y in C. Since C is finite,
using Lemma 1.7

∞ >
∑
y∈C

ExN(y) =
∑
y∈C

∞∑
n=1

pn(x, y)

=
∞∑

n=1

∑
y∈C

pn(x, y) =
∞∑

n=1

1 =∞

where in the next to last equality we have used that C is closed.
This contradiction proves the desired result.
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1.4 Stationary Distributions

In the next section we will show that if we impose an additional
assumption called aperiodicity an irreducible finite state Markov
chain converges to a stationary distribution

pn(x, y)→ π(y)

To prepare for that this section introduces stationary distributions
and shows how to compute them. Our first step is to consider

What happens in a Markov chain when the initial state is
random? Breaking things down according to the value of the initial
state and using the definition of conditional probability

P (Xn = j) =
∑

i

P (X0 = i,Xn = j)

=
∑

i

P (X0 = i)P (Xn = j|X0 = i)

If we introduce q(i) = P (X0 = i), then the last equation can be
written as

P (Xn = j) =
∑

i

q(i)pn(i, j) (1.7)

In words, we multiply the transition matrix on the left by the vector
q of initial probabilities. If there are k states, then pn(x, y) is a k×k
matrix. So to make the matrix multiplication work out right, we
should take q as a 1× k matrix or a “row vector.”

Example 1.15. Consider the weather chain (Example 1.3) and sup-
pose that the initial distribution is q(1) = 0.3 and q(2) = 0.7. In
this case (

.3 .7
)(.6 .4

.2 .8

)
=
(
.32 .68

)
since .3(.6) + .7(.2) = .32

.3(.4) + .7(.8) = .68

Example 1.16. Consider the social mobility chain (Example 1.4)
and suppose that the initial distribution: q(1) = .5, q(2) = .2, and
q(3) = .3. Multiplying the vector q by the transition probability
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gives the vector of probabilities at time 1.

(
.5 .2 .3

).7 .2 .1
.3 .5 .2
.2 .4 .4

 =
(
.47 .32 .21

)
To check the arithmetic note that the three entries on the right-hand
side are

.5(.7) + .2(.3) + .3(.2) = .35 + .06 + .06 = .47

.5(.2) + .2(.5) + .3(.4) = .10 + .10 + .12 = .32

.5(.1) + .2(.2) + .3(.4) = .05 + .04 + .12 = .21

If the distribution at time 0 is the same as the distribution at
time 1, then by the Markov property it will be the distribution at
all times n ≥ 1.

Definition 1.7. If qp = q then q is called a stationary distribu-
tion.

Stationary distributions have a special importance in the theory
of Markov chains, so we will use a special letter π to denote solutions
of the equation

πp = π.

To have a mental picture of what happens to the distribution of
probability when one step of the Markov chain is taken, it is useful
to think that we have q(i) pounds of sand at state i, with the total
amount of sand

∑
i q(i) being one pound. When a step is taken in

the Markov chain, a fraction p(i, j) of the sand at i is moved to j.
The distribution of sand when this has been done is

qp =
∑

i

q(i)p(i, j)

If the distribution of sand is not changed by this procedure q is a
stationary distribution.

Example 1.17. Weather chain. To compute the stationary dis-
tribution we want to solve(

π1 π2

)(.6 .4
.2 .8

)
=
(
π1 π2

)
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Multiplying gives two equations:

.6π1 + .2π2 = π1

.4π1 + .8π2 = π2

Both equations reduce to .4π1 = .2π2. Since we want π1 + π2 = 1,
we must have .4π1 = .2− .2π1, and hence

π1 =
.2

.2 + .4
=

1

3
π2 =

.4

.2 + .4
=

2

3

To check this we note that(
1/3 2/3

)(.6 .4
.2 .8

)
=

(
.6

3
+
.4

3

.4

3
+

1.6

3

)
General two state transition probability.

1 2
1 1− a a
2 b 1− b

We have written the chain in this way so the stationary distribution
has a simple formula

π1 =
b

a+ b
π2 =

a

a+ b
(1.8)

As a first check on this formula we note that in the weather chain
a = 0.4 and b = 0.2 which gives (1/3, 2/3) as we found before. We
can prove this works in general by drawing a picture:

•
1b

a+ b
•
2 a

a+ b

a
−→←−
b

In words, the amount of sand that flows from 1 to 2 is the same as
the amount that flows from 2 to 1 so the amount of sand at each
site stays constant. To check algebraically that πp = π:

b

a+ b
(1− a) +

a

a+ b
b =

b− ba+ ab

a+ b
=

b

a+ b
b

a+ b
a+

a

a+ b
(1− b) =

ba+ a− ab
a+ b

=
a

a+ b
(1.9)

Formula (1.8) gives the stationary distribution for any two state
chain, so we progress now to the three state case and consider the
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Example 1.18. Social Mobility (continuation of 1.4).

1 2 3
1 .7 .2 .1
2 .3 .5 .2
3 .2 .4 .4

The equation πp = π says

(
π1 π2 π3

).7 .2 .1
.3 .5 .2
.2 .4 .4

 =
(
π1 π2 π3

)
which translates into three equations

.7π1 + .3π2 + .2π3 = π1

.2π1 + .5π2 + .4π3 = π2

.1π1 + .2π2 + .4π3 = π3

Note that the columns of the matrix give the numbers in the rows
of the equations. The third equation is redundant since if we add
up the three equations we get

π1 + π2 + π3 = π1 + π2 + π3

If we replace the third equation by π1 + π2 + π3 = 1 and subtract
π1 from each side of the first equation and π2 from each side of the
second equation we get

−.3π1 + .3π2 + .2π3 = 0

.2π1 − .5π2 + .4π3 = 0

π1 + π2 + π3 = 1 (1.10)

At this point we can solve the equations by hand or using a calcu-
lator.

By hand. We note that the third equation implies π3 = 1−π1−
π2 and substituting this in the first two gives

.2 = .5π1 − .1π2

.4 = .2π1 + .9π2

Multiplying the first equation by .9 and adding .1 times the second
gives

2.2 = (0.45 + 0.02)π1 or π1 = 22/47
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Multiplying the first equation by .2 and adding −.5 times the second
gives

−0.16 = (−.02− 0.45)π2 or π2 = 16/47

Since the three probabilities add up to 1, π3 = 9/47.

Using the TI83 calculator is easier. To begin we write (1.10)
in matrix form as

(
π1 π2 π3

)−.2 .1 1
.2 −.4 1
.3 .3 1

 =
(
0 0 1

)
If we let A be the 3× 3 matrix in the middle this can be written as
πA = (0, 0, 1). Multiplying on each side by A−1 we see that

π = (0, 0, 1)A−1

which is the third row of A−1. To compute A−1, we enter A into our
calculator (using the MATRX menu and its EDIT submenu), use
the MATRIX menu to put [A] on the computation line, press x−1,
and then ENTER. Reading the third row we find that the stationary
distribution is

(0.468085, 0.340425, 0.191489)

Converting the answer to fractions using the first entry in the MATH
menu gives

(22/47, 16/47, 9/47)

Example 1.19. Brand Preference (continuation of 1.5).

1 2 3
1 .8 .1 .1
2 .2 .6 .2
3 .3 .3 .4

Using the first two equations and the fact that the sum of the π’s is
1

.8π1 + .2π2 + .3π3 = π1

.1π1 + .6π2 + .3π3 = π2

π1 + π2 + π3 = 1



32 CHAPTER 1. MARKOV CHAINS

Subtracting π1 from both sides of the first equation and π2 from
both sides of the second, this translates into πA = (0, 0, 1) with

A =

−.2 .1 1
.2 −.4 1
.3 .3 1


Note that here and in the previous example the first two columns of
A consist of the first two columns of the transition probability with
1 subtracted from the diagonal entries, and the final column is all
1’s. Computing the inverse and reading the last row gives

(0.545454, 0.272727, 0.181818)

Converting the answer to fractions using the first entry in the MATH
menu gives

(6/11, 3/11, 2/11)

To check this we note that

(
6/11 3/11 2/11

).8 .1 .1
.2 .6 .2
.3 .3 .4


=

(
4.8 + .6 + .6

11

.6 + 1.8 + .6

11

.6 + .6 + .8

11

)
Example 1.20. Basketball (continuation of 1.10). To find the
stationary matrix in this case we can follow the same procedure. A
consists of the first three columns of the transition matrix with 1
subtracted from the diagonal, and a final column of all 1’s.

−1/4 1/4 0 1
0 −1 2/3 1

2/3 1/3 −1 1
0 0 1/2 1

The answer is given by the fourth row of A−1:

(0.5, 0.1875, 0.1875, 0.125) = (1/2, 3/16, 3/16, 1/8)

Thus the long run fraction of time the player hits a shot is

π(HH) + π(MH) = 0.6875 = 11/36.



1.5. LIMIT BEHAVIOR 33

1.5 Limit Behavior

If y is a transient state, then
∑∞

n=1 p
n(x, y) <∞ for any initial state

x and hence
pn(x, y)→ 0

In view of the decomposition theorem, Theorem 1.5 we can now
restrict our attention to chains that consist of a single irreducible
class of recurrent states. Our first example shows one problem that
can prevent the convergence of pn(x, y).

Example 1.21. Ehrenfest chain (continuation of 1.2). For
concreteness, suppose there are three balls. In this case the transi-
tion probability is

0 1 2 3
0 0 3/3 0 0
1 1/3 0 2/3 0
2 0 2/3 0 1/3
3 0 0 3/3 0

In the second power of p the zero pattern is shifted:

0 1 2 3
0 1/3 0 2/3 0
1 0 7/9 0 2/9
2 2/9 0 7/9 0
3 0 2/3 0 1/3

To see that the zeros will persist, note that if we have an odd number
of balls in the left urn, then no matter whether we add or subtract
one the result will be an even number. Likewise, if the number is
even, then it will be odd on the next one step. This alternation
between even and odd means that it is impossible to be back where
we started after an odd number of steps. In symbols, if n is odd
then pn(x, x) = 0 for all x.

To see that the problem in the last example can occur for multi-
ples of any number N consider:

Example 1.22. Renewal chain. We will explain the name later.
For the moment we will use it to illustrate “pathologies.” Let fk be
a distribution on the positive integers and let p(0, k − 1) = fk. For
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states i > 0 we let p(i, i− 1) = 1. In words the chain jumps from 0
to k − 1 with probability fk and then walks back to 0 one step at a
time. If X0 = 0 and the jump is to k−1 then it returns to 0 at time
k. If say f5 = f15 = 1/2 then pn(0, 0) = 0 unless n is a multiple of
5.

Definition 1.8. The period of a state is the largest number that
will divide all the n ≥ 1 for which pn(x, x) > 0. That is, it is the
greatest common divisor of Ix = {n ≥ 1 : pn(x, x) > 0}.

To check that this definition works correctly, we note that in Exam-
ple 1.21, {n ≥ 1 : pn(x, x) > 0} = {2, 4, . . .}, so the greatest com-
mon divisor is 2. Similarly, in Example 1.22, {n ≥ 1 : pn(x, x) >
0} = {5, 10, . . .}, so the greatest common divisor is 5. As the next
example shows, things aren’t always so simple.

Example 4.4. Triangle and square. Consider the transition
matrix:

−2 −1 0 1 2 3
−2 0 0 1 0 0 0
−1 1 0 0 0 0 0
0 0 0.5 0 0.5 0 0
1 0 0 0 0 1 0
2 0 0 0 0 0 1

In words, from 0 we are equally likely to go to 1 or −1. From −1
we go with probability one to −2 and then back to 0, from 1 we
go to 2 then to 3 and back to 0. The name refers to the fact that
0 → −1 → −2 → 0 is a triangle and 0 → 1 → 2 → 3 → 0 is a
square.

� -
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•

Clearly, p3(0, 0) > 0 and p4(0, 0) > 0 so 3, 4 ∈ I0. To compute I0
the following is useful:
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Lemma 1.8. Ix is closed under addition. That is, if i, j ∈ Ix, then
i+ j ∈ Ix.

Proof. If i, j ∈ Ix then pi(x, x) > 0 and pj(x, x) > 0 so

pi+j(x, x) ≥ pi(x, x)pj(x, x) > 0

and hence i+ j ∈ Ix.

Using this we see that

I0 = {3, 4, 6, 7, 8, 9, 10, 11, . . .}

Note that in this example once we have three consecutive numbers
(e.g., 6,7,8) in I0 then 6+3, 7+3, 8+3 ∈ I0 and hence it will contain
all the larger integers.

For another unusual example consider the renewal chain (Exam-
ple 1.22) with f5 = f12 = 1/2. 5, 12 ∈ I0 so using Lemma 1.8

I0 ={5, 10, 12, 15, 17, 20, 22, 24, 25, 27, 29, 30, 32,

34, 35, 36, 37, 39, 40, 41, 42, 43, . . .}

To check this note that 5 gives rise to 10=5+5 and 17=5+12, 10 to
15 and 22, 12 to 17 and 24, etc. Once we have five consecutive num-
bers in I0, here 39–43, we have all the rest. The last two examples
motivate the following.

Lemma 1.9. If x has period 1, i.e., the greatest common divisor Ix
is 1, then there is a number n0 so that if n ≥ n0, then n ∈ Ix. In
words, Ix contains all of the integers after some value n0.

Proof. We begin by observing that it enough to show that Ix will
contain two consecutive integers: k and k+1. For then it will contain
2k, 2k + 1, 2k + 2, or in general jk, jk + 1, . . . jk + j. For j ≥ k − 1
these blocks overlap and no integers are left out. In the last example
24, 25 ∈ I0 implies 48, 49, 50 ∈ I0 which implies 72, 73, 74, 75 ∈ I0
and 96, 97, 98, 99, 100 ∈ I0.

To show that there are two consecutive integers, we cheat and
use a fact from number theory: if the greatest common divisor of
a set Ix is 1 then there are integers i1, . . . im ∈ Ix and (positive or
negative) integer coefficients ci so that c1i1 + · · · + cmim = 1. Let
ai = c+i and bi = (−ci)+. In words the ai are the positive coefficients
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and the bi are −1 times the negative coefficients. Rearranging the
last equation gives

a1i1 + · · ·+ amim = (b1i1 + · · ·+ bmim) + 1

and using Lemma 1.8 we have found our two consecutive integers in
Ix.

While periodicity is a theoretical possibility, it rarely manifests
itself in applications, except occasionally as an odd-even parity prob-
lem, e.g., the Ehrenfest chain. In most cases we will find (or design)
our chain to be aperiodic, i.e., all states have period 1. To be able
to verify this property for examples, we need to discuss some theory.

Lemma 1.10. If p(x, x) > 0, then x has period 1.

Proof. If p(x, x) > 0, then 1 ∈ Ix, so the greatest common divisor is
1.

This is enough to show that all states in the weather chain (Exam-
ple 1.3), social mobility (Example 1.4), and brand preference chain
(Example 1.5) are aperiodic. For states with zeros on the diagonal
the next result is useful.

Lemma 1.11. If ρxy > 0 and ρyx > 0 then x and y have the same
period.

Why is this true? The short answer is that if the two states have
different periods, then by going from x to y, from y to y in the various
possible ways, and then from y to x, we will get a contradiction.

Proof. Suppose that the period of x is c, while the period of y is
d < c. Let k be such that pk(x, y) > 0 and let m be such that
pm(y, x) > 0. Since

pk+m(x, x) ≥ pk(x, y)pm(y, x) > 0

we have k+m ∈ Ix. Since x has period c, k+m must be a multiple
of c. Now let ` be any integer with p`(y, y) > 0. Since

pk+`+m(x, x) ≥ pk(x, y)p`(y, y)pm(y, x) > 0

k+ `+m ∈ Ix, and k+ `+m must be a multiple of c. Since k+m
is itself a multiple of c, this means that ` is a multiple of c. Since
` ∈ Iy was arbitrary, we have shown that c is a divisor of every
element of Iy, but d < c is the greatest common divisor, so we have
a contradiction.
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Lemma 1.11 easily settles the question for the inventory chain
(Example 1.6)

0 1 2 3 4 5
0 0 0 .1 .2 .4 .3
1 0 0 .1 .2 .4 .3
2 .3 .4 .3 0 0 0
3 .1 .2 .4 .3 0 0
4 0 .1 .2 .4 .3 0
5 0 0 .1 .2 .4 .3

Since p(x, x) > 0 for x = 2, 3, 4, 5, Lemma 1.10 implies that these
states are aperiodic. Since this chain is irreducible it follows from
Lemma 1.11 that 0 and 1 are aperiodic.

Consider now the basketball chain (Example 1.10):

HH HM MH MM
HH 3/4 1/4 0 0
HM 0 0 2/3 1/3
MH 2/3 1/3 0 0
MM 0 0 1/2 1/2

Lemma 1.10 implies that HH and MM are aperiodic. Since this
chain is irreducible it follows from Lemma 1.11 that HM and MH
are aperiodic.

We now come to the main results of the chapter.

Theorem 1.7. Convergence theorem. Suppose p is irreducible,
aperiodic, and has a stationary distribution π. Then as n → ∞,
pn(x, y)→ π(y).

Corollary. If p is irreducible and has stationary distribution π, it
is unique.

Proof. First suppose that p is aperiodic. If there were two stationary
distributions, π1 and π2, then by applying Theorem 1.7 we would
conclude that

π1(y) = lim
n→∞

pn(x, y) = π2(y)

To get rid of the aperiodicity assumption, let I be the transition
probability for the chain that never moves, i.e., I(x, x) = 1 for all x,
and define a new transition probability q = (I + p)/2, i.e., we either
do nothing with probability 1/2 or take a step according to p. Since
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p(x, x) ≥ 1/2 for all x, p̂ is aperiodic. The result now follows by
noting that πp = π if and only if πq = π.

The next result considers the existence of stationary distributions:

Theorem 1.8. If the state space S is finite and irreducible then
there is a stationary distribution with π(x) > 0 for all x.

Our final important fact about the stationary distribution is that
it gives us the “limiting fraction for time we spend in each state.”

Theorem 1.9. Asymptotic frequency. Suppose p is irreducible
and recurrent. If Nn(y) be the number of visits to y up to time n,
then

Nn(y)

n
→ 1

EyTy

Notice that this result and the next do not require aperiodicity.
As a corollary we get the following.

Theorem 1.10. If p is an irreducible and has stationary distribution
π, then

π(y) = 1/EyTy

In the next two examples we will be interested in the long run cost
associated with a Markov chain. For this we will need the following
extension of Theorem 1.9.

Theorem 1.11. Suppose p is irreducible, has stationary distribution
π, and

∑
x |f(x)|π(x) <∞ then

1

n

n∑
m=1

f(Xm)→
∑

x

f(x)π(x)

To illustrate the use of Theorem 1.11, we consider

Example 1.23. Repair chain (continuation of 3.2). A machine
has three critical parts that are subject to failure, but can function
as long as two of these parts are working. When two are broken,
they are replaced and the machine is back to working order the
next day. Declaring the state space to be the parts that are broken
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{0, 1, 2, 3, 12, 13, 23}, we arrived at the following transition matrix:

0 1 2 3 12 13 23
0 .93 .01 .02 .04 0 0 0
1 0 .94 0 0 .02 .04 0
2 0 0 .95 0 .01 0 .04
3 0 0 0 .97 0 .01 .02
12 1 0 0 0 0 0 0
13 1 0 0 0 0 0 0
23 1 0 0 0 0 0 0

and we asked: If we are going to operate the machine for 1800 days
(about 5 years) then how many parts of types 1, 2, and 3 will we
use?

To find the stationary distribution we compute the inverse of

−.07 .01 .02 .04 0 0 1
0 −.06 0 0 .02 .04 1
0 0 −.05 0 .01 0 1
0 0 0 −.03 0 .01 1
1 0 0 0 −1 0 1
1 0 0 0 0 −1 1
1 0 0 0 0 0 1


Solving the equations and using FRAC:

π(0) = 3000/8910

π(1) = 500/8910 π(2) = 1200/8910 π(3) = 4000/8910

π(12) = 22/8910 π(13) = 60/8910 π(23) = 128/8910

We use up one part of type 1 on each visit to 12 or to 13, so on the
average we use 82/8910 of a part per day. Over 1800 days we will
use an average of 1800 · 82/8910 = 16.56 parts of type 1. Similarly
type 2 and type 3 parts are used at the long run rates of 150/8910
and 188/8910 per day, so over 1800 days we will use an average of
30.30 parts of type 2 and 37.98 parts of type 3.

Example 1.24. Inventory chain (continuation of 1.6). We
have an electronics store that sells a videogame system, selling 0, 1,
2, or 3 of these units each day with probabilities .3, .4, .2, and .1.
Each night at the close of business new units can be ordered which
will be available when the store opens in the morning. Suppose that



40 CHAPTER 1. MARKOV CHAINS

sales produce a profit of $12 but it costs $2 a day to keep unsold
units in the store overnight. Since it is impossible to sell 4 units in
a day, and it costs us to have unsold inventory we should never have
more than 3 units on hand.

Suppose we use a 2,3 inventory policy. That is, we order if there
are ≤ 2 units and we order enough stock so that we have 3 units at
the beginning of the next day. In this case we always start the day
with 3 units, so the transition probability has constant rows

0 1 2 3
0 .1 .2 .4 .3
1 .1 .2 .4 .3
2 .1 .2 .4 .3
3 .1 .2 .4 .3

In this case it is clear that the stationary distribution is π(0) = .1,
π(1) = .2, π(2) = .4, and π(3) = .3. If we end the day with k units
then we sold 3 − k and have to keep k over night. Thus our long
run sales under this scheme are

.1(36) + .2(24) + .4(12) = 3.6 + 4.8 + 4.8 = 13.2 dollars per day

while the inventory holding costs are

2(.2) + 4(.4) + 6(.3) = .4 + 1.6 + 1.8 = 3.8

for a net profit of 9.4 dollars per day.

Suppose we use a 1,3 inventory policy. In this case the transition
probability is

0 1 2 3
0 .1 .2 .4 .3
1 .1 .2 .4 .3
2 .3 .4 .3 0
3 .1 .2 .4 .3

Solving for the stationary distribution we get

π(0) = 19/110 π(1) = 30/110 π(2) = 40/110 π(3) = 21/110

To compute the profit we make from sales note that if we always
had enough stock then by the calculation in the first case, we would
make 13.2 dollars per day. However, when Xn = 2 and the demand
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is 3, an event with probability (4/11) · .1 = .036, we lose exactly one
of our sales. From this it follows that in the long run we make a
profit of

13.2− (.036)12 = 12.768 dollars per day

Our inventory holding cost under the new system is

2 · 30

110
+ 4 · 40

110
+ 6 · 21

110
=

60 + 160 + 126

110
= 3.145

so now our profits are 12.768− 3.145 = 9.623.

Suppose we use a 0,3 inventory policy. In this case the transition
probability is

0 1 2 3
0 .1 .2 .4 .3
1 .7 .3 0 0
2 .3 .4 .3 0
3 .1 .2 .4 .3

From the equations for the stationary distribution we get

π(0) = 343/1070 π(1) = 300/1070 π(2) = 280/1070 π(3) = 147/1070

To compute our profit we note, as in the previous calculation if we
always had enough stock then we would make 13.2 dollars per day.
Considering the various lost sales scenarios shows that in the long
run we make sales of

13.2− 12 ·
(

280

1070
.1 +

300

1070
(.1 · 2 + .2 · 1)

)
= 11.54 dollars per day

Our inventory holding cost until the new scheme is

2 · 300

1070
+ 4 · 280

1070
+ 6 · 147

1070
=

600 + 1120 + 882

1070
=

4720

1472
= 2.43

so the long run profit is 11.54− 2.43 = 9.11 dollars per day.
At this point we have computed

policy 0,3 1,3 2,3
profit per day $ 9.11 $9.62 $ $9.40

so the 1,3 inventory policy is optimal.
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1.6 Special Examples

1.6.1 Doubly stochastic chains

Definition 1.9. A transition matrix p is said to be doubly stochas-
tic if its COLUMNS sum to 1, or in symbols

∑
x p(x, y) = 1.

The adjective “doubly” refers to the fact that by its definition a tran-
sition probability matrix has ROWS that sum to 1, i.e.,

∑
y p(x, y) =

1. The stationary distribution is easy to guess in this case:

Theorem 1.12. If p is a doubly stochastic transition probability
for a Markov chain with N states, then the uniform distribution,
π(x) = 1/N for all x, is a stationary distribution.

Proof. To check this claim we note that if π(x) = 1/N then∑
x

π(x)p(x, y) =
1

N

∑
x

p(x, y) =
1

N
= π(y)

Looking at the second equality we see that conversely, if the station-
ary distribution is uniform then p is doubly stochastic.

Example 1.25. Symmetric reflecting random walk on the
line. The state space is {0, 1, 2 . . . , L}. The chain goes to the right
or left at each step with probability 1/2, subject to the rules that if
it tries to go to the left from 0 or to the right from L it stays put.
For example, when L = 4 the transition probability is

0 1 2 3 4
0 0.5 0.5 0 0 0
1 0.5 0 0.5 0 0
2 0 0.5 0 0.5 0
3 0 0 0.5 0 0.5
4 0 0 0 0.5 0.5

It is clear in the example L = 4 that each column adds up to 1.
With a little thought one sees that this is true for any L, so the
stationary distribution is uniform, π(i) = 1/(L+ 1).

Example 1.26. Tiny Board Game. Consider a circular board
game with only six spaces {0, 1, 2, 3, 4, 5}. On each turn we roll a
die with 1 on three sides, 2 on two sides, and 3 on one side to decide
how far to move. Here we consider 5 to be adjacent to 0, so if we
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are there and we roll a 2 then the result is 5 + 2 mod 6 = 1, where
i+k mod 6 is the remainder when i+k is divided by 6. In this case
the transition probability is

0 1 2 3 4 5
0 0 1/3 1/3 1/6 0 0
1 0 0 1/2 1/3 1/6 0
2 0 0 0 1/2 1/3 1/6
3 1/6 0 0 0 1/2 1/3
4 1/3 1/6 0 0 0 1/2
5 1/2 1/3 1/6 0 0 0

It is clear that the columns add to one, so the stationary distribution
is uniform. To check the hypothesis of the convergence theorem, we
note that after 3 turns we will have moved between 3 and 9 spaces
so p3(i, j) > 0 for all i and j.

Example 1.27. Mathematician’s Monopoly. The game Monopoly
is played on a game board that has 40 spaces arranged around the
outside of a square. The squares have names like Reading Railroad
and Park Place but we will number the squares 0 (Go), 1 (Baltic Av-
enue), . . . 39 (Boardwalk). In Monopoly you roll two dice and move
forward a number of spaces equal to the sum. For the moment, we
will ignore things like Go to Jail, Chance, and other squares that
make the transitions complicated and formulate the dynamics as
following. Let rk be the probability that the sum of two dice is k
(r2 = 1/36, r3 = 2/36, . . . r7 = 6/36, . . ., r12 = 1/36) and let

p(i, j) = rk if j = i+ k mod 40

where i+k mod 40 is the remainder when i+k is divided by 40. To
explain suppose that we are sitting on Park Place i = 37 and roll
k = 6. 37 + 6 = 43 but when we divide by 40 the remainder is 3, so
p(37, 3) = r6 = 5/36.

This example is larger but has the same structure as the previous
example. Each row has the same entries but shift one unit to the
right each time with the number that goes off the right edge emerg-
ing in the 0 column. This structure implies that each entry in the
row appears once in each column and hence the sum of the entries
in the column is 1, and the stationary distribution is uniform. To
check the hypothesis of the convergence theorem note that in four
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Figure 1.1: Stationary distribution for monopoly.

rolls you can move forward by 8 to 48 squares, so p4(i, j) > 0 for all
i and j.

Example 1.28. Real Monopoly has two complications:

• Square 30 is “Go to Jail,” which sends you to square 10. You
can buy your way out of jail but in the results we report below,
we assume that you are cheap. If you roll a double then you
get out for free. If you don’t get doubles in three tries you have
to pay.

• There are three Chance squares at 7, 12, and 36 (diamonds on
the graph), and three Community Chest squares at 2, 17, 33
(squares on the graph), where you draw a card, which can send
you to another square.

The graph gives the long run frequencies of being in different squares
on the Monopoly board at the end of your turn, as computed by
simulation. To make things easier to see we have removed the 9.46%
chance of being In Jail to make the probabilities easier to see. The
value reported for 10 is the 2.14% probability of Just Visiting Jail,
i.e., being brought there by the roll of the dice. Square 30, Go
to Jail, has probability 0 for the obvious reasons. The other three
lowest values occur for Chance squares. Due to the transition from
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30 to 10, frequencies for squares near 20 are increased relative to
the average of 2.5% while those after 30 or before 10 are decreased.
Squares 0 (Go) and 5 (Reading Railroad) are exceptions to this trend
since there are Chance cards that instruct you to go there.

1.6.2 Detailed balance condition

π is said to satisfy the detailed balance condition if

π(x)p(x, y) = π(y)p(y, x) (1.11)

To see that this is a stronger condition than πp = π, we sum over x
on each side to get∑

x

π(x)p(x, y) = π(y)
∑

x

p(y, x) = π(y)

As in our earlier discussion of stationary distributions, we think
of π(x) as giving the amount of sand at x, and one transition of the
chain as sending a fraction p(x, y) of the sand at x to y. In this case
the detailed balance condition says that the amount of sand going
from x to y in one step is exactly balanced by the amount going
back from y to x. In contrast the condition πp = π says that after
all the transfers are made, the amount of sand that ends up at each
site is the same as the amount that starts there.

Many chains do not have stationary distributions that satisfy the
detailed balance condition.

Example 1.29. Social Mobility

1 2 3
1 .7 .2 .1
2 .3 .5 .2
3 .2 .4 .4

The stationary distribution computed in Example 1.18 is (22/47, 16/47, 9/47)
but

π(1)p(1, 2) =
22

47
(.2) 6= 16

47
(0.3) = π(2)p(2, 1)

To get an even simpler example modify the chain above so that

1 2 3
1 .7 .3 0
2 .3 .5 .2
3 .2 .4 .4
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π(1)p(1, 3) = 0 but p(3, 1) > 0 so if (1.11) holds then π(3) = 0 and
using π(3)p(3, i) = π(i)p(i, 3) with i = 1, 2 we conclude that all the
π(i) = 0.

Example 1.30. Birth and death chains are defined by the prop-
erty that the state space is some sequence of integers `, `+1, . . . r−
1, r and it is impossible to jump by more than one:

p(x, y) = 0 when |x− y| > 1

Suppose that the state space is {`, ` + 1, . . . , r − 1, r} and the
transition probability has

p(x, x+ 1) = px for x < r
p(x, x− 1) = qx for x > `
p(x, x) = rx for ` ≤ x ≤ r

while the other p(x, y) = 0. If x < r detailed balance between x and
x+ 1 implies π(x)px = π(x+ 1)qx+1, so

π(x+ 1) =
px

qx+1

· π(x) (1.12)

Using this with x = ` gives π(`+1) = π(`)p`/q`+1. Taking x = `+1

π(`+ 2) =
p`+1

q`+2

· π(`+ 1) =
p`+1 · p`

q`+2 · q`+1

· π(`)

Extrapolating from the first two results we see that in general

(5.5) π(`+ i) = π(`) · p`+i−1 · p`+i−2 · · · p`+1p`

q`+i · q`+i−1 · · · q`+2 · · · q`+1

To keep the indexing straight note that: (i) there are i terms in the
numerator and in the denominator, (ii) the indices decrease by 1
each time, (iii) the answer will not depend on p`+i or q`.

For a concrete example to illustrate the use of this formula con-
sider

Example 1.31. Ehrenfest chain. For concreteness, suppose there
are three balls. In this case the transition probability is

0 1 2 3
0 0 3/3 0 0
1 1/3 0 2/3 0
2 0 2/3 0 1/3
3 0 0 3/3 0
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The detailed balance equations say:

π(0) = π(1)/3 2π(1)/3 = 2π(2)/3 π(2)/3 = π(3)

Setting π(0) = c we can solve to get π(1) = 3c, π(2) = π(1) = 3c,
and π(3) = c. The sum of the π’s should be one, so we pick c = 1/8
to get

π(0) = 1/8, π(1) = 3/8, π(2) = 3/8, π(3) = 1/8

Knowing the answer in general, one can look at the last equation
and see that π represents the distribution of the number of Heads
when we flip three coins, then guess in general that the binomial
distribution with p = 1/2 is the stationary distribution:

π(i) = 2−n

(
n

i

)
Here m! = 1 · 2 · · · (m− 1) ·m, with 0! = 1, and(

n

x

)
=

n!

x!(n− x)!
is the binomial coefficient which gives the number of ways of choos-
ing x objects out of a set of n. To check that our guess satisfies the
detailed balance condition, we note that

π(x)p(x, x+ 1) = 2−n n!

x!(n− x)!
· n− x

n

= 2−n n!

(x+ 1)!(n− x− 1)!
· x+ 1

n
= π(x+ 1)p(x+ 1, x)

Example 1.32. Three machines, one repairman. Suppose that
an office has three machines that each break with probability .1 each
day, but when there is at least one broken, then with probability 0.5
the repairman can fix one of them for use the next day. If we ignore
the possibility of two machines breaking on the same day, then the
number of working machines can be modeled as a birth and death
chain with the following transition matrix:

0 1 2 3
0 .5 .5 0 0
1 .05 .5 .45 0
2 0 .1 .5 .4
3 0 0 .3 .7
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Rows 0 and 3 are easy to see. To explain row 1, we note that the state
will only decrease by 1 if one machine breaks and the repairman fails
to repair the one he is working on, an event of probability (.1)(.5),
while the state can only increase by 1 if he succeeds and there is no
new failure, an event of probability .5(.9). Similar reasoning shows
p(2, 1) = (.2)(.5) and p(2, 3) = .5(.8).

To find the stationary distribution we use the recursive formula
(1.12) to conclude that if π(0) = c then

π(1) = π(0) · p0

q1
= c · .5

.05
= 10c

π(2) = π(1) · p1

q2
= 10c · .45

.1
= 45c

π(3) = π(2) · p2

q3
= 45c · .4

.3
= 60c

The sum of the π’s is 116c, so if we let c = 1/116 then we get

π(3) =
60

116
, π(2) =

45

116
, π(1) =

10

116
, π(0) =

1

116

There are many other Markov chains that are not birth and death
chains but have stationary distributions that satisfy the detailed
balance condition. A large number of possibilities are provided by

Example 1.33. Random walks on graphs. A graph is described
by giving two things: (i) a set of vertices V (which, for the moment,
we will suppose is a finite set) and (ii) an adjacency matrix A(u, v),
which is 1 if u and v are “neighbors” and 0 otherwise. By convention
we set A(v, v) = 0 for all v ∈ V . The degree of a vertex u is equal
to the number of neighbors it has. In symbols,

d(u) =
∑

v

A(u, v)

since each neighbor of u contributes 1 to the sum. We write the
degree this way to make it clear that

(∗) p(u, v) =
A(u, v)

d(u)

defines a transition probability. In words, if Xn = u, we jump to a
randomly chosen neighbor of u at time n+ 1.
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It is immediate from (∗) that if c is a positive constant then
π(u) = cd(u) satisfies the detailed balance condition:

π(u)p(u, v) = cA(u, v) = cA(v, u) = π(v)p(u, v)

Thus, if we take c = 1/
∑

u d(u), we have a stationary probability
distribution.

For a concrete example, consider

Example 1.34. Random walk of a knight on a chess board. A
chess board is an 8 by 8 grid of squares. A knight moves by walking
two steps in one direction and then one step in a perpendicular
direction.

×

• •
• •

••
••

The degrees of the vertices are

2 3 4 4 4 4 3 2
3 4 6 6 6 6 4 3
4 6 8 8 8 8 6 4
4 6 8 8 8 8 6 4
4 6 8 8 8 8 6 4
4 6 8 8 8 8 6 4
3 4 6 6 6 6 4 3
2 3 4 4 4 4 3 2

The sum of the degrees is 4 · 2 + 8 · 3 + 20 · 4 + 16 · 6 + 16 · 8 = 336,
so the stationary probabilities are the degrees divided by 336.
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This problem is boring for a rook which has 14 possible moves
from any square and hence a uniform stationary distribution. In
the exercises, we will consider the other three interesting examples:
king, bishop, and queen.

Example 1.35. The Metropolis-Hastings algorithm is a method
for generating samples from a distribution π(x). We begin with a
Markov chain q(x, y) that is the proposed jump distribution. A
move is accepted with probability

r(x, y) = min

{
π(y)q(y, x)

π(x)q(x, y)
, 1

}
so the transition probability

p(x, y) = q(x, y)r(x, y)

To check that π satisfies the detailed balance condition we can sup-
pose that π(y)q(y, x) > π(x)q(x, y). In this case

π(x)p(x, y) = π(x)q(x, y) · 1

π(y)p(y, x) = π(y)q(y, x)
π(x)q(x, y)

π(y)q(y, x)
= π(x)q(x, y)

To generate one sample from π(x) we run the chain for a long
time so that it reaches equilibrium. For many samples we output
the state at widely separated times. Of course there is an art of
knowing how long is long enough to wait between outputting the
state.

This method is used when π(x) has a complicated formula or
involves a normalization that is difficult to compute. For a con-
crete example we consider the one dimensional Ising model. x =
(η1, η2, . . . ηN) where the spins ηi = ±1. Given an interaction pa-
rameter β which is inversely proportional to the temperature, the
equilibirum state is

π(x) =
1

Z(β)
exp

(
−β

N−1∑
j=1

(−ηiηi+1)

)

There are two minus signs because the energyH(x) =
∑N−1

j=1 (−ηiηi+1)
is minimized when all the spins are equal and the probability of a
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state is proportional to exp(−βH(x)). Z(β) is a constant that makes
the probabilities sum to one.

For the proposed jump distribution we let q(x, y) = 1/N is the
two configurations differ at exactly one spin. In this case the tran-
sition probability is

p(x, y) = q(x, y) min

{
π(y)

π(x)
, 1

}
Note that the ratio π(y)/π(x) is easy to compute because Z(β)
cancels out, as do all the terms in the sum that do not involve the site
that flipped in going from x to y. In words p(x, y) can be described
by saying that we accept the proposed move with probability 1 if it
lowers the energy and with probability π(y)/π(x) if not.

1.6.3 Reversibility

Let p(i, j) be a transition probability with stationary distribution
π(i). Let Xn be a realization of the Markov chain starting from the
stationary distribution, i.e., P (X0 = i) = π(i). The next result says
that if we watch the process Xm, 0 ≤ m ≤ n, backwards, then it is
a Markov chain.

Theorem 1.13. Fix n and let Ym = Xn−m for 0 ≤ m ≤ n. Then
Ym is a Markov chain with transition probability

p̂(i, j) = P (Ym+1 = j|Ym = i) =
π(j)p(j, i)

π(i)
(1.13)

Proof. We need to calculate the conditional probability.

P (Ym+1 = im+1|Ym = im, Ym−1 = im−1 . . . Y0 = i0)

=
P (Xn−(m+1) = im+1, Xn−m = im, Xn−m+1 = im−1 . . . Xn = i0)

P (Xn−m = im, Xn−m+1 = im−1 . . . Xn = i0)

Using the Markov property, we see the numerator is equal to

π(im+1)p(im+1, im)P (Xn−m+1 = im−1, . . . Xn = i0|Xn−m = im)

Similarly the denominator can be written as

π(im)P (Xn−m+1 = im−1, . . . Xn = i0|Xn−m = im)
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Dividing the last two formulas and noticing that the conditional
probabilities cancel we have

P (Ym+1 = im+1|Ym = im, . . . Y0 = i0) =
π(im+1)p(im+1, im)

π(im)

This shows Ym is a Markov chain with the indicated transition prob-
ability.

The formula for the transition probability in (1.13) may look a
little strange, but it is easy to see that it works; i.e., the r(i, j) ≥ 0,
and have ∑

j

p̂(i, j) =
∑

j

π(j)p(j, i)π(i) =
π(i)

π(i)
= 1

since πp = π. When π satisfies the detailed balance conditions:

π(i)p(i, j) = π(j)p(j, i)

the transition probability for the reversed chain,

p̂(i, j) =
π(j)p(j, i)

π(i)
= p(i, j)

is the same as the original chain. In words, if we make a movie of the
Markov chain Xm, 0 ≤ m ≤ n starting from an initial distribution
that satisfies the detailed balance condition and watch it backwards
(i.e., consider Ym = Xn−m for 0 ≤ m ≤ n), then we see a random
process with the same distribution.
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1.7 Proofs of the Theorems 1.7–1.11

To prepare for the proof of the convergence theorem, Theorem 1.7,
we need the following:

Lemma 1.12. If there is a stationary distribution, then all states y
that have π(y) > 0 are recurrent.

Proof. Lemma 1.7 tells us that ExN(y) =
∑∞

n=1 p
n(x, y), so

∑
x

π(x)ExN(y) =
∑

x

π(x)
∞∑

n=1

pn(x, y)

Interchanging the order of summation and using πpn = π, the above

=
∞∑

n=1

∑
x

π(x)pn(x, y) =
∞∑

n=1

π(y) =∞

since π(y) > 0. Using Lemma 1.6 now gives ExN(y) = ρxy/(1−ρyy),
so

∞ =
∑

x

π(x)
ρxy

1− ρyy

≤ 1

1− ρyy

the second inequality following from the facts that ρxy ≤ 1 and
π is a probability measure. This shows that ρyy = 1, i.e., y is
recurrent.

With Lemma 1.12 in hand we are ready to tackle the proof of:

Theorem 1.7. Convergence theorem. Suppose p is irreducible,
aperiodic, and has stationary distribution π. Then as n → ∞,
pn(x, y)→ π(y).

Proof. Let S be the state space for p. Define a transition probability
p̄ on S × S by

p̄((x1, y1), (x2, y2)) = p(x1, x2)p(y1, y2)

In words, each coordinate moves independently.

Step 1. We will first show that if p is aperiodic and irreducible
then p̄ is irreducible. Since p is irreducible, there are K,L, so that
pK(x1, x2) > 0 and pL(y1, y2) > 0. Since x2 and y2 have period 1, it
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follows from Lemma 1.9 that if M is large, then pL+M(x2, x2) > 0
and pK+M(y2, y2) > 0, so

p̄K+L+M((x1, y1), (x2, y2)) > 0

Step 2. Since the two coordinates are independent π̄(a, b) = π(a)π(b)
defines a stationary distribution for p̄, and Lemma 1.12 implies that
all states are recurrent for p̄. Let (Xn, Yn) denote the chain on S×S,
and let T be the first time that the two coordinates are equal, i.e.,
T = min{n ≥ 0 : Xn = Yn}. Let V(x,x) = min{n ≥ 0 : Xn = Yn = x}
be the time of the first visit to (x, x). Since p̄ is irreducible and re-
current, V(x,x) <∞ with probability one. Since T ≤ V(x,x) for any x
we must have

P (T <∞) = 1. (1.14)

Step 3. By considering the time and place of the first intersection
and then using the Markov property we have

P (Xn = y, T ≤ n) =
n∑

m=1

∑
x

P (T = m,Xm = x,Xn = y)

=
n∑

m=1

∑
x

P (T = m,Xm = x)P (Xn = y|Xm = x)

=
n∑

m=1

∑
x

P (T = m,Ym = x)P (Yn = y|Ym = x)

= P (Yn = y, T ≤ n)

Step 4. To finish up we observe that since the distributions of Xn

and Yn agree on {T ≤ n}
|P (Xn = y)− P (Yn = y)| ≤ P (Xn = y, T > n) + P (Yn = y, T > n)

and summing over y gives∑
y

|P (Xn = y)− P (Yn = y)| ≤ 2P (T > n)

If we let X0 = x and let Y0 have the stationary distribution π, then
Yn has distribution π, and Using (1.14) it follows that∑

y

|pn(x, y)− π(y)| ≤ 2P (T > n)→ 0

proving the convergence theorem.



1.7. PROOFS OF THE THEOREMS 1.7–1.11 55

Our next topic is the existence of stationary distributions. We
first construct something less. µ(x) ≥ 0 is said to be a stationary
measure if ∑

x

µ(x)p(x, y) = µ(y)

If 0 <
∑

x µ(x) < ∞ we can divide by the sum to get a stationary
distribution.

Theorem 1.14. Suppose p is irreducible and recurrent. Let x ∈ S
and let Tx = inf{n ≥ 1 : Xn = x}.

µ(y) =
∞∑

n=0

Px(Xn = y, Tx > n)

defines a stationary measure with 0 < µ(y) <∞ for all y.

Why is this true? This is called the “cycle trick.” µ(y) is the
expected number of visits to y in {0, . . . , Tx − 1}. Multiplying by p
moves us forward one unit in time so µp(y) is the expected number
of visits to y in {1, . . . , Tx}. Since X(Tx) = X0 = x it follows that
µ = µp.
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Figure 1.2: Picture of the cycle trick.

Proof. To formalize this intuition, let p̄n(x, y) = Px(Xn = y, Tx > n)
and interchange sums to get∑

y

µ(y)p(y, z) =
∞∑

n=0

∑
y

p̄n(x, y)p(y, z)
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Case 1. Consider the generic case first: z 6= x.∑
y

p̄n(x, y)p(y, z) =
∑

y

Px(Xn = y, Tx > n,Xn+1 = z)

= Px(Tx > n+ 1, Xn+1 = z) = p̄n+1(x, z)

Here the second equality holds since the chain must be somewhere
at time n, and the third is just the definition of p̄n+1. Summing
from n = 0 to ∞, we have

∞∑
n=0

∑
y

p̄n(x, y)p(y, z) =
∞∑

n=0

p̄n+1(x, z) = µ(z)

since p̄0(x, z) = 0.

Case 2. Now suppose that z = x. Reasoning as above we have∑
y

p̄n(x, y)p(y, x) =
∑

y

Px(Xn = y, Tx > n,Xn+1 = x) = Px(Tx = n+1)

Summing from n = 0 to ∞ we have

∞∑
n=0

∑
y

p̄n(x, y)p(y, x) =
∞∑

n=0

Px(Tx = n+ 1) = 1 = µ(x)

since Px(T = 0) = 0.
To prove the final conclusion note that irreducibility implies µ(y) >

0, since if K is the smallest k with pk(x, y) > 0, then any k step
from x to y cannot visit x at a positive time. To check µ(y) < ∞
we note that µ(x) = 1 and

1 = µ(x) =
∑

y

µ(y)pn(y, x) ≥ µ(y)

so if we pick n with pn(y, x) > 0 then we conclude µ(y) <∞.

The next result now follows easily.

Theorem 1.8. If the state space S is finite and is irreducible there
is a stationary distribution with π(x) > 0 for all x.

Proof. Theorem 1.14 implies that there is a stationary measure µ.
Since S is finite then we can divide by the sum to get a stationary



1.7. PROOFS OF THE THEOREMS 1.7–1.11 57

distribution. To prove that π(y) > 0 we note that this is trivial for
y = x the point used to define the measure. For y 6= x, we borrow
an idea from Theorem 1.3. Let K = min{k : pk(x, y) > 0}. Since
pK(x, y) > 0 there must be a sequence y1, . . . yK−1 so that

p(x, y1)p(y1, y2) · · · p(yK−1, y) > 0

Since K is minimal all the yi 6= y, so Px(XK = y, Tx > K) > 0 and
hence π(y) > 0.

We can now prove

Theorem 1.9. Suppose p is irreducible and recurrent. Let Nn(y)
be the number of visits to y at times ≤ n. As n→∞

Nn(y)

n
→ 1

EyTy

Why is this true? Suppose first that we start at y. The times be-
tween returns, t1, t2, . . . are independent and identically distributed
so the strong law of large numbers for nonnegative random variables
implies that the time of the kth return to y, R(k) = min{n ≥ 1 :
Nn(y) = k}, has

R(k)

k
→ EyTy ≤ ∞ (1.15)

If we do not start at y then t1 <∞ and t2, t3, . . . are independent and
identically distributed and we again have (1.15). Writing ak ∼ bk
when ak/bk → 1 we have R(k) ∼ kEyTy. Taking k = n/EyTy we see
that there are about n/EyTy returns by time n.

Proof. We have already shown (1.15). To turn this into the de-
sired result, we note that from the definition of R(k) it follows that
R(Nn(y)) ≤ n < R(Nn(y) + 1). Dividing everything by Nn(y) and
then multiplying and dividing on the end by Nn(y) + 1, we have

R(Nn(y))

Nn(y)
≤ n

Nn(y)
<
R(Nn(y) + 1)

Nn(y) + 1
· Nn(y) + 1

Nn(y)

Letting n→∞, we have n/Nn(y) trapped between two things that
converge to EyTy, so

n

Nn(y)
→ EyTy

and we have proved the desired result.
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Theorem 1.10. If p is an irreducible has stationary distribution π,
then

π(y) = 1/EyTy

Proof. Suppose X0 has distribution π. From Theorem 1.9 it follows
that

Nn(y)

n
→ 1

EyTy

Taking expected value and using the fact that Nn(y) ≤ n, it can be
shown that this implies

EπNn(y)

n
→ 1

EyTy

but since π is a stationary distribution EπNn(y) = nπ(y).

Theorem 1.11. Suppose p is irreducible, has stationary distribution
π, and

∑
x |f(x)|π(x) <∞ then

1

n

n∑
m=1

f(Xm)→
∑

x

f(x)π(x)

The key idea here is that by breaking the path at the return times
to x we get a seqeunce of random variables to which we can apply
the law of large numbers.

Sketch of proof. Suppose that the chain starts at x. Let T0 = 0 and
Tk = min{n > Tk−1 : Xn = x} be the time of the kth return to x.
By the strong Markov property, the random variables

Yk =

Tk∑
m=Tk−1+1

f(Xm)

are independent and identically distributed. By the cycle trick in
the proof of Theorem 1.14

EYk =
∑

x

µx(y)f(y)

Using the law of large numbers for i.i.d. variables

1

L

TL∑
m=1

f(Xm) =
1

L

L∑
k=1

Yk →
∑

x

µx(y)f(y)
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By the proof of Theorem 1.9, TL/L→ ExTx, so if we let L = n/ExTx

then
ExTx

n

n∑
m=1

f(Xm) ≈ 1

L

L∑
k=1

Yk →
∑

x

µx(y)f(y)

and it follows that

1

n

n∑
m=1

f(Xm)→
∑

y

µx(y)

ExTx

f(y) =
∑

y

π(y)f(y)
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1.8 Exit distributions

To motivate developments we begin with an example.

Example 1.36. Two year college. At a local two year college,
60% of freshmen become sophomores, 25% remain freshmen, and
15% drop out. 70% of sophomores graduate and transfer to a four
year college, 20% remain sophomores and 10% drop out. What
fraction of new students eventually graduate?

We use a Markov chain with state space 1 = freshman, 2 =
sophomore, G = graduate, D = dropout. The transition probability
is

1 2 G D
1 0.25 0.6 0 0.15
2 0 0.2 0.7 0.1
G 0 0 1 0
D 0 0 0 1

Let h(x) be the probability that a student currently in state x even-
tually graduates. By considering what happens on one step

h(1) = 0.25h(1) + 0.6h(2)

h(2) = 0.2h(2) + 0.7

To solve we note that the second equation implies h(2) = 7/8 and
then the first that

h(1) =
0.6

0.75
· 7
8

= 0.7

Example 1.37. Tennis. In tennis the winner of a game is the first
player to win four points, unless the score is 4−3, in which case the
game must continue until one player wins by two points. Suppose
that the game has reached the point where one player is trying to get
two points ahead to win and that the server will independently win
the point with probability 0.6. What is the probability the server
will win the game if the score is tied 3-3? if she is ahead by one
point? Behind by one point?

We formulate the game as a Markov chain in which the state is the
difference of the scores. The state space is 2, 1, 0,−1,−2 with 2 (win
for server) and −2 (win for opponent). The transition probability is
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2 1 0 -1 -2
2 1 0 0 0 0
1 .6 0 .4 0 0
0 0 .6 0 .4 0
-1 0 0 .6 0 .4
-2 0 0 0 0 1

If we let h(x) be the probability of the server winning when the score
is x then

h(x) =
∑

y

p(x, y)h(y)

with h(2) = 1 and h(−2) = 0. This gives us three equations in three
unknowns

h(1) = .6 + .4h(0)

h(0) = .6h(1) + .4h(−1)

h(−1) = .6h(0)

Rearranging we have

h(1)− .4h(0) + 0h(−1) = .6

−.6h(1) + h(0)− .4h(−1) = 0

0h(1)− .6h(0) + h(−1) = 0

which can be written in matrix form as 1 −.4 0
−.6 1 −.4
0 −.6 1

 h(1)
h(0)
h(−1)

 =

.60
0


If we let C = {1, 0,−1} be the nonabsorbing states, r(x, y) the
restriction of p to x, y ∈ C (i.e., the 3 × 3 matrix inside the black
lines in the transition probability) then the matrix is I − r. Solving
gives  h(1)

h(0)
h(−1)

 = (I − r)−1

.60
0

 =

.8769
.6923
.4154


The computations in this example become much simpler if we
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look at

p2 =

2 1 0 −1 −2
2 1 0 0 0 0
1 .6 .24 0 .16 0
0 .36 0 .48 0 .16
−1 0 .36 0 .24 .4
−2 0 0 0 0 1

From p2 we see that

h(0) = 0.36 + 0.48h(0)

so h(0) = 0.36/0.52 = 0.6923. By considering the outcome of the
first point we see that h(1) = 0.6 + 0.4h(0) = 0.8769 and h(−1) =
0.6h(0) = 0.4154.

General solution. Suppose that the server wins each point with
probability w. If the game is tied then after two points, the server
will have won with probability w2, lost with probability (1 − w)2,
and returned to a tied game with probability 2w(1− w), so h(0) =
w2 + 2w(1− w)h(0). Since 1− 2w(1− w) = w2 + (1− w)2, solving
gives

h(0) =
w2

w2 + (1− w)2

Figure 1.3 graphs this function.
Having worked two examples, it is time to show that we have

computed the right answer. In some cases we will want to guess and
verify the answer. In those situations it is nice to know that the
solution is unique. The next result proves this.

Theorem 1.15. Consider a Markov chain with finite state space S.
Let a and b be two points in S, and let C = S − {a, b}. Suppose
h(a) = 1, h(b) = 0, and that for x ∈ C we have

h(x) =
∑

y

p(x, y)h(y) (1.16)

If Px(Va ∧ Vb <∞) > 0 for all x ∈ C, then h(x) = Px(Va < Vb).

Proof. Let T = Va ∧ Vb. It follows from Lemma 1.3 that Px(T <
∞) = 1 for all x ∈ C. (1.16) implies that h(x) = Exh(X1) when
x 6= a, b. The Markov property implies

h(x) = Exh(XT∧n).
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Figure 1.3: Probability the server winning a tied game as a function of the
probability of winning a point.

We have to stop at time T because the equation is not assumed
to be valid for x = a, b. Since S is finite, Px(T < ∞) = 1 for
all x ∈ C, h(a) = 1, and h(b) = 0, it is not hard to prove that
Exh(XT∧n)→ Px(Va < Vb) which gives the desired result.

Example 1.38. Gambler’s ruin. Consider a gambling game in
which on any turn you win $1 with probability p or lose $1 with
probability 1− p. Suppose further that you will quit playing if your
fortune reaches $N . Of course, if your fortune reaches $0, then
the casino makes you stop. For reasons that will become clear in a
moment, we depart from our usual definition and let

Vy = min{n ≥ 0 : Xn = y}

be the time of the first visit to y. Let

h(x) = Px(VN < V0)

be the happy event that our gambler reaches the goal of $N before
going bankrupt when starting with $x. Thanks to our definition of
Vx as the minimum of n ≥ 0 we have h(0) = 0, and h(N) = 1.
To calculate h(x) for 0 < x < N , we set q = 1 − p to simplify the
formulas and consider what happens on the first step to arrive at

h(x) = ph(x+ 1) + qh(x− 1) (1.17)
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To solve this we rearrange to get p(h(x+1)−h(x)) = q(h(x)−h(x−
1)) and conclude

h(x+ 1)− h(x) =
q

p
· (h(x)− h(x− 1)) (1.18)

Symmetric case. If p = 1/2 this says that h(x + 1) − h(x) =
h(x)−h(x−1). In words, this says that h has constant slope. Since
h(0) = 0 and h(N) = 1 the slope must be 1/N and we must have
h(x) = x/N . To argue this algebraically, we can instead observe
that if h(x)− h(x− 1) = c for 1 ≤ i ≤ N then

1 = h(N)− h(0) =
N∑

i=1

h(x)− h(x− 1) = Nc

so c = 1/N . Using the last identity again with the fact that h(0) = 0,
we have

h(x) = h(x)− h(0) =
x∑

y=1

h(y)− h(y − 1) = x/N

Recalling the definition of h(x) this means

Px(VN < V0) = x/N for 0 ≤ x ≤ N (1.19)

To see what the last formula says we will consider a concrete
example.

Example 1.39. Matching pennies. Bob, who has 15 pennies,
and Charlie, who has 10 pennies, decide to play a game. They each
flip a coin. If the two coins match, Bob gets the two pennies (for a
profit of 1). If the two coins are different, then Charlie gets the two
pennies. They quit when someone has all of the pennies. What is
the probability Bob will win the game?

Let Xn be the number of pennies Bob has after n plays. Xn is a
gambler’s ruin chain with p = 1/2, N = 25, and X0 = 15, so by
(1.19) the probability Bob wins is 15/25. Notice that the answer is
simply Bob’s fraction of the total supply of pennies.

Asymmetric case. When p 6= 1/2 the ideas are the same but
the details are more difficult. If we set c = h(x)− h(0) then (1.18)
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implies that for i ≥ 1

h(x)− h(x− 1) = c

(
q

p

)x−1

Summing from x = 1 to N , we have

1 = h(N)− h(0) =
N∑

x=1

h(x)− h(x− 1) = c

N∑
x=1

(
q

p

)x−1

Now for θ 6= 1 the partial sum of the geometric series is

N−1∑
j=0

θj =
1− θN

1− θ
(1.20)

To check this note that

(1− θ)(1 + θ + · · · θN−1) = (1 + θ + · · · θN−1)

− (θ + θ2 + · · · θN) = 1− θN

Using (1.20) we see that c = (1 − θ)/(1 − θN) with θ = (1 − p)/p.
Summing and using the fact that h(0) = 0, we have

h(x) = h(x)− h(0) = c
x∑

i=1

θi−1 = c · 1− θ
x

1− θ
=

1− θx

1− θN

Recalling the definition of h(x) and rearranging the fraction we have

Px(VN < V0) =
θx − 1

θN − 1
where θ = 1−p

p
(1.21)

To see what (1.21) says we consider:

Example 1.40. Roulette. If we bet $1 on red on a roulette wheel
with 18 red, 18 black, and 2 green (0 and 00) holes, we win $1
with probability 18/38 = 0.4737 and lose $1 with probability 20/38.
Suppose we bring $50 to the casino with the hope of reaching $100
before going bankrupt. What is the probability we will succeed?

Here θ = q/p = 20/18, so (1.21) implies

P50(ST = 100) =

(
20
18

)50 − 1(
20
18

)100 − 1
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Using (20/18)50 = 194, we have

P50(ST = 100) =
194− 1

(194)2 − 1
=

1

194 + 1
= .005128

Now let’s turn things around and look at the game from the
viewpoint of the casino, i.e., p = 20/38. Suppose that the casino
starts with the rather modest capital of x = 100. (1.21) implies that
the probability they will reach N before going bankrupt is

(9/10)100 − 1

(9/10)N − 1

If we let N →∞, (9/10)N → 0 so the answer converges to

1− (9/10)100 = 1− 2.656× 10−5

If we increase the capital to $200 then the failure probability is
squared, since to become bankrupt we must first lose $100 and then
lose our second $100. In this case the failure probability is incredibly
small: (2.656× 10−5)2 = 7.055× 10−10.

From the last analysis we see that if p > 1/2, q/p < 1 and letting
N →∞ in (1.21) gives

Px(V0 =∞) = 1−
(
q

p

)x

Px(V0 <∞) =

(
q

p

)x

(1.22)

to see that the form of the last answer makes sense note that to get
from x to 0 we must go x→ x− 1→ x2 . . .→ 1→ 0, so

Px(V0 <∞) = P1(V0 <∞)x.

Using this result, we can continue our investigation of Example
1.9.

Example 1.41. Wright–Fisher model with no mutation. The
state space is S = {0, 1, . . . N} and the transition probability is

p(x, y) =
N

y

( x
N

)y
(
N − x
N

)N−y

The right-hand side is the binomial(N, x/N) distribution, i.e., the
number of successes in N trials when success has probability x/N ,
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so the mean number of successes is x. From this it follows that if
we define h(x) = x/N , then

h(x) =
∑

y

p(x, y)h(y)

Taking a = N and b = 0, we have h(a) = 1 and h(b) = 0. Since
Px(Va ∧Vb <∞) > 0 for all 0 < x < N , it follows from Lemma 1.15
that

Px(VN < V0) = x/N

i.e., the probability of fixation to all A’s is equal to the fraction of
the genes that are A.
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1.9 Exit times

To motivate developments we begin with an example.

Example 1.42. Two year college. In Example 1.36 we intro-
duced a Markov chain with state space 1 = freshman, 2 = sopho-
more, G = graduate, D = dropout, and transition probability

1 2 G D
1 0.25 0.6 0 0.15
2 0 0.2 0.7 0.1
G 0 0 1 0
D 0 0 0 1

On the average how many years does a student take to graduate or
drop out?

Let g(x) be the expected time for a student to graduate or drop
out. g(G) = g(D) = 0. By considering what happens on one step

g(1) = 1 + 0.25g(1) + 0.6g(2)

g(2) = 1 + 0.2g(2)

where the 1+ is due to the fact that when the jump is made one
year has elapsed. To solve we note that the second equation implies
g(2) = 1/0.8 = 1.25 and then the first that

g(1) =
1 + 0.6(1.25)

0.75
=

1.75

0.75
= 2.3333

Example 1.43. Tennis. In Example 1.37 we formulated the game
as a Markov chain in which the state is the difference of the scores.
The state space is S = {2, 1, 0,−1,−2} with 2 (win for server) and
−2 (win for opponent). The transition probability is

2 1 0 -1 -2
2 1 0 0 0 0
1 .6 0 .4 0 0
0 0 .6 0 .4 0

-1 0 0 .6 0 .4
-2 0 0 0 0 1
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Let g(x) be the expected time to complete the game when the
current state is x. By considering what happens on one step

g(x) = 1 +
∑

y

p(x, y)g(y)

Since g(2) = g(−2) = 0, if we let r(x, y) be the restriction of the
transition probability to 1, 0,−1 we have

g(x)−
∑

y

r(x, y)g(y) = 1

Writing 1 for a 3×1 matrix (i.e., column vector) with all 1’s we can
write this as

g(I − r) = 1

so g = (I − r)−11.
There is another way to see this. If N(y) is the number of visits

to y at times n ≥ 0, then from (1.7)

ExN(y) =
∞∑

n=0

rn(x, y)

To see that this is (I−r)−1(x, y) note that (I−r)(I+r+r2+r3+· · · )

= (I + r + r2 + r3 + · · · )− (r + r2 + r3 + r4 · · · ) = I

If T is the duration of the game then T =
∑

y N(y) so

ExT = (I − r)−11 (1.23)

To solve the problem now we note that

I−r =

 1 −.4 0
−.6 1 −.4
0 −.6 1

 (I−r)−1 =

19/13 10/13 4/13
15/13 25/13 10/13
9/13 15/13 19/13


so E0T = (15 + 25 + 10)/13 = 50/13 = 3.846 points.

Having worked two examples, it is time to show that we have
computed the right answer. In some cases we will want to guess and
verify the answer. In those situations it is nice to know that the
solution is unique. The next result proves this.
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Theorem 1.16. Consider a Markov chain with finite state space S.
Let A ⊂ S and VA = inf{n ≥ 0 : Xn ∈ A}. We suppose C = S − A
is finite, and that Px(VA <∞) > 0 for any x ∈ C. Suppose g(a) = 0
for all a ∈ A, and that for x ∈ C we have

g(x) = 1 +
∑

y

p(x, y)g(y) (1.24)

Then g(x) = Ex(VA).

Proof. Let T = Va ∧ Vb. It follows from Lemma 1.3 that ExT < ∞
for all x ∈ C. (1.24) implies that g(x) = 1 + Exg(X1) when x 6∈ A.
The Markov property implies

g(x) = Ex(T ∧ n) + Exg(XT∧nn).

We have to stop at time t because the equation is not valid for
x ∈ A. It follows from the definition of the expected value that
Ex(T ∧ n) ↑ ExT . Since S is finite, Px(T < ∞) = 1 for all x ∈ C,
g(a) = 0 for a ∈ A, it is not hard to see that Exg(XT∧n)→ 0.

Example 1.44. Waiting time for TT. Let TTT be the (random)
number of times we need to flip a coin before we have gotten Tails
on two consecutive tosses. To compute the expected value of TTT

we will introduce a Markov chain with states 0, 1, 2 = the number
of Tails we have in a row.

Since getting a Tails increases the number of Tails we have in a
row by 1, but getting a Heads sets the number of Tails we have in
a row to 0, the transition matrix is

0 1 2
0 1/2 1/2 0
1 1/2 0 1/2
2 0 0 1

Since we are not interested in what happens after we reach 2 we have
made 2 an absorbing state. If we let V2 = min{n ≥ 0 : Xn = 2} and
g(x) = ExV2 then one step reasoning gives

g(0) = 1 + .5g(0) + .5g(1)

g(1) = 1 + .5g(0)
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Plugging the second equation into the first gives h(0) = 1.5+.75h(0),
so .25h(0) = 1.5 or h(0) = 6. To do this with the previous approach
we note

I − r =

(
1/2 −1/2
−1/2 1

)
(I − r)−1 =

(
4 2
2 2

)
so E0V2 = 6.

Example 1.45. Waiting time for HT. Let THT be the (random)
number of times we need to flip a coin before we have gotten a Heads
followed by a Tails. Consider Xn is Markov chain with transition
probability:

HH HT TH TT
HH 1/2 1/2 0 0
HT 0 0 1/2 1/2
TH 1/2 1/2 0 0
TT 0 0 1/2 1/2

If we eliminate the row and the column for HT then

I − r =

 1/2 0 0
−1/2 1 0

0 −1/2 1/2

 (I − r)−1 =

2 0 0
1 1 0
1 1 2


To compute the expected waiting time we note that after the first
two tosses we have each of the four possibilities with probability 1/4
so

ETHT = 2 +
1

4
(0 + 2 + 2 + 4) = 4

Why is ETTT = 6 while ETHT = 4? To explain we begin by
noting that EyTy = 1/π(y) and the stationary distribution assigns
probability 1/4 to each state. One can verify this and check that
convergence to equilibrium is rapid by noting that all the entries of
p2 are equal to 1/4.

EHTTHT =
1

π(HT )
= 4

To get from this to what we wanted to calculate, note that if we
start with a H at time −1 and a T at time 0, then we have nothing
that will help us in the future, so the expected waiting time for a
HT when we start with nothing is the same.
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If we apply this reasoning to TT we conclude

ETTTTT =
1

π(TT )
= 4

However this time if we start with a T at time −1 and a T at time
0, so a T at time 1 will give us a TT and a return at time 1, while
if we get a H at time 1 we have wasted 1 turn and we have nothing
that can help us later, so

4 = ETTTTT =
1

2
· 1 +

1

2
· (1 + ETTT )

Solving gives ETTT = 6, so it takes longer to observe TT . The
reason for this, which can be seen in the last equation, is that once
we have one TT , we will get another one with probability 1/2, while
occurrences of HT cannot overlap.

Example 1.46. Duration of fair games. Consider the gambler’s
ruin chain in which p(i, i + 1) = p(i, i− 1) = 1/2. Let τ = min{n :
Xn 6∈ (0, N)}. We claim that

Exτ = x(N − x) (1.25)

To see what formula (1.25) says, consider matching pennies. There
N = 25 and x = 15, so the game will take 15 · 10 = 150 flips on the
average. If there are twice as many coins, N = 50 and x = 30, then
the game takes 30 · 20 = 600 flips on the average, or four times as
long.

There are two ways to prove this.

Verify the guess. Let g(x) = x(N − x). Clearly, g(0) = g(N) = 0.
If 0 < x < N then by considering what happens on the first step we
have

g(x) = 1 +
1

2
g(x+ 1) +

1

2
g(x− 1)

If g(x) = x(N − x) then the right-hand side is

= 1 +
1

2
(x+ 1)(N − x− 1) +

1

2
(x− 1)(N − x+ 1)

= 1 +
1

2
[x(N − x)− x+N − x− 1] +

1

2
[x(N − x) + x− (N − x+ 1)]

= 1 + x(N − x)− 1 = x(N − x)
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Derive the answer. (1.24) implies that

g(x) = 1 + (1/2)g(x+ 1) + (1/2)g(x− 1)

Rearranging gives

g(x+ 1)− g(x) = −2 + g(x)− g(x− 1)

Setting g(1)−g(0) = c we have g(2)−g(1) = c−2, g(3)−g(2) = c−4
and in general that

g(k)− g(k − 1) = c− 2(k − 1)

Using g(0) = 0 and summing we have

0 = g(N) =
N∑

k=1

c− 2(k − 1) = cN − 2 · N(N − 1)

2

since, as one can easily check by induction,
∑m

j=1 j = m(m + 1)/2.

Solving gives c = (N − 1). Summing again, we see that

g(x) =
x∑

k=1

(N1)− 2(k − 1) = x(N − 1)− x(x+ 1) = x(N − x)

Example 1.47. Duration of nonfair games. Consider the gam-
bler’s ruin chain in which p(i, i+1)p and p(i, i−1) = q, where p 6= q.
Let τ = min{n : Xn 6∈ (0, N)}. We claim that

Exτ =
x

q − p
− N

q − p
· 1− (q/p)x

1− (q/p)N
(1.26)

This time the derivation is somewhat tedious so we will just verify
the guess. We want to show that g(x) = 1 + pg(x+ 1) + qg(x− 1).
Plugging the formula into the right-hand side:

=1 + p
x+ 1

q − p
+ q

x− 1

q − p
− N

q − p

[
p · 1− (q/p)x+1

1− (q/p)N
+ q

1− (q/p)x−1

1− (q/p)N

]
=1 +

x

q − p
+
p− q
q − p

− N

q − p

[
p+ q − (q/p)x(q + p)

1− (q/p)N

]
which = g(x) since p+ q = 1.
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To see what this says note that if p < q then q/p > 1 so

N

1− (q/p)N
→ 0 and g(x) =

x

q − p
(1.27)

To see this is reasonable note that our expected value on one play
is p− q, so we lose an average of q − p per play, and it should take
an average of x/(q − p) to lose x dollars.

When p > q, (q/p)N → 0, so doing some algebra

g(x) ≈ N − x
p− q

[1− (q/p)x] +
x

p− q
(q/p)x

Using (1.22) we see that the probability of not hitting 0 is 1−(q/p)x.
In this case, since our expected winnings per play is p− q, it should
take about (N − x)/(p − q) plays to get to N . The second term
represents the contribution to the expected value from paths that
end at 0, but without a lot of calculation it is hard to explain why
the term has exactly this form.



1.10. INFINITE STATE SPACES* 75

1.10 Infinite State Spaces*

In this section we delve into the complications that can arise when
the state space for the chain is infinite. The new complication is that
recurrence is not enough to guarantee the existence of a stationary
distribution.

Example 1.48. Reflecting random walk. Imagine a particle
that moves on {0, 1, 2, . . .} according to the following rules. It takes
a step to the right with probability p. It attempts to take a step to
the left with probability 1− p, but if it is at 0 and tries to jump to
the left, it stays at 0, since there is no −1 to jump to. In symbols,

p(i, i+ 1) = p when i ≥ 0

p(i, i− 1) = 1− p when i ≥ 1

p(0, 0) = 1− p

This is a birth and death chain, so we can solve for the stationary
distribution using the detailed balance equations:

pπ(i) = (1− p)π(i+ 1) when i ≥ 0

Rewriting this as π(i + 1) = π(i) · p/(1 − p) and setting π(0) = c,
we have

π(i) = c

(
p

1− p

)i

(1.28)

There are now three cases to consider:

p < 1/2: p/(1 − p) < 1. π(i) decreases exponentially fast, so∑
i π(i) < ∞, and we can pick c to make π a stationary distri-

bution. To find the value of c to make π a probability distribution
we recall

∞∑
i=0

θi = 1/(1− θ) when θ < 1.

Taking θ = p/(1 − p) and hence 1 − θ = (1 − 2p)/(1 − p), we see
that the sum of the π(i) defined in (∗) is c(1− p)/(1− 2p), so

π(i) =
1− 2p

1− p
·
(

p

1− p

)i

= (1− θ)θi (1.29)

To confirm that we have succeeded in making the π(i) add up to
1, note that if we are flipping a coin with a probability θ of Heads,
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then the probability of getting i Heads before we get our first Tails
is given by π(i).

The reflecting random walk is clearly irreducible. To check that
it is aperiodic note that p(0, 0) > 0 implies 0 has period 1, and
then Lemma 1.11 implies that all states have period 1. Using the
convergence theorem, Theorem 1.7, now we see that

I. When p < 1/2, P (Xn = j)→ π(j), the stationary distribution in
(1.29).

Using Theorem 1.10 now,

E0T0 =
1

π(0)
=

1

1− θ
=

1− p
1− 2p

(1.30)

It should not be surprising that the system stabilizes when p <
1/2. In this case movements to the left have a higher probability
than to the right, so there is a drift back toward 0. On the other
hand if steps to the right are more frequent than those to the left,
then the chain will drift to the right and wander off to ∞.

II. When p > 1/2 all states are transient.

(1.22) implies that if x > 0, Px(T0 <∞) = ((1− p)/p)x.

To figure out what happens in the borderline case p = 1/2, we
use results from Sections 1.8 and 1.9. Recall we have defined Vy =
min{n ≥ 0 : Xn = y} and (1.19) tells us that if x > 0

Px(VN < V0) = x/N

If we keep x fixed and let N → ∞, then Px(VN < V0) → 0 and
hence

Px(V0 <∞) = 1

In words, for any starting point x, the random walk will return to
0 with probability 1. To compute the mean return time we note
that if τN = min{n : Xn 6∈ (0, N)}, then we have τN ≤ V0 and by
(1.25) we have E1τN = N − 1. Letting N →∞ and combining the
last two facts shows E1V0 =∞. Reintroducing our old hitting time
T0 = min{n > 0 : Xn = 0} and noting that on our first step we go
to 0 or to 1 with probability 1/2 shows that

E0T0 = (1/2) · 1 + (1/2)E1V0 =∞
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Summarizing the last two paragraphs, we have

III. When p = 1/2, P0(T0 <∞) = 1 but E0T0 =∞.

Thus when p = 1/2, 0 is recurrent in the sense we will certainly
return, but it is not recurrent in the following sense:

x is said to be positive recurrent if ExTx <∞.

If a state is recurrent but not positive recurrent, i.e., Px(Tx <∞) =
1 but ExTx =∞, then we say that x is null recurrent.

In our new terminology, our results for reflecting random walk say

If p < 1/2, 0 is positive recurrent
If p = 1/2, 0 is null recurrent
If p > 1/2, 0 is transient

In reflecting random walk, null recurrence thus represents the
borderline between recurrence and transience. This is what we think
in general when we hear the term. To see the reason we might be
interested in positive recurrence recall that by Theorem 1.10

π(x) =
1

ExTx

If ExTx =∞, then this gives π(x) = 0. This observation motivates:

Theorem 1.17. For an irreducible chain the following are equiva-
lent:

(i) Some state is positive recurrent.
(ii) There is a stationary distribution π.
(iii) All states are positive recurrent.

Proof. The stationary measure constructed in Theorem 1.8 has total
mass ∑

y

µ(y) =
∞∑

n=0

∑
y

Px(Xn = y, Tx > n)

=
∞∑

n=0

Px(Tx > n) = ExTx

so (i) implies (ii). Noting that irreducibility implies π(y) > 0 for all
y and then using π(y) = 1/EyTy shows that (ii) implies (iii). It is
trivial that (iii) implies (i).
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Our next example may at first seem to be quite different. In a
branching process 0 is an absorbing state, so by Theorem 1.3 all
the other states are transient. However, as the story unfolds we will
see that branching processes have the same trichotomy as random
walks do.

Example 1.49. Branching Processes. Consider a population in
which each individual in the nth generation gives birth to an inde-
pendent and identically distributed number of children. The number
of individuals at time n, Xn is a Markov chain with transition prob-
ability given in Example 1.8. As announced there, we are interested
in the question:

Q. What is the probability the species avoids extinction?

Here “extinction” means becoming absorbed state at 0. As we will
now explain, whether this is possible or not can be determined by
looking at the average number of offspring of one individual:

µ =
∞∑

k=0

kpk

If there are m individuals at time n− 1, then the mean number at
time n is mµ. More formally the conditional expectation given Xn−1

E(Xn|Xn−1) = µXn−1

Taking expected values of both sides gives EXn = µEXn−1. Iterat-
ing gives

EXn = µnEX0 (1.31)

If µ < 1, then EXn → 0 exponentially fast. Using the inequality

EXn ≥ P (Xn ≥ 1)

it follows that P (Xn ≥ 1)→ 0 and we have

I. If µ < 1 then extinction occurs with probability 1.

To treat the cases µ ≥ 1 we will use a one-step calculation. Let
ρ be the probability that this process dies out (i.e., reaches the
absorbing state 0) starting from X0 = 1. If there are k children in
the first generation, then in order for extinction to occur, the family
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Figure 1.4: Generating function for Binomial(3,1/2).

line of each child must die out, an event of probability ρk, so we can
reason that

ρ =
∞∑

k=0

pkρ
k (1.32)

If we let φ(θ) =
∑∞

k=0 pkθ
k be the generating function of the distri-

bution pk, then the last equation can be written simply as ρ = φ(ρ).
The equation in (1.32) has a trivial root at ρ = 1 since φ(ρ) =∑∞
k=0 pk = 1. The next result identifies the root that we want:

Lemma 1.13. The extinction probability ρ is the smallest solution
of the equation φ(x) = x with 0 ≤ x ≤ 1.

Proof. Extending the reasoning for (1.32) we see that in order for
the process to hit 0 by time n, all of the processes started by first-
generation individuals must hit 0 by time n− 1, so

P (Xn = 0) =
∞∑

k=0

pkP (Xn−1 = 0)k

From this we see that if ρn = P (Xn = 0) for n ≥ 0, then ρn =
φ(ρn−1) for n ≥ 1.
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Since 0 is an absorbing state, ρ0 ≤ ρ1 ≤ ρ2 ≤ . . . and the sequence
converges to a limit ρ∞. Letting n → ∞ in ρn = φ(ρn−1) implies
that ρ∞ = φ(ρ∞), i.e., ρ∞ is a solution of φ(x) = x. To complete the
proof now let ρ be the smallest solution. Clearly ρ0 = 0 ≤ ρ. Using
the fact that φ is increasing, it follows that ρ1 = φ(ρ0) ≤ φ(ρ) = ρ.
Repeating the argument we have ρ2 ≤ ρ, ρ3 ≤ ρ and so on. Taking
limits we have ρ∞ ≤ ρ. However, ρ is the smallest solution, so we
must have ρ∞ = ρ.

To see what this says, let us consider a concrete example.

Example 1.50. Binary branching. Suppose p2 = a, p0 = 1− a,
and the other pk = 0. In this case φ(θ) = aθ2 + 1 − a, so φ(x) = x
means

0 = ax2 − x+ 1− a = (x− 1)(ax− (1− a))

The roots are 1 and (1− a)/a. If a ≤ 1/2, then the smallest root is
1, while if a > 1/2 the smallest root is (1− a)/a.

Noting that a ≤ 1/2 corresponds to mean µ ≤ 1 in binary branch-
ing motivates the following guess:

II. If µ > 1, then there is positive probability of avoiding extinction.

Proof. In view of Lemma 1.13, we only have to show there is a root
< 1. We begin by discarding a trivial case. If p0 = 0, then φ(0) = 0,
0 is the smallest root, and there is no probability of dying out. If
p0 > 0, then φ(0) = p0 > 0. Differentiating the definition of φ, we
have

φ′(x) =
∞∑

k=1

pk · kxk−1 so φ′(1) =
∞∑

k=1

kpk = µ

If µ > 1 then the slope of φ at x = 1 is larger than 1, so if ε is small,
then φ(1 − ε) < 1 − ε. Combining this with φ(0) > 0 we see there
must be a solution of φ(x) = x between 0 and 1− ε. See the figure
in the proof of (7.6).

Turning to the borderline case:

III. If µ = 1 and we exclude the trivial case p1 = 1, then extinction
occurs with probability 1.
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Proof. By Lemma 1.13 we only have to show that there is no root
< 1. To do this we note that if p1 < 1, then for y < 1

φ′(y) =
∞∑

k=1

pk · kxk−1 <
∞∑

k=1

pkk = 1

so if x < 1 then φ(x) = φ(1)−
∫ 1

x
φ′(y) dy > 1− (1− x) = x. Thus

φ(x) > x for all x < 1.

Note that in binary branching with a = 1/2, φ(x) = (1 + x2)/2,
so if we try to solve φ(x) = x we get

0 = 1− 2x+ x2 = (1− x)2

i.e., a double root at x = 1. In general when µ = 1, the graph of
φ is tangent to the diagonal (x, x) at x = 1. This slows down the
convergence of ρn to 1 so that it no longer occurs exponentially fast.

In more advanced treatments, it is shown that if the offspring
distribution has mean 1 and variance σ2 > 0, then

P1(Xn > 0) ∼ 2

nσ2

This is not easy even for the case of binary branching, so we refer
to reader to Section 1.9 of Athreya and Ney (1972) for a proof. We
mention the result here because it allows us to see that the expected
time for the process to die out

∑
n P1(T0 > n) =∞. If we modify the

branching process, so that p(0, 1) = 1 then in the modified process

If µ < 1, 0 is positive recurrent
If µ = 1, 0 is null recurrent
If µ > 1, 0 is transient

Our final example gives an application of branching processes to
queueing theory.

Example 1.51. M/G/1 queue. We will not be able to explain
the name of this example until we consider continuous-time Markov
chains in Chapter 2. However, imagine a queue of people waiting to
use an automated teller machine. Let Xn denote the number of peo-
ple in line at the moment of the departure of the nth customer. To
model this as a Markov chain we let ak be the probability kcustomers
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arrive during one service time and write down the transition prob-
ability

p(0, k) = ak and p(i, i− 1 + k) = ak for k ≥ 0

with p(i, j) = 0 otherwise.

To explain this, note that if there is a queue, it is reduced by
1 by the departure of a customer, but k new customers will come
with probability k. On the other hand if there is no queue, we must
first wait for a customer to come and the queue that remains at
her departure is the number of customers that arrived during her
service time. The pattern becomes clear if we write out a few rows
and columns of the matrix:

0 1 2 3 4 5 . . .
0 a0 a1 a2 a3 a4 a5

1 a0 a1 a2 a3 a4 a5

2 0 a0 a1 a2 a3 a4

3 0 0 a0 a1 a2 a3

4 0 0 0 a0 a1 a2

If we regard the customers that arrive during a person’s service
time to be her children, then this queueing process gives rise to a
branching process. From the results above for branching processes
we see that if we denote the mean number of children by µ =

∑
k kak,

then

If µ < 1, 0 is positive recurrent
If µ = 1, 0 is null recurrent
If µ > 1, 0 is transient

To bring out the parallels between the three examples, note that
when µ > 1 or p > 1/2 the process drifts away from 0 and is
transient. When µ < 1 or p < 1/2 the process drifts toward 0 and
is positive recurrent. When µ = 1 or p = 1/2, there is no drift. The
process eventually hits 0 but not in finite expected time, so 0 is null
recurrent.
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1.11 Chapter Summary

A Markov chain with transition probability p is defined by the prop-
erty that given the present state the rest of the past is irrelevant for
predicting the future:

P (Xn+1 = y|Xn = x,Xn−1 = xn−1, . . . , X0 = x0) = p(x, y)

The m step transition probability

pm(i, j) = P (Xn+m = y|Xn = x)

is the mth power of the matrix p.

Recurrence and transience

The first thing we need to determine about a Markov chain is
which states are recurrent and which are transient. To do this we
let Ty = min{n ≥ 1 : Xn = y} and let

ρxy = Px(Ty <∞)

When x 6= y this is the probability Xn ever visits y starting at x.
When x = y this is the probability Xn returns to y when it starts
at y. We restrict to times n ≥ 1 in the definition of Ty so that we
can say: y is recurrent if ρyy = 1 and transient if ρyy < 1.

Transient states in a finite state space can all be identified using

Theorem 1.3. If ρxy > 0, but ρyx < 1, then x is transient.

Once the transient states are removed we can use

Theorem 1.4. If C is a finite closed and irreducible set, then all
states in C are recurrent.

Here A is closed if x ∈ A and y 6∈ A implies p(x, y) = 0, and B is
irreducible if x, y ∈ B implies ρxy > 0.

The keys to the proof of Theorem 1.4 are that: (i) If x is recurrent
and ρxy > 0 then y is recurrent, and (ii) In a finite closed set there
has to be at least one recurrent state. To prove these results, it was
useful to know that if N(y) is the number of visits to y at times
n ≥ 1 then

∞∑
n=1

pn(x, y) = ExN(y) =
ρxy

1− ρyy
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so y is recurrent if and only if EyN(y) =∞.

Theorems 1.3 and 1.4 two results allow us to decompose the state
space and simplify the study of Markov chains.

Theorem 1.5. If the state space S is finite, then S can be written
as a disjoint union T ∪R1 ∪ · · · ∪Rk, where T is a set of transient
states and the Ri, 1 ≤ i ≤ k, are closed irreducible sets of recurrent
states.

Stationary distributions

A stationary distribution is a solution of πp = π. Here if p is a
k × k matrix, then π is a row vector, i.e., a 1 × k matrix. If the
state space S is finite and irreducible there is a unique stationary
distribution. If there are k states then π can be computed by the
following procedure. Form a matrix A by taking the first k − 1
columns of p − I and adding a final column of 1’s. The equations
πp = π and π1 + · · ·πk = 1 are equivalent to

πA =
(
0 . . . 0 1

)
so we have

π =
(
0 . . . 0 1

)
A−1

or π is the bottom row of A−1.
In two situations, the stationary distribution is easy to compute.

(i) If the chain is doubly stochastic, i.e.,
∑

x p(x, y) = 1, and has k
states, then the stationary distribution is uniform π(x) = 1/k. (ii)
π is a stationary distribution if the detailed balance condition holds

π(x)p(x, y) = π(y)p(y, x)

Birth and death chains, defined by the condition that p(x, y) = 0 if
|x− y| > 1 always have stationary distributions with this property.
If the state space is `, `+1, . . . r π can be found by setting π(`) = c,
solving for π(x) for ` < x ≤ r, and then choosing c to make the
probabilities sum to 1.

Convergence theorems

Transient states y have pn(x, y) → 0, so to investigate the con-
vergence of pn(x, y) it is enough by the decomposition theorem to
suppose the chain is irreducible and all states are recurrent. The
period of a state is the greatest common divisor of Ix = {n ≥ 1 :
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pn(x, x) > 0}. If the period is 1, x is said to be aperiodic. A simple
sufficient condition to be aperiodic is that p(x, x) > 0. To compute
the period it is useful to note that if ρxy > 0 and ρyx > 0 then x
and y have the same period. In particular all of the states in an
irreducible set have the same period.

The main results about the asymptotic behavior of Markov chains
are:

Theorem 1.7. Suppose p is irreducible, aperiodic, and has a sta-
tionary distribution π. Then as n→∞, pn(x, y)→ π(y).

Theorem 1.9. Suppose p is irreducible and has stationary distri-
bution π. If Nn(y) be the number of visits to y up to time n, then

Nn(y)

n
→ 1

EyTy

As a corollary we get

Theorem 1.10. If p is irreducible and has stationary distribution
π then

π(y) = EyTy

Chains with absorbing states

In this case there are two interesting questions. Where does the
chain get absorbed? How long does it take? Let Vy = min{n ≥ 0 :
Xn = y} be the time of the first visit to y, i.e., now being there at
time 0 counts.

Theorem 1.15. Consider a Markov chain with finite state space
S. Let a and b be two points in S, and let C = S − {a, b}. Suppose
h(a) = 1, h(b) = 0, and that for x ∈ C we have

h(x) =
∑

y

p(x, y)h(y)

If ρxa + ρxb > 0 for all x ∈ C, then h(x) = Px(Va < Vb).

Let r(x, y) be the part of the matrix p(x, y) with x, y ∈ C. Since
h(a) = 1 and h(b) = 0, the equation for h can be written for x ∈ C
as

h(x) = r(x, a) +
∑

y

r(x, y)h(y)
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so if we let v be the column vector with entries r(x, a) then the last
equation says (I − r)h = v and

h = (I − r)−1v.

Theorem 1.16. Consider a Markov chain with finite state space
S. Let A ⊂ S and VA = inf{n ≥ 0 : Xn ∈ A}. Suppose g(a) = 0 for
all a ∈ A, and that for x ∈ C = S − A we have

g(x) = 1 +
∑

y

p(x, y)g(y)

If Px(VA <∞) > 0 for all x ∈ C, then g(x) = Ex(VA).

Since g(x) = 0 for x ∈ A the equation for g can be written for x ∈ C
as

g(x) = 1 +
∑

y

r(x, y)g(y)

so if we let ~1 be a column vector consisting of all 1’s then the last
equation says (I − r)g = ~1 and

g = (I − r)−1~1.
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1.12 Exercises

Understanding the definitions

1.1. A fair coin is tossed repeatedly with results Y0, Y1, Y2, . . . that
are 0 or 1 with probability 1/2 each. For n ≥ 1 let Xn = Yn + Yn−1

be the number of 1’s in the (n−1)th and nth tosses. Is Xn a Markov
chain?

1.2. Five white balls and five black balls are distributed in two urns
in such a way that each urn contains five balls. At each step we draw
one ball from each urn and exchange them. Let Xn be the number
of white balls in the left urn at time n. Compute the transition
probability for Xn.

1.3. We repeated roll two four sided dice with numbers 1, 2, 3, and
4 on them. Let Yk be the sum on the kth roll, Sn = Y1 + · · · + Yn

be the total of the first n rolls, and Xn = Sn (mod 6). Find the
transition probability for Xn.

1.4. The 1990 census showed that 36% of the households in the
District of Columbia were homeowners while the remainder were
renters. During the next decade 6% of the homeowners became
renters and 12% of the renters became homeowners. What percent-
age were homeowners in 2000? in 2010?

1.5. Consider a gambler’s ruin chain with N = 4. That is, if 1 ≤
i ≤ 3, p(i, i + 1) = 0.4, and p(i, i − 1) = 0.6, but the endpoints are
absorbing states: p(0, 0) = 1 and p(4, 4) = 1 Compute p3(1, 4) and
p3(1, 0).

1.6. A taxicab driver moves between the airport A and two hotels
B and C according to the following rules. If he is at the airport,
he will be at one of the two hotels next with equal probability. If
at a hotel then he returns to the airport with probability 3/4 and
goes to the other hotel with probability 1/4. (a) Find the transition
matrix for the chain. (b) Suppose the driver begins at the airport at
time 0. Find the probability for each of his three possible locations
at time 2 and the probability he is at hotel B at time 3.

1.7. Suppose that the probability it rains today is 0.3 if neither
of the last two days was rainy, but 0.6 if at least one of the last
two days was rainy. Let the weather on day n, Wn, be R for
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rain, or S for sun. Wn is not a Markov chain, but the weather
for the last two days Xn = (Wn−1,Wn) is a Markov chain with four
states {RR,RS, SR, SS}. (a) Compute its transition probability.
(b) Compute the two-step transition probability. (c) What is the
probability it will rain on Wednesday given that it did not rain on
Sunday or Monday.

1.8. Consider the following transition matrices. Identify the tran-
sient and recurrent states, and the irreducible closed sets in the
Markov chains. Give reasons for your answers.

(a) 1 2 3 4 5
1 .4 .3 .3 0 0
2 0 .5 0 .5 0
3 .5 0 .5 0 0
4 0 .5 0 .5 0
5 0 .3 0 .3 .4

(b) 1 2 3 4 5 6
1 .1 0 0 .4 .5 0
2 .1 .2 .2 0 .5 0
3 0 .1 .3 0 0 .6
4 .1 0 0 .9 0 0
5 0 0 0 .4 0 .6
6 0 0 0 0 .5 .5

(c) 1 2 3 4 5
1 0 0 0 0 1
2 0 .2 0 .8 0
3 .1 .2 .3 .4 0
4 0 .6 0 .4 0
5 .3 0 0 0 .7

(d) 1 2 3 4 5 6
1 .8 0 0 .2 0 0
2 0 .5 0 0 .5 0
3 0 0 .3 .4 .3 0
4 .1 0 0 .9 0 0
5 0 .2 0 0 .8 0
6 .7 0 0 .3 0 0

1.9. Find the stationary distributions for the Markov chains with
transition matrices:

(a) 1 2 3
1 .5 .4 .1
2 .2 .5 .3
3 .1 .3 .6

(b) 1 2 3
1 .5 .4 .1
2 .3 .4 .3
3 .2 .2 .6

(c) 1 2 3
1 .6 .4 0
2 .2 .4 .2
3 0 .2 .8

1.10. Find the stationary distributions for the Markov chains on
{1, 2, 3, 4} with transition matrices:

(a)


.7 0 .3 0
.6 0 .4 0
0 .5 0 .5
0 .4 0 .6

 (b)


.7 .3 0 0
.2 .5 .3 0
.0 .3 .6 .1
0 0 .2 .8

 (c)


.7 0 .3 0
.2 .5 .3 0
.1 .2 .4 .3
0 .4 0 .6


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(c) The matrix is doubly stochastic so π(i) = 1/4, i = 1, 2, 3, 4.

1.11. Find the stationary distributions for the chains in exercises
(a) 1.2, (b) 1.3, and (c) 1.7.

1.12. (a) Find the stationary distribution for the transition proba-
bility

1 2 3 4
1 0 2/3 0 1/3
2 1/3 0 2/3 0
3 0 1/6 0 5/6
4 2/5 0 3/5 0

and show that it does not satisfy the detailed balance condition
(1.11).
(b) Consider

1 2 3 4
1 0 a 0 1− a
2 1− b 0 b 0
3 0 1− c 0 c
4 d 0 1− d 0

and show that there is a stationary distribution satisfying (1.11) if

0 < abcd = (1− a)(1− b)(1− c)(1− d).

1.13. Consider the Markov chain with transition matrix:

1 2 3 4
1 0 0 0.1 0.9
2 0 0 0.6 0.4
3 0.8 0.2 0 0
4 0.4 0.6 0 0

(a) Compute p2. (b) Find the stationary distributions of p and all
of the stationary distributions of p2. (c) Find the limit of p2n(x, x)
as n→∞.

1.14. Do the following Markov chains converge to equilibrium?

(a) 1 2 3 4
1 0 0 1 0
2 0 0 .5 .5
3 .3 .7 0 0
4 1 0 0 0

(b) 1 2 3 4
1 0 1 .0 0
2 0 0 0 1
3 1 0 0 0
4 1/3 0 2/3 0
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(c) 1 2 3 4 5 6
1 0 .5 .5 0 0 0
2 0 0 0 1 0 0
3 0 0 0 .4 0 .6
4 1 0 0 0 0 0
5 0 1 0 0 0 0
6 .2 0 0 0 .8 0

1.15. Find limn→∞ pn(i, j) for

p =

1 2 3 4 5
1 1 0 0 0 0
2 0 2/3 0 1/3 0
3 1/8 1/4 5/8 0 0
4 0 1/6 0 5/6 0
5 1/3 0 1/3 0 1/3

You are supposed to do this and the next problem by solving equa-
tions. However you can check your answers by using your calculator
to find FRAC(p100).

1.16. If we renumber the seven state chain in Example 1.14 we get

1 2 3 4 5 6 7
1 .2 .3 .1 0 .4 0 0
2 0 .5 0 .2 .3 0 0
3 0 0 .7 .3 0 0 0
4 0 0 .6 .4 0 0 0
5 0 0 0 0 .5 .5 0
6 0 0 0 0 0 .2 .8
7 0 0 0 0 1 0 0

Find limn→∞ pn(i, j).

Two state Markov chains

1.17. Market research suggests that in a five year period 8% of
people with cable television will get rid of it, and 26% of those
without it will sign up for it. Compare the predictions of the Markov
chain model with the following data on the fraction of people with
cable TV: 56.4% in 1990, 63.4% in 1995, and 68.0% in 2000. What
is the long run fraction of people with cable TV?
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1.18. A sociology professor postulates that in each decade 8% of
women in the work force leave it and 20% of the women not in
it begin to work. Compare the predictions of his model with the
following data on the percentage of women working: 43.3% in 1970,
51.5% in 1980, 57.5% in 1990, and 59.8% in 2000. In the long run
what fraction of women will be working?

1.19. A rapid transit system has just started operating. In the
first month of operation, it was found that 25% of commuters are
using the system while 75% are travelling by automobile. Suppose
that each month 10% of transit users go back to using their cars,
while 30% of automobile users switch to the transit system. (a)
Compute the three step transition probaiblity p3. (b) What will be
the fractions using rapid transit in the fourth month? (c) In the
long run?

1.20. A regional health study indicates that from one year to the
next, 75% percent of smokers will continue to smoke while 25% will
quit. 8% of those who stopped smoking will resume smoking while
92% will not. If 70% of the population were smokers in 1995, what
fraction will be smokers in 1998? in 2005? in the long run?

1.21. Three of every four trucks on the road are followed by a car,
while only one of every five cars is followed by a truck. What fraction
of vehicles on the road are trucks?

1.22. In a test paper the questions are arranged so that 3/4’s of the
time a True answer is followed by a True, while 2/3’s of the time a
False answer is followed by a False. You are confronted with a 100
question test paper. Approximately what fraction of the answers
will be True.

1.23. In unprofitable times corporations sometimes suspend divi-
dend payments. Suppose that after a dividend has been paid the
next one will be paid with probability 0.9, while after a dividend is
suspended the next one will be suspended with probability 0.6. In
the long run what is the fraction of dividends that will be paid?

1.24. Census results reveal that in the United States 80% of the
daughters of working women work and that 30% of the daughters
of nonworking women work. (a) Write the transition probability
for this model. (b) In the long run what fraction of women will be
working?
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1.25. When a basketball player makes a shot then he tries a harder
shot the next time and hits (H) with probability 0.4, misses (M) with
probability 0.6. When he misses he is more conservative the next
time and hits (H) with probability 0.7, misses (M) with probability
0.3. (a) Write the transition probability for the two state Markov
chain with state space {H,M}. (b) Find the long-run fraction of
time he hits a shot.

1.26. Folk wisdom holds that in Ithaca in the summer it rains 1/3 of
the time, but a rainy day is followed by a second one with probability
1/2. Suppose that Ithaca weather is a Markov chain. What is its
transition probability?

Chains with three or more states

1.27. (a) Suppose brands A and B have consumer loyalties of .7
and .8, meaning that a customer who buys A one week will with
probability .7 buy it again the next week, or try the other brand with
.3. What is the limiting market share for each of these products?
(b) Suppose now there is a third brand with loyalty .9, and that a
consumer who changes brands picks one of the other two at random.
What is the new limiting market share for these three products?

1.28. A midwestern university has three types of health plans: a
health maintenance organization (HMO), a preferred provider or-
ganization (PPO), and a traditional fee for service plan (FFS).
Experience dictates that people change plans according to the fol-
lowing transition matrix

HMO PPO FFS
HMO .85 .1 .05
PPO .2 .7 .1
FFS .1 .3 .6

In 2000, the percentages for the three plans wereHMO:30%, PPO:25%,
and FFS:45%. (a) What will be the percentages for the three plans
in 2001? (b) What is the long run fraction choosing each of the
three plans?

1.29. Bob eats lunch at the campus food court every week day. He
either eats Chinese food, Quesadila, or Salad. His transition matrix
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is
C Q S

C .15 .6 .25
Q .4 .1 .5
S .1 .3 .6

He had Chinese food on Monday. (a) What are the probabilities for
his three meal choices on Friday (four days later). (b) What are the
long run frequencies for his three choices?

1.30. The liberal town of Ithaca has a “free bikes for the people pro-
gram.” You can pick up bikes at the library (L), the coffee shop (C)
or the cooperative grocery store (G). The director of the program
has determined that bikes move around accroding to the following
Markov chain

L C G
L .5 .2 .3
C .4 .5 .1
G .25 .25 .5

On Sunday there are an equal number of bikes at each place. (a)
What fraction of the bikes are at the three locations on Tuesday?
(b) on the next Sunday? (c) In the long run what fraction are at
the three locations?

1.31. A plant species has red, pink, or white flowers according to
the genotypes RR, RW, and WW, respectively. If each of these
genotypes is crossed with a pink (RW ) plant then the offspring
fractions are

RR RW WW
RR .5 .5 0
RW .25 .5 .25
WW 0 .5 .5

What is the long run fraction of plants of the three types?

1.32. The weather in a certain town is classified as rainy, cloudy, or
sunny and changes according to the following transition probability
is

R C S
R 1/2 1/4 1/4
C 1/4 1/2 1/4
S 1/2 1/2 0
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In the long run what proportion of days in this town are rainy?
cloudy? sunny?

1.33. A sociologist studying living patterns in a certain region deter-
mines that the pattern of movement between urban (U), suburban
(S), and rural areas (R) is given by the following transition matrix.

U S R
U .86 .08 .06
S .05 .88 .07
R .03 .05 .92

In the long run what fraction of the population will live in the three
areas?

1.34. In a large metropolitan area, commuters either drive alone
(A), carpool (C), or take public transportation (T). A study showed
that transportation changes according to the following matrix:

A C T
A .8 .15 .05
C .05 .9 .05
S .05 .1 .85

In the long run what fraction of commuters will use the three types
of transportation?

1.35. (a) Three telephone companies A, B, and C compete for cus-
tomers. Each year customers switch between companies according
the followinng transition probability

A B C
A .75 .05 .20
B .15 .65 .20
C .05 .1 .85

What is the limiting market share for each of these companies?

1.36. A professor has two light bulbs in his garage. When both
are burned out, they are replaced, and the next day starts with two
working light bulbs. Suppose that when both are working, one of the
two will go out with probability .02 (each has probability .01 and we
ignore the possibility of losing two on the same day). However, when
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only one is there, it will burn out with probability .05. (i) What is
the long-run fraction of time that there is exactly one bulb working?
(ii) What is the expected time between light bulb replacements?

1.37. An individual has three umbrellas, some at her office, and
some at home. If she is leaving home in the morning (or leaving
work at night) and it is raining, she will take an umbrella, if one
is there. Otherwise, she gets wet. Assume that independent of
the past, it rains on each trip with probability 0.2. To formulate
a Markov chain, let Xn be the number of umbrellas at her current
location. (a) Find the transition probability for this Markov chain.
(b) Calculate the limiting fraction of time she gets wet.

1.38. Let Xn be the number of days since David last shaved, cal-
culated at 7:30AM when he is trying to decide if he wants to shave
today. Suppose that Xn is a Markov chain with transition matrix

1 2 3 4
1 1/2 1/2 0 0
2 2/3 0 1/3 0
3 3/4 0 0 1/4
4 1 0 0 0

In words, if he last shaved k days ago, he will not shave with prob-
ability 1/(k+1). However, when he has not shaved for 4 days his
mother orders him to shave, and he does so with probability 1. (a)
What is the long-run fraction of time David shaves? (b) Does the
stationary distribution for this chain satisfy the detailed balance
condition?

1.39. In a particular county voters declare themselves as members
of the Republican, Democrat, or Green party. No voters change
directly from the Republican to Green party or vice versa. Other
transitions occur according to the following matrix:

R D G
R .85 .15 0
D .05 .85 .10
G 0 .05 .95

In the long run what fraction of voters will belong to the three
parties?
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1.40. An auto insurance company classifies its customers in three
categories: poor, satisfactory and excellent. No one moves from
poor to excellent or from excellent to poor in one year.

P S E
P .6 .4 0
S .1 .6 .3
E 0 .2 .8

What is the limiting fraction of drivers in each of these categories?

1.41. Reflecting random walk on the line. Consider the points
1, 2, 3, 4 to be marked on a straight line. Let Xn be a Markov chain
that moves to the right with probability 2/3 and to the left with
probability 1/3, but subject this time to the rule that if Xn tries to
go to the left from 1 or to the right from 4 it stays put. Find (a) the
transition probability for the chain, and (b) the limiting amount of
time the chain spends at each site.

1.42. At the end of a month, a large retail store classifies each of
its customer’s accounts according to current (0), 30–60 days overdue
(1), 60–90 days overdue (2), more than 90 days (3). Their experience
indicates that the accounts move from state to state according to a
Markov chain with transition probability matrix:

0 1 2 3
0 .9 .1 0 0
1 .8 0 .2 0
2 .5 0 0 .5
3 .1 0 0 .9

In the long run what fraction of the accounts are in each category?

1.43. At the beginning of each day, a piece of equipment is inspected
to determine its working condition, which is classified as state 1 =
new, 2, 3, or 4 = broken. We assume the state is a Markov chain
with the following transition matrix:

1 2 3 4
1 .95 .05 0 0
2 0 .9 .1 0
3 0 0 .875 .125
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(a) Suppose that a broken machine requires three days to fix. To
incorporate this into the Markov chain we add states 5 and 6 and
suppose that p(4, 5) = 1, p(5, 6) = 1, and p(6, 1) = 1. Find the
fraction of time that the machine is working. (b) Suppose now that
we have the option of performing preventative maintenance when
the machine is in state 3, and that this maintenance takes one day
and returns the machine to state 1. This changes the transition
probability to

1 2 3
1 .95 .05 0
2 0 .9 .1
3 1 0 0

Find the fraction of time the machine is working under this new
policy.

1.44. Landscape dynamics. To make a crude model of a forest we
might introduce states 0 = grass, 1 = bushes, 2 = small trees, 3 =
large trees, and write down a transition matrix like the following:

0 1 2 3
0 1/2 1/2 0 0
1 1/24 7/8 1/12 0
2 1/36 0 8/9 1/12
3 1/8 0 0 7/8

The idea behind this matrix is that if left undisturbed a grassy area
will see bushes grow, then small trees, which of course grow into
large trees. However, disturbances such as tree falls or fires can
reset the system to state 0. Find the limiting fraction of land in
each of the states.

More Theoretical Exercises

1.45. Consider a general chain with state space S = {1, 2} and write
the transition probability as

1 2
1 1− a a
2 b 1− b

Use the Markov property to show that

P (Xn+1 = 1)− b

a+ b
= (1− a− b)

{
P (Xn = 1)− b

a+ b

}
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and then conclude

P (Xn = 1) =
b

a+ b
+ (1− a− b)n

{
P (X0 = 1)− b

a+ b

}
This shows that if 0 < a + b < 2, then P (Xn = 1) converges expo-
nentially fast to its limiting value b/(a+ b).

1.46. Bernoulli–Laplace model of diffusion. Consider two urns each
of which contains m balls; b of these 2m balls are black, and the
remaining 2m− b are white. We say that the system is in state i if
the first urn contains i black balls and m − i white balls while the
second contains b− i black balls and m−b+ i white balls. Each trial
consists of choosing a ball at random from each urn and exchanging
the two. Let Xn be the state of the system after n exchanges have
been made. Xn is a Markov chain. (a) Compute its transition
probability. (b) Verify that the stationary distribution is given by

π(i) =

(
b

i

)(
2m− b
m− i

)/(
2m

m

)
(c) Can you give a simple intuitive explanation why the formula in
(b) gives the right answer?

1.47. Library chain. On each request the ith of n possible books is
the one chosen with probability pi. To make it quicker to find the
book the next time, the librarian moves the book to the left end of
the shelf. Define the state at any time to be the sequence of books
we see as we examine the shelf from left to right. Since all the books
are distinct this list is a permutation of the set {1, 2, . . . n}, i.e., each
number is listed exactly once. Show that

π(i1, . . . , in) = pi1 ·
pi2

1− pi1

· pi3

1− pi1 − pi2

· · · pin

1− pi1 − · · · pin−1

is a stationary distribution.

1.48. Random walk on a clock. Consider the numbers 1, 2, . . . 12
written around a ring as they usually are on a clock. Consider a
Markov chain that at any point jumps with equal probability to the
two adjacent numbers. (a) What is the expected number of steps
that Xn will take to return to its starting position? (b) What is the
probability Xn will visit all the other states before returning to its
starting position?
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The next three examples continue Example 1.34. Again we rep-
resent our chessboard as {(i, j) : 1 ≤ i, j ≤ 8}. How do you think
that the pieces bishop, knight, king, queen, and rook rank in their
answers to (b)?

1.49. King’s random walk. A king can move one squares horizon-
tally, vertically, or diagonally. Let Xn be the sequence of squares
that results if we pick one of king’s legal moves at random. Find (a)
the stationary distribution and (b) the expected number of moves
to return to corner (1,1) when we start there.

1.50. Bishop’s random walk. A bishop can move any number of
squares diagonally. Let Xn be the sequence of squares that results
if we pick one of bishop’s legal moves at random. Find (a) the
stationary distribution and (b) the expected number of moves to
return to corner (1,1) when we start there.

1.51. Queen’s random walk. A queen can move any number of
squares horizontally, vertically, or diagonally. Let Xn be the se-
quence of squares that results if we pick one of queen’s legal moves
at random. Find (a) the stationary distribution and (b) the ex-
pected number of moves to return to corner (1,1) when we start
there.

1.52. Wright–Fisher model. Consider the chain described in Exam-
ple 1.7.

p(x, y) =

(
N

y

)
(ρx)

y(1− ρx)
N−y

where ρx = (1 − u)x/N + v(N − x)/N . (a) Show that if u, v >
0, then limn→∞ pn(x, y) = π(y), where π is the unique stationary
distribution. There is no known formula for π(y), but you can (b)
compute the mean ν =

∑
y yπ(y) = limn→∞ExXn.

1.53. Ehrenfest chain. Consider the Ehrenfest chain, Example 1.2,
with transition probability p(i, i+ 1) = (N − i)/N , and p(i, i− 1) =
i/N for 0 ≤ i ≤ N . Let µn = ExXn. (a) Show that µn+1 =
1 + (1− 2/N)µn. (b) Use this and induction to conclude that

µn =
N

2
+

(
1− 2

N

)n

(x−N/2)

From this we see that the mean µn converges exponentially rapidly
to the equilibrium value of N/2 with the error at time n being
(1− 2/N)n(x−N/2).
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1.54. Prove that if pij > 0 for all i and j then a necessary and
sufficient condition for the existence of a reversible stationary dis-
tribution is

pijpjkpki = pikpkjpji for all i, j, k

Hint: fix i and take πj = cpij/pji.

Exit distributions and times

1.55. The Markov chain associated with a manufacturing process
may be described as follows: A part to be manufactured will begin
the process by entering step 1. After step 1, 20% of the parts must
be reworked, i.e., returned to step 1, 10% of the parts are thrown
away, and 70% proceed to step 2. After step 2, 5% of the parts
must be returned to the step 1, 10% to step 2, 5% are scrapped,
and 80% emerge to be sold for a profit. (a) Formulate a four-state
Markov chain with states 1, 2, 3, and 4 where 3 = a part that was
scrapped and 4 = a part that was sold for a profit. (b) Compute
the probability a part is scrapped in the production process.

1.56. A bank classifies loans as paid in full (F), in good standing
(G), in arrears (A), or as a bad debt (B). Loans move between the
categories according to the following transition probability:

F G A B
F 1 0 0 0
G .1 .8 .1 0
A .1 .4 .4 .1
B 0 0 0 1

What fraction of loans in good standing are eventually paid in full?
What is the answr for those in arrears?

1.57. A warehouse has a capacity to hold four items. If the ware-
house is neither full nor empty, the number of items in the warehouse
changes whenever a new item is produced or an item is sold. Sup-
pose that (no matter when we look) the probability that the next
event is “a new item is produced” is 2/3 and that the new event
is a “sale” is 1/3. If there is currently one item in the warehouse,
what is the probability that the warehouse will become full before
it becomes empty.
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1.58. Six children (Dick, Helen, Joni, Mark, Sam, and Tony) play
catch. If Dick has the ball he is equally likely to throw it to Helen,
Mark, Sam, and Tony. If Helen has the ball she is equally likely to
throw it to Dick, Joni, Sam, and Tony. If Sam has the ball he is
equally likely to throw it to Dick, Helen, Mark, and Tony. If either
Joni or Tony gets the ball, they keep throwing it to each other. If
Mark gets the ball he runs away with it. (a) Find the transition
probability and classify the states of the chain. (b) Suppose Dick
has the ball at the beginning of the game. What is the probability
Mark will end up with it?

1.59. Sucker bet. Consider the following gambling game. Player 1
picks a three coin pattern (for example HTH) and player 2 picks
another (say THH). A coin is flipped repeatedly and outcomes are
recorded until one of the two patterns appears. Somewhat surpris-
ingly player 2 has a considerable advantage in this game. No matter
what player 1 picks, player 2 can win with probability ≥ 2/3. Sup-
pose without loss of generality that player 1 picks a pattern that
begins with H:

case Player 1 Player 2 Prob. 2 wins
1 HHH THH 7/8
2 HHT THH 3/4
3 HTH HHT 2/3
4 HTT HHT 2/3

Verify the results in the table. You can do this by solving six equa-
tions in six unknowns but this is not the easiest way.

1.60. At the New York State Fair in Syracuse, Larry encounters
a carnival game where for one dollar he may buy a single coupon
allowing him to play a guessing game. On each play, Larry has an
even chance of winning or losing a coupon. When he runs out of
coupons he loses the game. However, if he can collect three coupons,
he wins a surprise. (a) What is the probability David will win the
surprise? (b) What is the expected number of plays he needs to win
or lose the game.

1.61. The Megasoft company gives each of its employees the title of
programmer (P) or project manager (M). In any given year 70% of
programmers remain in that position 20% are promoted to project
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manager and 10% are fired (state X). 95% of project managers re-
main in that position while 5% are fired. How long on the average
does a programmer work before they are fired?

1.62. At a nationwide travel agency, newly hired employees are clas-
sified as beginners (B). Every six months the performance of each
agent is reviewed. Past records indicate that transitions through
the ranks to intermediate (I) and qualified (Q) are according to the
following Markov chain, where F indicates workers that were fired:

B I Q F
B .45 .4 0 .15
I 0 .6 .3 .1
Q 0 0 1 0
F 0 0 0 1

(a) What fraction are eventually promoted? (b) What is the ex-
pected time until a beginner is fired or becomes qualified?

1.63. At a manufacturing plant, employees are classified as trainee
(R), technician (T) or supervisor (S). Writing Q for an employee
who quits we model their progress through the ranks as a Markov
chain with transition probability

R T S Q
R .2 .6 0 .2
T 0 .55 .15 .3
S 0 0 1 0
Q 0 0 0 1

(a) What fraction of recruits eventually make supervisor? (b) What
is the expected time until a trainee auits or becomes supervisor?

1.64. Customers shift between variable rate loans (V), thirty year
fixed-rate loans (30), fifteen year fixed-rate loans (15), or enter the
states paid in full (P), or foreclosed according to the following tran-
sition matrix:

V 30 15 P f
V .55 .35 0 .05 .05
30 .15 .54 .25 .05 .01
15 .20 0 .75 .04 .01
P 0 0 0 1 0
F 0 0 0 0 1



1.12. EXERCISES 103

(a) For each of the three loan types find (a) the expected time until
paid or foreclosed. (b) the probability the loan is paid.

1.65. Brother–sister mating. In this genetics scheme two individu-
als (one male and one female) are retained from each generation and
are mated to give the next. If the individuals involved are diploid
and we are interested in a trait with two alleles, A and a, then each
individual has three possible states AA, Aa, aa or more succinctly
2, 1, 0. If we keep track of the sexes of the two individuals the chain
has nine states, but if we ignore the sex there are just six: 22, 21,
20, 11, 10, and 00. (a) Assuming that reproduction corresponds to
picking one letter at random from each parent, compute the transi-
tion probability. (b) 22 and 00 are absorbing states for the chain.
Show that the probability of absorption in 22 is equal to the fraction
of A’s in the state. (c) Let T = min{n ≥ 0 : Xn = 22 or 00} be the
absorption time. Find ExT for all states x.

1.66. Use the second solution in Example 1.45 to compute the ex-
pected waiting times for the patterns HHH, HHT , HTT , and
HTH. Which pattern has the longest waiting time? Which ones
achieve the minimum value of 8?

1.67. Roll a fair die repeatedly and let Y1, Y2, . . . be the resulting
numbers. Let Xn = |{Y1, Y2, . . . , Yn}| be the number of values we
have seen in the first n rolls for n ≥ 1 and set X0 = 0. Xn is
a Markov chain. (a) Find its transition probability. (b) Let T =
min{n : Xn = 6} be the number of trials we need to see all 6 numbers
at least once. Find ET .

1.68. Coupon collector’s problem. We are interested now in the time
it takes to collect a set of N baseball cards. Let Tk be the number
of cards we have to buy before we have k that are distinct. Clearly,
T1 = 1. A little more thought reveals that if each time we get a card
chosen at random from all N possibilities, then for k ≥ 1, Tk+1−Tk

has a geometric distribution with success probability (N − k)/N .
Use this to show that the mean time to collect a set of N baseball
cards is ≈ N logN , while the variance is ≈ N2

∑∞
k=1 1/k2.

1.69. Algorthmic efficiency. The simplex method minimizes linear
functions by moving between extreme points of a polyhedral region
so that each transition decreases the objective function. Suppose
there are n extreme points and they are numbered in increasing
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order of their values. Consider the Markov chain in which p(1, 1) = 1
and p(i, j) = 1/i − 1 for j < i. In words, when we leave j we are
equally likely to go to any of the extreme points with better value.
(a) Use (1.24) to show that for i > 1

EiT1 = 1 + 1/2 + · · ·+ 1/(i− 1)

(b) Let Ij = 1 if the chain visits j on the way from n to 1. Show
that for j < n

P (Ij = 1|Ij+1, . . . In) = 1/j

to get another proof of the result and conclude that I1, . . . In−1 are
independent.

Infinite State Space

1.70. General birth and death chains. The state space is {0, 1, 2, . . .}
and the transition probability has

p(x, x+ 1) = px

p(x, x− 1) = qx for x > 0
p(x, x) = rx for x ≥ 0

while the other p(x, y) = 0. Let Vy = min{n ≥ 0 : Xn = y} be
the time of the first visit to y and let hN(x) = Px(VN < V0). By
considering what happens on the first step, we can write

hN(x) = pxhN(x+ 1) + rxhN(x) + qxhN(x− 1)

Set hN(1) = cN and solve this equation to conclude that 0 is re-
current if and only if

∑∞
y=1

∏y−1
x=1 qx/px = ∞ where by convention∏0

x=1 = 1.

1.71. To see what the conditions in the last problem say we will
now consider some concrete examples. Let px = 1/2, qx = e−cx−α

/2,
rx = 1/2− qx for x ≥ 1 and p0 = 1. For large x, qx ≈ (1− cx−α)/2,
but the exponential formulation keeps the probabilities nonnegative
and makes the problem easier to solve. Show that the chain is
recurrent if α > 1 or if α = 1 and c ≤ 1 but is transient otherwise.
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1.72. Consider the Markov chain with state space {0, 1, 2, . . .} and
transition probability

p(m,m+ 1) =
1

2

(
1− 1

m+ 2

)
for m ≥ 0

p(m,m− 1) =
1

2

(
1 +

1

m+ 2

)
for m ≥ 1

and p(0, 0) = 1− p(0, 1) = 3/4. Find the stationary distribution π.

1.73. Consider the Markov chain with state space {1, 2, . . .} and
transition probability

p(m,m+ 1) = m/(2m+ 2) for m ≥ 1

p(m,m− 1) = 1/2 for m ≥ 2

p(m,m) = 1/(2m+ 2) for m ≥ 2

and p(1, 1) = 1 − p(1, 2) = 3/4. Show that there is no stationary
distribution.

1.74. Consider the aging chain on {0, 1, 2, . . .} in which for any n ≥
0 the individual gets one day older from n to n+1 with probability pn

but dies and returns to age 0 with probability 1−pn. Find conditions
that guarantee that (a) 0 is recurrent, (b) positive recurrent. (c)
Find the stationary distribution.

1.75. The opposite of the aging chain is the renewal chain with state
space {0, 1, 2, . . .} in which p(i, i − 1) = 1 when i > 0. The only
nontrivial part of the transition probability is p(0, i) = pi. Show
that this chain is always recurrent but is positive recurrent if and
only if

∑
n npn <∞.

1.76. Consider a branching process as defined in Example 7.2, in
which each family has exactly three children, but invert Galton
and Watson’s original motivation and ignore male children. In this
model a mother will have an average of 1.5 daughters. Compute the
probability that a given woman’s descendents will die out.

1.77. Consider a branching process as defined in Example 7.2, in
which each family has a number of children that follows a shifted
geometric distribution: pk = p(1 − p)k for k ≥ 0, which counts the
number of failures before the first success when success has proba-
bility p. Compute the probability that starting from one individual
the chain will be absorbed at 0.
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Chapter 2

Poisson Processes

2.1 Exponential Distribution

To prepare for our discussion of the Poisson process, we need to recall
the definition and some of the basic properties of the exponential
distribution. A random variable T is said to have an exponential
distribution with rate λ, or T = exponential(λ), if

P (T ≤ t) = 1− e−λt for all t ≥ 0 (2.1)

Here we have described the distribution by giving the distribution
function F (t) = P (T ≤ t). We can also write the definition in
terms of the density function fT (t) which is the derivative of the
distribution function.

fT (t) =

{
λe−λt for t ≥ 0

0 for t < 0
(2.2)

Integrating by parts with f(t) = t and g′(t) = λe−λt,

ET =

∫
t fT (t) dt =

∫ ∞

0

t · λe−λt dt

= −te−λt
∣∣∞
0

+

∫ ∞

0

e−λt dt = 1/λ (2.3)

107
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Integrating by parts with f(t) = t2 and g′(t) = λe−λt, we see that

ET 2 =

∫
t2 fT (t) dt =

∫ ∞

0

t2 · λe−λt dt

= −t2e−λt
∣∣∞
0

+

∫ ∞

0

2te−λt dt = 2/λ2

by the formula for ET . So the variance

var (T ) = ET 2 − (ET )2 = 1/λ2 (2.4)

While calculus is required to know the exact values of the mean
and variance, it is easy to see how they depend on λ. Let T =
exponential(λ), i.e., have an exponential distribution with rate λ,
and let S = exponential(1). To see that S/λ has the same distribu-
tion as T , we use (2.1) to conclude

P (S/λ ≤ t) = P (S ≤ λt) = 1− e−λt = P (T ≤ t)

Recalling that if c is any number thenE(cX) = cEX and var (cX) =
c2 var (X), we see that

ET = ES/λ var (T ) = var (S)/λ2

Lack of memory property. It is traditional to formulate this
property in terms of waiting for an unreliable bus driver. In words,
“if we’ve been waiting for t units of time then the probability we
must wait s more units of time is the same as if we haven’t waited
at all.” In symbols

P (T > t+ s|T > t) = P (T > s) (2.5)

To prove this we recall that if B ⊂ A, then P (B|A) = P (B)/P (A),
so

P (T > t+ s|T > t) =
P (T > t+ s)

P (T > t)
=
e−λ(t+s)

e−λt
= e−λs = P (T > s)

where in the third step we have used the fact ea+b = eaeb.

Exponential races. Let S = exponential(λ) and T = exponential(µ)
be independent. In order for the minimum of S and T to be larger
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than t, each of S and T must be larger than t. Using this and
independence we have

P (min(S, T ) > t) = P (S > t, T > t) = P (S > t)P (T > t)

= e−λte−µt = e−(λ+µ)t (2.6)

That is, min(S, T ) has an exponential distribution with rate λ+µ.
The last calculation extends easily to a sequence of independent
random variables T1, . . . , Tn where Ti = exponential(λi).

P (min(T1, . . . , Tn) > t) = P (T1 > t, . . . Tn > t)

=
n∏

i=1

P (Ti > t) =
n∏

i=1

e−λit = e−(λ1+···+λn)t (2.7)

That is, the minimum, min(T1, . . . , Tn), of several independent ex-
ponentials has an exponential distribution with rate equal to the
sum of the rates λ1 + · · ·λn.

In the last paragraph we have computed the duration of a race
between exponentially distributed random variables. We will now
consider: “Who finishes first?” Going back to the case of two ran-
dom variables, we break things down according to the value of S
and then using independence with our formulas (2.1) and (2.2) for
the distribution and density functions, to conclude

P (S < T ) =

∫ ∞

0

fS(s)P (T > s) ds

=

∫ ∞

0

λe−λse−µs ds

=
λ

λ+ µ

∫ ∞

0

(λ+ µ)e−(λ+µ)s ds =
λ

λ+ µ
(2.8)

where on the last line we have used the fact that (λ+µ)e−(λ+µ)s is a
density function and hence must integrate to 1. Of course, one can
also use calculus to evaluate the integral.

From the calculation for two random variables, you should be
able to guess that if T1, . . . , Tn are independent exponentials, then

P (Ti = min(T1, . . . , Tn)) =
λi

λ1 + · · ·+ λn

(2.9)

That is, the probability of i finishing first is proportional to its rate.
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Proof. Let S = Ti and U be the minimum of Tj, j 6= i. (2.7) implies
that U is exponential with parameter

µ = (λ1 + · · ·+ λn)− λi

so using the result for two random variables

P (Ti = min(T1, . . . , Tn)) = P (S < U) =
λi

λi + µ
=

λi

λ1 + · · ·+ λn

proves the desired result.

Let I be the (random) index of the Ti that is smallest. In symbols,

P (I = i) =
λi

λ1 + · · ·+ λn

You might think that the Ti’s with larger rates might be more likely
to win early. However,

I and V = min{T1, . . . Tn} are independent. (2.10)

Proof. Let fi,V (t) be the density function for V on the set I = i. In
order for i to be first at time t, Ti = t and the other Tj > t so

fi,V (t) = λie
−λit ·

∏
j 6=i

e−λjt

=
λi

λ1 + · · ·+ λn

· (λ1 + · · ·+ λn)e−(λ1+·+λn)t

= P (I = i) · fV (t)

since V has an exponential(λ1 + · · ·+ λn) distribution.

Our final fact in this section concerns sums of exponentials.

Theorem 2.1. Let τ1, τ2, . . . be independent exponential(λ). The
sum Tn = τ1 + · · ·+ τn has a gamma(n, λ) distribution. That is, the
density function of Tn is given by

fTn(t) = λe−λt · (λt)n−1

(n− 1)!
for t ≥ 0 (2.11)

and 0 otherwise.
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Proof. The proof is by induction on n. When n = 1, T1 has an
exponential(λ) distribution. Recalling that the 0th power of any
positive number is 1, and by convention we set 0!=1, the formula
reduces to

fT1(t) = λe−λt

and we have shown that our formula is correct for n = 1.
To do the induction step suppose that the formula is true for n.

The sum Tn+1 = Tn + τn+1, so breaking things down according to
the value of Tn, and using the independence of Tn and tn+1, we have

fTn+1(t) =

∫ t

0

fTn(s)ftn+1(t− s) ds

Plugging the formula from (2.11) in for the first term and the expo-
nential density in for the second and using the fact that eaeb = ea+b

with a = −λs and b = −λ(t− s) gives∫ t

0

λe−λs (λs)n−1

(n− 1)!
· λe−λ(t−s) ds = e−λtλn

∫ t

0

sn−1

(n− 1)!
ds

= λe−λtλ
ntn

n!

which completes the proof.



112 CHAPTER 2. POISSON PROCESSES

2.2 Defining the Poisson Process

In this section we will give two definitions of the Poisson process
with rate λ. The first, which will be our official definition, is nice
because it allows us to construct the process easily.

Definition. Let τ1, τ2, . . . be independent exponential(λ) random
variables. Let Tn = τ1 + · · · + τn for n ≥ 1, T0 = 0, and define
N(s) = max{n : Tn ≤ s}.

We think of the τn as times between arrivals of customers at a bank,
so Tn = τ1+· · ·+τn is the arrival time of the nth customer, and N(s)
is the number of arrivals by time s. To check the last interpretation,
consider the following example:

× × × × ×
0 T1 T2 T3 T4 s T5

τ1 τ2 τ3 τ4
τ5

Figure 2.1: Poisson process definitions.

and note that N(s) = 4 when T4 ≤ s < T5, that is, the 4th customer
has arrived by time s but the 5th has not.

Recall that X has a Poisson distribution with mean λ, or X =
Poisson(λ), for short, if

P (X = n) = e−λ λ
n

n!
for n = 0, 1, 2, . . .

To explain why N(s) is called the Poisson process rather than the
exponential process, we will compute the distribution of N(s).

Lemma 2.1. N(s) has a Poisson distribution with mean λs.

Proof. Now N(s) = n if and only if Tn ≤ s < Tn+1; i.e., the nth
customer arrives before time s but the (n + 1)th after s. Breaking
things down according to the value of Tn = t and noting that for
Tn+1 > s, we must have τn+1 > s− t, and τn+1 is independent of Tn,
it follows that

P (N(s) = n) =

∫ s

0

fTn(t)P (tn+1 > s− t) dt



2.2. DEFINING THE POISSON PROCESS 113

Plugging in (2.11) now, the last expression is

=

∫ s

0

λe−λt (λt)n−1

(n− 1)!
· e−λ(s−t) dt

=
λn

(n− 1)!
e−λs

∫ s

0

tn−1 dt = e−λs (λs)n

n!

which proves the desired result.

Since this is our first mention of the Poisson distribution, we
pause to derive some of its properties.

Theorem 2.2. For any k ≥ 1

EX(X − 1) · · · (X − k + 1) = λk (2.12)

and hence var (X) = λ

Proof. X(X − 1) · · · (X − k + 1) = 0 if X ≤ k − 1 so

EX(X − 1) · · · (X − k + 1) =
∞∑

j=k

e−λλ
j

j!
j(j − 1) · · · (j − k + 1)

= λk

∞∑
j=k

e−λ λj−k

(j − k)!
= λk

since the sum gives the total mass of the Poisson distribution. Using
var (X) = E(X(X − 1)) + EX − (EX)2 we conclude

var (X) = λ2 + λ− (λ)2 = λ

Theorem 2.3. If Xi are independent Poissson(λi) then

X1 + · · ·+Xk = Poisson(λ1 + · · ·+ λn).

Proof. It suffices to prove the result for k = 2, for then the general
result follows by induction. IfX1+X2 = n then for some 0 ≤ m ≤ n,
X1 = m and X2 = n−m

P (X1 +X2 = n) =
n∑

m=0

P (X1 = m)P (X2 = n−m)

=
n∑

m=0

e−λ1t (λ1t)
m

m!
· e−λ2t (λ2t)

n−m

(n−m)!
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Knowing the answer we want, we can rewrite the last expression as

e−(λ1+λ2)t (λ1 + λ2)
nt)n

n!
·

n∑
m=0

(
n

m

)(
λ1

λ1 + λ2

)m(
λ2

λ1 + λ2

)n−m

The sum is 1, since it is the sum of all the probabilities for a
binomial(n, p) distribution with p = λ1/(λ1 + λ2). The term out-
side the sum is the desired Poisson probability, so have proved the
desired result.

The property of the Poisson process in Lemma 2.1 is the first
part of our second definition. To start to develop the second part
we show:

Lemma 2.2. N(t + s) − N(s), t ≥ 0 is a rate λ Poisson process
and independent of N(r), 0 ≤ r ≤ s.

Why is this true? Suppose for concreteness (and so that we
can use Figure 2.2 at the beginning of this section again) that by
time s there have been four arrivals T1, T2, T3, T4 that occurred at
times t1, t2, t3, t4. We know that the waiting time for the fifth arrival
must have τ5 > s − t4, but by the lack of memory property of the
exponential distribution (2.5)

P (τ5 > s− t4 + t|τ5 > s− t4) = P (τ5 > t) = e−λt

This shows that the distribution of the first arrival after s is exponential(λ)
and independent of T1, T2, T3, T4. It is clear that τ6, τ7, . . . are in-
dependent of T1, T2, T3, T4, and τ5. This shows that the interar-
rival times after s are independent exponential(λ), and hence that
N(t+ s)−N(s), t ≥ 0 is a Poisson process.

From Lemma 2.2 we get easily the following:

Lemma 2.3. N(t) has independent increments: if t0 < t1 <
. . . < tn, then

N(t1)−N(t0), N(t2)−N(t1), . . . N(tn)−N(tn−1) are independent

Why is this true? Lemma 2.2 implies thatN(tn)−N(tn−1) is inde-
pendent ofN(r), r ≤ tn−1 and hence ofN(tn−1)−N(tn−2), . . . N(t1)−
N(t0). The desired result now follows by induction.

We are now ready for our second definition. It is in terms of the
process {N(s) : s ≥ 0} that counts the number of arrivals in [0, s].
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Theorem 2.4. If {N(s), s ≥ 0} is a Poisson process, then
(i) N(0) = 0,
(ii) N(t+ s)−N(s) = Poisson(λt), and
(iii) N(t) has independent increments.

Conversely, if (i), (ii), and (iii) hold, then {N(s), s ≥ 0} is a Pois-
son process.

Why is this true? As we remarked above, Lemmas 2.1 and 2.3
give the first statement. To start to prove the converse, let Tn be
the time of the nth arrival. The first arrival occurs after time t if
and only if there were no arrivals in [0, t]. So using the formula for
the Poisson distribution

P (T1 > t) = P (N(t) = 0) = e−λt

This shows that τ1 = T1 is exponential(λ). For τ2 = T2−T1 we note
that

P (t2 > t|t1 = s) = P ( no arrival in (s, s+ t] |t1 = s)

= P (N(t+ s)−N(s) = 0|N(r) = 0 for r < s,N(s) = 1)

= P (N(t+ s)−N(s) = 0) = e−λt

by the independent increments property in (iii), so τ2 is exponential(λ)
and independent of τ1. Repeating this argument we see that τ1, τ2, . . .
are independent exponential(λ).

Up to this point we have been concerned with the mechanics of
defining the Poisson process, so the reader may be wondering:

Why is the Poisson process important for applications?

Our answer is based on the Poisson approximation to the binomial.
Consider the restaurant Trillium on the Cornell campus. Suppose
that each of the n students on campus independently decides to go to
Trillium between 12:00 and 1:00 with probability λ/n, and suppose
that a person who chooses to go, will do so at a time chosen at
random between 12:00 and 1:00. The probability that exactly k
students will go is given by the binomial(n, λ/n) distribution

n(n− 1) · · · (n− k + 1)

k!

(
λ

n

)k (
1− λ

n

)n−k

(2.13)

Theorem 2.5. If n is large the binomial(n, λ/n) distribution is ap-
proximately Poisson(λ).
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Proof. Exchanging the numerators of the first two fractions and
breaking the last term into two, (2.13) becomes

λk

k!
· n(n− 1) · · · (n− k + 1)

nk
·
(

1− λ

n

)n(
1− λ

n

)−k

(2.14)

Taking the four terms from left to right, we have

(i) λk/k! does not depend on n.

(ii) There are k terms on the top and k terms on the bottom, so we
can write this fraction as

n

n
· n− 1

n
· · · n− k + 1

n

The first term here is 1; the second is 1 − 1
n
→ 1 as n → ∞. This

holds true for any fixed value of j, so the second term converges to
1 as n→∞.

(iii) It is one of the famous facts of calculus that

(1− λ/n)n → e−λ as n→∞.

We have broken off the last term to be able to exactly apply this
fact.

(iv) λ/n→ 0, so 1− λ/n→ 1. The power −k is fixed so(
1− λ

n

)−k

→ 1−k = 1

Combining (i)–(iv), we see that (2.14) converges to

λk

k!
· 1 · e−λ · 1

which is the Poisson distribution with mean λ.

By extending the last argument we can also see why the number
of individuals that arrive in two disjoint time intervals should be
independent. Using the multinomial instead of the binomial, we see
that the probability j people will go between 12:00 and 12:20 and k
people will go between 12:20 and 1:00 is

n!

j!k!(n− j − k)!

(
λ

3n

)j (
2λ

3n

)k (
1− λ

n

)n−(j+k)
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Rearranging gives

(λ/3)j

j!
· (2λ/3)k

k!
· n(n− 1) · · · (n− j − k + 1)

nj+k
·
(

1− λ

n

)n−(j+k)

Reasoning as before shows that when n is large, this is approximately

(λ/3)j

j!
· (2λ/3)k

k!
· 1 · e−λ

Writing e−λ = e−λ/3e−2λ/3 and rearranging we can write the last
expression as

e−λ/3 (λ/3)j

j!
· e−2λ/3 (2λ/3)k

k!

This shows that the number of arrivals in the two time intervals are
independent Poissons with means λ/3 and 2λ/3.

The last proof can be easily generalized to show that if we di-
vide the hour between 12:00 and 1:00 into any number of intervals,
then the arrivals are independent Poissons with the right means.
However, the argument gets very messy to write down.

More realistic models.

Two of the weaknesses of the derivation above are:

(i) All students are assumed to have exactly the same probability of
going to Trillium.

(ii) Students who choose to go, do so at a time chosen at random
between 12:00 and 1:00, so the arrival rate of customers is constant
during the hour.

(i) is a very strong assumption but can be weakened by using a
more general Poisson approximation result like the following:

Theorem 2.6. For each n let Xn,m be independent random variables
with P (Xn,m = 1) = pn,m and P (Xn,m = 0) = 1− pn,m. Let

Sn = Xn,1 + · · ·+Xn,n, λn = ESn = pn,1 + · · ·+ pn,n,

and Zn = Poisson(λn). Then for any set A

|P (Sn ∈ A)− P (Zn ∈ A)| ≤
n∑

m=1

p2
n,m
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Why is this true? If X and Y are integer valued random variables
then for any set A

|P (X ∈ A)− P (Y ∈ A)| ≤ 1

2

∑
n

|P (X = n)− P (Y = n)|

The right-hand side is called the total variation distance between
the two distributions and is denoted ‖X − Y ‖. If P (X = 1) = p,
P (X = 0) = 1− p, and Y = Poisson(p) then∑

n

|P (X = n)−P (Y = n)| = |(1−p)−e−p|+|p−pe−p|+1−(1+p)e−p

Since 1 ≥ e−p ≥ 1− p the right-hand side is

e−p − 1 + p+ p− pe−p + 1− e−p − pe−p = 2p(1− e−p ≤ 2p2

At this point we have shown ‖X−Y ‖ ≤ p2. Let Yn,m be independent
with a Poisson(pn,m). With some work one can show

‖(Xn,1 + · · ·+Xn,n)− (Yn,1 + · · ·+ Yn,n)‖

‖(Xn,1, · · · , Xn,n)− (Yn,1, · · · , Yn,n)‖ ≤
n∑

m=1

‖Xn,m − Yn,m‖

and the desired result follows.

Theorem 2.6 is useful because it gives a bound on the difference
between the distribution of Sn and the Poisson distribution with
mean λn = ESn. From it, we immediately get the following conver-
gence theorem.

Theorem 2.7. If in addition to the assumptions in Theorem 2.6,
we suppose that λn → λ <∞ and maxk pn,k → 0, then

max
A
|P (Sn ∈ A)− P (Zn ∈ A)| → 0

Proof. Since p2
n,m ≤ pn,m ·maxk pn,k, summing over m gives

n∑
m=1

p2
n,m ≤ max

k
pn,k

(∑
m

pn,m

)
The first term on the right goes to 0 by assumption. The second
is λn → λ. Since we have assumed λ < ∞, the product of the two
terms converges to 0 · λ = 0.
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The last results handles problem (i). We do not need to assume
that all students have the same probability, just that all of the prob-
abilities are samll. However, those of us who go to Trillium know
that since the fourth class period of the day is 11:15-12:05, the ar-
rival rate is large between 12:05 and 12:15 and only returns to a
low level at about 12:30. To address the problem of varying arrival
rates, we generalize the definition.

Nonhomogeneous Poisson processes. We say that {N(s), s ≥
0} is a Poisson process with rate λ(r) if

(i) N(0) = 0,
(ii) N(t) has independent increments, and

(iii) N(t+ s)−N(s) is Poisson with mean
∫ t

s
λ(r) dr.

The first definition does not work well in this setting since the in-
terarrival times τ1, τ2, . . . are no longer exponentially distributed or
independent. To demonstrate the first claim, we note that

P (τ1 > t) = P (N(t) = 0) = e−
R t
0 λ(s) ds

since the last expression gives the probability a Poisson with mean
µ(t) =

∫ t

0
λ(s) ds is equal to 0. Differentiating gives the density

function

P (τ1 = t) = − d

dt
P (t1 > t) = λ(t)e−

R t
0 λ(s) ds = λ(t)e−µ(t)

Generalizing the last computation shows that the joint distribution

fT1,T2(u, v) = λ(u)e−µ(u) · λ(v)e−(µ(v)−µ(u))

Changing variables, s = u, t = v − u, the joint density

fτ1,τ2(s, t) = λ(s)e−µ(s) · λ(s+ t)e−(µ(s+t)−µ(s))

so τ1 and τ2 are not independent when λ(s) is not constant.
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2.3 Compound Poisson Processes

In this section we will embellish our Poisson process by associating
an independent and identically distributed (i.i.d.) random variable
Yi with each arrival. By independent we mean that the Yi are in-
dependent of each other and of the Poisson process of arrivals. To
explain why we have chosen these assumptions, we begin with two
examples for motivation.

Example 2.1. Consider the McDonald’s restaurant on Route 13 in
the southern part of Ithaca. By arguments in the last section, it is
not unreasonable to assume that between 12:00 and 1:00 cars arrive
according to a Poisson process with rate λ. Let Yi be the number of
people in the ith vehicle. There might be some correlation between
the number of people in the car and the arrival time, e.g., more
families come to eat there at night, but for a first approximation it
seems reasonable to assume that the Yi are i.i.d. and independent
of the Poisson process of arrival times.

Example 2.2. Messages arrive at a central computer to be trans-
mitted across the Internet. If we imagine a large number of users
working at terminals connected to a central computer, then the ar-
rival times of messages can be modeled by a Poisson process. If we
let Yi be the size of the ith message, then again it is reasonable to
assume Y1, Y2, . . . are i.i.d. and independent of the Poisson process
of arrival times.

Having introduced the Yi’s, it is natural to consider the sum of
the Yi’s we have seen up to time t:

S(t) = Y1 + · · ·+ YN(t)

where we set S(t) = 0 if N(t) = 0. In Example 2.1, S(t) gives the
number of customers that have arrived up to time t. In Example
2.2, S(t) represents the total number of bytes in all of the messages
up to time t. In each case it is interesting to know the mean and
variance of S(t).

Theorem 2.8. Let Y1, Y2, . . . be independent and identically dis-
tributed, let N be an independent nonnegative integer valued random
variable, and let S = Y1 + · · ·+ YN with S = 0 when N = 0.

(i) If E|Yi|, EN <∞, then ES = EN · EYi.
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(ii) If EY 2
i , EN2 <∞, then var (S) = EN var (Yi)+ var (N)(EYi)

2.

(iii) If N is Poisson(λ), then var (S) = λEY 2
i .

Why is this reasonable? The first of these is natural since if N =
n is nonrandom ES = nEYi. (i) then results by setting n = EN .
The formula in (ii) is more complicated but it clearly has two of the
necessary properties:

If N = n is nonrandom, var (S) = n var (Yi).

If Yi = c is nonrandom var (S) = c2 var (N).

Combining these two observations, we see that EN var (Yi) is the
contribution to the variance from the variability of the Yi, while
var (N)(EYi)

2 is the contribution from the variability of N .

Proof. When N = n, S = X1 + · · ·+Xn has ES = nEYi. Breaking
things down according to the value of N ,

ES =
∞∑

n=0

E(S|N = n) · P (N = n)

=
∞∑

n=0

nEYi · P (N = n) = EN · EYi

For the second formula we note that when N = n, S = X1+· · ·+Xn

has var (S) = n var (Yi) and hence,

E(S2|N = n) = n var (Yi) + (nEYi)
2

Computing as before we get

ES2 =
∞∑

n=0

E(S2|N = n) · P (N = n)

=
∞∑

n=0

{n · var (Yi) + n2(EYi)
2} · P (N = n)

= (EN) · var (Yi) + EN2 · (EYi)
2

To compute the variance now, we observe that

var (S) = ES2 − (ES)2

= (EN) · var (Yi) + EN2 · (EYi)
2 − (EN · EYi)

2

= (EN) · var (Yi) + var (N) · (EYi)
2
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where in the last step we have used var (N) = EN2 − (EN)2 to
combine the second and third terms.

For part (iii), we note that in the special case of the Poisson, we
have EN = λ and var (N) = λ, so the result follows from var (Yi)+
(EYi)

2 = EY 2
i .

For a concrete example of the use of Theorem 2.8 consider

Example 2.3. Suppose that the number of customers at a liquor
store in a day has a Poisson distribution with mean 81 and that
each customer spends an average of $8 with a standard deviation
of $6. It follows from (i) in Theorem 2.8 that the mean revenue for
the day is 81 · $8 = $648. Using (iii), we see that the variance of the
total revenue is

81 ·
{
($6)2 + ($8)2

}
= 8100

Taking square roots we see that the standard deviation of the rev-
enue is $90 compared with a mean of $648.
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2.4 Transformations

2.4.1 Thinning

In the previous section, we added up the Yi’s associated with the
arrivals in our Poisson process to see how many customers, etc., we
had accumulated by time t. In this section we will use the Yi to
split one Poisson process into several. Let Nj(t) be the number of
i ≤ N(t) with Yi = j. In Example 2.1, where Yi is the number of
people in the ith car, Nj(t) will be the number of cars that have
arrived by time t with exactly j people. The somewhat remarkable
fact is:

Theorem 2.9. Nj(t) are independent Poisson processes with rate
λP (Yi = j).

Why is this remarkable? There are two “surprises” here: the
resulting processes are Poisson and they are independent. To drive
the point home consider a Poisson process with rate 10 per hour,
and then flip coins to determine whether the arriving customers are
male or female. One might think that seeing 40 men arrive in one
hour would be indicative of a large volume of business and hence a
larger than normal number of women, but Theorem 2.9 tells us that
the number of men and the number of women that arrive per hour
are independent.

Proof. To begin we suppose that P (Yi = 1) = p and P (Yi = 2) =
1−p, so there are only two Poisson processes to consider: N1(t) and
N2(t). We will check the second definition given in Theorem 2.4.
It should be clear that the independent increments property of the
Poisson process implies that the pairs of increments

(N1(ti)−N1(ti−1), N2(ti)−N2(ti−1)), 1 ≤ i ≤ n

are independent of each other. Since N1(0) = N2(0) = 0 by defini-
tion, it only remains to check that the components Xi = Ni(t+ s)−
Ni(s) are independent and have the right Poisson distributions. To
do this, we note that if X1 = j and X2 = k, then there must have
been j+ k arrivals between s and s+ t, j of which were assigned 1’s
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and k of which were assigned 2’s, so

P (X1 = j,X2 = k) = e−λt (λt)j+k

(j + k)!
· (j + k)!

j!k!
pj(1− p)k

= e−λpt (λpt)
j

j!
e−λ(1−p)t (λ(1− p)t)k

k!
(2.15)

so X1 = Poisson(λp) and X2 = Poisson(λ(1 − p)). For the general
case, we use the multinomial to conclude that if pj = P (Yi = j) for
1 ≤ j ≤ m then

P (X1 = k1, . . . Xm = km) = e−λt (λt)k1+···km

(k1 + · · · km)!

(k1 + · · · km)!

k1! · · · km!
pk1

1 · · · pkm
m

=
m∏

j=1

e−λpjt (λpj)
kj

kj!

The thinning results generalizes easily to the nonhomogeneous
case:

Theorem 2.10. Suppose that in a Poisson process with rate λ, we
keep a point that lands at s with probability p(s). Then the result is
a nonhomogeneous Poisson process with rate λp(s).

For an application of this consider

Example 2.4. M/G/∞ queue. In modeling telephone traffic, we
can, as a first approximation, suppose that the number of phone lines
is infinite, i.e., everyone who tries to make a call finds a free line.
This certainly is not always true but analyzing a model in which we
pretend this is true can help us to discover how many phone lines
we need to be able to provide service 99.99% of the time.

The argument for arrivals at Trillium implies that the beginnings
of calls follow a Poisson process. As for the calls themselves there
is no reason to suppose that their duration follows a special distri-
bution like the exponential, so use a general distribution function G
with G(0) = 0 and mean µ. Suppose that the system starts empty
at time 0. The probability a call started at s has ended by time t is
G(t− s), so using Theorem 2.10 the number of calls still in progress
at time t is Poisson with mean∫ t

s=0

λ(1−G(t− s)) ds = λ

∫ r

r=0

(1−G(r)) dr
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Letting t → ∞ we see that in the long run the number of calls in
the system will be Poisson with mean

λ

∫ ∞

r=0

(1−G(r)) dr = λµ

That is, the mean number in the system is the rate at which calls
enter times their average duration. In the argument above we sup-
posed that the system starts empty. Since the number of initial calls
in the system at time t decreases to 0 as t→∞, the limiting result
is true for any initial number of calls X0.

2.4.2 Superposition

Taking one Poisson process and splitting it into two or more by using
an i.i.d. sequence Yi is called thinning. Going in the other direction
and adding up a lot of independent processes is called superposi-
tion. Since a Poisson process can be split into independent Poisson
processes, it should not be too surprising that when the independent
Poisson processes are put together, the sum is Poisson with a rate
equal to the sum of the rates.

Theorem 2.11. Suppose N1(t), . . . Nk(t) are independent Poisson
processes with rates λ1, . . . , λk, then N1(t)+ · · ·+Nk(t) is a Poisson
process with rate λ1 + · · ·+ λk.

Proof. Again we consider only the case k = 2 and check the sec-
ond definition given in Theorem 2.4. It is clear that the sum has
independent increments and N1(0) + N2(0) = 0. The fact that the
increments have the right Poisson distribution follows from Theorem
2.3.

We will see in the next chapter that the ideas of compounding
and thinning are very useful in computer simulations of continuous
time Markov chains. For the moment we will illustrate their use in
computing the outcome of races between Poisson processes.

Example 2.5. A Poisson race. Given a Poisson process of red
arrivals with rate λ and an independent Poisson process of green
arrivals with rate µ, what is the probability that we will get 6 red
arrivals before a total of 4 green ones?
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Solution. The first step is to note that the event in question is
equivalent to having at least 6 red arrivals in the first 9. If this
happens, then we have at most 3 green arrivals before the 6th red
one. On the other hand if there are 5 or fewer red arrivals in the
first 9, then we have had at least 4 red arrivals and at most 5 green.

Viewing the red and green Poisson processes as being constructed
by starting with one rate λ + µ Poisson process and flipping coins
with probability p = λ/(λ + µ) to decide the color, we see that the
probability of interest is

9∑
k=6

(
9

k

)
pk(1− p)9−k

If we suppose for simplicity that λ = µ so p = 1/2, this expression
becomes

1

512
·

9∑
k=6

(
9

k

)
=

1 + 9 + (9 · 8)/2 + (9 · 8 · 7)/3!

512
=

140

512
= 0.273

2.4.3 Conditioning

Let T1, T2, T3, . . . be the arrival times of a Poisson process with rate
λ, let U1, U2, . . . Un be independent and uniformly distributed on
[0, t], and let V1 < . . . Vn be the Ui rearranged into increasing order
. This section is devoted to the proof of the following remarkable
fact.

Theorem 2.12. If we condition on N(t) = n, then the vector
(T1, T2, . . . Tn) has the same distribution as (V1, V2, . . . Vn) and hence
the set of arrival times {T1, T2, . . . , Tn} has the same distribution as
{U1, U2, . . . , Un}.

Why is this true? We begin by finding the joint density function
of (T1, T2, T3) given that there were 3 arrivals before time t. The
probability is 0 unless 0 < v1 < v2 < v3 < t. To compute the
answer in this case, we note that P (N(t) = 4) = e−λt(λt)3/3!, and
that for T1 = t1, T2 = t2, T3 = t3, N(t) = 4 we must have τ1 = t1,
τ2 = t2 − t1, τ3 = t3 − t2, and τ > t− t3, so the desired conditional
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distribution is:

=
λe−λt1 · λe−λ(t2−t1) · λe−λ(t3−t2) · e−λ(t−t3)

e−λt(λt)3/3!

=
λ3e−λt

e−λt(λt)3/3!
=

3!

t3

Note that the answer does not depend on the values of v1, v2, v3

(as long as 0 < v1 < v2 < v3 < t), so the resulting conditional
distribution is uniform over

{(v1, v2, v3) : 0 < v1 < v2 < v3 < t}

This set has volume t3/3! since {(v1, v2, v3) : 0 < v1, v2, v3 < t} has
volume t3 and v1 < v2 < v3 is one of 3! possible orderings.

Generalizing from the concrete example it is easy to see that
the joint density function of (T1, T2, . . . Tn) given that there were n
arrivals before time t is n!/tn for all times 0 < t1 < . . . < tn < t.

Theorem 2.12 implies that if we condition on having n arrivals at
time t, then the locations of the arrivals are the same as the location
of n points thrown uniformly on [0, t]. From the last observation we
immediately get:

Theorem 2.13. If s < t and 0 ≤ m ≤ n, then

P (N(s) = m|N(t) = n) =

(
n

m

)(s
t

)m (
1− s

t

)n−m

That is, the conditional distribution of N(s) given N(t) = n is
binomial(n, s/t).

Proof. The number of arrivals by time s is the same as the number of
Ui < s. The events {Ui < s} these events are independent and have
probability s/t, so the number of Ui < s will be binomial(n, s/t).
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2.5 Exercises

Exponential distribution

2.1. Suppose that the time to repair a machine is exponentially dis-
tributed random variable with mean 2. (a) What is the probability
the repair takes more than 2 hours. (b) What is the probability that
the repair takes more than 5 hours given that it takes more than 3
hours.

2.2. The lifetime of a radio is exponentially distributed with mean
5 years. If Ted buys a 7 year-old radio, what is the probability it
will be working 3 years later?

2.3. A doctor has appointments at 9 and 9:30. The amount of time
each appointment lasts is exponential with mean 30. What is the
expected amount of time after 9:30 until the second patient has
completed his appointment?

2.4. Copy machine 1 is in use now. Machine 2 will be turned on
at time t. Suppose that the machines fail at rate λi. What is the
probability that machine 2 is the first to fail?

2.5. Alice and Betty enter a beauty parlor simultaneously, Alice to
get a manicure and Betty to get a haircut. Suppose the time for a
manicure (haircut) is exponentially distributed with mean 20 (30)
minutes. (a) What is the probability Alice gets done first? (b) What
is the expected amount of time until Alice and Betty are both done?

2.6. Let S and T be exponentially distributed with rates λ and
µ. Let U = min{S, T} and V = max{S, T}. Find (a) EU . (b)
E(V − U), (c) EV . (d) Use the identity V = S + T − U to get a
different looking formula for EV and verify the two are equal.

2.7. Let S and T be exponentially distributed with rates λ and µ.
Let U = min{S, T}, V = max{S, T}, and W = V − U . Find the
variances of U , V , and W .

2.8. In a hardware store you must first go to server 1 to get your
goods and then go to a server 2 to pay for them. Suppose that the
times for the two activities are exponentially distributed with means
6 minutes and 3 minutes. Compute the average amount of time it
take Bob to get his goods and pay if when he comes in there is one
customer named Al with server 1 and no one at server 2.
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2.9. Consider the set-up of the previous problem but suppose that
the times for the two activities are exponentially distributed with
rates λ and µ. Compute Bob’s average waiting time.

2.10. Consider a bank with two tellers. Three people, Alice, Betty,
and Carol enter the bank at almost the same time and in that or-
der. Alice and Betty go directly into service while Carol waits for
the first available teller. Suppose that the service times for each
customer are exponentially distributed with mean 4 minutes. (a)
What is the expected total amount of time for Carol to complete
her businesses? (b) What is the expected total time until the last
of the three customers leaves? (c) What is the probability Carol is
the last one to leave? (d) Answer questions (a),(b), and (c) for a
general exponential with rate λ.

2.11. Consider the set-up of the previous problem but now suppose
that the two tellers have exponential service times with means 3 and
6 minutes. Answer questions (a), (b), and (c).

2.12. Consider the set-up of the previous problem but now suppose
that the two tellers have exponential service times with rates λ ≤ µ.
Again, answer questions (a), (b), and (c).

2.13. Three people are fishing and each catches fish at rate 2 per
hour. How long do we have to wait until everyone has caught at
least one fish?

2.14. A machine has two critically important parts and is subject
to three different types of shocks. Shocks of type i occur at times
of a Poisson process with rate λi. Shocks of types 1 break part
1, those of type 2 break part 2, while those of type 3 break both
parts. Let U and V be the failure times of the two parts. (a) Find
P (U > s, V > t). (b) Find the distribution of U and the distribution
of V . (c) Are U and V independent?

2.15. A submarine has three navigational devices but can remain
at sea if at least two are working. Suppose that the failure times
are exponential with means 1 year, 1.5 years, and 3 years. What is
the average length of time the boat can remain at sea.

2.16. Ron, Sue, and Ted arrive at the beginning of a professor’s
office hours. The amount of time they will stay is exponentially
distributed with means of 1, 1/2, and 1/3 hour. (a) What is the
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expected time until only one student remains? (b) For each student
find the probability they are the last student left. (c) What is the
expected time until all three students are gone?

2.17. Let Ti, i = 1, 2, 3 be independent exponentials with rate λi.
Find

(a) P (T1 < T2 < T3)
(b) P (T1 < T2|maxTi = T3)
(c) E(maxTi|T1 < T2 < T3)
(d) Use (a) and (c) to find Emaxi Ti. The next exercise will give

a much simpler formula.

2.18. Let Ti, i = 1, 2, 3 be independent exponentials with rate λi.
(a) Show that for any numbers t1, t2, t3

max{t1, t2, t3} = t1 + t2 + t3 −min{t1, t2} −min{t1, t3}
−min{t2, t3}+ min{t1, t2, t3}

(b) Use (a) to find Emax{T1, T2, T3}. (c) Use the formula to give a
simple solution of part (c) of Exercise 2.16.

2.19. A flashlight needs two batteries to be operational. You start
with four batteries numbered 1 to 4. Whenever a battery fails it
is replaced by the lowest-numbered working battery. Suppose that
battery life is exponential with mean 100 hours. Let T be the time
at which there is one working battery left and N be the number
of the one battery that is still good. (a) Find ET . (b) Find the
distribution of N . (c) Solve (a) and (b) for a general number of
batteries.

Poisson approximation to binomial

2.20. Compare the Poisson approximation with the exact binomial
probabilities of 1 success when n = 20, p = 0.1.

2.21. Compare the Poisson approximation with the exact binomial
probabilities of no success when (a) n = 10, p = 0.1, (b) n = 50,
p = 0.02.

2.22. The probability of a three of a kind in poker is approximately
1/50. Use the Poisson approximation to estimate the probability
you will get at least one three of a kind if you play 20 hands of
poker.
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2.23. Suppose 1% of a certain brand of Christmas lights is defective.
Use the Poisson approximation to compute the probability that in
a box of 25 there will be at most one defective bulb.

Poisson processes: Basic properties

2.24. Suppose N(t) is a Poisson process with rate 3. Let Tn denote
the time of the nth arrival. Find (a) E(T12), (b) E(T12|N(2) = 5),
(c) E(N(5)|N(2) = 5).

2.25. Customers arrive at a shipping office at times of a Poisson
process with rate 3 per hour. (a) The office was supposed to open
at 8AM but the clerk Oscar overslept and came in at 10AM. What
is the probability that no customers came in the two-hour period?
(b) What is the distribution of the amount of time Oscar has to wait
until his first customer arrives?

2.26. Suppose that the number of calls per hour to an answering
service follows a Poisson process with rate 4. (a) What is the prob-
ability that fewer (i.e., <) than 2 calls came in the first hour? (b)
Suppose that 6 calls arrive in the first hour, what is the probability
there will be < 2 in the second hour. (c) Suppose that the operator
gets to take a break after she has answered 10 calls. How long are
her average work periods?

2.27. Traffic on Rosedale Road in Princeton, NJ, follows a Poisson
process with rate 6 cars per minute. A deer runs out of the woods
and tries to cross the road. If there is a car passing in the next 5
seconds then there will be a collision. (a) Find the probability of a
collision. (b) What is the chance of a collision if the deer only needs
2 seconds to cross the road.

.

2.28. Calls to the Dryden fire department arrive according to a Pois-
son process with rate 0.5 per hour. Suppose that the time required
to respond to a call, return to the station, and get ready to respond
to the next call is uniformly distributed between 1/2 and 1 hour.
If a new call comes before the Dryden fire department is ready to
respond, the Ithaca fire department is asked to respond. Suppose
that the Dryden fire department is ready to respond now. (a) Find
the probability distribution for the number of calls they will handle
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before they have to ask for help from the Ithaca fire department.
(b) In the long run what fraction of calls are handled by the Ithaca
fire department?

2.29. A math professor waits at the bus stop at the Mittag-Leffler
Institute in the suburbs of Stockholm, Sweden. Since he has forgot-
ten to find out about the bus schedule, his waiting time until the
next bus is uniform on (0,1). Cars drive by the bus stop at rate 6
per hour. Each will take him into town with probability 1/3. What
is the probability he will end up riding the bus?

2.30. The number of hours between successive trains is T which
is uniformly distributed between 1 and 2. Passengers arrive at the
station according to a Poisson process with rate 24 per hour. Let X
denote the number of people who get on a train. Find (a) EX, (b)
var (X).

2.31. Consider a Poisson process with rate λ and let L be the time
of the last arrival in the interval [0, t], with L = 0 if there was no
arrival. (a) Compute E(t−L) (b) What happens when we let t→∞
in the answer to (a)?

2.32. Customers arrive according to a Poisson process of rate λ per
hour. Joe does not want to stay until the store closes at T = 10PM,
so he decides to close up when the first customer after time T − s
arrives. He wants to leave early but he does not want to lose any
business so he is happy if he leaves before T and no one arrives after.
(a) What is the probability he achieves his goal? (b) What is the
optimal value of s and the corresponding success probability?

2.33. Let T be exponentially distributed with rate λ. (a) Use the
definition of conditional expectation to compute E(T |T < c). (b)
Determine E(T |T < c) from the identity

ET = P (T < c)E(T |T < c) + P (T > c)E(T |T > c)

2.34. When did the chicken cross the road? Suppose that traffic
on a road follows a Poisson process with rate λ cars per minute.
A chicken needs a gap of length at least c minutes in the traffic
to cross the road. To compute the time the chicken will have to
wait to cross the road, let t1, t2, t3, . . . be the interarrival times for
the cars and let J = min{j : tj > c}. If Tn = t1 + · · · + tn, then
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the chicken will start to cross the road at time TJ−1 and complete
his journey at time TJ−1 + c. Use the previous exercise to show
E(TJ−1 + c) = (eλc − 1)/λ.

Random sums

2.35. Edwin catches trout at times of a Poisson process with rate
3 per hour. Suppose that the trout weigh an average of 4 pounds
with a standard deviation of 2 pounds. Find the mean and standard
deviation of the total weight of fish he catches in two hours.

2.36. An insurance company pays out claims at times of a Poisson
process with rate 4 per week. Writing K as shorthand for “thou-
sands of dollars,” suppose that the mean payment is 10K and the
standard deviation is 6K. Find the mean and standard deviation of
the total payments for 4 weeks.

2.37. Customers arrive at an automated teller machine at the times
of a Poisson process with rate of 10 per hour. Suppose that the
amount of money withdrawn on each transaction has a mean of
$30 and a standard deviation of $20. Find the mean and standard
deviation of the total withdrawals in 8 hours.

2.38. Let St be the price of stock at time t and suppose that at
times of a Poisson process with rate λ the price is multiplied by a
random variable Xi > 0 with mean µ and variance σ2. That is,

St = S0

N(t)∏
i=1

Xi

where the product is 1 if N(t) = 0. Find ES(t) and varS(t).

2.39. Messages arrive to be transmitted across the internet at times
of a Poisson process with rate λ. Let Yi be the size of the ith
message, measured in bytes, and let g(z) = EzYi be the generating
function of Yi. Let N(t) be the number of arrivals at time t and
S = Y1 + ·+YN(t) be the total size of the messages up to time t. (a)
Find the generating function f(z) = E(zS). (b) Differentiate and
set z = 1 to find ES. (c) Differentiate again and set z = 1 to find
E{S(S − 1)}. (d) Compute var (S).

2.40. Let {N(t), t ≥ 0} be a Poisson process with rate λ. Let T ≥ 0
be an independent with mean µ and variance σ2. Find cov (T,NT ).
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2.41. Let t1, t2, . . . be independent exponential(λ) random variables
and letN be an independent random variable with P (N = n) = (1−
p)n−1. What is the distribution of the random sum T = t1+· · ·+tN?

Thinning and conditioning

2.42. Traffic on Snyder Hill Road in Ithaca, NY, follows a Poisson
process with rate 2/3’s of a vehicle per minute. 10% of the vehicles
are trucks, the other 90% are cars. (a) What is the probability at
least one truck passes in a hour? (b) Given that 10 trucks have
passed by in an hour, what is the expected number of vehicles that
have passed by. (c) Given that 50 vehicles have passed by in a hour,
what is the probability there were exactly 5 trucks and 45 cars.

2.43. Rock concert tickets are sold at a ticket counter. Females and
males arrive at times of independent Poisson processes with rates
30 and 20. (a) What is the probability the first three customers are
female? (b) If exactly 2 customers arrived in the first five minutes,
what is the probability both arrived in the first three minutes. (c)
Suppose that customers regardless of sex buy 1 ticket with proba-
bility 1/2, two tickets with probability 2/5, and three tickets with
probability 1/10. Let Ni be the number of customers that buy i
tickets in the first hour. Find the joint distribution of (N1, N2, N3).

2.44. Ellen catches fish at times of a Poisson process with rate 2 per
hour. 40% of the fish are salmon, while 60% of the fish are trout.
What is the probability she will catch exactly 1 salmon and 2 trout
if she fishes for 2.5 hours?

2.45. Signals are transmitted according to a Poisson process with
rate λ. Each signal is successfully transmitted with probability p
and lost with probability 1 − p. The fates of different signals are
independent. For t ≥ 0 let N1(t) be the number of signals success-
fully transmitted and let N2(t) be the number that are lost up to
time t. (a) Find the distribution of (N1(t), N2(t)). (b) What is the
distribution of L = the number of signals lost before the first one is
successfully transmitted?

2.46. A copy editor reads a 200-page manuscript, finding 108 typos.
Suppose that the author’s typos follow a Poisson process with some
unknown rate λ per page, while from long experience we know that
the copyeditor finds 90% of the mistakes that are there. (a) Compute
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the expected number of typos found as a function of the arrival rate
λ. (b) Use the answer to (a) to find an estimate of λ and of the
number of undiscovered typos.

2.47. Two copy editors read a 300-page manuscript. The first found
100 typos, the second found 120, and their lists contain 80 errors in
common. Suppose that the author’s typos follow a Poisson process
with some unknown rate λ per page, while the two copy editors
catch errors with unknown probabilities of success p1 and p2. Let
X0 be the number of typos that neither found. Let X1 and X2 be
the number of typos found only by 1 or only by 2, and let X3 be
the number of typos found by both. (a) Find the joint distribution
of (X0, X1, X2, X3). (b) Use the answer to (a) to find an estimates
of p1, p2 and then of the number of undiscovered typos.

2.48. A light bulb has a lifetime that is exponential with a mean of
200 days. When it burns out a janitor replaces it immediately. In
addition there is a handyman who comes at times of a Poisson pro-
cess at rate .01 and replaces the bulb as “preventive maintenance.”
(a) How often is the bulb replaced? (b) In the long run what fraction
of the replacements are due to failure?

2.49. Starting at some fixed time, which we will call 0 for conve-
nience, satellites are launched at times of a Poisson process with
rate λ. After an independent amount of time having distribution
function F and mean µ, the satellite stops working. Let X(t) be the
number of working satellites at time t. (a) Find the distribution of
X(t). (b) Let t → ∞ in (a) to show that the limiting distribution
is Poisson(λµ).

2.50. Ignoring the fact that the bar exam is only given twice a year,
let us suppose that new lawyers arrive in Los Angeles according to a
Poisson process with mean 300 per year. Suppose that each lawyer
independently practices for an amount of time T with a distribution
function F (t) = P (T ≤ t) that has F (0) = 0 and mean 25 years.
Show that in the long run the number of lawyers in Los Angeles is
Poisson with mean 7500.

2.51. Policy holders of an insurance company have accidents at
times of a Poisson process with rate λ. The distribution of the time
R until a claim is reported is random with P (R ≤ r) = G(r) and
ER = ν. (a) Find the distriibution of the number of unreported
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claims. (b) Suppose each claim has mean µ and variance σ2. Find
the mean and variance of S the total size of the unreported claims.

2.52. Suppose N(t) is a Poisson process with rate 2. Compute the
conditional probabilities (a) P (N(3) = 4|N(1) = 1), (b) P (N(1) =
1|N(3) = 4).

2.53. Customers arrive at a bank according to a Poisson process
with rate 10 per hour. Given that two customers arrived in the first
5 minutes, what is the probability that (a) both arrived in the first
2 minutes. (b) at least one arrived in the first 2 minutes.

2.54. Suppose that the number of calls per hour to an answering
service follows a Poisson process with rate 4. Suppose that 3/4’s of
the calls are made by men, 1/4 by women, and the sex of the caller
is independent of the time of the call. (a) What is the probability
that in one hour exactly 2 men and 3 women will call the answering
service? (b) What is the probability 3 men will make phone calls
before 3 women do?

2.55. Hockey teams 1 and 2 score goals at times of Poisson processes
with rates 1 and 2. Suppose that N1(0) = 3 and N2(0) = 1. (a)
What is the probability that N1(t) will reach 5 before N2(t) does?
(b) Answer part (a) for Poisson processes with rates λ1 and λ2.

2.56. Consider two independent Poisson processes N1(t) and N2(t)
with rates λ1 and λ2. What is the probability that the two-dimensional
process (N1(t), N2(t)) ever visits the point (i, j)?



Chapter 3

Renewal processes

3.1 Laws of large numbers

In the Poisson process the times between successive arrivals are in-
dependent and exponentially distributed. The lack of memory prop-
erty of the exponential distribution is crucial for many of the special
properties of the Poisson process derived in this chapter. However,
in many situations the assumption of exponential interarrival times
is not justified. In this section we will consider a generalization
of Poisson processes called renewal processes in which the times
t1, t2, . . . between events are independent and have distribution F .

In order to have a simple metaphor with which to discuss re-
newal processes, we will think of a single light bulb maintained by
a very diligent janitor, who replaces the light bulb immediately af-
ter it burns out. Let ti be the lifetime of the ith light bulb. We
assume that the light bulbs are bought from one manufacturer, so
we suppose

P (ti ≤ t) = F (t)

where F is a distribution function with F (0) = P (ti ≤ 0) = 0.
If we start with a new bulb (numbered 1) at time 0 and each light

bulb is replaced when it burns out, then Tn = t1 + · · ·+ tn gives the
time that the nth bulb burns out, and

N(t) = max{n : Tn ≤ t}

is the number of light bulbs that have been replaced by time t. The
picture is the same as the one for the Poisson process, see Figure
2.1.

137
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If renewal theory were only about changing light bulbs, it would
not be a very useful subject. The reason for our interest in this
system is that it captures the essence of a number of different situ-
ations. On example that we have already seen is

Example 3.1. Markov chains. Let Xn be a Markov chain and
suppose that X0 = x. Let Tn be the nth time that the process
returns to x. The strong Markov property implies that tn = Tn −
Tn−1 are independent, so Tn is a renewal process.

Example 3.2. Machine repair. Instead of a light bulb, think
of a machine that works for an amount of time si before it fails,
requiring an amount of time ui to be repaired. Let ti = si + ui be
the length of the ith cycle of breakdown and repair. If we assume
that the repair leaves the machine in a “like new” condition, then the
ti are independent and identically distributed (i.i.d.) and a renewal
process results.

Example 3.3. Counter processes. The following situation arises,
for example, in medical imaging applications. Particles arrive at a
counter at times of a Poisson process with rate λ. Each arriving
particle that finds the counter free gets registered and locks the
counter for an amount of time τ . Particles arriving during the locked
period have no effect. If we assume the counter starts in the unlocked
state, then the times Tn at which it becomes unlocked for the nth
time form a renewal process. This is a special case of the previous
example: ui = τ , si = exponential with rate λ.

In addition there will be several applications to queueing theory.
The main result about renewal processes that we will use is the

following law of large numbers:

Theorem 3.1. Let µ = Eti be mean interarrival time. If P (ti >
0) > 0 then with probability one,

N(t)/t→ 1/µ as t→∞

In words, this says that if our light bulb lasts µ years on the average
then in t years we will use up about t/µ light bulbs. Since the
interarrival times in a Poisson process have mean 1/λ Theorem 3.1
implies that ifN(t) is the number of arrivals up to time t in a Poisson
process, then

N(t)/t→ λ as t→∞ (3.1)
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Proof of Theorem 3.1. We use the

Theorem 3.2. Strong law of large numbers. Let x1, x2, x3, . . .
be i.i.d. with Exi = µ, and let Sn = x1 + · · · + xn. Then with
probability one,

Sn/n→ µ as n→∞

Taking xi = ti, we have Sn = Tn, so Theorem 3.2 implies that with
probability one, Tn/n→ µ as n→∞. Now by definition,

TN(t) ≤ t < TN(t)+1

Dividing by N(t), we have

TN(t)

N(t)
≤ t

N(t)
≤

TN(t)+1

N(t) + 1
· N(t) + 1

N(t)

By the strong law of large numbers, the left- and right-hand sides
converge to µ. From this it follows that t/N(t) → µ and hence
N(t)/t→ 1/µ.

The next result looks like that it is weaker than Theorem 3.1 but
is harder to prove.

Theorem 3.3. Let µ = Eti be mean interarrival time. If P (ti >
0) > 0 then

EN(t)/t→ 1/µ as t→∞

To show that there is something to prove let U be uniform on (0,1)
and let N(t) = t with if U ≤ 1− 1/t and = t2 if U > 1− 1/t. Then
N(t)/t → 1 but EN(t)/t = 2 − 1/t → 2. It seem unlikely that
something unusal like this will happen to N(t) but this has to be
ruled out. The proof is technical, so most readers will want to skip
it.

Proof. Consider first the special case in which t̄i = 0 with probability
1 − p and t̄i = δ with probability p. This renewal process stays
at kδ for a geometric number of times Vk with mean 1/δ. So if
mδ ≤ t < (m+ 1)δ we have

ENδ(t) = E

(
m∑

k=0

Vk

)
= (m+ 1)/δ.



140 CHAPTER 3. RENEWAL PROCESSES

To compute the second moment we note that

ENδ(t)
2 = E

(
m∑

k=0

Vk

)2

= (m+ 1)EV 2
1 + (m+ 1)m(EV1)

2

Thus if t ≥ δ

E

(
Nδ(t)

t

)2

≤ (m+ 1)2EV 2
1

(mδ)2
≤ 4

EV 2
1

δ2

If P (ti > 0) > 0 then we can pick a δ > 0 so p = P (ti ≥ δ) > 0.
Since the ti renewal process will have fewer renewals by time t than
the one generated by t̄i we have

max
t≥δ

E

(
N(t)

t

)2

≤ C <∞

To show that this is enough to rule out trouble we note that if
M > 1/µ then the bounded convergence theorem implies

E

(
N(t)

t

)
≥ E

(
N(t)

t
∧M

)
→ 1

µ

To handle the missing part of the expected value

E

(
N(t)

t
;
N(t)

t
> M

)
≤ 1

M
E

(
N(t)

t

)2

≤ C

M

Given ε > 0, if M is large the last quantity is < ε for all t ≥ δ. Since

E

(
N(t)

t

)
≤ E

(
N(t)

t
∧M

)
+ E

(
N(t)

t
;
N(t)

t
> M

)
the desired result follows.

Our next topic is a simple extension of the notion of a renewal
process that greatly extends the class of possible applications. We
suppose that at the time of the ith renewal we earn a reward ri.
The reward ri may depend on the ith interarrival time ti, but we
will assume that the pairs (ri, ti), i = 1, 2, . . . are independent and
have the same distribution. Let

R(t) =

N(t)∑
i=1

ri
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be the total amount of rewards earned by time t. The main result
about renewal reward processes is the following strong law of large
numbers.

Theorem 3.4. With probability one,

R(t)

t
→ Eri

Eti
(3.2)

Proof. Multiplying and dividing by N(t), we have

R(t)

t
=

 1

N(t)

N(t)∑
i=1

ri

 N(t)

t
→ Eri ·

1

Eti

where in the last step we have used Theorem 3.1 and applied the
strong law of large numbers to the sequence ri.

Intuitively, (3.2) can be written as

reward/time =
expected reward/cycle

expected time/cycle

an equation that can be “proved” by pretending the words on the
right-hand side are numbers and then canceling the “expected” and
“1/cycle” that appear in numerator and denominator. The last
calculation is not given to convince you that Theorem 3.4 is correct
but to help you remember the result. A second approach to this is
that if we earn a reward of ρ dollar every τ units of time then in the
long run we earn ρ/τ dollars per unit time. To get from this to the
answer given in 3.4, note that the answer there only depends on the
means Eri and Eti, so the general answer must be

ρ/τ = Eri/Eti

This device can be applied to remember many of the results in this
chapter: when the answer only depends on the mean the limit must
be the same as in the case when the times are not random.

To illustrate the use of Theorem 3.4 we consider

Example 3.4. Long run car costs. Suppose that the lifetime of
a car is a random variable with density function h. Our methodical
Mr. Brown buys a new car as soon as the old one breaks down or
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reaches T years. Suppose that a new car costs A dollars and that
an additional cost of B dollars to repair the vehicle is incurred if it
breaks down before time T . What is the long-run cost per unit time
of Mr. Brown’s policy?

Solution. The duration of the ith cycle, ti, has

Eti =

∫ T

0

th(t) dt+ T

∫ ∞

T

h(t) dt

since the length of the cycle will be ti if the car’s life is ti < T , but
T if the car’s life ti ≥ T . The reward (or cost) of the ith cycle has

Eri = A+B

∫ T

0

h(t) dt

since Mr. Brown always has to pay A dollars for a new car but only
owes the additional B dollars if the car breaks down before time T .
Using Theorem 3.4 we see that the long run cost per unit time is

Eri

Eti
=

A+B
∫ T

0
h(t) dt∫ T

0
th(t) dt+

∫∞
T
Th(t) dt

Concrete example. Suppose that the lifetime of Mr. Brown’s car is
uniformlu distributed on [0, 10]. This is probably not a reasonable
assumption, since when cars get older they have a greater tendency
to break. However, having confessed to this weakness, we will pro-
ceed with this assumption since it makes calculations easier. Sup-
pose that the cost of a new car is A = 10 (thousand dollars), while
the breakdown cost is B = 3 (thousand dollars). If Mr. Brown
replaces his car after T years then the expected values of interest
are

Eri = 10 + 3
T

10
= 10 + 0.3T

Eti =

∫ T

0

t

10
dt+ T

(
1− T

10

)
=
T 2

20
+ T − T 2

10
= T − 0.05T 2

Combining the expressions for the Eri and Eti we see that the long-
run cost per unit time is

Eri

Eti
=

10 + 0.3T

T − 0.05T 2
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To maximize we take the derivative

d

dT

Eri

Eti
=

0.3(T − 0.05T 2)− (10 + 0.3T )(1− 0.1T )

(T − 0.1T 2)2

=
0.3T − 0.015T 2 − 10− 0.3T + T + 0.03T 2

(T − 0.1T 2)2

The numerator is 0.015T 2 + T − 10 which is 0 when

T =
−1±

√
1 + 4(0.015)(10)

2(0.015)
=
−1±

√
1.6

0.03

We want the + root which is T = 8.83.

Using the idea of renewal reward processes, we can easily treat
the following extension of renewal processes.

Example 2.5. Alternating renewal processes. Let s1, s2, . . .
be independent with a distribution F that has mean µF , and let
u1, u2, . . . be independent with distribution G that has mean µG.
For a concrete example consider the machine in Example 1.1 that
works for an amount of time si before needing a repair that takes
ui units of time. However, to talk about things in general we will
say that the alternating renewal process spends an amount of time
si in state 1, an amount of time ui in state 2, and then repeats the
cycle again.

Theorem 3.5. In an alternating renewal process, the limiting frac-
tion of time in state 1 is

µF

µF + µG

To see that this is reasonable and to help remember the formula,
consider the nonrandom case. If the machine always works for ex-
actly µF days and then needs repair for exactly µG days, then the
limiting fraction of time spent working is µF/(µF + µG).

Why is Theorem 3.5 true? In order to compute the limiting fraction
of time the machine is working we let ti = si + ui be the duration
of the ith cycle, and let the reward ri = si, the amount of time the
machine was working during the ith cycle. In this case, if we ignore
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the contribution from the cycle that is in progress at time t, then

R(t) =

N(t)∑
i=1

ri

will be the amount of time the machine has been working up to time
t. Thus, Theorem 3.4 implies that

R(t)

t
→ Eri

Eti
=

µF

µF + µG

Proof. In order to complete the proof we need to show that we can
ignore the contribution from the cycle that is in progress at time t.
Since t→ P (ri/ε > t) is decreasing, it follows that for any ε > 0

∞∑
n=1

P (rn > nε) ≤
∫ ∞

0

P (rn/ε > t) dt ≤ E(ri/ε) <∞

Now for any M we have

1

n

(
max

1≤m≤n
rm/n

)
≤ 1

n
max

1≤m≤M
rm + max

m≥M

rm

m

For each fixed M the first term converges to 0 as n → ∞. The
second is a constant δM that does not depend on n so we have

lim sup
n→∞

1

n

(
max

1≤m≤n
rm

)
≤ δM

Letting M →∞ now we have

lim
n→∞

max
1≤m≤n

rm/n = 0 (3.3)

Let C = 1 + (1/µ). (3.3) implies that

max
m≤Ct

rm/t→ 0

Theorem 3.1 implies that N(t)/t→ 1/µ, so for large t we will have
N(t) + 1 ≤ ct. When this holds we will have

rN(t)+1/t ≤ max
m≤Ct

rm/t→ 0

so the contribution from the incomplete cycle can be ignored.
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For a concrete example of alternating renewal processes, consider

Example 3.5. Poisson janitor. A light bulb burns for an amount
of time having distribution F with mean µF then burns out. A
janitor comes at times of a rate λ Poisson process to check the bulb
and will replace the bulb if it is burnt out. (a) At what rate are
bulbs replaced? (b) What is the limiting fraction of time that the
light bulb works? (c) What is the limiting fraction of visits on which
the bulb is working?

Solution. Suppose that a new bulb is put in at time 0. It will last
for an amount of time s1. Using the lack of memory property of the
exponential distribution, it follows that the amount of time until the
next inspection, u1, will have an exponential distribution with rate
λ. The bulb is then replaced and the cycle starts again, so we have
an alternating renewal process.

To answer (a), we note that the expected length of a cycle Eti =
µF +1/λ, so if N(t) is the number of bulbs replaced by time t, then
it follows from Theorem 3.1 that

N(t)

t
→ 1

µF + 1/λ

In words, bulbs are replaced on the average every µF + 1/λ units of
time.

To answer (b), we let ri = si, so Theorem 3.5 implies that in the
long run, the fraction of time the bulb has been working up to time
t is

Eri

Eti
=

µF

µF + 1/λ

To answer (c), we note that if V (t) is the number of visits the
janitor has made by time t, then by the law of large numbers for the
Poisson process we have

V (t)

t
→ λ

Combining this with the result of (a), we see that the fraction of
visits on which bulbs are replaced

N(t)

V (t)
→ 1/(µF + 1/λ)

λ
=

1/λ

µF + 1/λ

This answer is reasonable since it is also the limiting fraction of time
the bulb is off.
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3.2 Applications to Queueing Theory

In this section we will use the ideas of renewal theory to prove results
for queueing systems with general service times. In the first part of
this section we will consider general arrival times. In the second we
will specialize to Poisson inputs.

3.2.1 GI/G/1 queue

Here the GI stands for general input. That is, we suppose that
the times ti between successive arrivals are independent and have
a distribution F with mean 1/λ. We make this somewhat unusual
choice of notation for mean so that if N(t) is the number of arrivals
by time t, then Theorem 3.1 implies that the long-run arrival rate
is

lim
t→∞

N(t)

t
=

1

Eti
= λ

The secondG stands for general service times. That is, we assume
that the ith customer requires an amount of service si, where the si

are independent and have a distribution G with mean 1/µ. Again,
the notation for the mean is chosen so that the service rate is µ.
The final 1 indicates there is one server. Our first result states that
the queue is stable if the arrival rate is smaller than the long-run
service rate.

Theorem 3.6. Suppose λ < µ. If the queue starts with some finite
number k ≥ 1 customers who need service, then it will empty out
with probability one.

Why is this true? While the queue is not empty the server works
at rate µ, which is larger than the rate λ at which arrivals come, so
the number of the people in the system tends to decrease and long
queues will not develop.

Proof. We will proceed by contradiction using the idea above. Specif-
ically we will show that if the server is always busy then since she
serves customers faster than they arrive, she is eventually done with
the customers before they arrive, which is a contradiction.

Turning to the details, let Tn = t1 + · · · + tn be the time of the
nth arrival. The strong law of large numbers, Theorem 3.2 implies
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that
Tn

n
→ 1

λ
Let Z0 be the sum of the service times of the customers in the system
at time 0 and let si be the service time of the ith customer to arrive
after time 0. If the server stays busy until the nth customer arrives
then that customer will depart the queue at time Z0 + Sn, where
Sn = s1 + · · ·+ sn. The strong law of large numbers implies

Z0 + Sn

n
→ 1

µ

Since 1/µ < 1/λ, this means that if we assume that the server
is always working, then when n is large enough the nth customer
departs before he arrives. This contradiction implies that the prob-
ability that the server stays busy for all time must be 0.

By looking at the last argument more carefully we can conclude:

Theorem 3.7. Suppose λ < µ. The limiting fraction of time the
server is busy is λ/µ.

Why is this true? Customers arrive at rate λ per unit time, say
per hour. The server can serve µ customers per hour, but cannot
serve more customers than arrive. Thus the server must be serving
customers at rate µ per hour for a long-run fraction λ/µ of the time.

More details. Suppose for simplicity that the queue starts out empty.
The nth customer arrives at time Tn = t1 + · · · + tn. If An is the
amount of time the server has been busy up to time Tn and Sn is
the sum of the first n service times, then

An = Sn − Zn

where Zn is the amount of work in the system at time Tn, i.e., the
amount of time needed to empty the system if there were no more
arrivals.

The first term is easy to deal with

Sn

Tn

=
Sn/n

Tn/n
→ Esi

Eti
=
λ

µ

Since Zn ≥ 0 this implies

lim sup
n→∞

An

Tn

≤ λ

µ
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To argue that equality holds we need to show that Zn/n→ 0. Intu-
itively, the condition λ < µ implies the queue reaches equilibrium,
so EZn stays bounded, and hence Zn/n → 0. The details of com-
pleting this proof are too complicated to give here. However, in
Example 3.8 we will give a simple proof of this.

Cost equations. Let Xs be the number of customers in the
system at time s. Let L be the long-run average number of customers
in the system:

L = lim
t→∞

1

t

∫ t

0

Xs ds

Let W be the long-run average amount of time a customer spends
in the system:

W = lim
n→∞

1

n

n∑
m=1

Wm

where Wm is the amount of time the mth arriving customer spends
in the system. Finally, let λa be the long-run average rate at which
arriving customers join the system, that is,

λa = lim
t→∞

Na(t)/t

where Na(t) is the number of customers who arrive before time t
and enter the system. Ignoring the problem of proving the existence
of these limits, we can assert that these quantities are related by

Theorem 3.8. Little’s formula. L = λaW .

Why is this true? Suppose each customer pays $1 for each minute
of time she is in the system. When ` customers are in the system,
we are earning $` per minute, so in the long run we earn an average
of $L per minute. On the other hand, if we imagine that customers
pay for their entire waiting time when they arrive then we earn at
rate λaW per minute, i.e., the rate at which customers enter the
system multiplied by the average amount they pay.

For a simple example of the use of this formula consider:

Example 3.6. M/M/1 queue. Here arrivals are a rate λ Poisson
process, there is one server, and customers require an amount of ser-
vice that is exponentially distributed with mean 1/µ. If we assume
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λ < µ, then it follows from Example 4.18 that the equilibrium prob-
ability of n people in the system is given by the shifted geometric
distribution

π(n) =

(
1− λ

µ

)(
λ

µ

)n

and the mean queue length in equilibrium is L = λ/(µ − λ). Since
all customers enter the system λa = λ, and it follows that from
Theorem 3.8 that the average waiting time is

W =
L

λ
=

1

µ− λ
For an example with λa < λ we consider

Example 3.7. Barbershop chain. A barber can cut hair at rate
3, where the units are people per hour, i.e., each haircut requires
an exponentially distributed amount of time with mean 20 minutes.
Customers arrive at times of a rate 2 Poisson process, but will leave
if both chairs in the waiting room are full. As we computed in
Example 4.15 that the equilibrium distribution for the number of
people in the system was given by

π(0) = 27/65, π(1) = 18/65, π(2) = 12/65, π(3) = 8/65

From this it follows that

L = 1 · 18

65
+ 2 · 12

65
+ 3 · 8

65
=

66

65

Customers will only enter the system if there are < 3 people, so

λa = 2(1− π(3)) = 114/65

Combining the last two results and using Little’s formula, Theorem
3.8, we see that the average waiting time in the system is

W =
L

λa

=
66/65

114/65
=

66

114
= 0.579 hours

Example 3.8. Waiting time in the queue. Consider theGI/G/1
queue and suppose that we are only interested in the customer’s av-
erage waiting time in the queue, WQ. If we know the average waiting
time W in the system, this can be computed by simply subtracting
out the amount of time the customer spends in service

WQ = W − Esi (3.4)
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For instance, in the previous example, subtracting off the 0.333
hours that his haircut takes we see that the customer’s average time
waiting in the queue WQ = 0.246 hours or 14.76 minutes.

Let LQ be the average queue length in equilibrium; i.e., we do
not count the customer in service if there is one. If suppose that
customers pay $1 per minute in the queue and repeat the derivation
of Little’s formula, then

LQ = λWQ (3.5)

The length of the queue is 1 less than the number in the sys-
tem, except when the number in the system is 0, so if π(0) is the
probability of no customers, then

LQ = L− 1 + π(0)

Combining the last three equations with our first cost equation:

π(0) = LQ − (L− 1) = 1 + λ(WQ −W ) = 1− λEsi (3.6)

Recalling that Esi = 1/µ, we have a simple proof of Theorem 3.7.

3.2.2 M/G/1 queue

Here the M stands for Markovian input and indicates we are consid-
ering the special case of the GI/G/1 queue in which the inputs are
a rate λ Poisson process. The rest of the set-up is as before: there is
a one server and the ith customer requires an amount of service si,
where the si are independent and have a distribution G with mean
1/µ.

When the input process is Poisson, the system has special prop-
erties that allow us to go further. We learned in Theorem 3.6 that
if λ < µ then a GI/G/1 queue will repeatedly return to the empty
state. Thus the server experiences alternating busy periods with du-
ration Bn and idle periods with duration In. In the case of Marko-
vian inputs, the lack of memory property implies that In has an
exponential distribution with rate λ. Combining this observation
with our result for alternating renewal processes we see that the
limiting fraction of time the server is idle is

1/λ

1/λ+ EBn

= 1− λ

µ
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by Theorem 3.7. Rearranging, we have

EBn =
1

λ

(
1

1− (λ/µ)
− 1

)
=

1/µ

1− λ/µ
=

Esi

1− λEsi

(3.7)

A second special property of Poisson arrivals is:

PASTA. These initials stand for “Poisson arrivals see time aver-
ages.” To be precise, if π(n) is the limiting fraction of time that
there are n individuals in the queue and an is the limiting fraction
of arriving customers that see a queue of size n, then

Theorem 3.9. an = π(n).

Why is this true? If we condition on there being arrival at time t,
then the times of the previous arrivals are a Poisson process with
rate λ. Thus knowing that there is an arrival at time t does not
affect the distribution of what happened before time t.

Example 3.9. Workload in the M/G/1 queue. We define the
workload in the system at time t, Vt, to be the sum of the remaining
service times of all customers in the system. Suppose that each
customer in the queue or in service pays at a rate of $y when his
remaining service time is y; i.e., we do not count the remaining
waiting time in the queue. If we let Y be the average total payment
made by an arriving customer, then our cost equation reasoning
implies that the average workload V satisfies

V = λY

(All customers enter the system, so λa = λ.) Since a customer with
service time si pays si during the qi units of time spent waiting in
the queue and at rate si − x after x units of time in service

Y = E(siqi) + E

(∫ si

0

si − x dx
)

Now a customer’s waiting time in the queue can be determined by
looking at the arrival process and at the service times of previous
customers, so it is independent of her service time, i.e., E(siqi) =
Esi ·WQ and we have

Y = (Esi)WQ + E(s2
i /2)
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PASTA implies that V = WQ, so using Y = V/λ and multiplying
both sides by λ, we have

WQ = λ(Esi)WQ + λE(s2
i /2)

Solving for WQ now gives

WQ =
λE(s2

i )

2(1− λEsi)
(3.8)

the so-called Pollaczek-Khintchine formula. Using formulas (3.5),
(3.4), and (3.8) we can now compute

LQ = λWQ W = WQ + Esi L = λW
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3.3 Age and Residual Life

Let t1, t2, . . . be i.i.d. interarrival times, let Tn = t1 + · · ·+ tn be the
time of the nth renewal, and let N(t) = max{n : Tn ≤ t} be the
number of renewals by time t. Let

A(t) = t− TN(t) and Z(t) = TN(t)+1 − t

A(t) gives the age of the item in use at time t, while Z(t) gives its
residual lifetime.

× × × × ×
0 T1 T2 TN(t) t TN(t)+1

A(t) Z(t)

Figure 3.1: Age and residual life.

To explain the interest in Z(t) note that the interrarival times after
TN(t)+1 will be independent of Z(t) and i.i.i.d. with distribution F , so
if we can show that Z(t) converges in distribution, then the renewal
process after time t will converge to an equilibrium.

3.3.1 Discrete case

The situation in which all the interarrival times are positive integers
is very simple but also important because visits of a Markov chain
to a fixed state, Example 3.1, are a special case. Let

Vm =

{
1 if m ∈ {T0, T1, T2, . . .}
0 otherwise

Vm = 1 if a renewal occurs at time m, i.e., if Tn visits m. Let
Zn = min{m−n : m ≥ n, Vm = 1} be the residual life. An example
should help clarify the definitions:

n 0 1 2 3 4 5 6 7 8 9 10 11 12 13
Vn 1 0 0 0 1 0 0 1 1 0 0 0 0 1
Zn 0 3 2 1 0 2 1 0 0 4 3 2 1 0
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It is clear that if Zn = i > 0 then Zn+1 = i − 1. When Zn = 0, a
renewal has just occurred. If the time to the next renewal is k then
Zn+1 = k − 1. To check this note that Z4 = 0 and the time to the
next renewal is 3 (it occurs at time 7) so Z5 = 2.

To study Zn we note that it is a Markov chain with state space
S = {0, 1, 2, . . .} and transition probability

p(0, j) = fj+1 for j ≥ 0

p(i, i− 1) = 1 for i ≥ 1

p(i, j) = 0 otherwise

In this chain 0 is always recurrent. If there are infinitely many values
of k with fk > 0 then it is irreducible. If not and K is the largest
value of k with fk > 0 then {0, 1, . . . K − 1} is a closed irreducible
set.

To define a stationary measure we will use the cycle trick, The-
orem 1.14 with x = 0. Starting from 0 the chain will visit a site i
at most 1 before it returns to 0, and this will happen if and only if
the first jump is to a state ≥ i, i.e., t1 ≥ i+ 1. Thus the stationary
measure is

µ(i) = P (t1 > i)

Using (A.26) we see that

∞∑
i=0

µ(i) = Et1

so the chain is positive recurrent if and only if Et1 < ∞. In this
case

π(i) = P (t1 > i)/Et1 (3.9)

I0 ⊃ J0 = {k : fk > 0} so if the greatest common divisor of J0 is
1 then 0 is aperiodic. To argue the converse note that I0 consists of
all finite sums of elements in J0 so g.c.d. I0 = g.c.d. J0. Using the
Markov chain convergence theorem now gives:

Theorem 3.10. Suppose Et1 <∞ and the greatest common divisor
of {k : fk > 0} is 1 then

lim
n→∞

P (Zn = i) =
P (t1 > i)

Et1
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In particular P (Zn = 0)→ 1/Et1.

Example 3.10. Visits to Go. In Monopoly one rolls two dice and
then moves that number of squares. As in Example 1.27 we will
ignore Go to Jail, Chance, and other squares that make the chain
complicated. The average number of spaces moved in one roll is
Et1 = 7 so in the long run we land exactly on Go in 1/7 of the trips
around the board.

3.3.2 Age

Let An = min{n −m : m ≤ n, Vm = 1} be the age of the item in
use at time n. In the example considered earlier:

n 0 1 2 3 4 5 6 7 8 9 10 11 12 13
Vn 1 0 0 0 1 0 0 1 1 0 0 0 0 1
An 0 1 2 3 0 1 2 0 0 1 2 3 4 0

Here when An = 2 we know that the associated renewal has ti > 2.
In order to move on to 3, we must have ti > 3. So if we let Fi =
P (t1 > i) then the transition probability q for An can be written as

q(j, j + 1) =
Fj+1

Fj

q(j, 0) = 1− Fj+1

Fj

=
fj+1

Fj

for j ≥ 0

Again this chain 0 is always recurrent. If there are infinitely many
values of k with fk > 0 then it is irreducible. If not and K is the
largest value of k with fk > 0 then {0, 1, . . . K − 1} is a closed
irreducible set.

To define a stationary measure we will use the cycle trick, Theo-
rem 1.14 with x = 0. Starting from 0 the chain will visit a site i at
most 1 before it returns to 0, and this will happen with probability

q(0, 1)q(1, 2) · · · q(i− 1, i) =
F1

F0

· F2

F1

· · · Fi

Fi−1

= Fi

so again the chain is positive recurrent if and only if Et1 <∞, and
in this case

π(i) = P (t1 > i)/Et1

Using the Markov chain convergence theorem now gives:
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Theorem 3.11. Suppose Et1 <∞ and the greatest common divisor
of {k : fk > 0} is 1 then

lim
n→∞

P (An = i) =
P (t1 > i)

Et1

Example 3.11. Shaving chain. The chain in Exercise 1.38 is a
special case of the age chain. The transition probability is

1 2 3 4
1 1/2 1/2 0 0
2 2/3 0 1/3 0
3 3/4 0 0 1/4
4 1 0 0 0

From this we see that

F1/F0 = 1/2 F2/F1 = 1/3 F3/F2 = 1/4 F4/F3 = 0

so F1 = 1/2, F2 = 1/6, F3 = 1/24 and it follows that

f1 = 1/2 f2 = 1/3 f3 = 1/8 f4 = 1/24.

The mean Et1 = 41/24 so the limit distribution has

π0 =
24

41
π1 =

12

41
π2 =

4

41
π3 =

1

41

It should be clear by comparing the numerical examples above
that there is a close relationship between p and q. In fact, q is the
dual chain of p, i.e., the chain p run backwards. To check this we
need to verify that

q(i, j) =
π(j)p(j, i)

π(i)

There are two cases to consider. If i ≥ 0 and j = i+ 1

q(i, i+ 1) =
Fi+1

Fi

=
π(i+ 1)p(i+ 1, i)

π(i)

since π(j) = Fj/Et1. If j = 0 then

q(i, 0) =
fi+1

Fi

=
π(0)p(0, i)

π(i)
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3.3.3 General case

With the discrete case taken care of, we will proceed to the general
case, which will be studied using renewal reward processes.

Example 3.12. Long run average residual life. To study the
asymptotic behavior of Z(t), we begin by noting that when Ti−1 <
s < Ti, we have Z(s) = Ti − s and changing variables r = Ti − s
gives ∫ Ti

Ti−1

Z(s) ds =

∫ ti

0

r dr = t2i /2

So ignoring the contribution from the last incomplete cycle, [TN(t), t]
we have ∫ t

0

Z(s) ds ≈
N(t)∑
i=1

t2i /2

The right-hand side is a renewal reward process with ri = t2i /2, so
it follows from Theorem 3.4 that

1

t

∫ t

0

Z(s) ds→ Et2i /2

Eti
(3.10)

To see what this means we will consider two concrete examples:

A. Exponential. Suppose the ti are exponential with rate λ. In
this case Eti = 1/λ, while integration by parts with f(t) = t2 and
g′(t) = λe−λt shows

Et2i =

∫ ∞

0

t2 λe−λt dt = t2(−e−λt)
∣∣∞
0

+

∫ ∞

0

2te−λt dt

= 0 + (2/λ)

∫ ∞

0

tλe−λt dt = 2/λ2

Using this in (3.10), it follows that

1

t

∫ t

0

Z(s) ds→ 1/λ2

1/λ
=

1

λ

This is not surprising since the lack of memory property of the expo-
nential implies that for any s, Z(s) has an exponential distribution
with mean 1/λ.
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B. Uniform. Suppose the ti are uniform on (0, b), that is, the
density function is f(t) = 1/b for 0 < t < b and 0 otherwise. In this
case the symmetry of the uniform distribution about b/2 implies
Eti = b/2, while a little calculus shows

Et2i =

∫ b

0

t2 · 1
b
dt =

t3

3b

∣∣∣∣b
0

=
b2

3

Using this in (3.10) it follows that

1

t

∫ t

0

Z(s) ds→ b2/6

b/2
=
b

3

Example 3.13. Long run average age. As in our analysis of
Z(t), we begin by noting that changing variables s = Ti−1 + r we
have ∫ Ti

Ti−1

A(s) ds =

∫ ti

0

r dr = t2i /2

so ignoring the contribution from the last incomplete cycle [TN(t), t]
we have ∫ t

0

A(s) ds ≈
N(t)∑
i=1

t2i /2

The right-hand side is the renewal reward process we encountered
in Example 3.12, so it follows from Theorem 3.4 that

1

t

∫ t

0

A(s) ds→ Et2i /2Eti (3.11)

Combining the results from the last two examples leads to a sur-
prise.

Example 3.14. Inspection paradox. Let L(t) = A(t) + Z(t) be
the lifetime of the item in use at time t. Adding (3.10) and (3.11),
we see that the average lifetime of the items in use up to time t:

1

t

∫ t

0

L(s) ds→ Et2i
Eti

(3.12)

To see that this is surprising, note that:

(i) If var (ti) = Et2i − (Eti)
2 > 0, then Et2i > (Eti)

2, so the limit is
> Eti.
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(ii) The average of the lifetimes of the first n items:

t1 + · · ·+ tn
n

→ Eti

Thus, the average lifetime of items in use up to time t converges to a
limit Et2i /Eti, which is larger than Eti, the limiting average lifetime
of the first n items.

There is a simple explanation for this “paradox”: taking the
average age of the item in use up to time s is biased since items that
last for time u are counted u times. For simplicity suppose that
there are only a finite number of possible lifetimes `1 < `2 . . . < `k
with probabilities p1, . . . , pk > 0 and p1 + · · ·+ pk = 1.

By considering a renewal reward process in which ri = 1 when
ti = `j, we see that the number of items up to time t with lifetime `j
is ∼ pjN(t). The total length of these lifetimes is ∼ `jpjN(t) Thus
the limiting fraction of time the lifetime is `j is by Theorem 3.4

∼ `jpjN(t)

t
→ `jpj

Eti

The expected value of this limiting distribution is∑
j

`j
`jpj

Eti
=
Et2i
Eti

Example 3.15. Limiting distribution for the residual life.
Let Z(t) = TN(t)+1 − t. Let Ic(t) = 1 if Z(t) ≤ c and 0 other-
wise. To study the asymptotic behavior of Ic(t), we begin with the
observation that ∫ Ti

Ti−1

Ic(s) ds = min{ti, c}

To check this we consider two cases.

Case 1. ti ≥ c. Ic(s) = 1 for Ti − c ≤ s ≤ Ti, 0 otherwise, so the
integral is c.

Case 2. ti ≤ c. Ic(s) = 1 for all s ∈ [Ti−1, Ti], so the integral is ti.

Ignoring the contribution from the last incomplete cycle [TN(t), t],
we have ∫ t

0

Ic(s) ds ≈
N(t)∑
i=1

min{ti, c}
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The right-hand side is a renewal reward process with ri = min{ti, c},
so it follows from Theorem 3.4 that

1

t

∫ t

0

Ic(s) ds→
Emin{ti, c}

Eti
(3.13)

Example 3.16. Limiting distribution for the age. Let A(t) =
t− TN(t)+1 and let Jc(t) = 1 if A(t) ≤ c and 0 otherwise. Imitating
the last argument, it is easy to show that

1

t

∫ t

0

Jc(s) ds→
Emin{ti, c}

Eti
(3.14)

Proof. To study the asymptotic behavior of Jc(t) we begin with the
observation that ∫ Ti

Ti−1

Jc(s) ds = min{ti, c}

which can be checked by considering two cases as before.
Ignoring the contribution from the last incomplete cycle [TN(t), t],

we have ∫ t

0

Ic(s) ds ≈
N(t)∑
i=1

min{ti, c}

The right-hand side is a renewal reward process with ri = min{ti, c},
so (3.14) follows from Theorem 3.4.

To evaluate the limits in (3.13) and (3.14), we note that (1.9)
implies

Emin{ti, c} =

∫ ∞

0

P (min{ti, c} > t) dt =

∫ c

0

P (ti > t) dt

From this it follows that the limiting fraction of time that the age
of the item in use at time t is ≤ c is

G(c) =

∫ c

0
P (ti > t) dt

Eti
(3.15)

This is a distribution function of a nonnegative random variable
since G(0) = 0, t→ G(t) is nondecreasing, and G(∞) = 1 by (1.9).
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Differentiating we find that the density function of the limiting age
is given by

g(c) =
d

dc
G(c) =

P (ti > c)

Eti
(3.16)

which agrees with the results in Theorems 3.10 and 3.11.

Turning to our two concrete examples:

A. Exponential. In this case the limiting density given in (3.16)
is

P (ti > c)

Eti
=
e−λc

1/λ
= λe−λc

For the residual life this is not surprising, since the distribution of
Z(s) is always exponential with rate λ.

B. Uniform. Plugging into (3.16) gives for 0 < c < b:

P (ti > c)

Eti
=

(b− c)/b
b/2

=
2(b− c)
b2

In words, the limiting density is a linear function that starts at 2/b
at 0 and hits 0 at c = b.

In case A, the limit distribution G = F , while in case B, G 6= F .
To show that case B is the rule to which case A is the only exception,
we prove:

Theorem 3.12. Suppose that G = F in (3.15). Then F (x) =
1− e−λx for some λ > 0.

Proof. Let H(c) = 1−G(c), and λ = 1/Eti. (3.15) implies H ′(c) =
−λH(c). Combining this with the observation H(0) = 1 and us-
ing the uniqueness of the solution of the differential equation, we
conclude that H(c) = e−λc.
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3.4 Renewal equations

The results in the second half of the previous section concern the
limiting behavior of the average distribution on [0, t]. In some cases
due to a problem similar to periodicity, the distributions of Z(t) and
A(t) do not converge. We say that ti has an arithmetic distribu-
tion if there is a δ > 0 so that P (ti ∈ {δ, 2δ, . . .}) = 1. In the dis-
crete case this holds with δ = 1. If the distribution is arithmetic and
t = mδ + γ where γ ∈ [0, δ) then P (Z(t) ∈ {δ − γ, 2δ − γ, . . .}) = 1
so the distribution of Z(t) does not converge.

The arithmetic case can be reduced to the discrete case by di-
viding by δ so for the rest of this section we will suppose that the
distribution of ti is not arithmetic. Let

U(t) = 1 + EN(t) =
∞∑

n=0

P (Tn ≤ t) (3.17)

In words, U(t) is the expected number of renewals including the one
at time 0. The big result about the asymptotic behavior of U(t) is

Theorem 3.13. Blackwell’s renewal theorem. Suppose the dis-
tribution of ti is not arithmetic and let µ = Eti ≤ ∞. For any
h > 0,

U(t+ h)− U(t)→ h/µ as t→∞.

Theorem 3.3 implies that U(t)/t → 1/µ, i.e., in the long run re-
newals occur at rate 1/t. Theorem 3.13 implies this is true when we
look at intervals of any length h.

Limit results for the age and residual life can be proved for nonar-
ithmetic distributions. To avoid the need for Riemann-Steiltjes in-
tegrals, we will assume that the ti have a density function f . In this
case, by considering the value of t1 we have

U(t) = 1 +

∫ t

0

U(t− s)f(s) ds (3.18)

To check this, we note that if t1 > t then there is only one renewal
before time t but if t1 = s then the expected number of renewals by
time t is 1 + U(t− s).

To explain why Z(t) should converge to the distribution in (3.15)
we will consider
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Example 3.17. Delayed renewal processes. Let t1, t2, . . . be
independent and have density f . If T0 ≥ 0 is independent of t1, t2, . . .
and has density function g, then Tk = Tk−1 + tk, k ≥ 1 defines a
delayed renewal process. If we let Rt = min{k : Tk > t} be
the number of renewals in [0, t] counting the one at T0, and let
V (t) = ERt, then breaking things down according to the value of
T0 gives

V (t) =

∫ t

0

U(t− s)g(s) ds (3.19)

To check this note that if T0 > t then there are no renewals, while
if T0 = s it is as if we have an ordinary renewal process starting at
s and run for time t− s.

We know U(t) ∼ t/µ. Our next step is to find a g so that
V (t) = t/µ. Using (3.18) with t replaced by t−s and the integration
done with respect to r, we want

t

µ
=

∫ t

0

g(s) ds+

∫ t

0

∫ t−s

0

U(t− s− r)f(r) drg(s) ds

Interchanging the order of integration, the double integral is∫ t

0

drf(r)

∫ t−r

0

U(t− r − s)g(s) ds =

∫ t

0

drf(r)
t− r
µ

Rearranging we want the distribution function G(t) =
∫ t

0
g(s) ds to

satisfy

G(t) =
t

µ
−
∫ t

0

drf(r)
t− r
µ

(3.20)

The integration by parts formula is∫ t

0

f ′1(s)f2(s) ds = f1(s)f2(s) ds|t0 −
∫ t

0

f1(s)f
′
2(s) ds

Using this with f ′1(r) = −f(r), f2(r) = (t − r)/µ, f ′2(r) = 1/µ
and choosing f1(r) = 1 − F (r), where F (r) =

∫ r

0
f(s) ds is the

distribution function, we have

G(t) =
t

µ
− t

µ
+

1

µ

∫ t

0

1− F (r) dr

so we want g(r) = (1− F (r))/µ.
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Intuitively, g is a stationary distribution for the residual life. To
see this, note that the calculation above shows that if we start with
this delay then the V (t) = t/µ, and g is the only distribution with
this property. Since the expected number of renewals in [s, t] is
(t− s)/µ, it follows that the delay at time s must have distribution
g.

To study the asymptotic behavior of the age and residual life we
will study renewal equations.

H(t) = h(t) +

∫ t

0

H(t− s)f(s) ds (3.21)

To explain our interest we will consider two examples:

Example 3.18. Residual life. Let x > 0 be fixed, and let H(t) =
P (Z(t) > x). In this case

H(t) = (1− F (t+ x)) +

∫ t

0

H(t− s)f(s) ds

To check this note that if t1 > t then the residual life will be > x if
t > t+x. If t1 = s then we have a renewal process starting at s and
we are interested in its residual life after t− s

Example 3.19. Age. Let x > 0 be fixed, and let H(t) = P (A(t) ≤
x). In this case

H(t) = (1− F (t))1[0,x](t) +

∫ t

0

H(t− s)f(s) ds

To check this note that if t1 > t then the age will be ≤ x if and only
if t ≤ x. If t1 = s then we have a renewal process starting at s and
we are interested in its age at t− s.

To motivate the solution of the renewal equation we recall (3.18)

U(t) = 1 +

∫ t

0

U(t− s)f(s) ds

is a solution with h ≡ 1. Let f 1 = f and for n ≥ 2 let

fn(t) =

∫ t

0

fn−1(s)f(t− s) ds
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be the distribution of Tn. Let

u(s) =
∞∑

n=1

fn(s) = U ′(s)

Theorem 3.14. If h is bounded then the function

H(t) = h(t) +

∫ t

0

h(t− s)u(s) ds

is the unique solution of the renewal equation that is bounded on
bounded intervals.

Proof. Replacing t by t − s in (3.21) and changing variables in the
integral we have

H(t− s) = h(t− s) +

∫ t−s

0

H(r)f(t− s− r) dr.

Using this in (3.21) gives

H(t) = h(t)+

∫ t

0

h(t−s)f(s) ds+

∫ t

0

∫ t−s

0

H(r)f(t−s−r) drf(s) ds

Interchanging the order of integration in the double integral∫ t

0

drH(r)

∫ t−r

0

dsf(t− s− r)f(s) =

∫ t

0

drH(r)f 2(t− r)

Changing variables in the last integral we have

H(t) = h(t) +

∫ t

0

h(t− s)f(s) ds+

∫ t

0

H(t− s)f 2(s) ds

Repeating the last calculation leads to

H(t) = h(t) +
n∑

i=1

∫ t

0

h(t− s)fm(s) ds+

∫ t

0

H(t− s)fn+1(s) ds

If |H(s)| ≤ K(t) for s ≤ t then the last term is ≤ K(t)P (Tn+1 ≤ t)
as n→∞ and we conclude that H(t) must have the indicated form.
Since our solution has |H(t)| ≤ K(t)U(t) for s ≤ t, it is bounded on
bounded intervals.
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The next result gives the asymptotic behavior of the solutions.

Theorem 3.15. Suppose h(t) ≥ 0 is nonincreasing and has
∫∞

0
h(s) ds <

∞ then

H(t)→ 1

µ

∫ ∞

0

h(s) ds

Sketch of proof. If h(t) = 1[0,h] this follows from Blackwell’s renewal
theorem, 3.13. The result can now be proved by approximating h
above and below by functions that are constant on [mh, (m + 1)h)
and then letting h→ 0.

Residual life. In Example 3.18, h(t) = 1 − F (t + x) satisfies the
assumptions of Theorem 3.15 so

P (Z(t) > x)→ 1

µ

∫ ∞

0

1− F (t+ x) dt =
1

µ

∫ ∞

x

1− F (s) ds (3.22)

Age. In Example 3.19, h(t) = (1 − F (t))1[0,x](t) satisfies the as-
sumptions of Theorem 3.15 so

P (Z(t) > x)→ 1

µ

∫ x

0

1− F (t) dt (3.23)

Rate of convergence. (3.20) can be rewritten as

t

µ
= G(t) +

∫ t

0

t− s
µ

f(s) ds

Subtracting this from (3.18) shows that H(t) = U(t)− t/µ satisfies
the renewal equation (3.21) with

h(t) = 1−G(t) = (1/µ)

∫ ∞

t

1− F (s) ds.

This function is ≥ 0 and nonincreasing.∫ ∞

0

h(t) dt =
1

µ

∫ ∞

0

∫ ∞

t

1− F (s) ds dt

Interchanging the order of integration in the double integral we have∫ ∞

0

ds (1− F (s))

∫ s

0

dt =

∫ ∞

0

s(1− F (s)) ds = Et21/2

by (A.23). Thus if Et2i <∞

U(t)− t

µ
→ Et2i

2µ2
(3.24)
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3.5 Exercises

3.1. The weather in a certain locale consists of alternating wet and
dry spells. Suppose that the number of days in each rainy spell is
a Poisson distribution with mean 2, and that a dry spell follows
a geometric distribution with mean 7. Assume that the successive
durations of rainy and dry spells are independent. What is the
long-run fraction of time that it rains?

3.2. Monica works on a temporary basis. The mean length of each
job she gets is 11 months. If the amount of time she spends between
jobs is exponential with mean 3 months, then in the long run what
fraction of the time does she spend working?

3.3. Thousands of people are going to a Grateful dead concert in
Pauley Pavillion at UCLA. They park their 10 foot cars on several
of the long streets near the arena. There are no lines to tell the
drivers where to park, so they park at random locations, and end up
leaving spacings between the cars that are independent and uniform
on (0, 10). In the long run, what fraction of the street is covered
with cars?

3.4. The times between the arrivals of customers at a taxi stand
are independent and have a distribution F with mean µF . Assume
an unlimited supply of cabs, such as might occur at an airport.
Suppose that each customer pays a random fare with distribution G
and mean µG. Let W (t) be the total fares paid up to time t. Find
limt→∞EW (t)/t.

3.5. A policeman cruises (on average) approximately 10 minutes
before stopping a car for speeding. 90% of the cars stopped are
given speeding tickets with an $80 fine. It takes the policeman an
average of 5 minutes to write such a ticket. The other 10% of the
stops are for more serious offenses, leading to an average fine of
$300. These more serious charges take an average of 30 minutes to
process. In the long run, at what rate does he assign fines.

3.6. A group of n children continuously, and independently, climb
up and then sled down a slope. Assume that each child’s actions
follow an alternating renewal process: climbing up for an amount
of time with distribution F and mean µF , and then sliding down
for an amount of time with distribution G and mean µG. Let
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U(t) be the number of children climbing the hill at time t. Find
limt→∞ P (U(t) = k).

3.7. Counter processes. As in Example 1.5, we suppose that arrivals
at a counter come at times of a Poisson process with rate λ. An
arriving particle that finds the counter free gets registered and then
locks the counter for an amount of time τ . Particles that arrive while
the counter is locked have no effect. (a) Find the limiting probability
the counter is locked at time t. (b) Compute the limiting fraction
of particles that get registered.

3.8. A cocaine dealer is standing on a street corner. Customers
arrive at times of a Poisson process with rate λ. The customer and
the dealer then disappear from the street for an amount of time
with distribution G while the transaction is completed. Customers
that arrive during this time go away never to return. (a) At what
rate does the dealer make sales? (b) What fraction of customers are
lost?

3.9. A worker has a number of machines to repair. Each time a
repair is completed a new one is begun. Each repair independently
takes an exponential amount of time with rate µ to complete. How-
ever, independent of this, mistakes occur according to a Poisson
process with rate λ. Whenever a mistake occurs, the item is ruined
and work is started on a new item. In the long run how often are
jobs completed?

3.10. Three children take turns shooting a ball at a basket. The
first shoots until she misses, then the second shoots until she misses,
the third shoots until she misses, then the process starts again with
the first child. Suppose that child i makes a basket with proba-
bility pi and that successive trials are independent. Determine the
proportion of time in the long run that each child shoots.

3.11. Solve the previous problem when p1 = 2/3, p2 = 3/4, p3 =
4/5.

3.12. Bruno works for an amount of time that is uniformly dis-
tributed on [6, 10] hours then he relaxes for an exponentially dis-
tributed number of hours; with mean 4. (a) Bruno never sleeps.
Ignoring mundane details like night and day, what is the long-run
fraction of time he spends working? (b) Suppose that when Bruno
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first begins relaxing he drinks a beer and then drinks one beer each
hour after that. That, is if his relaxation period is from 12:13 to
3:27 he drinks 4 beers, one each at 12:13, 1:13, 2:13, and 3:13. Find
the probability he drinks n beers in one relaxation period and the
long-run average number of beers he drinks each 24 hours.

3.13. A young doctor is working at night in an emergency room.
Emergencies come in at times of a Poisson process with rate 0.5
per hour. The doctor can only get to sleep when it has been 36
minutes (.6 hours) since the last emergency. For example, if there
is an emergency at 1:00 and a second one at 1:17 then she will not
be able to get to sleep until at least 1:53, and it will be even later if
there is another emergency before that time.
(a) Compute the long-run fraction of time she spends sleeping, by
formulating a renewal reward process in which the reward in the ith
interval is the amount of time she gets to sleep in that interval.
(b) The doctor alternates between sleeping for an amount of time si

and being awake for an amount of time ui. Use the result from (a)
to compute Eui.

3.14. A scientist has a machine for measuring ozone in the atmo-
sphere that is located in the mountains just north of Los Angeles.
At times of a Poisson process with rate 1, storms or animals disturb
the equipment so that it can no longer collect data. The scientist
comes every L units of time to check the equipment. If the equip-
ment has been disturbed then she can usually fix it quickly so we
will assume the the repairs take 0 time. (a) What is the limiting
fraction of time the machine is working? (b) Suppose that the data
that is being collected is worth a dollars per unit time, while each
inspection costs c < a. Find the best value of the inspection time
L.

3.15. The city of Ithaca, New York, allows for two-hour parking in
all downtown spaces. Methodical parking officials patrol the down-
town area, passing the same point every two hours. When an official
encounters a car, he marks it with chalk. If the car is still there two
hours later, a ticket is written. Suppose that you park your car
for a random amount of time that is uniformly distributed on (0, 4)
hours. What is the probability you will get a ticket.

3.16. Each time the frozen yogurt machine at the mall breaks down,
it is replaced by a new one of the same type. In the long run what
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percentage of time is the machine in use less than one year old if the
the lifetime distribution of a machine is: (a) uniformly distributed
on (0,2)? (b) exponentially distributed with mean 1?

3.17. While visiting Haifa, Sid Resnick discovered that people who
wish to travel quickly from the port area up the mountain to The
Carmel frequently take a taxi known as a sherut. The system op-
erates as follows: Sherut-eem are lined up in a row at a taxi stand.
The capacity of each car is 5 people. Potential customers arrive
according to a Poisson process with rate λ. As soon as 5 people are
in the car, it departs in a cloud of diesel emissions. The next car
moves up, accepts passengers until it is full, then departs for The
Carmel, and so on. A local resident (who has no need of a ride)
wanders onto the scene. What is the distribution of the time he has
to wait to see a cab depart?

3.18. In front of terminal C at the Chicago airport is an area where
hotel shuttle vans park. Customers arrive at times of a Poisson pro-
cess with rate 10 per hour looking for transportation to the Hilton
hotel nearby. When 7 people are in the van it leaves for the 36-
minute round trip to the hotel. Customers who arrive while the
van is gone go to some other hotel instead. (a) What fraction of
the customers actually go to the Hilton? (b) What is the average
amount of time that a person who actually goes to the Hilton ends
up waiting in the van?

3.19. Let A(t) and Z(t) be, respectively, the age and the residual
life at time t in a renewal process in which the interarrival times
have distribution F . Compute P (Z(t) > x|A(t) = s).

3.20. Let A(t) and Z(t) be, respectively, the age and the residual
life at time t in a renewal process in which the interarrival times
have distribution F . Use the methods of Section 5.2 to compute the
limiting behavior of the joint distribution P (A(t) > x,Z(t) > y).

3.21. Let t1, t2, . . . be independent and identically distributed with
Eti = µ and var (ti) = σ2. Use (A.23) with p = 2 to compute the
mean of the limiting distribution for the residual lifetime given in
(3.16).



Chapter 4

Markov Chains in
Continuous Time

4.1 Definitions and Examples

In Chapter 1 we considered Markov chains Xn with a discrete time
index n = 0, 1, 2, . . . In this chapter we will extend the notion to a
continuous time parameter t ≥ 0, a setting that is more convenient
for some applications. In discrete time we formulated the Markov
property as: for any possible values of j, i, in−1, . . . i0

P (Xn+1 = j|Xn = i,Xn−1 = in−1, . . . , X0 = i0) = P (Xn+1 = j|Xn = i)

In continuous time, it is technically difficult to define the conditional
probability given all of the Xr for r ≤ s, so we instead say that Xt,
t ≥ 0 is a Markov chain if for any 0 ≤ s0 < s1 · · · < sn < s and
possible states i0, . . . , in, i, j we have

P (Xt+s = j|Xs = i,Xsn = in, . . . , Xs0 = i0) = P (Xt = j|X0 = i)

In words, given the present state, the rest of the past is irrelevant
for predicting the future. Note that built into the definition is the
fact that the probability of going from i at time s to j at time s+ t
only depends on t the difference in the times.

Our first step is to construct a large collection of examples. In
Example 4.6 we will see that this is almost the general case.

Example 4.1. Let N(t), t ≥ 0 be a Poisson process with rate λ and
let Yn be a discrete time Markov chain with transition probability

171
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u(i, j). Then Xt = YN(t) is a continuous-time Markov chain. In
words, Xt takes one jump according to u(i, j) at each arrival of
N(t).

Why is this true? Intuitively, this follows from the lack of memory
property of the exponential distribution. If Xs = i, then indepen-
dent of what has happened in the past, the time to the next jump
will be exponentially distributed with rate λ and will go to state j
with probability u(i, j).

Discrete time Markov chains were described by giving their tran-
sition probabilities p(i, j) = the probability of jumping from i to j
in one step. In continuous time there is no first time t > 0 so we
introduce for each t > 0 a transition probability

pt(i, j) = P (Xt = j|X0 = i)

To compute this for Example 4.1, we note that N(t) has a Poisson
number of jumps with mean λt, so

pt(i, j) =
∞∑

n=0

e−λt (λt)
n

n!
un(i, j)

where un(i, j) is the nth power of the transition probability u(i, j).
In continuous time, as in discrete time, the transition probability

satisfies

Theorem 4.1. Chapman–Kolmogorov equation.∑
k

ps(i, k)pt(k, j) = ps+t(i, j)

Why is this true? In order for the chain to go from i to j in time
s+ t, it must be in some state k at time s, and the Markov property
implies that the two parts of the journey are independent.

Proof. Breaking things down according to the state at time s, we
have

P (Xs+t = j|X0 = i) =
∑

k

P (Xs+t = j,Xs = k|X0 = i)
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Using the definition of conditional probability and the Markov prop-
erty, the above is

=
∑

k

P (Xs+t = j|Xs = k,X0 = i)P (Xs = k|X0 = i) =
∑

k

pt(k, j)ps(i, k)

(4.1) shows that if we know the transition probability for t < t0
for any t0 > 0, we know it for all t. This observation and a large
leap of faith (which we will justify later) suggests that the transition
probabilities pt can be determined from their derivatives at 0:

q(i, j) = lim
h→0

ph(i, j)

h
for j 6= i (4.1)

If this limit exists (and it will in all the cases we consider) we will
call q(i, j) the jump rate from i to j. To explain this name we will
compute the:

Jump rates for Example 4.1. The probability of at least two jumps
by time h is 1 minus the probability of 0 or 1 jumps

1−
(
e−λh + λhe−λh

)
= 1− (1 + λh)

(
1− λh+

(λh)2

2!
+ . . .

)
= (λh)2/2! + . . . = o(h)

That is, when we divide it by h it tends to 0 as h → 0. The
probability of going from i to j in zero steps, u0(i, j) = 0, when
j 6= i, so

ph(i, j)

h
≈ λe−λhu(i, j)→ λu(i, j)

as h → 0. Comparing the last equation with the definition of the
jump rate in (4.1) we see that q(i, j) = λu(i, j). In words we leave
i at rate λ and go to j with probability u(i, j).

Example 4.1 is atypical. There we started with the Markov chain
and then computed its rates. In most cases it is much simpler to
describe the system by writing down its transition rates q(i, j) for
i 6= j, which describe the rates at which jumps are made from i to
j. The simplest possible example is:

Example 4.2. Poisson process. Let X(t) be the number of ar-
rivals up to time t in a Poisson process with rate λ. Since arrivals
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occur at rate λ in the Poisson process the number of arrivals, X(t),
increases from n to n+ 1 at rate λ, or in symbols

q(n, n+ 1) = λ for all n ≥ 0

This simplest example is a building block for other examples:

Example 4.3. M/M/s queue. Imagine a bank with s tellers
that serve customers who queue in a single line if all of the servers
are busy. We imagine that customers arrive at times of a Poisson
process with rate λ, and that each service time is an independent
exponential with rate µ. As in Example 4.2, q(n, n + 1) = λ. To
model the departures we let

q(n, n− 1) =

{
nµ 0 ≤ n ≤ s

sµ n ≥ s

To explain this, we note that when there are n ≤ s individuals in
the system then they are all being served and departures occur at
rate nµ. When n > s, all s servers are busy and departures occur
at sµ.

This model is in turn a stepping stone to another, more realistic
one:

Example 4.4. M/M/s queue with balking. Again customers
arrive at the bank in Example 4.3 at rate λ, but this time they only
join the queue with probability an if there are n customers in line.
Since customers flip coins to determine if they join the queue, this
thins the Poisson arrival rate so that

q(n, n+ 1) = λan for n ≥ 0

Of course, the service rates q(n, n − 1) remain as they were previ-
ously.

Having seen several examples, it is natural to ask:

Given the rates, how do you construct the chain?

Let λi =
∑

j 6=i q(i, j) be the rate at which Xt leaves i. If λi =∞, it
will want to leave immediately, so we will always suppose that each
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state i has λi <∞. If λi = 0, then Xt will never leave i. So suppose
λi > 0 and let

r(i, j) = q(i, j)/λi

Here r, short for “routing matrix,” is the probability the chain goes
to j when it leaves i.

Informal construction. If Xt is in a state i with λi = 0 then Xt stays
there forever and the construction is done. If λi > 0, Xt stays at i
for an exponentially distributed amount of time with rate λi, then
goes to state j with probability r(i, j).

Formal construction. Suppose, for simplicity, that λi > 0 for all
i. Let Yn be a Markov chain with transition probability r(i, j). The
discrete-time chain Yn, gives the road map that the continuous-time
process will follow. To determine how long the process should stay
in each state let τ0, τ1, τ2, . . . be independent exponentials with rate
1.

At time 0 the process is in state X0 and should stay there for an
amount of time that is exponential with rate λ(X0), so we let the
time the process stays in state X0 be t1 = τ0/λ(X0).

At time T1 = t1 the process jumps to X1, where it should stay
for an exponential amount of time with rate λ(X1), so we let the
time the process stays in state X1 be t2 = τ1/λ(X1).

At time T2 = t0 + t2 the process jumps to X2, where it should
stay for an exponential amount of time with rate λ(X2), so we let
the time the process stays in state X2 be t3 = τ2/λ(X2).

Continuing in the obvious way, we can let the amount of time
the process stays in Xn−1 be tn = τn−1/λ(Xn−1), so that the process
jumps to Xn at time

Tn = t1 + · · ·+ tn

In symbols, if we let T0 = 0, then for n ≥ 0 we have

X(t) = Yn for Tn ≤ t < Tn+1 (4.2)

Computer simulation. Before we turn to the dark side of the con-
struction above, the reader should observe that it gives rise to a
recipe for simulating a Markov chain. Generate independent stan-
dard exponentials τi, say, by looking at τi = − lnUi where Ui are
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uniform on (0, 1). Using another sequence of random numbers, gen-
erate the transitions of Xn, then define ti, Tn, and Xt as above.

The good news about the formal construction above is that if
Tn →∞ as n→∞, then we have succeeded in defining the process
for all time and we are done. This will be the case in almost all the
examples we consider. The bad news is that limn→∞ Tn < ∞ can
happen.

Example 4.5. An exploding Markov chain. Think of a ball
that is dropped and returns to half of its previous height on each
bounce. Summing 1/2n we conclude that all of its infinitely many
bounces will be completed in a finite amount of time. To turn this
idea into an example of a badly behaved Markov chain on the state
space S = {1, 2, . . .}, suppose q(i, i + 1) = 2i for i ≥ 1 with all
the other q(i, j) = 0. The chain stays at i for an exponentially
distributed amount of time with mean 2−i before it goes to i + 1.
Let Tj be the first time the chain reaches j. By the formula for the
rates

∞∑
i=1

E1(Ti+1 − Ti) =
∞∑
i=1

2−i = 1

This implies T∞ = limn→∞ Tn has E1T∞ = 1 and hence P1(T∞ <
∞) = 1.

In most models, it is senseless to have the process make an infi-
nite amount of jumps in a finite amount of time so we introduce a
“cemetery state” ∆ to the state space and complete the definition
by letting T∞ = limn→∞ Tn and setting

X(t) = ∆ for all t ≥ T∞

The simplest way to rule out explosions (i.e., Px(T∞ < ∞) > 0)
is to consider

Example 4.6. Markov chains with bounded rates. When the
maximum transition rate

Λ = max
i
λi <∞

we can use a trick to reduce the process to one with constant tran-
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sition rates λi ≡ Λ. Let

u(i, j) = q(i, j)/Λ for j 6= i

u(i, i) = 1−
∑
j 6=i

q(i, j)/Λ

In words, while the chain is at any state i, it attempts to make
transitions at rate Λ. On each attempt it jumps from i to j with
probability u(i, j) and stays put with the remaining probability 1−∑

j 6=i u(i, j). Since the jump rate is independent of the state, the
jump times are a Poisson process and Tn →∞.

Here, we have come full circle by writing a general Markov chain
with bounded flip rates in the form given in Example 1.1. This
observation is often useful in simulation. Since the holding times
in each state are exponentially distributed with the same rate Λ,
then, as we will see in Section 4, if we are interested in the long-run
fraction of time the continuous time chain spends in each state, we
can ignore the holding times and simulate the discrete time chain
with transition probability u.

There are many interesting examples with unbounded rates. Per-
haps the simplest and best known is

Example 4.7. The Yule process. In this simple model of the
growth of a population (of bacteria for example), there are no deaths
and each particle splits into birth at rate β, so q(i, i + 1) = βi and
the other q(i, j) are 0. If we start with one individual, then the jump
to n+ 1 is made at time Tn = t1 + · · ·+ tn, where tn is exponential
with rate βn. Etn = 1/βi, so

ETn = (1/β)
n∑

m=1

1/m ∼ (log n)/β

as n → ∞. This is by itself not enough to establish that Tn → ∞,
but it is not hard to fill in the missing details.

Proof. var (Tn) =
∑n

m=1 1/m2β2 ≤ C =
∑∞

m=1 1/m2β2. Cheby-
shev’s inequality implies

P (Tn ≤ ETn/2) ≤ 4C/(ETn)2 → 0

as n→∞. Since n→ Tn is increasing, it follows that Tn →∞.
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The next example shows that linear growth of the transition rates
is at the borderline of explosive behavior.

Example 4.8. Pure birth processes with power law rates.
Suppose q(i, i + 1) = ip and all the other q(i, j) = 0. In this case
the jump to n + 1 is made at time Tn = t1 + · · · + tn, where tn is
exponential with rate np. Etn = 1/np, so if p > 1

ETn =
n∑

m=1

1/mp

stays bounded as n → ∞. This implies ET∞ =
∑∞

m=1 1/mp, so
T∞ <∞ with probability one.



4.2. COMPUTING THE TRANSITION PROBABILITY 179

4.2 Computing the Transition Probability

In the last section we saw that given jump rates q(i, j) we can con-
struct a Markov chain that has these jump rates. This chain, of
course, has a transition probability

pt(i, j) = P (Xt = j|X0 = i)

Our next question is: How do you compute the transition probability
pt from the jump rates q?

Our road to the answer starts by using the Chapman–Kolmogorov
equations, Theorem 4.1, and then taking the k = i term out of the
sum.

pt+h(i, j)− pt(i, j) =

(∑
k

ph(i, k)pt(k, j)

)
− pt(i, j)

=

(∑
k 6=i

ph(i, k)pt(k, j)

)
+ [ph(i, i)− 1] pt(i, j)

(4.3)

Our goal is to divide each side by h and let h→ 0 to compute

p′t(i, j) = lim
h→0

pt+h(i, j)− pt(i, j)

h

By the definition of the jump rates

q(i, j) = lim
h→0

ph(i, j)

h
for i 6= j

so ignoring the detail of interchanging the limit and the sum, we
have

lim
h→0

1

h

∑
k 6=i

ph(i, k)pt(k, j) =
∑
k 6=i

q(i, k)pt(k, j) (4.4)

For the other term we note that 1− ph(i, i) =
∑

k 6=i ph(i, k), so

lim
h→0

ph(i, i)− 1

h
= − lim

h→0

∑
k 6=i

ph(i, k)

h
= −

∑
k 6=i

q(i, k) = −λi

and we have

lim
h→0

ph(i, i)− 1

h
pt(i, j) = −λipt(i, j) (4.5)
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Combining (4.4) and (4.5) with (4.3) and the definition of the deriva-
tive we have

p′t(i, j) =
∑
k 6=i

q(i, k)pt(k, j)− λipt(i, j) (4.6)

To neaten up the last expression we introduce a new matrix

Q(i, j) =

{
q(i, j) if j 6= i

−λi if j = i

For future computations note that the off-diagonal elements q(i, j)
with i 6= j are nonnegative, while the diagonal entry is a negative
number chosen to make the row sum equal to 0.

Using matrix notation we can write (4.6) simply as

p′t = Qpt (4.7)

This is Kolmogorov’s backward equation. If Q were a number
instead of a matrix, the last equation would be easy to solve. We
would set pt = eQt and check by differentiating that the equation
held. Inspired by this observation, we define the matrix

eQt =
∞∑

n=0

(Qt)n

n!
=

∞∑
n=0

Qn · t
n

n!
(4.8)

and check by differentiating that

d

dt
eQt =

∞∑
n=1

Qn tn−1

(n− 1)!
=

∞∑
n=1

Q · Q
n−1tn−1

(n− 1)!
= QeQt

Fine print. Here we have interchanged the operations of summation
and differentiation, a step that is not valid in general. However, one
can show for all of the examples we will consider this is valid, so
we will take the physicists’ approach and ignore this detail in our
calculations.

Kolmogorov’s forward equation. This time we split t+ h up in
a different way when we use the Chapman–Kolmogorov equations:

pt+h(i, j)− pt(i, j) =

(∑
k

pt(i, k)ph(k, j)

)
− pt(i, j)

=

(∑
k 6=j

pt(i, k)ph(k, j)

)
+ [ph(j, j)− 1] pt(i, j)
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Computing as before we arrive at

p′t(i, j) =
∑
k 6=j

pt(i, k)q(k, j)− pt(i, j)λj (4.9)

Introducing matrix notation again, we can write

p′t = ptQ (4.10)

Comparing (4.10) with (4.7) we see that ptQ = Qpt and that
the two forms of Kolmogorov’s differential equations correspond to
writing the rate matrix on the left or the right. While we are on
the subject of the choices, we should remember that in general for
matrices AB 6= BA, so it is somewhat remarkable that ptQ = Qpt.
The key to the fact that these matrices commute is that pt = eQt is
made up of powers of Q:

Q · eQt =
∞∑

n=0

Q · (Qt)
n

n!
=

∞∑
n=0

(Qt)n

n!
·Q = eQt ·Q

To illustrate the use of Kolmogorov’s equations we will now con-
sider some examples. The simplest possible is

Example 4.9. Poisson process. Let X(t) be the number of ar-
rivals up to time t in a Poisson process with rate λ. In order to go
from i arrivals at time s to j arrivals at time t + s we must have
j ≥ i and have exactly j − i arrivals in t units of time, so

pt(i, j) = e−λt (λt)j−i

(j − i)!
(4.11)

To check the differential equation we have to first figure out what it
is. Using the more explicit form of the backwards equation, (4.6),
and plugging in our rates, we have

p′t(i, j) = λpt(i+ 1, j)− λpt(i, j)

To check this we have to differentiate the formula in (4.11).

When j > i we have that the derivative of (4.11) is

−λe−λt (λt)j−i

(j − i)!
+ e−λt (λt)j−i−1

(j − i− 1)!
λ = −λpt(i, j) + λpt(i+ 1, j)
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When j = i, pt(i, i) = e−λt, so the derivative is

−λe−λt = −λpt(i, i) = −λpt(i, i) + λpt(i+ 1, i)

since pt(i+ 1, i) = 0.

There are not many examples in which one can write down so-
lutions of the Kolmogorov’s differential equation. A remarkable ex-
ception is:

Example 4.10. Yule process. In this model each particle splits
into two at rate β, so q(i, i+ 1) = βi. To find the transition proba-
bility of the Yule process we will guess and verify that

pt(1, j) = e−βt(1− e−βt)j−1 for j ≥ 1 (4.12)

i.e., a geometric distribution with success probability e−βt.
To check this we will use the forward equation (4.9) to conclude

p′t(1, j) = −βjpt(1, j) + β(j − 1)pt(1, j − 1) (4.13)

The use of the forward equation here is dictated by the fact that
we are only writing down formulas for pt(1, j). To check (4.13) we
differentiate the formula proposed in (4.12) to see that if j > 1

p′t(1, j) =− βe−βt(1− e−βt)j−1

+ e−βt(j − 1)(1− e−βt)j−2(βe−βt)

Recopying the first term on the right and using βe−βt = −(1 −
e−βt)β + β in the second, we can rewrite the right-hand side of the
above as

−βe−βt(1− e−βt)j−1 − e−βt(j − 1)(1− e−βt)j−1β

+ e−βt(1− e−βt)j−2(j − 1)β

Adding the first two terms then comparing with (4.13) shows that
the above is

= −βjpt(1, j) + β(j − 1)pt(1, j − 1)

Having worked to find pt(1, j), it is fortunately easy to find
pt(i, j). The chain starting with i individuals is the sum of i copies
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of the chain starting from 1 individual. Using this one can easily
compute that

pt(i, j) =

(
j − 1

i− 1

)
(e−βt)i(1− e−βt)j−i (4.14)

In words, the sum of i geometrics has a negative binomial distribu-
tion.

Proof. To begin we note that if N1, . . . Ni have the distribution given
in (4.12) and n1 + · · ·+ ni = j, then

P (N1 = n1, . . . , Ni = ni) =
i∏

k=1

e−βt(1−e−βt)nk−1 = (e−βt)i(1−e−βt)j−i

To count the number of possible (n1, . . . , ni) with nk ≥ 1 and sum
j, we think of putting j balls in a row. To divide the j balls into
i groups of size n1, . . . , ni, we will insert cards in the slots between
the balls and let nk be the number of balls in the kth group. Having
made this transformation it is clear that the number of (n1, . . . , ni)
is the number of ways of picking i−1 of the j−1 slot to put the cards
or
(

j−1
i−1

)
. Multiplying this times the probability for each (n1, . . . , ni)

gives the result.

It is usually not possible to explicitly solve Kolmogorov’s equa-
tions to find the transition probability. To illustrate the difficulties
involved we will now consider:

Example 4.11. Two-state chains. For concreteness, we can sup-
pose that the state space is {1, 2}. In this case, there are only two
flip rates q(1, 2) = λ and q(2, 1) = µ, so when we fill in the diagonal
with minus the sum of the flip rates on that row we get

Q =

(
−λ λ
µ −µ

)
Writing out the backward equation in matrix form, (2.3), now we
have (

p′t(1, 1) p′t(1, 2)
p′t(2, 1) p′t(2, 2)

)
=

(
−λ λ
µ −µ

)(
pt(1, 1) pt(1, 2)
pt(2, 1) pt(2, 2)

)
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Doing the first column of matrix multiplication on the right, we have

p′t(1, 1) = −λpt(1, 1) + λpt(2, 1) = −λ(pt(1, 1)− pt(2, 1))

p′t(2, 1) = µpt(1, 1)− µpt(2, 1) = µ(pt(1, 1)− pt(2, 1)) (4.15)

Taking the difference of the two equations gives

[pt(1, 1)− pt(2, 1)]′ = −(λ+ µ)[pt(1, 1)− pt(2, 1)]

Since p0(1, 1) = 1 and p0(2, 1) = 0 we have

pt(1, 1)− pt(2, 1) = e−(λ+µ)t

Using this in (4.15) and integrating

pt(1, 1) = p0(1, 1) +
λ

µ+ λ
e−(µ+λ)s

∣∣∣∣t
0

=
µ

λ+ µ
+

λ

µ+ λ
e−(µ+λ)t

pt(2, 1) = p0(2, 1) +
λ

µ+ λ
e−(µ+λ)s

∣∣∣∣t
0

=
µ

µ+ λ
− µ

µ+ λ
e−(µ+λ)t

As a check on the constants note that p0(1, 1) = 1 and p0(2, 1) = 0.
To prepare for the developments in the next section note that the

probability of being in state 1 converges exponentially fast to the
equilibrium value µ/(µ+ λ).
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4.3 Limiting Behavior

The study of the limiting behavior of continuous time Markov chains
is simpler than the theory for discrete time chains, since the random-
ness of the exponential holding times implies that we don’t have to
worry about aperiodicity. We will first state the main convergence
result that is a combination of the discrete-time convergence theo-
rem, (4.5), and strong law, (4.8), from Chapter 1 and then explain
the terms it uses.

Theorem 4.2. If a continuous-time Markov chain Xt is irreducible
and has a stationary distribution π, then

lim
t→∞

pt(i, j) = π(j)

Furthermore if r(j) is the reward we earn in state i and
∑

j π(j) |r(j)| <
∞, then as t→∞

1

t

∫ t

0

r(Xs) ds→
∑

y

π(y)r(y)

Here by Xt is irreducible, we mean that for any two states x and
y it is possible to get from x to y in a finite number of jumps. To be
precise, there is a sequence of states x0 = x, x1, . . . xn = y so that
q(xm−1, xm) > 0 for 1 ≤ m ≤ n.

In discrete time a stationary distribution is a solution of πp = π.
Since there is no first t > 0, in continuous time we need the stronger
notion: π is said to be a stationary distribution if πpt = π for all
t > 0. The last condition is difficult to check since it involves all of
the pt, and as we have seen in the previous section, the pt are not
easy to compute. The next result solves these problems by giving a
test for stationarity in terms of the basic data used to describe the
chain, the matrix of transition rates

Q(i, j) =

{
q(i, j) j 6= i

−λi j = i

where λi =
∑

j 6=i q(i, j) is the total rate of transitions out of i.

Theorem 4.3. π is a stationary distribution if and only if πQ = 0.



186 CHAPTER 4. MARKOV CHAINS IN CONTINUOUS TIME

Why is this true? Filling in the definition of Q and rearranging, the
condition πQ = 0 becomes∑

k 6=j

π(k)q(k, j) = π(j)λj

If we think of π(k) as the amount of sand at k, the right-hand
side represents the rate at which sand leaves j, while the left gives
the rate at which sand arrives at j. Thus, π will be a stationary
distribution if for each j the flow of sand in to j is equal to the flow
out of j.

More details. If πpt = π then

0 =
d

dt
πpt =

∑
i

π(i)p′t(i, j) =
∑

i

π(i)
∑

k

pt(i, k)Q(k, j)

=
∑

k

∑
i

π(i)pt(i, k)Q(k, j) =
∑

k

π(k)Q(k, j)

Conversely if πQ = 0

d

dt

(∑
i

π(i)pt(i, j)

)
=
∑

i

π(i)p′t(i, j) =
∑

i

π(i)
∑

k

Q(i, k)pt(k, j)

=
∑

k

∑
i

π(i)Q(i, k)pt(k, j) = 0

Since the derivative is 0, πpt is constant and must always be equal
to π its value at 0.

We will now consider some examples. The simplest one was al-
ready covered in the last section.

Example 4.12. Two state chains. Suppose that the state space
is {1, 2}, q(1, 2) = λ, and q(2, 1) = µ, where both rates are positive.
The equations πQ = 0 can be written as(

π1 π2

) (−λ λ
µ −µ

)
=
(
0 0

)
The first equation says −λπ1 + µπ2 = 0. Taking into account that
we must have π1 + π2 = 1, it follows that

π1 =
µ

λ+ µ
and π2 =

λ

λ+ µ
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Example 4.13. L.A. weather chain. There are three states: 1 =
sunny, 2 = smoggy, 3 = rainy. The weather stays sunny for an ex-
ponentially distributed number of days with mean 3, then becomes
smoggy. It stays smoggy for an exponentially distributed number
of days with mean 4, then rain comes. The rain lasts for an ex-
ponentially distributed number of days with mean 1, then sunshine
returns. Remembering that for an exponential the rate is 1 over the
mean, the verbal description translates into the following Q-matrix

1 2 3
1 −1/3 1/3 0
2 0 −1/4 1/4
3 1 0 −1

The relation πQ = 0 leads to three equations:

−1
3
π1 +π3 = 0

1
3
π1 −1

4
π2 = 0

1
4
π2 −π3 = 0

Adding the three equations gives 0=0 so we delete the third equation
and add π1 + π2 + π3 = 1 to get an equation that can be written in
matrix form as

(
π1 π2 π3

)
A =

(
0 0 1

)
where A =

−1/3 1/3 1
0 −1/4 1
1 0 1


This is similar to our recipe in discrete time. To find the stationary
distribution of a k state chain, form A by taking the first k − 1
columns of Q, add a column of 1’s and then(

π1 π2 π3

)
=
(
0 0 1

)
A−1

i.e., the last row of A−1. In this case we have

π(1) = 3/8, π(2) = 4/8, π(3) = 1/8

To check our answer, note that the weather cycles between sunny,
smoggy, and rainy spending independent exponentially distributed
amounts of time with means 3, 4, and 1, so the limiting fraction of
time spent in each state is just the mean time spent in that state
over the mean cycle time, 8.



188 CHAPTER 4. MARKOV CHAINS IN CONTINUOUS TIME

Detailed balance condition. Generalizing from discrete time
we can formulate this condition as:

π(k)q(k, j) = π(j)q(j, k) for all j 6= k (4.16)

The reason for interest in this concept is

Theorem 4.4. If (4.16) holds, then π is a stationary distribution.

Why is this true? The detailed balance condition implies that the
flows of sand between each pair of sites are balanced, which then
implies that the net amount of sand flowing into each vertex is 0,
i.e., πQ = 0.

Proof. Summing 4.16 over all k 6= j and recalling the definition of
λj gives ∑

k 6=j

π(k)q(k, j) = π(j)
∑
k 6=j

q(j, k) = π(j)λj

Rearranging we have

(πQ)j =
∑
k 6=j

π(k)q(k, j)− π(j)λj = 0

As in discrete time, (4.16) is much easier to check but does not
always hold. In Example 4.13

π(2)q(2, 1) = 0 < π(1)q(1, 2)

As in discrete time, detailed balance holds for

Example 4.14. Birth and death chains. Suppose that S =
{0, 1, . . . , N} with

q(n, n+ 1) = λn for 0 ≤ n < N

q(n, n− 1) = µn for 0 < n ≤ N

Here λn represents the birth rate when there are n individuals in
the system, and µn denotes the death rate in that case.

If we suppose that all the λn and µn listed above are positive
then the birth and death chain is irreducible, and we can divide to
write the detailed balance condition as

π(n) =
λn−1

µn

π(n− 1) (4.17)
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Using this again we have π(n − 1) = (λn−2/µn−1)π(n − 2) and it
follows that

π(n) =
λn−1

µn

· λn−2

µn−1

· π(n− 2)

Repeating the last reasoning leads to

π(n) =
λn−1 · λn−2 · · ·λ0

µn · µn−1 · · ·µ1

π(0) (4.18)

To check this formula and help remember it, note that (i) there are
n terms in the numerator and in the denominator, and (ii) if the
state space was {0, 1, . . . , n}, then µ0 = 0 and λn = 0, so these
terms cannot appear in the formula.

To illustrate the use of (4.18) we consider two concrete examples.

Example 4.15. Barbershop. A barber can cut hair at rate 3,
where the units are people per hour, i.e., each haircut requires an
exponentially distributed amount of time with mean 20 minutes.
Suppose customers arrive at times of a rate 2 Poisson process, but
will leave if both chairs in the waiting room are full. (a) What
fraction of time will both chairs be full? (b) In the long run, how
many customers does the barber serve per hour?

Solution. We define our state to be the number of customers in the
system, so S = {0, 1, 2, 3}. From the problem description it is clear
that

q(i, i− 1) = 3 for i = 1, 2, 3

q(i, i+ 1) = 2 for i = 0, 1, 2

The detailed balance conditions say

2π(0) = 3π(1), 2π(1) = 3π(2), 2π(2) = 3π(3)

Setting π(0) = c and solving, we have

π(1) =
2c

3
, π(2) =

2

3
· π(1) =

4c

9
, π(3) =

2

3
· π(2) =

8c

27

The sum of the π’s is (27 + 18 + 12 + 8)c/27 = 65c/27, so c = 27/65
and

π(0) = 27/65, π(1) = 18/65, π(2) = 12/65, π(3) = 8/65
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From this we see that 8/65’s of the time both chairs are full, so
that fraction of the arrivals are lost and hence 57/65’s or 87.7% of
the customers enter service. Since the original arrival rate is 2, this
means he serves an average of 114/65 = 1.754 customers per hour.

Example 4.16. Machine repair model. A factory has three ma-
chines in use and one repairman. Suppose each machine works for an
exponential amount of time with mean 60 days between breakdowns,
but each breakdown requires an exponential repair time with mean
4 days. What is the long-run fraction of time all three machines are
working?

Solution. Let Xt be the number of working machines. Since there is
one repairman we have q(i, i+ 1) = 1/4 for i = 0, 1, 2. On the other
hand, the failure rate is proportional to the number of machines
working, so q(i, i − 1) = i/60 for i = 1, 2, 3. Setting π(0) = c and
plugging into the recursion (4.17) gives

π(1) =
λ0

µ1

· π(0) =
1/4

1/60
· c = 15c

π(2) =
λ1

µ2

· π(1) =
1/4

2/60
· 15c =

225c

2

π(3) =
λ2

µ3

· π(2) =
1/4

3/60
· 225c

2
=

1225c

2

Adding up the π’s gives (1225 + 225 + 30 + 2)c/2 = 1480c/2 so
c = 2/1480 and we have

π(3) =
1225

1480
π(2) =

225

1480
π(1) =

30

1480
π(0) =

2

1480

Thus in the long run all three machines are working 1225/1480 =
0.8277 of the time.

For our final example of the use of detailed balance we consider

Example 4.17. M/M/s queue with balking. A bank has s
tellers that serve customers who need an exponential amount of
service with rate µ nd queue in a single line if all of the servers are
busy. Customers arrive at times of a Poisson process with rate λ
but only join the queue with probability an if there are n customers
in line. As noted in Example 1.?, the birth rate λn = λan for n ≥ 0,
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while the death rate is

µn =

{
nµ 0 ≤ n ≤ s

sµ n ≥ s

for n ≥ 1. It is reasonable to assume that if the line is long the
probability the customer will join the queue is small. The next
result shows that this is always enough to prevent the queue length
from growing out of control.

Theorem 4.5. If an → 0 as n → ∞, then there is a stationary
distribution.

Proof. It follows from (4.17) that if n ≥ s, then

π(n+ 1) =
λn

µn+1

· π(n) = an ·
λ

sµ
· π(n)

If N is large enough and n ≥ N , then anλ/(sµ) ≤ 1/2 and it follows
that

π(n+ 1) ≤ 1

2
π(n) . . . ≤

(
1

2

)n−N

π(N)

This implies that
∑

n π(n) < ∞, so we can pick π(0) to make the
sum = 1.

Concrete example. Suppose s = 1 and an = 1/(n+ 1). In this case

λn−1 · · ·λ0

µn · · ·µ1

=
λn

µn
· 1

1 · 2 · · ·n
=

(λ/µ)n

n!

To find the stationary distribution we want to take π(0) = c so that

c

∞∑
n=0

(λ/µ)n

n!
= 1

Recalling the formula for the Poisson distribution with mean λ/µ,
we see that c = e−λ/µ and the stationary distribution is Poisson.



192 CHAPTER 4. MARKOV CHAINS IN CONTINUOUS TIME

4.4 Markovian Queues

In this section we will take a systematic look at the basic models of
queueing theory that have Poisson arrivals and exponential service
times. The arguments concerning Wendy’s in Section 3.2 explain
why we can be happy assuming that the arrival process is Poisson.
However, the assumption of exponential services times is hard to
justify. Here, it is a necessary evil. The lack of memory property of
the exponential is needed for the queue length to be a continuous
Markov chain. We begin with the simplest example:

Example 4.18. M/M/1 queue. In this system customers arrive
to a single server facility at the times of a Poisson process with rate
λ, and each requires an independent amount of service that has an
exponential distribution with rate µ. From the description it should
be clear that the transition rates are

q(n, n+ 1) = λ if n ≥ 0

q(n, n− 1) = µ if n ≥ 1

so we have a birth and death chain with birth rates λn = λ and
death rates µn = µ. Plugging into our formula for the stationary
distribution, (4.18), we have

π(n) =
λn−1 · · ·λ0

µn · · ·µ1

· π(0) =

(
λ

µ

)n

π(0) (4.19)

To find the value of π(0), we recall that for |θ| < 1,
∑∞

n=0 θ
n =

1/(1− θ). From this we see that if λ < µ, then

∞∑
n=0

π(n) =
∞∑

n=0

(
λ

µ

)n

π(0) =
π(0)

1− (λ/µ)

So to have the sum 1, we pick π(0) = 1 − (λ/µ), and the resulting
stationary distribution is the shifted geometric distribution

π(n) =

(
1− λ

µ

)(
λ

µ

)n

for n ≥ 0 (4.20)

Having determined the stationary distribution we can now com-
pute various quantities of interest concerning the queue. We might
be interested, for example, in the distribution of the waiting time
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W of a customer who arrives to find the queue in equilibrium. To
do this we begin by noting that the only way to wait 0 is for the
number of people waiting in the queue Q to be 0 so

P (W = 0) = P (Q = 0) = 1− λ

µ

When there is at least one person in the system, the arriving cus-
tomer will spend a positive amount of time in the queue. Writing
fW (x) for the density function of W on (0,∞), we note that if there
are n people in the system when the customer arrives, then the
amount of time he needs to enter service has a gamma(n, µ) density,
so using (1.11) in Chapter 3

fW (x) =
∞∑

n=1

(
1− λ

µ

)(
λ

µ

)n

e−µx µnxn−1

(n− 1)!

Changing variables m = n− 1 and rearranging, the above becomes

=

(
1− λ

µ

)
e−µxλ

∞∑
m=0

λmxm

m!
=
λ

µ
(µ− λ)e−(µ−λ)x

Recalling that P (W > 0) = λ/µ, we can see that the last result
says that the conditional distribution of W given that W > 0 is
exponential with rate µ− λ.

Example 4.19. M/M/1 queue with a finite waiting room. In
this system customers arrive at the times of a Poisson process with
rate λ. Customers enter service if there are < N individuals in the
system, but when there are ≥ N customers in the system, the new
arrival leaves never to return. Once in the system, each customer
requires an independent amount of service that has an exponential
distribution with rate µ.

Taking the state to be the number of customers in the system,
the state space is now S = {0, 1, . . . N}. The birth and death rates
are changed a little

q(n, n+ 1) = λ if 0 ≤ n < N

q(n, n− 1) = µ if 0 < n ≤ N

but our formula for the stationary distribution, (4.18), still gives

π(n) =
λn−1 · · ·λ0

µn · · ·µ1

· π(0) =

(
λ

µ

)n

π(0) for 1 ≤ n ≤ N
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The first thing that changes in the analysis is the normalizing
constant. To isolate the arithmetic from the rest of the problem we
recall that if θ 6= 1, then

N∑
n=0

θn =
1− θN+1

1− θ
(4.21)

Suppose now that λ 6= µ. Using (4.21), we see that if

c =
1− λ/µ

1− (λ/µ)N+1

then the sum is 1, so the stationary distribution is given by

π(n) =
1− λ/µ

1− (λ/µ)N+1

(
λ

µ

)n

for 0 ≤ n ≤ N (4.22)

The new formula is similar to the old one in (4.20) and when
λ < µ reduces to it as N → ∞. Of course, when the waiting room
is finite, the state space is finite and we always have a stationary
distribution, even when λ > µ. The analysis above has been re-
stricted to λ 6= µ. However, it is easy to see that when λ = µ the
stationary distribution is π(n) = 1/(N + 1) for 0 ≤ n ≤ N .

To check formula (4.22), we note that the barbershop chain, Ex-
ample 3.3, has this form with N = 3, λ = 2, and µ = 3, so plugging
into (4.22) and multiplying numerator and denominator by 34 = 81,
we have

π(0) =
1− 2/3

1− (2/3)4
=

81− 54

81− 16
= 27/65

π(1) =
2

3
π(0) = 18/65

π(2) =
2

3
π(1) = 12/65

π(3) =
2

3
π(2) = 8/65

From a single server with a finite waiting room we move now to
s servers with an unlimited waiting room, a system described more
fully in Example 4.3.

Example 4.20. M/M/s queue. Imagine a bank with s ≥ 1 tellers
that serve customers who queue in a single line if all servers are busy.
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We imagine that customers arrive at the times of a Poisson process
with rate λ, and each requires an independent amount of service
that has an exponential distribution with rate µ. As explained in
Example 1.3, the flip rates are q(n, n+ 1) = λ and

q(n, n− 1) =

{
µn if n ≤ s

µs if n ≥ s

The conditions that result from using the detailed balance condition
are

λπ(0) = µπ(1) λπ(1) = 2µπ(2) . . . λπ(s−1) = sµπ(s) (4.23)

Then for k ≥ 0 we have

π(s+ k − 1)λ = sµπ(s+ k) or π(s+ k) =
λ

sµ
π(s+ k − 1)

Iterating the last equation, we have that for k ≥ 0

π(s+ k) =

(
λ

sµ

)2

π(s+ k − 2) . . . =

(
λ

sµ

)k+1

π(s− 1) (4.24)

From the last formula we see that if λ < sµ then
∑∞

k=0 π(s+k) <∞
so
∑∞

j=0 π(j) < ∞ and it is possible to pick π(0) to make the sum
equal to 1. From this it follows that

If λ < sµ, then the M/M/s queue has as stationary distribution.

The condition λ < sµ for the existence of a stationary distribu-
tion is natural since it says that the service rate of the fully loaded
system is larger than the arrival rate, so the queue will not grow out
of control. Conversely,

If λ > sµ, the M/M/s queue is transient.

Why is this true? The conclusion comes from combining two
ideas:

(i) An M/M/s queue with s rate µ servers is less efficient than an
M/M/1 queue with 1 rate sµ server, since the single server queue
always has departures at rate sµ, while the s server queue sometimes
has departures at rate nµ with n < s.

(ii) An M/M/1 queue is transient if its arrival rate is larger than its
service rate.
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Formulas for the stationary distribution π(n) for the M/M/s
queue are unpleasant to write down for a general number of servers
s, but it is not hard to use (4.23) and (4.24) to find the stationary
distribution in concrete cases:

Example 4.21. M/M/3 queue. When s = 3, λ = 2 and µ = 1,
the first two equations in (4.23) say

2π(0) = π(1) 2π(1) = 2π(2) (4.25)

while (4.24) tells us that for k ≥ 0

π(3 + k) =

(
2

3

)k+1

π(2)

Summing the last result from k = 0 to∞, adding π(2), and changing
variables j = k + 1, we have

∞∑
m=2

π(m) = π(2)
∞∑

j=0

(2/3)j =
π(2)

1− 2
3

= 3π(2)

by the formula for the sum of the geometric series. Setting π(2) = c
and using (4.25), we see that

π(1) = c π(0) =
1

2
π(1) = c/2

Taking the contributions in order of increasing j, the sum of all the
π(j) is (0.5+1+3)π(2). From this we conclude that π(2) = 2/9, so

π(0) = 1/9, π(1) = 2/9, π(k) = (2/9)(2/3)k−2 for k ≥ 2

Our next result is a remarkable property of the M/M/s queue.

Theorem 4.6. If λ < µs, then the output process of the M/M/s
queue in equilibrium is a rate λ Poisson process.

Your first reaction to this should be that it is crazy. Customers
depart at rate 0, µ, 2µ, . . ., sµ, depending on the number of servers
that are busy and it is usually the case that none of these numbers
= λ. To further emphasize the surprising nature of Theorem 4.6,
suppose for concreteness that there is one server, λ = 1, and µ = 10.
If, in this situation, we have just seen 30 departures in the last 2
hours, then it seems reasonable to guess that the server is busy
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and the next departure will be exponential(10). However, if the
output process is Poisson, then the number of departures in disjoint
intervals are independent.

Proof for s = 1. Our first step in making the result in Theorem 4.6
seem reasonable is to check by hand that if there is one server and
the queue is in equilibrium, then the time of the first departure, D,
has an exponential distribution with rate λ. There are two cases to
consider.

Case 1. If there are n ≥ 1 customers in the queue, then the time to
the next departure has an exponential distribution with rate µ, i.e.,

fD(t) = µe−µt

Case 2. If there are n = 0 customers in the queue, then we have
to wait an exponential(λ) amount of time until the first arrival, and
then an independent exponential(µ) for that customer to depart.
If we let T1 and T2 be the waiting times for the arrival and for
the departure, then breaking things down according to the value of
T1 = s, the density of D = T1 + T2 in this case is

fD(t) =

∫ t

0

λe−λs · µe−µ(t−s) ds = λµe−µt

∫ t

0

e−(λ−µ)s ds

=
λµe−µt

λ− µ
(
1− e−(λ−µ)t

)
=

λµ

λ− µ
(
e−µt − e−λt

)
The probability of 0 customers in equilibrium is 1 − (λ/µ) by

(4.20). This implies the probability of ≥ 1 customer is λ/µ, so
combining the two cases:

fD(t) =
µ− λ
µ
· λµ

λ− µ
(
e−µt − e−λt

)
+
λ

µ
· µe−µt

At this point cancellations occur to produce the answer we claimed:

−λ
(
e−µt − e−λt

)
+ λe−µt = λe−λt

We leave it to the adventurous reader to try to repeat the last cal-
culation for the M/M/s queue with s > 1 where there is not a neat
formula for the stationary distribution.

Proof of Theorem 4.6. By repeating the proof of (1.13) one can
show
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Lemma 4.1. Fix t and let Ys = Xt−s for 0 ≤ s ≤ t. Then Ys is a
Markov chain with transition probability

p̂t(i, j) =
π(j)pt(j, i)

π(i)

If π satisfies the detailed balance condition π(i)q(i, j) = π(j)q(j, i),
then the reversed chain has transition probability p̂t(i, j) = pt(i, j).

As we learned in Example 4.20, when λ < µs theM/M/s queue is
a birth and death chain with a stationary distribution π that satisfies
the detailed balance condition. Lemma 4.1 implies that if we take
the movie of the Markov chain in equilibrium then we see something
that has the same distribution as the M/M/s queue. Reversing time
turns arrivals into departures, so the departures must be a Poisson
process with rate λ.

It should be clear from the proof just given that we also have:

Theorem 4.7. Consider a queue in which arrivals occur according
to a Poisson process with rate λ and customers are served at rate
µn when there are n in the system. Then as along as there is a
stationary distribution the output process will be a rate λ Poisson
process.

A second refinement that will be useful in the next section is

Theorem 4.8. Let N(t) be the number of departures between time 0
and time n for the M/M/1 queue X(t) started from its equilibrium
distribution. Then {N(s) : 0 ≤ s ≤ t} and X(t) are independent.

Why is this true? At first it may sound deranged to claim that
the output process up to time t is independent of the queue length.
However, if we reverse time, then the departures before time t turn
into arrivals after t, and these are obviously independent of the
queue length at time t, X(t).
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4.5 Queueing Networks

In many situations we are confronted with more than one queue.
For example, in California when you go to the Department of Motor
Vehicles to renew your driver’s license you must (i) take a test on
the driving laws, (ii) have your test graded, (iii) pay your fees, and
(iv) get your picture taken. A simple model of this type of situation
with only two steps is:

Example 4.22. Two-station tandem queue. In this system
customers at times of a Poisson process with rate λ arrive at ser-
vice facility 1 where they each require an independent exponential
amount of service with rate µ1. When they complete service at the
first site, they join a second queue to wait for an exponential amount
of service with rate µ2.

-
λ

- -µ1 µ2

Our main problem is to find conditions that guarantee that the
queue stabilizes, i.e., has a stationary distribution. This is simple in
the tandem queue. The first queue is not affected by the second, so
if λ < µ1, then (4.20) tells us that the equilibrium probability of the
number of customers in the first queue, X1

t , is given by the shifted
geometric distribution

P (X1
t = m) =

(
λ

µ1

)m(
1− λ

µ1

)
In the previous section we learned that the output process of

an M/M/1 queue in equilibrium is a rate λ Poisson process. This
means that if the first queue is in equilibrium, then the number of
customers in the queue, X2

t , is itself an M/M/1 queue with arrivals
at rate λ (the output rate for 1) and service rate µ2. Using the results
in (4.20) again, the number of individuals in the second queue has
stationary distribution

P (X2
t = n) =

(
λ

µ2

)n(
1− λ

µ2

)
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To specify the stationary distribution of the system, we need to
know the joint distribution of X1

t and X2
t . The answer is somewhat

remarkable: in equilibrium the two queue lengths are independent.

P (X1
t = m,X2

t = n) =

(
λ

µ1

)m(
1− λ

µ1

)
·
(
λ

µ2

)n(
1− λ

µ2

)
(4.26)

Why is this true? Theorem 4.8 implies that the queue length and
the departure process are independent.

Since there is more than a little hand-waving going on in the
proof of Theorem 4.8 and its application here, it is comforting to
note that one can simply verify from the definitions that

Lemma 4.2. If π(m,n) = cλm+n/(µm
1 µ

n
2 ), where c = (1−λ/µ1)(1−

λ/µ2) is a constant chosen to make the probabilities sum to 1, then
π is a stationary distribution.

Proof. The first step in checking πQ = 0 is to compute the rate
matrix Q. To do this it is useful to draw a picture which assumes
m,n > 0

(m− 1, n+ 1) (m, n+ 1)

(m− 1, n) (m, n) (m+ 1, n)

(m, n− 1) (m+ 1, n− 1)

-λ -λ
?

µ2

?

µ2

@
@

@
@

@I
µ1

@
@
@

@
@I

µ1

@
@
@
@
@

(a)

(b)

(c)

The rate arrows plus the ordinary lines on the picture, make three
triangles. We will now check that the flows out of and into (m,n)
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in each triangle balance. In symbols we note that

(a) µ1π(m,n) =
cλm+n

µm−1
1 µn

2

= λπ(m− 1, n)

(b) µ2π(m,n) =
cλm+n

µm
1 µ

n−1
2

= µ1π(m+ 1, n− 1)

(c) λπ(m,n) =
cλm+n+1

µm
1 µ

n
2

= µ2π(m,n+ 1)

This shows that πQ = 0 when m,n > 0. There are three other
cases to consider: (i) m = 0, n > 0, (ii) m > 0, n = 0, and (iii)
m = 0, n = 0. In these cases some of the rates are missing. (i) those
in (a), (ii) those in (b), and (iii) those in (a) and (b). However, since
the rates in each group balance we have πQ = 0.

Example 4.23. General two-station queue. Suppose that at
station i: arrivals from outside the system occur at rate λi, ser-
vice occurs at rate µi, and departures go to the other queue with
probability pi and leave the system with probability 1− pi.

? ?

? ?

λ1 λ2

1− p1 1− p2

-
�

p1

p2

µ1 µ2

Our question is: When is the system stable? That is, when is there
a stationary distribution? To get started on this question suppose
that both servers are busy. In this case work arrives at station 1 at
rate λ1 + p2µ2, and work arrives at station 2 at rate λ2 + p1µ1. It
should be intuitively clear that:

(i) if λ1 +p2µ2 < µ1 and λ2 +p1µ1 < µ2, then each server can handle
their maximum arrival rate and the system will have a stationary
distribution.



202 CHAPTER 4. MARKOV CHAINS IN CONTINUOUS TIME

(ii) if λ1 + p2µ2 > µ1 and λ2 + p1µ1 > µ2, then there is positive
probability that both servers will stay busy for all time and the
queue lengths will tend to infinity.

Not covered by (i) or (ii) is the situation in which server 1 can handle
her worst case scenario but server 2 cannot cope with his:

λ1 + p2µ2 < µ1 and λ2 + p1µ1 > µ2

In some situations in this case, queue 1 will be empty often enough
to reduce the arrivals at station 2 so that server 2 can cope with his
workload. As we will see, a concrete example of this phenomenon
occurs when

λ1 = 1, µ1 = 4, p1 = 1/2 λ2 = 2, µ2 = 3.5, p2 = 1/4

To check that for these rates server 1 can handle the maximum
arrival rate but server 2 cannot, we note that

λ1 + p2µ2 = 1 +
1

4
· 3.5 = 1.875 < 4 = µ1

λ2 + p1µ1 = 2 +
1

2
· 4 = 4 > 3.5 = µ2

To derive general conditions that will allow us to determine when
a two-station network is stable, let ri be the long-run average rate
that customers arrive at station i. If there is a stationary distri-
bution, then ri must also be the long run average rate at which
customers leave station i or the queue would grow linearly in time.
If we want the flow in and out of each of the stations to balance,
then we need

r1 = λ1 + p2r2 and r2 = λ2 + p1r1 (4.27)

Plugging in the values for this example and solving gives

r1 = 1 +
1

4
r2 and r2 = 2 +

1

2
r1 = 2 +

1

2

(
1 +

1

4
r2

)
So (7/8)r2 = 5/2 or r2 = 20/7, and r1 = 1 + 20/28 = 11/7. Since

r1 = 11/7 < 3 = µ1 and r2 = 20/7 < 3.5

this analysis suggests that there will be a stationary distribution.
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To prove that there is one, we return to the general situation
and suppose that the ri we find from solving (4.27) satisfy ri < µi.
Thinking of two independent M/M/1 queues with arrival rates ri,
we let αi = ri/µi and guess:

Theorem 4.9. If π(m,n) = cαm
1 α

n
2 where c = (1−α1)(1−α2) then

π is a stationary distribution.

Proof. The first step in checking πQ = 0 is to compute the rate
matrix Q. To do this it is useful to draw a picture. Here, we have
assumed that m and n are both positive. To make the picture
slightly less cluttered, we have only labeled half of the arrows and
have used qi = 1− pi.

(m− 1, n+ 1) (m, n+ 1)

(m− 1, n) (m, n) (m+ 1, n)

(m, n− 1) (m+ 1, n− 1)

�
-

�
-

?

6

?

6@
@
@
@
@R@
@

@
@

@I

@
@
@
@
@R@
@

@
@

@I @
@
@
@
@

(a)

(b)

(c)

λ1

µ1q1

µ2p2

λ2

µ1p1

µ2q2

The rate arrows plus the dotted lines in the picture make three
triangles. We will now check that the flows out of and into (m,n)
in each triangle balance. In symbols we need to show that

(a) µ1π(m,n) = µ2p2π(m− 1, n+ 1) + λ1π(m− 1, n)

(b) µ2π(m,n) = µ1p1π(m+ 1, n− 1) + λ2π(m,n− 1)

(c) (λ1 + λ2)π(m,n) = µ2(1− p2)π(m,n+ 1) + µ1(1− p1)π(m+ 1, n)



204 CHAPTER 4. MARKOV CHAINS IN CONTINUOUS TIME

Filling in π(m,n) = cαm
1 α

n
2 and canceling out c, we have

µ1α
m
1 α

n
2 = µ2p2α

m−1
1 αn+1

2 + λ1α
m−1
1 αn

2

µ2α
m
1 α

n
2 = µ1p1α

m+1
1 αn−1

2 + λ2α
m
1 α

n−1
2

(λ1 + λ2)α
m
1 α

n
2 = µ2(1− p2)α

m
1 α

n+1
2 + µ1(1− p1)α

m+1
1 αn

2

Canceling out the highest powers of α1 and α2 common to all terms
in each equation gives

µ1α1 = µ2p2α2 + λ1

µ2α2 = µ1p1α1 + λ2

(λ1 + λ2) = µ2(1− p2)α2 + µ1(1− p1)α1

Filling in µiαi = ri, the three equations become

r1 = p2r2 + λ1

r2 = p1r1 + λ2

(λ1 + λ2) = r2(1− p2) + r1(1− p1)

The first two equations hold by (4.27). The third is the sum of the
first two, so it holds as well.

This shows that πQ = 0 when m,n > 0. As in the proof for the
tandem queue, there are three other cases to consider: (i) m = 0,
n > 0, (ii) m > 0, n = 0, and (iii) m = 0, n = 0. In these cases
some of the rates are missing. However, since the rates in each group
balance we have πQ = 0.

Example 4.24. Network of M/M/1 queues. Assume now that
there are stations 1 ≤ i ≤ K. Arrivals from outside the system
occur to station i at rate λi and service occurs there at rate µi.
Departures go to station j with probability p(i, j) and leave the
system with probability

q(i) = 1−
∑

j

p(i, j) (4.28)

To have a chance of stability we must suppose

(A) For each i it is possible for a customer entering at i to leave
the system. That is, for each i there is a sequence of states i =
j0, j1, . . . jn with p(jm−1, jm) > 0 for 1 ≤ m ≤ n and q(jn) > 0.
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Generalizing (4.27), we investigate stability by solving the system
of equations for the rj that represent the arrival rate at station j. As
remarked earlier, the departure rate from station j must equal the
arrival rate, or a linearly growing queue would develop. Thinking
about the arrival rate at j in two different ways, it follows that

rj = λj +
K∑

i=1

rip(i, j) (4.29)

This equation can be rewritten in matrix form as r = λ + rp. In
this form we can guess the solution

r =
∞∑

n=0

λpn =
∞∑

n=0

K∑
i=1

λip
n(i, j) (4.30)

where pn denotes the nth power of the matrix, and check that it
works

r = λ+
∞∑

m=0

λpm · p = λ+ rp

The last calculation is informal but it can be shown that under as-
sumption (A) the series defining r converges and our manipulations
are justified. Putting aside these somewhat tedious details, it is
easy to see that the answer in (4.30) is reasonable: pn(i, j) is the
probability a customer entering at i is at j after he has completed
n services. The sum then adds the rates for all the ways of arriving
at j.

Having found the arrival rates at each station, we can again be
brave and guess that if rj < µj, then the stationary distribution is
given by

π(n1, . . . , nK) =
K∏

j=1

(
rj

µj

)nj
(

1− rj

µj

)
(4.31)

To prove this we will consider a more general collection of exam-
ples:

Example 4.25. Migration processes. As in the previous exam-
ple, there are stations 1 ≤ i ≤ K and arrivals from outside the
network occur to station i at rate λi. However, now when station i
has n occupants, individuals depart at rate φi(n) where φi(n) ≥ 0
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and φi(0) = 0. Finally, a customer leaving i goes to station j with
probability p(i, j) independent of past events. Our main motivation
for considering this more general set-up is that by taking 1 ≤ si ≤ ∞
and letting

φi(n) = µi min{n, si}
we can suppose that the ith station is an M/M/si queue.

To find the stationary distribution for the migration process we
first solve (4.29) to find the arrival and departure rates, ri, for station
i in equilibrium. Having done this we can let ψi(n) =

∏n
m=1 φi(m)

and introduce our second assumption:

(B) For 1 ≤ j ≤ K, we have
∑∞

n=0 r
n
j /ψj(n) <∞

This condition guarantees that there is a constant cj > 0 so that

∞∑
n=0

cjr
n
j /ψj(n) = 1

The next result says that πj(n) = cjr
n
j /ψj(n) gives the equilibrium

probability that queue j has n individuals and that in equilibrium
the queue lengths are independent.

Theorem 4.10. Suppose that conditions (A) and (B) hold. Then
the migration process has stationary distribution

π(n1, . . . , nK) =
K∏

j=1

cj r
nj

j

ψj(nj)

To make the connection with the results for Example 4.24, note that
if all the queues are single server, then ψj(n) = µn

j , so (B) reduces
to rj < µj and when this holds the queue lengths are independent
shifted geometrics.

Proof. Write n as shorthand for (n1, n2, . . . nK). Let Aj (for arrival)
be the operator that adds one customer to queue j, let Dj (for
departure) be the operator that removes one from queue j, and let
Tjk be the operator that transfers one customer from j to k. That
is,

(Ajn)j = nj + 1 with (Ajn)i = nj otherwise

(Djn)j = nj − 1 with (Djn)i = nj otherwise

(Tjkn)j = nj − 1, (Tjkn)k = nk = nk + 1, and (Tj,kn)i = nj otherwise
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Note that if nj = 0 thenDjn and Tjkn have−1 in the jth coordinate,
so in this case q(n,Djn) and q(n, Tjkn) = 0.

In equilibrium the rate at which probability mass leaves n is the
same as the rate at which it enters n. Taking into account the
various ways the chain can leave or enter state n it follows that
the condition for a stationary distribution πQ = 0 is equivalent to
πiλi =

∑
j 6=i πjq(j, i) which in this case is

π(n)

(
K∑

k=1

q(n,Akn) +
K∑

j=1

q(n,Djn) +
K∑

j=1

K∑
k=1

q(n, Tjkn)

)

=
K∑

k=1

π(Akn)q(Akn, n)

+
K∑

j=1

π(Djn)q(Djn, n) +
K∑

j=1

K∑
k=1

π(Tjkn)q(Tjkn, n)

This will obviously be satisfied if we have

π(n)
K∑

k=1

q(n,Akn) =
K∑

k=1

π(Akn)q(Akn, n) (4.32)

and for each j we have

π(n)

(
q(n,Djn) +

K∑
k=1

q(n, Tjkn)

)

= π(Djn)q(Djn, n) +
K∑

k=1

π(Tjkn)q(Tjkn, n) (4.33)

Taking the second equation first, if nj = 0, then both sides are
0, since Djn and Tjkn are not in the state space. Supposing that
nj > 0 and filling in the values of our rates (4.33) becomes

π(n)φj(nj)

(
q(j) +

K∑
k=1

p(j, k)

)

= π(Djn)λj +
K∑

k=1

π(Tjkn)φk(nk + 1)p(k, j) (4.34)
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The definition of q implies q(j) +
∑K

k=1 p(j, k) = 1, so filling in the
proposed formula for π(n) the left-hand side of (4.33) is

π(n)φj(nj) =
K∏

i=1

ci r
ni
i

ψi(ni)
· φj(nj) =

K∏
i=1

ci r
n̂i
i

ψj(n̂i)
· rj = π(n̂) · rj

where n̂ = Djn has n̂j = nj − 1 and n̂i = ni for i 6= j. To compute
the right-hand side of (4.33) we note that (Tjkn)i = n̂i for i 6= k and
(Tjkn)k = n̂k + 1 = nk + 1 so

π(Tjkn) = π(n̂) · rk

φk(nk + 1)

Since Djn = n̂, we can rewrite the right-hand side of (4.33) as

= π(n̂)λj + π(n̂)
K∑

k=1

rkp(k, j) = π(n̂) · rj

where the last equality follows from (4.27): λj +
∑

k rkp(k, j) = rj.
At this point we have verified (4.33). Filling our rates into (4.32)

and noting that π(Akn) = π(n)rk/φk(nk + 1) we want to show

π(n)
K∑

k=1

λk = π(n)
K∑

k=1

rk

φk(nk + 1)
· φk(nk + 1)q(k) (4.35)

To derive this, we note that summing (4.27) from j = 1 to K and
interchanging the order of summation in the double sum on the right
gives

K∑
j=1

rj =
K∑

j=1

λj +
K∑

k=1

rk

K∑
j=1

p(k, j)

=
K∑

j=1

λj +
K∑

k=1

rk −
K∑

k=1

rkq(i)

since
∑K

j=1 p(i, j) = 1− q(i). Rearranging now gives

K∑
k=1

rkq(k) =
K∑

j=1

λj

This establishes (4.35), which implies (4.32), and completes the
proof.
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4.6 Closed Queueing Networks

At first, the notion of N customers destined to move forever between
K servers may sound like a queueing hell that might be the subject
of a “Far Side” cartoon. However, as the next two examples show,
this concept is useful for applications.

Example 4.26. Manufacturing system. The production of a
part at a factory requires two operations. The first operation is
always done at machine 1. The second is done at machine 2 or ma-
chine 3 with probabilities p and 1 − p after which the part leaves
the system. Suppose that the factory has only a limited number of
palettes, each of which holds one part. When a part leaves the sys-
tem, the palette on which it rides is immediately used to bring a new
part to queue at machine 1. If we ignore the parts, then the palettes
are a closed queueing system. By computing the stationary distri-
bution for this system we can compute the rate at which palettes
leave machines 2 and 3, and hence compute the rate at which parts
are made.

Example 4.27. Machine repair. For a concrete example consider
trucks that can need engine repairs or tire repairs. To construct a
closed queueing network model of this situation, we introduce three
queues: 1 = the trucks that are working, 2 = those in engine repair,
and 3 = those in tire repair. To simulate the breakdown mechanism,
we will use an M/M/∞ queue in which service times are exponential
with rate λ if all trucks are always in use or an M/M/s1 queue if
there are never more than s1 trucks in use. At repair station i we will
suppose that there are si mechanics and hence an M/M/si queue.

To begin to discuss these examples we need to introduce some
notation and assumptions. Let p(i, j) be the probability of going to
station j after completing service at station i. We will suppose that

(A) p is irreducible and has finitely many states

so that there is a unique stationary distribution πi > 0 for the rout-
ing matrix p(i, j). If we let ri denote the rate at which customers
arrive at i in equilibrium then since there are no arrivals from out-
side, (4.29) becomes

rj =
K∑

i=1

ri p(i, j) (4.36)
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If we divide rj by R =
∑

j rj, the result is a stationary distribution
for p. However, the stationary distribution for p is unique so we must
have rj = Rπj. Note that the rj are departure (or arrival) rates,
so their sum, R, is not the number of customers in the system, but
instead represents the average rate at which services are completed
in the system. This can be viewed as a measure of the system’s
throughput rate. In Example 4.26, each part exits from exactly two
queues, so R/2 is the rate at which new parts are made.

To find the stationary distribution for the queueing system we
take a clue from Section 4.6 and guess that it will have a product
form. This is somewhat of a crazy guess since there are a fixed
total number of customers, and hence the queue lengths cannot
possibly be independent. However, we will see that it works. As in
the previous section we will again consider something more general
than our queueing system.

Example 4.28. Closed migration processes are defined by three
rules.

(a) No customers enter or leave the system.

(b) When there are ni customers at station i departures occur at
rate φi(ni) where φi(0) = 0.

(c) An individual leaving i goes to j with probability p(i, j).

Theorem 4.11. Suppose (A) holds. The equilibrium distribution
for the closed migration process with N individuals is

π(n1, . . . , nK) = cN

K∏
i=1

πni
i

ψi(ni)

if n1 + · · · + nK = N and 0 otherwise. Here ψi(n) =
∏n

m=1 φi(m)
with ψi(0) = 1 and cN is the constant needed to make the sum equal
to 1.

Note. Here we used πj instead of rj = Rπj. Since
∑K

j=1 nj = N , we
have

K∏
i=1

rni
i

ψi(ni)
= RN

K∏
i=1

πni
i

ψi(ni)

so this change only affects the value of the norming constant.
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Proof. Write n as shorthand for (n1, n2, . . . nK) and let Tjk be the
operator that transfers one customer from j to k. That is, Tjkn = n̄,
where n̄j = nj−1, n̄k = nk+1, and n̄i = ni otherwise. The condition
for a stationary distribution πQ = 0 is equivalent to

π(n)
K∑

j=1

K∑
k=1

q(n, Tjkn) =
K∑

j=1

K∑
k=1

π(Tjkn)q(Tjkn, n) (4.37)

This will obviously be satisfied if for each j we have

π(n)
K∑

k=1

q(n, Tjkn) =
K∑

k=1

π(Tjkn)q(Tjkn, n)

Filling in the values of our rates we want to show that

π(n)φj(nj)
K∑

k=1

p(j, k) =
K∑

k=1

π(Tjkn)φk(nk + 1)p(k, j) (4.38)

If nj = 0, then both sides are 0, since φj(0) = 0 and Tjkn is not in

the state space. Thus we can suppose that nj > 0.
∑K

k=1 p(j, k) = 1,
so filling in the proposed value of π(n), the left-hand side of (4.38)
is

π(n)φj(nj) = cN

K∏
i=1

πni
i

ψi(ni)
· φi(ni) = π(n̂) · πj (4.39)

where n̂j = nj − 1 and n̂i = ni otherwise. To compute the right-
hand side of (4.38) we note that (Tjkn)i = n̂i for i 6= k and (Tjkn)k =
n̂k + 1 = nk + 1, so from the formula in Theorem 4.11,

π(Tjkn) = π(n̂) · πk

φk(nk + 1)

Using this we can rewrite:

K∑
k=1

π(Tjkn)φk(nk + 1)p(k, j) = π(n̂)
K∑

k=1

πkp(k, j) (4.40)

Since
∑

k πkp(k, j) = πj, the expressions in (4.39) and (4.40) are
equal. This verifies (4.38) and we have proved the result.
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To see what Theorem 4.11 says, we will now reconsider our two
previous examples.

Manufacturing system. Consider the special case of Example
4.26 in which the service rates are µ1 = 1/8, µ2 = 1/9, µ3 = 1/12
(per minute), and the routing matrix is

p(i, j) =

0 2/3 1/3
1 0 0
1 0 0


To find the stationary distribution we set π1 = c, then compute

π2 = (2/3)c π3 = (1/3)c

The sum of the π’s is 2c, so c = 1/2, and we have

π1 = 1/2 π2 = 1/3 π3 = 1/6

These queues are single servers so

ψi(n) =
n∏

m=1

φi(m) = µn
i

Plugging into the formula in Theorem 4.11, we have

π(n1, n2, n3) = cN

K∏
i=1

(
πi

µi

)ni

= cN 4n1 3n2 2n3

if n1 + n2 + n3 = N and 0 otherwise.
At this point we have to pick cN to make the sum of the proba-

bilities equal to 1. This is not as easy as it sounds. To illustrate the
problems involved consider the simple-sounding case N = 4. Our
task in this case is to enumerate the triples (n1, n2, n3) with ni ≥ 0
and n1 + n2 + n3 = 4, compute 4n13n22n3 and then sum up the
weights to determine the normalizing constant.

4,0,0 256 2,0,2 64 0,4,0 81
3,1,0 192 1,3,0 108 0,3,1 54
3,0,1 128 1,2,1 72 0,2,2 36
2,2,0 144 1,1,2 48 0,1,3 24
2,1,1 96 1,0,3 32 0,0,4 16
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Summing up the weights we get 1351, so multiplying the table above
by c4 = 1/1351 gives the stationary distribution.

One can get a somewhat better idea of the nature of the station-
ary distribution by looking at the distribution of the lengths of the
individual queues. To compute the answers note for example that
the probability of 3 customers in the second queue is sum of the
probabilities for 1,3,0 and 0,3,1 or (108 + 54)/1351.

4 3 2 1 0
queue 1 0.189 0.237 0.225 0.192 0.156
queue 2 0.060 0.120 0.187 0.266 0.367
queue 3 0.012 0.041 0.110 0.259 0.578

Note that the second and third queues are quite often empty while
queue 1 holds most of the palettes.

For N = 10 this gets to be considerably more complicated. To
count the number of possible states, we observe that the number of
(n1, n2, n3) with integers ni ≥ 0 is the number of ways of arranging
10 o’s and 2 x’s in a row. To make the correspondence let n1 be the
number of o’s before the first x, let n2 be the number of o’s between
the first and the second x, and n3 the number of o’s after the second
x. For example

o o o o o x o o x o o o

becomes n1 = 5, n2 = 2, and n3 = 3. Having made this transforma-
tion it is clear that the number of possible states is the number of
ways of picking 2 locations to put the x’s or(

12

2

)
=

12 · 11

2
= 66 states

Each of these states has a weight between 210 = 1, 024 and 410 =
1, 048, 576, /1c10 will be quite large.

Example 4.29. Machine repair. Consider the special case of
Example 4.27 in which the breakdown rate is µ1 = 1 trucks per
week, the service rates are µ2 = 2, µ3 = 4, and the routing matrix
is

p(i, j) =

0 1/4 3/4
1 0 0
1 0 0


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That is, 1/4 of the breakdowns are engine repairs, while 3/4 are
tire repairs. To find the stationary distribution, we set π1 = c, then
compute

π2 = (1/4)c π3 = (3/4)c

The sum of the π’s is 2c so c = 1/2.
The first queue is an M/M/∞ queue with service rate 1 per

customer so

ψ1(n) =
n∏

m=1

φi(m) = n!

The second and third queues are single servers with rates 2 and 4,
so

ψ2(n) = 2n ψ3(n) = 4n

Plugging into the formula in (7.2) we have that if n1 + n2 + n3 = N

π(n1, n2, n3) = cN
(1/2)n1

n1!

(1/8)n2

2n2

(3/8)n1

4n3

= c′N ·
N !

n1!
16n1 2n2 3n3

where in the last step we have multiplied the probabilities by N ! 32N

and changed the normalizing constant.
At this point we have to pick c′N to make the sum of the prob-

abilities equal to 1. For simplicity, we take N = 3. Enumerating
the triples (n1, n2, n3) with ni ≥ 0 and n1 + n2 + n3 = 3 and then
computing 16n12n23n3/n1! gives the following result:

3,0,0 4096 1,2,0 384 0,3,0 48
2,1,0 1536 1,1,1 576 0,2,1 72
2,0,1 2304 1,0,2 864 0,1,2 128

0,0,3 162

Summing up the weights we get 10,170, so multiplying the table
above by 1/10, 170 gives the stationary distribution. From this we
see that the number of broken trucks is 0, 1, 2, 3 with probabilities
0.403, 0.378, 0.179, 0.040.
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4.7 Exercises

4.1. A salesman flies around between Atlanta, Boston, and Chicago
as follows. She stays in each city for an exponential amount of time
with mean 1/4 month if the city is A or B, but with mean 1/5
month if the city is C. From A she goes to B or C with probability
1/2 each; from B she goes to A with probability 3/4 and to C with
probability 1/4; from C she always goes back to A. (a) Find the
limiting fraction of time she spends in each city. (b) What is her
average number of trips each year from Boston to Atlanta?

4.2. A small computer store has room to display up to 3 computers
for sale. Customers come at times of a Poisson process with rate 2
per week to buy a computer and will buy one if at least 1 is available.
When the store has only 1 computer left it places an order for 2 more
computers. The order takes an exponentially distributed amount of
time with mean 1 week to arrive. Of course, while the store is
waiting for delivery, sales may reduce the inventory to 1 and then
to 0. (a) Write down the matrix of transition rates Qij and solve
πQ = 0 to find the stationary distribution. (b) At what rate does
the store make sales?

4.3. Consider two machines that are maintained by a single repair-
man. Machine i functions for an exponentially distributed amount
of time with rate λi before it fails. The repair times for each unit are
exponential with rate µi. They are repaired in the order in which
they fail. (a) Formulate a Markov chain model for this situation
with state space {0, 1, 2, 12, 21}. (b) Suppose that λ1 = 1, µ1 = 2,
λ2 = 3, µ2 = 4. Find the stationary distribution.

4.4. Consider the set-up of the previous problem but now suppose
machine 1 is much more important than 2, so the repairman will
always service 1 if it is broken. (a) Formulate a Markov chain model
for the this system with state space {0, 1, 2, 12} where the numbers
indicate the machines that are broken at the time. (b) Suppose that
λ1 = 1, µ1 = 2, λ2 = 3, µ2 = 4. Find the stationary distribution.

4.5. Two people are working in a small office selling shares in a
mutual fund. Each is either on the phone or not. Suppose that
salesman i is on the phone for an exponential amount of time with
rate µi and then off the phone for an exponential amount of time
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with rate λi. (a) Formulate a Markov chain model for this system
with state space {0, 1, 2, 12} where the state indicates who is on the
phone. (b) Find the stationary distribution.

4.6. (a) Consider the special case of the previous problem in which
λ1 = λ2 = 1, and µ1 = µ2 = 3, and find the stationary probabilities.
(b) Suppose they upgrade their telephone system so that a call to
one line that is busy is forwarded to the other phone and lost if that
phone is busy. Find the new stationary probabilities.

4.7. Two people who prepare tax forms are working in a store at a
local mall. Each has a chair next to his desk where customers can sit
and be served. In addition there is one chair where customers can
sit and wait. Customers arrive at rate λ but will go away if there is
already someone sitting in the chair waiting. Suppose that server i
requires an exponential amount of time with rate µi and that when
both servers are free an arriving customer is equally likely to choose
either one. (a) Formulate a Markov chain model for this system
with state space {0, 1, 2, 12, 3} where the first four states indicate
the servers that are busy while the last indicates that there is a
total of three customers in the system: one at each server and one
waiting. (b) Consider the special case in which λ = 2, µ1 = 3 and
µ2 = 3. Find the stationary distribution.

4.8. Two queues in series. Consider a two station queueing network
in which arrivals only occur at the first server and do so at rate 2.
If a customer finds server 1 free he enters the system; otherwise he
goes away. When a customer is done at the first server he moves on
to the second server if it is free and leaves the system if it is not.
Suppose that server 1 serves at rate 4 while server 2 serves at rate
2. Formulate a Markov chain model for this system with state space
{0, 1, 2, 12} where the state indicates the servers who are busy. In
the long run (a) what proportion of customers enter the system?
(b) What proportion of the customers visit server 2?

Detailed balance

4.9. A hemoglobin molecule can carry one oxygen or one carbon
monoxide molecule. Suppose that the two types of gases arrive at
rates 1 and 2 and attach for an exponential amount of time with
rates 3 and 4, respectively. Formulate a Markov chain model with
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state space {+, 0,−} where + denotes an attached oxygen molecule,
− an attached carbon monoxide molecule, and 0 a free hemoglobin
molecule and find the long-run fraction of time the hemoglobin
molecule is in each of its three states.

4.10. A machine is subject to failures of types i = 1, 2, 3 at rates
λi and a failure of type i takes an exponential amount of time with
rate µi to repair. Formulate a Markov chain model with state space
{0, 1, 2, 3} and find its stationary distribution.

4.11. Solve the previous problem in the concrete case λ1 = 1/24,
λ2 = 1/30, λ3 = 1/84, µ1 = 1/3, µ2 = 1/5, and µ3 = 1/7.

4.12. Customers arrive at a full-service one-pump gas station at
rate of 20 cars per hour. However, customers will go to another
station if there are at least two cars in the station, i.e., one being
served and one waiting. Suppose that the service time for customers
is exponential with mean 6 minutes. (a) Formulate a Markov chain
model for the number of cars at the gas station and find its sta-
tionary distribution. (b) On the average how many customers are
served per hour?

4.13. Solve the previous problem for a two-pump self-serve station
under the assumption that customers will go to another station if
there are at least four cars in the station, i.e., two being served and
two waiting.

4.14. Three frogs are playing near a pond. When they are in the sun
they get too hot and jump in the lake at rate 1. When they are in
the lake they get too cold and jump onto the land at rate 2. Let Xt

be the number of frogs in the sun at time t. (a) Find the stationary
distribution for Xt. (b) Check the answer to (a) by noting that the
three frogs are independent two-state Markov chains.

4.15. A computer lab has three laser printers, two that are hooked
to the network and one that is used as a spare. A working printer
will function for an exponential amount of time with mean 20 days.
Upon failure it is immediately sent to the repair facility and replaced
by another machine if there is one in working order. At the repair
facility machines are worked on by a single repairman who needs
an exponentially distributed amount of time with mean 2 days to
fix one printer. In the long run how often are there two working
printers?
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4.16. A computer lab has three laser printers that are hooked to the
network. A working printer will function for an exponential amount
of time with mean 20 days. Upon failure it is immediately sent to the
repair facility. There machines are worked on by two repairman who
can each repair one printer in an exponential amount of time with
mean 2 days. However, it is not possible for two people to work
on one printer at once. (a) Formulate a Markov chain model for
the number of working printers and find the stationary distribution.
(b) How often are both repairmen busy? (c) What is the average
number of machines in use?

4.17. Consider a barbershop with two barbers and two waiting
chairs. Customers arrive at a rate of 5 per hour. Customers ar-
riving to a fully occupied shop leave without being served. Find
the stationary distribution for the number of customers in the shop,
assuming that the service rate for each barber is 2 customers per
hour.

4.18. Consider a barbershop with one barber who can cut hair at
rate 4 and three waiting chairs. Customers arrive at a rate of 5
per hour. (a) Argue that this new set-up will result in fewer lost
customers than the previous scheme. (b) Compute the increase in
the number of customers served per hour.

4.19. There are two tennis courts. Pairs of players arrive at rate 3
per hour and play for an exponentially distributed amount of time
with mean 1 hour. If there are already two pairs of players waiting
new arrivals will leave. Find the stationary distribution for the
number of courts occupied.

4.20. A taxi company has three cabs. Calls come in to the dis-
patcher at times of a Poisson process with rate 2 per hour. Suppose
that each requires an exponential amount of time with mean 20
minutes, and that callers will hang up if they hear there are no cabs
available. (a) What is the probability all three cabs are busy when
a call comes in? (b) In the long run, on the average how many
customers are served per hour?

4.21. There are 15 lily pads and 6 frogs. Each frog at rate 1 gets
the urge to jump and when it does, it moves to one of the 9 vacant
pads chosen at random. Find the stationary distribution for the set
of occupied lily pads.
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4.22. Detailed balance for three state chains. Consider a chain with
state space {1, 2, 3} in which q(i, j) > 0 if i 6= j and suppose that
there is a stationary distribution that satisfies the detailed balance
condition. (a) Let π(1) = c. Use the detailed balance condition
between 1 and 2 to find π(2) and between 2 and 3 to find π(3).
(b) What conditions on the rates must be satisfied for there to be
detailed balance between 1 and 3?

4.23. Kolmogorov cycle condition. Consider an irreducible Markov
chain with state space S. We say that the cycle condition is satisfied
if given a cycle of states x0, x1, . . . , xn = x0 with q(xi−1, xi) > 0 for
1 ≤ i ≤ n, we have

n∏
i=1

q(xi−1, xi) =
n∏

i=1

q(xi, xi−1)

(a) Show that if q has a stationary distribution that satisfies the
detailed balance condition, then the cycle condition holds. (b) To
prove the converse, suppose that the cycle condition holds. Let
a ∈ S and set π(a) = c. For b 6= a in S let x0 = a, x1 . . . xk = b be a
path from a to b with q(xi−1, xi) > 0 for 1 ≤ i ≤ k let

π(b) =
k∏

j=1

q(xi−1, xi)

q(xi, xi−1)

Show that π(b) is well defined, i.e., is independent of the path chosen.
Then conclude that π satisfies the detailed balance condition.

Markovian queues

4.24. Consider a taxi station at an airport where taxis and (groups
of) customers arrive at times of Poisson processes with rates 2 and
3 per minute. Suppose that a taxi will wait no matter how many
other taxis are present. However, if an arriving person does not find
a taxi waiting he leaves to find alternative transportation. (a) Find
the proportion of arriving customers that get taxis. (b) Find the
average number of taxis waiting.

4.25. Queue with impatient customers. Customers arrive at a single
server at rate λ and require an exponential amount of service with
rate µ. Customers waiting in line are impatient and if they are not
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in service they will leave at rate δ independent of their position in
the queue. (a) Show that for any δ > 0 the system has a stationary
distribution. (b) Find the stationary distribution in the very special
case in which δ = µ.

4.26. Customers arrive at the Shortstop convenience store at a rate
of 20 per hour. When two or fewer customers are present in the
checkout line, a single clerk works and the service time is 3 minutes.
However, when there are three or more customers are present, an
assistant comes over to bag up the groceries and reduces the service
time to 2 minutes. Assuming the service times are exponentially
distributed, find the stationary distribution.

4.27. Customers arrive at a carnival ride at rate λ. The ride takes
an exponential amount of time with rate µ, but when it is in use,
the ride is subject to breakdowns at rate α. When a breakdown
occurs all of the people leave since they know that the time to fix a
breakdown is exponentially distributed with rate β. (i) Formulate
a Markov chain model with state space {−1, 0, 1, 2, . . .} where −1
is broken and the states 0, 1, 2, . . . indicate the number of people
waiting or in service. (ii) Show that the chain has a stationary
distribution of the form π(−1) = a, π(n) = bθn for n ≥ 0.

4.28. Customers arrive at a two-server station according to a Pois-
son process with rate λ. Upon arriving they join a single queue to
wait for the next available server. Suppose that the service times
of the two servers are exponential with rates µa and µb and that a
customer who arrives to find the system empty will go to each of the
servers with probability 1/2. Formulate a Markov chain model for
this system with state space {0, a, b, 2, 3, . . .} where the states give
the number of customers in the system, with a or b indicating there
is one customer at a or b respectively. Show that this system is time
reversible. Set π(2) = c and solve to find the limiting probabilities
in terms of c.

4.29. Let Xt be a Markov chain with a stationary distribution π
that satisfies the detailed balance condition. Let Yt be the chain
constrained to stay in a subset A of the state space. That is, jumps
which take the chain out of A are not allowed, but allowed jumps
occur at the original rates. In symbols, q̄(x, y) = q(x, y) if x, y ∈ A
and 0 otherwise. Let C =

∑
y∈A π(y). Show that ν(x) = π(x)/C is

a stationary distribution for Yt.
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4.30. Two barbers share a common waiting room that has N chairs.
Barber i gives service at rate µi and has customers that arrive at
rate λi < µi. Assume that customers always wait for the barber
they came to see even when the other is free, but go away if the
waiting room is full. Let N i

t be the number of customers for barber
i that are waiting or being served. Find the stationary distribution
for (N1

t , N
2
t ).

4.31. Solve the previous problem when λ1 = 1, µ1 = 3, λ2 = 2,
µ2 = 4, and N = 2.

4.32. Consider an M/M/s queue with no waiting room. In words,
requests for a phone line occur at a rate λ. If one of the s lines is
free, the customer takes it and talks for an exponential amount of
time with rate µ. If no lines are free, the customer goes away never
to come back. Find the stationary distribution. You do not have to
evaluate the normalizing constant.

Queueing networks

4.33. Consider a production system consisting of a machine center
followed by an inspection station. Arrivals from outside the system
occur only at the machine center and follow a Poisson process with
rate λ. The machine center and inspection station are each single-
server operations with rates µ1 and µ2. Suppose that each item
independently passes inspection with probability p. When an object
fails inspection it is sent to the machine center for reworking. Find
the conditions on the parameters that are necessary for the system
to have a stationary distribution.

4.34. Consider a three station queueing network in which arrivals
to servers i = 1, 2, 3 occur at rates 3, 2, 1, while service at stations
i = 1, 2, 3 occurs at rates 4, 5, 6. Suppose that the probability of
going to j when exiting i, p(i, j) is given by p(1, 2) = 1/3, p(1, 3) =
1/3, p(2, 3) = 2/3, and p(i, j) = 0 otherwise. Find the stationary
distribution.

4.35. Feed-forward queues. Consider a k station queueing network
in which arrivals to server i occur at rate λi and service at station i
occurs at rate µi. We say that the queueing network is feed-forward
if the probability of going from i to j < i has p(i, j) = 0. Consider
a general three station feed-forward queue. What conditions on the
rates must be satisfied for a stationary distribution to exist?
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4.36. Queues in series. Consider a k station queueing network in
which arrivals to server i occur at rate λi and service at station i
occurs at rate µi. In this problem we examine the special case of the
feed-forward system in which p(i, i+1) = pi for 1 ≤ i < k. In words
the customer goes to the next station or leaves the system. What
conditions on the rates must be satisfied for a stationary distribution
to exist?

4.37. At registration at a very small college, students arrive at the
English table at rate 10 and at the Math table at rate 5. A student
who completes service at the English table goes to the Math table
with probability 1/4 and to the cashier with probability 3/4. A
student who completes service at the Math table goes to the English
table with probability 2/5 and to the cashier with probability 3/5.
Students who reach the cashier leave the system after they pay.
Suppose that the service times for the English table, Math table,
and cashier are 25, 30, and 20, respectively. Find the stationary
distribution.

4.38. Three vendors have vegetable stands in a row. Customers
arrive at the stands 1, 2, and 3 at rates 10, 8, and 6. A customer
visiting stand 1 buys something and leaves with probability 1/2 or
visits stand 2 with probability 1/2. A customer visiting stand 3 buys
something and leaves with probability 7/10 or visits stand 2 with
probability 3/10. A customer visiting stand 2 buys something and
leaves with probability 4/10 or visits stands 1 or 3 with probability
3/10 each. Suppose that the service rates at the three stands are
large enough so that a stationary distribution exists. At what rate
do the three stands make sales. To check your answer note that since
each entering customers buys exactly once the three rates must add
up to 10+8+6=24.

4.39. Four children are playing two video games. The first game,
which takes an average of 4 minutes to play, is not very exciting,
so when a child completes a turn on it they always stand in line
to play the other one. The second one, which takes an average of 8
minutes, is more interesting so when they are done they will get back
in line to play it with probability 1/2 or go to the other machine
with probability 1/2. Assuming that the turns take an exponentially
distributed amount of time, find the stationary distribution of the
number of children playing or in line at each of the two machines.
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4.40. A computer lab has 3 laser printers and 5 toner cartridges.
Each machine requires one toner cartridges which lasts for an ex-
ponentially distributed amount of time with mean 6 days. When
a toner cartridge is empty it is sent to a repairman who takes an
exponential amount of time with mean 1 day to refill it. This system
can be modeled as a closed queueing network with 5 customers (the
toner cartridges), one M/M/3 queue, and one M/M/1 queue. Use
this observation to compute the stationary distribution. How often
are all three printers working?

4.41. The exercise room at the Wonderland motel has three pieces
of equipment. Five businessmen who are trapped there by one of
Ithaca’s snowstorms use machines 1,2,3 for an exponential amount
of time with means 15,10,5 minutes. When a person is done with
one piece of equipment, he picks one of the other two at random.
If it is occupied he stands in line to use it. Let (n1, n2, n3) be the
number of people using or in line to use each of the three pieces of
equipment. (a) Find the stationary distribution. (b) Evaluate the
norming constant.

4.42. Generalize the previous problem so that there are N machines
and M businessmean, but simplify it by supposing that all machines
have the same service time. Find the stationary distribution.
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Chapter 5

Martingales

In this chapter we will introduce a class of process that can be
thought of as the fortune of a gambler betting on a fair game. These
results will be important when we consider applications to finance in
the next chapter. In addition, they will allow us to give more trans-
parent proofs of some rpoofs from Sections 1.8 and 1.9 concerning
exit distributions and exit times for Markov chains.

5.1 Conditional Expectation

Our study of martingales will rely heavily on the notion of condi-
tional expectation and involve some formulas that may not be famil-
iar, so we will review them here. We begin with several definitions.
Given an event A we define its indicator function

1A =

{
1 x ∈ A
0 x ∈ Ac

In words, 1A is “1 on A” (and 0 otherwise). Given a random variable
Y , we define the integral of Y over A to be

E(Y ;A) = E(Y 1A)

Note that on the right multiplying by 1A sets the product = 0 on
Ac and leaves the values on A unchanged. Finally, we define the
conditional expectation of Y given A to be

E(Y |A) = E(Y ;A)/P (A)

225
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This is, of course, the expected value for the probability defined by

P (·|A) = P (· ∩ A)/P (A)

It is easy to see from the definition that the integral over A is
linear:

E(Y + Z;A) = E(Y ;A) + E(Z;A) (5.1)

so dividing by P (A), conditional expectation also has this property

E(Y + Z|A) = E(Y |A) + E(Z|A) (5.2)

(Provided of course that all of the expected values exist.) In ad-
dition, as in ordinary integration one can take constants outside of
the integral.

Lemma 5.1. If X is a constant c on A, then E(XY |A) = cE(Y |A).

Proof. Since X = c on A, XY 1A = cY 1A. Taking expected val-
ues and pulling the constant out front, E(XY 1A) = E(cY 1A) =
cE(Y 1A). Dividing by P (A) now gives the result.

Our last two properties concern the behavior of E(Y ;A) and
(Y |A) as a function of the set A.

Lemma 5.2. If B is the disjoint union of A1, . . . , Ak, then

E(Y ;B) =
k∑

j=1

E(Y ;Aj)

Proof. Our assumption implies Y 1B =
∑k

j=1 Y 1Aj
, so taking ex-

pected values, we have

E(Y ;B) = E(Y 1B) = E

(
k∑

j=1

Y 1Aj

)
=

k∑
j=1

E(Y 1Aj
) =

k∑
j=1

E(Y ;Aj)

Lemma 5.3. If B is the disjoint union of A1, . . . , Ak, then

E(Y |B) =
k∑

j=1

E(Y |Aj) ·
P (Aj)

P (B)
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Proof. Using the definition of conditional expectation, formula (5.2),
then doing some arithmetic and using the definition again, we have

E(Y |B) = E(Y ;B)/P (B) =
k∑

j=1

E(Y ;Aj)/P (B)

=
k∑

j=1

E(Y ;Aj)

P (Aj)
· P (Aj)

P (B)
=

k∑
j=1

E(Y |Aj) ·
P (Aj)

P (B)

which proves the desired result.
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5.2 Examples of Martingales

We begin by giving the definition of a martingale. Thinking of Mn

as the amount of money at time n for a gambler betting on a fair
game, and Xn as the outcomes of the gambling game we say that
M0,M1, . . . is a martingale with respect to X0, X1, . . . if for any
n ≥ 0 we have E|Mn| <∞ and for any possible values xn, . . . , x0

E(Mn+1 −Mn|Xn = xn, Xn−1 = xn−1, . . . X0 = x0,M0 = m0) = 0
(5.3)

The first condition, E|Mn| < ∞, is needed to guarantee that the
conditional expectation makes sense. The second, defining property
says that conditional on the past up to time n the average profit
from the bet on the nth game is 0. It will take several examples to
explain why this is a natural definition. It is motivated by the fact
that in passing from the random variables Xn that are driving the
process to our winnings Mn there may be a loss of information so it
is convenient to condition on Xn rather than on Mn.

To explain the reason for our interest in martingales, and to help
explain the definition we will now give a number of examples. In
what follows we will often be forced to write the conditioning event
so we introduce the short hand

Ax,m = {Xn = xn, Xn−1 = xn−1, . . . , X0 = x0,M0 = m}

where x is short for (xn, . . . , x0)

Example 5.1. Random walks. Let X1, X2, . . . be i.i.d. with
EXi = µ. Let Sn = S0 + X1 + · · · + Xn be a random walk.
Mn = Sn − nµ is a martingale with respect to Xn.

Proof. To check this, note thatMn+1−Mn = Xn+1−µ is independent
of Xn, . . . , X0,M0, so the conditional mean of the difference is just
the mean:

E(Mn+1 −Mn|Ax,m) = EXn+1 − µ = 0

In most cases, casino games are not fair but biased against the
player. We say that Mn is a supermartingale with respect to Xn

if a gambler’s expected winnings on one play are negative:

E(Mn+1 −Mn|Ax,m) ≤ 0
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To help remember the direction of the inequality, note that there
is nothing “super” about a supermartingale. The definition traces
its roots to the notion of superharmonic functions whose values at a
point exceed the average value on balls centered around the point.
If we reverse the sign and suppose

E(Mn+1 −Mn|Ax,m) ≥ 0

then Mn is called a submartingale with respect to Xn. A simple
modification of the proof for Example 5.1 shows that if µ ≤ 0,
then Sn defines a supermartingale, while if µ ≥ 0, then Sn is a
submartingale.

The next result will lead to a number of examples.

Theorem 5.1. Let Xn be a Markov chain with transition probability
p and let f(x, n) be a function of the state x and the time n so that

f(x, n) =
∑

y

p(x, y)f(y, n+ 1)

Then Mn = f(Xn, n) is a martingale with respect to Xn. In partic-
ular if h(x) =

∑
y p(x, y)h(y) then h(Xn) is a martingale.

Proof. By the Markov property and our assumption on f

E(f(Xn+1, n+ 1)|Ax,m) =
∑

y

p(xn, y)f(y, n+ 1) = f(xn, n)

which proves the desired result.

The next two examples begin to explain our interest in Theorem
5.1.

Example 5.2. Gambler’s ruin. Let X1, X2, . . . be independent
with

P (Xi = 1) = p and P (Xi = −1) = 1− p

where p ∈ (0, 1) and p 6= 1/2. Let Sn = S0 + X1 + · · · + Xn.

Mn =
(

1−p
p

)Sn

is a martingale with respect to Xn.

Proof. Using Theorem h(x) = ((1− p)/p)x, we need only check that
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h(x) =
∑

y p(x, y)h(y). To do this we note that

∑
y

p(x, y)h(y) = p ·
(

1− p
p

)x+1

+ (1− p) ·
(

1− p
p

)x−1

= (1− p) ·
(

1− p
p

)x

+ p ·
(

1− p
p

)x

=

(
1− p
p

)x

which proves the desired result.

Example 5.3. Symmetric simple random walk. Let Y1, Y2, . . .
be independent with

P (Yi = 1) = P (Yi = −1) = 1/2

and let Xn = X0 +Y1 + · · ·+Yn. Then Mn = X2
n−n is a martingale

with respect to Xn. By Theorem 5.1 with f(x, n) = x2 − n it is
enough to show that

1

2
(x+ 1)2 +

1

2
(x− 1)2 − 1 = x2

To do this we work out the squares to conclude the left-hand side is

1

2
[x2 + 2x+ 1 + x2 − 2x+ 1] = 1

Example 5.4. Products of independent random variables.
To build a discrete time model of the stock market we let X1, X2, . . .
be independent ≥ 0 with EXi = 1. Then Mn = M0X1 · · ·Xn is a
martingale with respect to Xm. To prove this we note that

E(Mn+1 −Mn|Ax,n) = MnE(Xn+1 − 1|Ax,n) = 0

The last example generalizes easily to give:

Example 5.5. Exponential martingale. Let Y1, Y2, . . . be inde-
pendent and identically distributed with φ(θ) = E exp(θX1) < ∞.
Let Sn = S0 + Y1 + · · · + Yn. Then Mn = exp(θSn)/φ(θ)n is a
martingale with respect to Xn.

Proof. If we let Xi = exp(θYi)/φ(θ) then Mn = M)X1 · · ·Xn with
EXi = 1 and this reduces to the previous example.
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5.3 Properties of Martingales

The first result should be intutitive if we think of supermartingale as
betting on an unfavorable game: the expected value of our fortune
will decline over time.

Theorem 5.2. If Mm is a supermartingale and m ≤ n then EMm ≥
EMn.

Proof. It is enough to show that the expected value decreases with
each time step, i.e., EMk ≥ EMk+1. To do this, we write x as
shorthand for the vector (xn, xn−1, . . . x0), let

Ax,m = {Xn = xn, Xn−1 = xn−1, . . . , X0 = x0,M0 = m}

and note that (5.2) and the definition of conditional expectation
imply

E(Yk+1 − Yk) =
∑

i

E(Yk+1 − Yk;Ai)

=
∑

i

P (Ai)E(Yk+1 − Yk|Ai) ≤ 0

since each term E(Yk+1 − Yk|Ai) ≤ 0.

The result in Theorem 5.2 generalizes immediately to our other
two types of processes. Multiplying by −1 we see:

Theorem 5.3. If Mm is a submartingale and 0 ≤ m < n, then
EMm ≤ EMn.

Since a process is a martingale if and only if it is both a super-
martingale and submartingale, we can conclude that:

Theorem 5.4. If Mm is a martingale and 0 ≤ m < n then EMm =
EMn.

The most famous result of martingale theory is that “you can’t
make money playing a fair game” and hence “you can’t beat an
unfavorable game.” In this section we will prove two results that
make these statements precise. Our first step is analyze a famous
gambling system and show why it doesn’t work.
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Example 5.6. Doubling strategy. Suppose you are playing a
game in which you will win or lose $1 on each play. If you win
you bet $1 on the next play but if you lose then you bet twice
the previous amount. The idea behind the system can be seen by
looking at what happens if we lose four times in a row then win:

outcome L L L L W
bet 1 2 4 8 16
net profit −1 −3 −7 −15 1

In this example our net profit when we win is $1. Since 1+2+ · · ·+
2k = 2k+1 − 1, this is true if we lose k times in a row. Thus every
time we win our net profit is up by $1 from the previous time we
won.

This system will succeed in making us rich as long as the prob-
ability of winning is positive, so where’s the catch? The problem
is that theorem will imply that if we use the doubling system on
a supermartingale up to a fixed time n and we let Wn be our net
winnings. Then EWn ≤ 0.

To prove this we will introduce a family of betting strategies that
generalize the doubling strategy. The amount of money we bet on
the nth game, Hn, clearly, cannot depend on the outcome of that
game nor is it sensible to allow it to depend on the outcomes of
games that will be played later. We say that Hn is an admissible
gambling strategy or predictable process if for each n the value
of Hn can be determined from Xn−1, Xn−2, . . . , X0,M0.

To motivate the next definition, think of Hm as the amount of
stock we hold between time m− 1 and m. Then our wealth at time
n is

Wn = W0 +
n∑

m=1

Hm(Mm −Mm−1) (5.4)

since the change in our wealth from timem−1 tom is the amount we
hold times the change in the price of the stock: Hm(Mm −Mm−1).
To formulate the doubling strategy in this setting, let Xm = 1 if
the mth coin flip is heads and −1 if the mth flip is tails, and let
Mn = X1 + · · ·+Xn as the net profit of a gambler who bets 1 unit
every time.
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Theorem 5.5. Suppose that Mn is a supermartingale with respect
to Xn, Hn is predictable, and 0 ≤ Hn ≤ cn where cn is a constant
that may depend on n. Then

Wn = W0 +
n∑

m=1

Hm(Mm −Mm−1) is a supermartingale

We need the condition Hn ≥ 0 to prevent the bettor from becom-
ing the house by betting a negative amount of money. The upper
bound Hn ≤ cn is a technical condition that is needed to have ex-
pected values make sense. In the gambling context this assumption
is harmless: even if the bettor wins every time there is an upper
bound to the amount of money he can have at time n.

Proof. The gain at time n+ 1 is

Wn+1 −Wn = Hn+1(Yn+1 − Yn)

As in the proof of Theorem 5.2 let

Ax,n = {Xn = xn, Xn−1 = xn−1, . . . , X0 = x0,M0 = m0}.

Hn+1 is constant on the event Ax,m, so Lemma 5.1 implies

E(Hn+1(Mn+1 −Mn)|Ax,m) = Hn+1E(Mn+1 −Mn|Ax,m) ≤ 0

verifying that Wn is a supermartingale.

Arguing as in the discussion after Theorem 5.2 the same result holds
for submartingales and for martingales with only the assumption
that |Hn| ≤ cn.

Though Theorem 5.5 may be depressing for gamblers, a simple
special case gives us an important computational tool. To introduce
this tool, we need one more notion.

We say that T is a stopping time with respect to Xn if the oc-
currence (or nonoccurrence) of the event {T = n} can be determined
from Xn, Xn−1 . . . X0,M0.

Example 5.7. Constant betting up to a stopping time. One
possible gambling strategy is to bet $1 each time until you stop
playing at time T . In symbols, we let Hm = 1 if T ≥ m and 0
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otherwise. To check that this is an admissible gambling strategy we
note that the set on which Hm is 0 is

{T ≥ m}c = {T ≤ m− 1} = ∪m−1
k=1 {T = k}

By the definition of a stopping time, the event {T = k} can be
determined from the values of M0, X0, . . . , Xk. Since the union
is over k ≤ m − 1, Hm can be determined from the values of
M0, X0, X1, . . . , Xm−1.

Having introduced the gambling strategy “Bet $1 on each play
up to time T” our next step is to compute the payoff we receive
when W0 = M0. Letting T ∧n denote the minimum of T and n, i.e.,
it is T if T < n and n if T ≥ n, we can give the answer as:

Wn = M0 +
n∑

m=1

Hm(Mm −Mm−1) = MT∧n (5.5)

To check the last equality, consider two cases:

(i) if T ≥ n then Hm = 1 for all m ≤ n, so

Wn = M0 + (Mn −M0) = Mn

(ii) if T ≤ n then Hm = 0 for m > T and the sum stops at T . In
this case,

Wn = Y0 + (YT − Y0) = YT

Combining (5.5) with Theorem 5.5 shows

Theorem 5.6. If Mn is a supermartingale with respect to Xn and T
is a stopping time then the stopped process MT∧n is a supermartin-
gale with respect to Xn.

As in the discussion after Theorem 5.2 the same conclusion is true
for submartingales and martingales.
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5.4 Applications

In this section we will apply the results from the previous section
to rederive some of the results from Chapter 1 about hitting proba-
bilities and exit times. In all the examples the method is the same.
We have a martingale Mn and a stopping time. We use Theorems
5.6 and 5.4 to conclude EM0 = EMT∧n then we let n→∞.

Example 5.8. Gambler’s ruin. Continuing let X1, X2, . . . ξn be
independent with

P (Xi = 1) = p and P (ξi = −1) = 1− p

Let Sn = S0 +X1 + · · · +Xn where X1, X2, . . . are independent
with P (ξi = 1) = p and P (ξi = −1) = q where q = 1 − p. Suppose
0 < p < 1 with p 6= 1/2 and let h(x) = (q/p)x. Example 5.2 implies
that Mn = h(Sn) is a martingale. Let T = min{n : Sn 6∈ (a, b)}.
It is easy to see that T is a stopping time. Lemma ?? implies that
P (T <∞) = 1. Using Theorems 5.6 and 5.4, we have

(q/p)x = ExMT∧n = (q/p)aP (T ≤ n, ST = a) + (q/p)bP (T ≤ n, ST = b)

+ E((q/p)Sn ;T > n)

Since P (T <∞) = 1 and for a < x < b, (q/p)x ≤ max{(q/p)a, (q/p)b}
the third term tends to 0 and we have

(q/p)x = (q/p)aP (ST = a) + (q/p)b[1− P (ST = a)]

Solving gives

Px(ST = a) =
(q/p)b − (q/p)x

(q/p)b − (q/p)a

generalizing (1.21).

Example 5.9. Duration of fair games. Let Sn = S0 +X1 + · · ·+
Xn where X1, X2, . . . are independent with P (Xi = 1) = P (Xi =
−1) = 1/2. Let T = min{n : Sn 6∈ (a, b)} where a < 0 < b. Sn is a
martingale so repeating the last proof shows that

P0(ST = a) =
b

b− a
P(ST = b) =

−a
b− a

Our goal here is to prove a close relative of (1.25):

E0T = −ab



236 CHAPTER 5. MARTINGALES

Example 5.3 implies that S2
n − n is a martingale. Let T = min{n :

Sn 6∈ (a, b)}. From the previous example we have that T is a stop-
ping time with P (T < ∞) = 1. Using Theorems 5.6 and 5.4 we
have

0 = E0(S
2
T∧n − T ∧ n) = a2P (ST = a, T ≤ n) + b2P (ST = b, T ≤ n)

+ E(S2
n;T > n)− E0(T ∧ n)

P (T < ∞) = 1 and on {T > n} we have S2
T∧n ≤ max{a2, b2} so

the third term tends to 0. As n ↑ ∞ E0(T ∧ n) ↑ E0T so using the
result for the exist distribution we have

E0T = a2 b

b− a
+ b2

−a
b− a

=
−ab2 + ba2

b− a
= −ab

Consider now a random walk Sn = S0 + X1 + · · · + Xn where
X1, X2, . . . are i.i.d. with mean µ. From Example 5.1, Mn = Sn−nµ
is a martingale with respect to Xn.

Theorem 5.7. Wald’s equation. If T is a stopping time with
ET <∞, then

E(ST − S0) = µET

Why is this true? Theorems 5.6 and 5.4 give

ES0 = E(ST∧n)− µE(T ∧ n)

As n ↑ ∞, E0(T ∧ n) ↑ E0T . To pass to the limit in the other term,
we note that

E|ST − ST∧n| ≤ E

(
T∑

m=n

|Xm|;T > n

)
Using the assumptions ET <∞ and E|X| <∞ one can prove that
the right-hand side tends to 0 and complete the proof.

With Wald’s equation in hand we can now better understand:

Example 5.10. Mean time to gambler’s ruin. Let Sn = S0 +
X1 + · · ·+Xn where X1, X2, . . . are independent with P (Xi = 1) =
p < 1/2 and P (Xi = −1) = 1− p. The mean movement on one step
is µ = 2p− 1 so Sn − (2p− 1)n is a martingale. Let Va = min{n ≥
0 : Sn = a}. Theorems 5.6 and 5.4 give

x = ExSV0∧n − (2p− 1)Ex(V0 ∧ n)
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Rearranging we have

(1− 2p)Ex(V0 ∧ n) = x− ExSV0∧n ≤ x

This shows that ExV0 < ∞ so we can use Wald’s equation to con-
clude that −x = (2p − 1)ExV0 and we have a new derivation of
(1.27)

ExV0 = x/(1− 2p)

Example 5.11. Left-continuous random walk. Suppose that
X1, X2, . . . are independent integer-valued random variables with
EXi > 0, P (Xi ≥ −1) = 1, and P (Xi = −1) > 0. These walks
are called left-continuous since they cannot jump over any integers
when they are decreasing, which is going to the left as the number
line is usually drawn. Let φ(θ) = exp(θXi) and define α < 0 by the
requirement that φ(α) = 1. To see that such an α exists, note that
(i) φ(0) = 1 and

φ′(θ) =
d

dθ
Eeθxi = E(xie

θxi) so φ′(0) = Exi > 0

and φ(θ) < 1 for small negative θ. (ii) If θ < 0, then φ(θ) ≥
e−θP (xi = −1)→∞ as θ → −∞. Our choice of α makes exp(αSn)
a martingale. Having found the martingale it is easy now to con-
clude:

Theorem 5.8. Consider a left continuous random walk. Let a < 0
and Va = min{n : Sn = a}.

P0(Va <∞) = e−αa

Proof. Theorems 5.6 and 5.4 give

1 = E0 exp(αSVa∧n) = eαaP0(Va ≤ n) + E0(exp(αSn);T > n)

The strong law of large numbers implies that on T = ∞, Sn/n →
µ > 0, so the second term → 0 as n → ∞ and it follows that
1 = eαaP0(Va <∞).

When the random walk is not left continuous we cannot get exact
results on hitting probabilities but we can still get a bound.

Example 5.12. Cramér’s estimate of ruin. Let Sn be the total
assets of an insurance company at the end of year n. During year
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n, premiums totaling c dollars are received, while claims totaling Yn

dollars are paid, so
Sn = Sn−1 + c− Yn

Let Xn = c− Yn and suppose that X1, X2, . . . are independent ran-
dom variables that are normal with mean µ > 0 and variance σ2.
That is the density function of ηi is

(2πσ2)−1/2 exp(−(x− µ)2/2σ2)

Let B for bankrupt be the event that the wealth of the insurance
company is negative at some time n. We will show

P (B) ≤ exp(−2µS0/σ
2) (5.6)

In words, in order to be successful with high probability, µS0/σ
2

must be large, but the failure probability decreases exponentially
fast as this quantity increases.

Proof. We begin by computing φ(θ) = E exp(θXi). To do this we
need a little algebra

−(x− µ)2

2σ2
+ θ(x− µ) + θµ = −(x− µ− σ2θ)2

2σ2
+
σ2θ2

2
+ θµ

and a little calculus

φ(θ) =

∫
eθx(2πσ2)−1/2 exp(−(x− µ)2/2σ2) dx

= exp(σ2θ2/2 + θµ)

∫
(2πσ2)−1/2 exp

(
−(x− µ− σ2θ)2

2σ2

)
dx

Since the integrand is the density of a normal with mean µ + σ2θ
and variance σ2 it follows that

φ(θ) = exp(σ2θ2/2 + θµ) (5.7)

If we pick θ = −2µ/σ2, then

σ2θ2/2 + θµ = 2µ2/σ2 − 2µ2/σ2 = 0

So Example 5.5 implies exp(−2µSn/σ
2) is a martingale. Let T =

min{n : Sn ≤ 0}. Theorems 5.6 and 5.4 gives

exp(−2µS0/σ
2) = E exp(−2µST∧n) ≥ P (T ≤ n)

since exp(−2µST/σ
2) ≥ 1 and the contribution to the expected

value from {T > n} is ≥ 0. Letting n → ∞ now and noticing
P (T ≤ n)→ P (B) gives the desired result.



Chapter 6

Finance

6.1 Two simple examples

To warm up for the developments in the next section we will look
at two simple concrete examples under the unrealistic assumption
that the interest rate is 0.

One period case. In our first scenario the stock is at 90 at time 0
and may be 80 or 120 at time 1.

90 �
���

��

XXXXXX

120

80

Suppose now that you are offered a European call option with
strike price 100 and expiry 1. This means that after you see what
happened to the stock, you have an option to buy the stock (but
not an obligation to do so) for 100 at time 1. If the stock price is
80, you will not exercise the option to purchase the stock and your
profit will be 0. If the stock price is 120 you will choose to buy the
stock at 100 and then immediately sell it at 120 to get a profit of
20. Combining the two cases we can write the payoff in general as
(X1 − 100)+, where z+ = max{z, 0} denotes the positive part of z.

Our problem is to figure out the right price for this option. At
first glance this may seem impossible since we have not assigned

239
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probabilities to the various events. However, it is a miracle of “pric-
ing by the absence of arbitrage” that in this case we do not have to
assign probabilities to the events to compute the price. To explain
this we start by noting that X1 will be 120 (“up”) or 80 (“down”)
for a profit of 30 or a loss of 10, respectively. If we pay c for the
option, then when X1 is up we make a profit of 20− c, but when it
is down we make −c. The last two sentences are summarized in the
following table

stock option
up 30 20− c
down −10 −c

Suppose we buy x units of the stock and y units of the option,
where negative numbers indicate that we sold instead of bought.
One possible strategy is to choose x and y so that the outcome is
the same if the stock goes up or down:

30x+ (20− c)y = −10x+ (−c)y
Solving, we have 40x+ 20y = 0 or y = −2x. Plugging this choice of
y into the last equation shows that our profit will be (−10+2c)x. If
c > 5, then we can make a large profit with no risk by buying large
amounts of the stock and selling twice as many options. Of course,
if c < 5, we can make a large profit by doing the reverse. Thus, in
this case the only sensible price for the option is 5.

A scheme that makes money without any possibility of a loss is
called an arbitrage opportunity. It is reasonable to think that
these will not exist in financial markets (or at least be short-lived)
since if and when they exist people take advantage of them and the
opportunity goes away. Using our new terminology we can say that
the only price for the option which is consistent with absence of
arbitrage is c = 5, so that must be the price of the option.

To find prices in general, it is useful to look at things in a different
way. Let ai,j be the profit for the ith security when the jth outcome
occurs.

Theorem 6.1. Exactly one of the following holds:

(i) There is an investment allocation xi so that
∑m

i=1 xiai,j ≥ 0 for
each j and

∑m
i=1 xiai,k > 0 for some k.

(ii) There is a probability vector pj > 0 so that
∑n

j=1 ai,jpj = 0 for
all i.
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Here an x satisfying (i) is an arbitrage opportunity. We never
lose any money but for at least one outcome we gain a positive
amount. Turning to (ii), the vector pj is called a martingale measure
since if the probability of the jth outcome is pj, then the expected
change in the price of the ith stock is equal to 0. Combining the
two interpretations we can restate Theorem 6.1) as:

There is no arbitrage if and only if there is a strictly positive prob-
ability vector so that all the stock prices are martingale.

Proof of Theorem 6.1. One direction is easy. If (i) is true, then for
any strictly positive probability vector

∑m
i=1

∑n
j=1 xiai,jpj > 0, so

(ii) is false.
Suppose now that (i) is false. The linear combinations

∑m
i=1 xiai,j

when viewed as vectors indexed by j form a linear subspace of n-
dimensional Euclidean space. Call it L. If (i) is false, this subspace
intersects the positive orthant O = {y : yj ≥ 0 for all j} only at
the origin. By linear algebra we know that L can be extended to an
n− 1 dimensional subspace H that only intersects O at the origin.

Since H has dimension n − 1, it can be written as H = {y :∑n
j=1 yjpj = 0}. Since for each fixed i the vector ai,j is in L ⊂ H,

(ii) holds. To see that all the pj > 0 we leave it to the reader to
check that if not, there would be a non-zero vector in O that would
be in H.

To apply Theorem 6.1 to our simplified example, we begin by
noting that in this case ai,j is given by

j = 1 j = 2
stock i = 1 30 −10
option i = 2 20− c −c

By Theorem 6.1 if there is no arbitrage, then there must be an
assignment of probabilities pj so that

30p1 − 10p2 = 0 (20− c)p1 + (−c)p2 = 0

From the first equation we conclude that p1 = 1/4 and p2 = 3/4.
Rewriting the second we have

c = 20p1 = 20 · (1/4) = 5
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To prepare for the general case note that the equation 30p1−10p2 =
0 says that under pj the stock price is a martingale (i.e., the average
value of the change in price is 0), while c = 20p1 + 0p2 says that the
price of the option is then the expected value under the martingale
probabilities.

Two-period binary tree. Suppose that a stock price starts at 100
at time 0. At time 1 (one day or one month or one year later) it will
either be worth 120 or 90. If the stock is worth 120 at time 1, then
it might be worth 140 or 115 at time 2. If the price is 90 at time
1, then the possibilities at time 2 are 120 and 80. The last three
sentences can be simply summarized by the following tree.

100
�
�
�
�

Q
Q
Q
Q

120�
���

��

XXXXXX

140

115

90 �
���

��

XXXXXX

120

80

Using these ideas we can quickly complete the computations in our
example. WhenX1 = 120 the two possible scenarios lead to a change
of +20 or −5, so the relative probabilities of these two events should
be 1/5 and 4/5. When X0 = 0 the possible price changes on the
first step are +20 and −10, so their relative probabilities are 1/3
and 2/3. Making a table of the possibilities, we have

X1 X2 probability (X2 − 100)+

120 140 (1/3) · (1/5) 40
120 115 (1/3) · (4/5) 15
90 120 (2/3) · (1/4) 20
90 80 (2/3) · (3/4) 0

so the value of the option is

1

15
· 40 +

4

15
· 15 +

1

6
· 20 =

80 + 120 + 100

30
= 10
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The last derivation may seem a little devious, so we will now
give a second derivation of the price of the option. In the scenario
described above, our investor has four possible actions:

A0. Put $1 in the bank and end up with $1 in all possible sce-
narios.

A1. Buy one share of stock at time 0 and sell it at time 1.

A2. Buy one share at time 1 if the stock is at 120, and sell it at
time 2.

A3. Buy one share at time 1 if the stock is at 90, and sell it at
time 2.

These actions produce the following payoffs in the indicated out-
comes

X1 X2 A0 A1 A2 A3 option
120 140 1 20 20 0 40
120 115 1 20 −5 0 15
90 120 1 −10 0 30 20
90 80 1 −10 0 −10 0

Noting that the payoffs from the four actions are themselves vec-
tors in four-dimensional space, it is natural to think that by using
a linear combination of these actions we can reproduce the option
exactly. To find the coefficients Z − i for the actions Ai we write
four equations in four unknowns,

z0 + 20z1 + 20z2 = 40

z0 + 20z1 − 5z2 = 15

z0 − 10z1 + 30z3 = 20

z0 − 10z1 − 10z3 = 0

Subtracting the second equation from the first and the fourth from
the third gives 25z2 = 25 and 40z3 = 20 so z2 = 1 and z3 = 1/2.
Plugging in these values, we have two equations in two unknowns:

z0 + 20z1 = 20 z0 − 10z1 = 5

Taking differences, we conclude 30z1 = 15, so z1 = 1/2 and z0 = 10.
The reader may have already noticed that z0 = 10 is the option

price. This is no accident. What we have shown is that with $10
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cash we can buy and sell shares of stock to produce the outcome of
the option in all cases. In the terminology of Wall Street, z1 = 1/2,
z2 = 1, z3 = 1/2 is a hedging strategy that allows us to replicate
the option. Once we can do this it follows that the fair price must
be $10. To do this note that if we could sell it for $12 then we can
take $10 of the cash to replicate the option and have a sure profit
of $2.



6.2. BINOMIAL MODEL 245

6.2 Binomial model

In this section we consider the general n period model. As in the
previous section we begin with the

One period case. There are two possible outcomes for the stock
which we call heads (H) and tails (T ). When H occurs the value of
the stock is multiplied by u (for ‘up’). When T occurs the value of
the stock is multiplied by d (for ‘down’).

S0
��

��
��

XXXXXX

S1(H) = S0u

S1(T ) = S0d

We assume that there is an interest rate r, which means that $1 at
time 0 is the same as $1+ r at time 1. For the model to be sensible,
we need

0 < d < 1 + r < u. (6.1)

Consider now an option that pays off V1(H) or V1(T ) at time 1.
This could be a call option (S1−K)+, a put (K−S1)

+, or something
more exotic, so we will consider the general case. To find the “no
arbitrage price” of this option we suppose we have V0 in cash and
∆0 shares of the stock at time 0, and want to pick these to match
the option price exactly:

V0 + ∆0

(
1

1 + r
S1(H)− S0

)
=

1

1 + r
V1(H) (6.2)

V0 + ∆0

(
1

1 + r
S1(T )− S0

)
=

1

1 + r
V1(T ) (6.3)

To find the values of V0 and ∆0 we define the risk neutral probability
p∗ so that

1

1 + r
(p∗S0u+ (1− p∗)S0d) = S0 (6.4)

We divide by 1 + r on the right because those amounts are at time
1. Solving we have

p∗ =
1 + r − d
u− d

1− p∗ =
u− (1 + r)

u− d
(6.5)
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The condition (6.1) implies 0 < p∗ < 1.
Taking p∗(6.2) + (1− p∗)(6.3) and using (6.4) we have

V0 =
1

1 + r
(p∗V1(H) + (1− p∗)V1(T )) (6.6)

i.e., the value is the discounted expected value under the risk neutral
probabilities. Taking the difference (6.2)− (6.3) we have

∆0

(
1

1 + r
(S1(H)− S1(T ))

)
=

1

1 + r
(V1(H)− S1(T ))

which implies that

∆0 =
V1(H)− V1(T )

S1(H)− S1(T )
(6.7)

n period model. To solve the problem in general we work back-
wards from the end, repeatedly applying the solution of the one
period problems. Let a be a string of H’s and T ’s of length n − 1
which represents the outcome of the first n − 1 events. The value
of the option at time n after the events in a have occurred, Vn(a),
and the amount of stock we need to hold in this situation, ∆n(a),
in order to replicate the option payoff satisfy:

Vn(a) + ∆n(a)

(
1

1 + r
Sn+1(aH)− Sn(a)

)
=

1

1 + r
Vn+1(aH) (6.8)

Vn(a) + ∆n(a)

(
1

1 + r
Sn+1(aT )− Sn(a)

)
=

1

1 + r
Vn+1(aT ) (6.9)

Define the risk neutral probability p∗n(a) so that

Sn(a) =
1

1 + r
[p∗n(a)Sn+1(aH) + (1− p∗)Sn+1(aT )] (6.10)

Here we allow the stock prices to general, subject only to the re-
striction that 0 < p∗n(a) < 1. Notice that these probabilities depend
on the time n and the history a. In the binommial model one has
p∗n(a) = (1 + r − d)/(u− d).

Taking p∗n(a)(6.8) + (1− p∗n(a))(6.9) and using (6.10) we have

Vn(a) =
1

1 + r
[p∗n(a)Vn+1(aH) + (1− p∗n(a))Vn+1(aT )] (6.11)
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i.e., the value is the discounted expected value under the risk neutral
probabilities. Taking the difference (6.8)− (6.9) we have

∆n(a)

(
1

1 + r
(S1(H)− S1(T ))

)
=

1

1 + r
(V1(H)− S1(T ))

which implies that

∆n(a) =
Vn+1(aH)− Vn+1(aT )

Sn+1(aH)− Sn+1(aT )
(6.12)

Turning to examples, we will often use the following binomial
model because it leads to easy arithmetic

u = 2, d = 1/2, r = 1/4 (6.13)

The risk neutral probabilities

p∗2 + (1− p∗)(1/2) = 1 +
1

4

so p∗ = 1 − p∗ = 1/2 and by (6.11) the option prices follow the
recursion:

Vn−1(a) = .4[Vn(aH) + Vn(aT )] (6.14)

Example 6.1. Lookback options. In this option you can buy the
stock at time 3 at its current price and then sell it at the highest
price seen in the past for a profit of

V3 = max
0≤n≤3

Sm − S3

Our goal is to compute the value for this option in the binomial
model given in (6.13) with S0 = 4. For example S3(HTT ) = 2 but
the maximum in the past is 8 = S1(H) so V3(HTT ) = 8−2 = 6. At
the right edge of the picture the stock and option prices are given
for time 3.
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S3

32

8

8

2

8

2

2

.5

V3

0

8

0

6

0

2

2

3.5

16

4

4

1

3.2

2.4

0.8

2.2

8

2

2.24

1.2

4

1.376

On the tree, stock prices are above the nodes and option prices
below. To explain the computation of the option price note that by
(6.14).

V2(HH) = 0.4(V3(HHH) + V3(HHT )) = 0.4(0 + 8) = 3.2

V2(HT ) = 0.4(V3(HTH) + V3(HTT )) = 0.4(0 + 6) = 2.4

V1(H) = 0.4(V2(HH) + V2(HT )) = 0.4(3.2 + 2.4) = 2.24

Example 6.2. Put option. We will use the binomial model in
(6.13) with S0 = 4, but now consider the put option with value
V3 = (10−S3)

+. The value of this option depends only on the price
so we can reduce the tree considered above to:
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V3

0

2

8

9.5

16
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1

8

2

4

.8

4

7

1.92

4.4

4

2.528

On the tree itself stock prices are above the nodes and option prices
below. To explain the computation of the option price note that by
(6.14).

V2(1) = 0.4(V3(2) + V3(0.5) = 0.4(8 + 9.5) = 7

V2(4) = 0.4(V3(8) + V3(2)) = 0.4(2 + 8) = 4

V1(2) = 0.4(V2(4) + V2(1)) = 0.4(4 + 7) = 4.4

The computation of the option price in the last case can be
speeded up by observing that

Theorem 6.2. In the binomial model, under the risk neutral prob-
ability measure Mn = Sn/(1 + r)n is a martingale with respect to
Sn.

Proof. Let p∗ and 1 − p∗ be defined by (6.5). Given a string a of
heads and tails of length n

P ∗(a) = (p∗)H(a)(1− p∗)T (a)

where H(a) and T (a) are the number of heads and tails in a. To
check the martingale property we need to show that

E∗
(

Sn+1

(1 + r)n+1

∣∣∣∣S0 = s0, . . . Sn = sn

)
=

Sn

(1 + r)n
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where E∗ indicates expected value with respect to P ∗. Letting
Xn+1 = Sn+1/Sn which is independent of Sn and is u with prob-
ability p∗ and d with probability 1− p∗ we have

E

(
Sn+1

(1 + r)n+1

∣∣∣∣S0 = s0, . . . Sn = sn

)
=

Sn

(1 + r)n
E

(
Xn+1

1 + r

∣∣∣∣S0 = s0, . . . Sn = sn

)
=

Sn

(1 + r)n

since EXn+1 = 1 + r by (6.10).

Notation. To make it easier to write computations like the last
one we will let

En(Y ) = E(Y |S0 = s0, . . . Sn = sn)

or in words, the conditional expectation of Y given the information
at time n.

From Theorem 6.2 and the recursion for the option price (6.11)
we immediately get:

Theorem 6.3. In the binomial model we have V0 = E∗(Vn/(1+r)n).

Using this on Example 6.2 gives

V0 = (4/5)3 ·
[
2 · 3

8
+ 8 · 3

8
+ 9.5 · 1

8

]
= 2.528

Using this on Example 6.1 gives

V0 = (4/5)3 · 1
8
· [0 + 8 + 0 + 6 + 0 + 2 + 2 + 2 + 3.5] = 1.376

The option prices we have defined were motivated by the idea
that by trading in the stock we could replicate the option exactly
and hence they are the only price consistent with the absence of ar-
bitrage. We will now go through the algebra needed to demonstrate
this for the general n period model. Suppose we start with W0 dol-
lars and hold ∆n(a) shares of stock between time n and n + 1. If
we invest the money not in the stock in the money market account
which pays interest r per period our wealth satisfies the recursion:

Wn+1 = ∆nSn+1 + (1 + r)(Wn −∆nSn) (6.15)
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Theorem 6.4. If W0 = V0 and we use the investment strategy in
(6.12) then we have Wn = Vn.

Proof. We proceed by induction. By assumption the result is true
when n = 0. Let a be a string of H and T of length n. (6.15) implies

Wn+1(aH) = ∆n(a)Sn+1(aH) + (1 + r)(Wn(a)−∆n(a)Sn(a))

= (1 + r)Wn(a) + ∆n(a)[Sn+1 − (1 + r)Sn(a)]

By induction the first term = (1+r)Vn(a). Letting q∗n(a) = 1−p∗n(a),
(6.10) implies

(1 + r)Sn(a) = p∗n(a)Sn+1(aH) + q∗n(a)Sn+1(aT )

Subtracting this equation from Sn+1(aH) = Sn+1(aH) we have

Sn+1(aH)− (1 + r)Sn(a) = q∗n(a)[Sn+1(aH)− Sn+1(aT )]

Using (6.12) now, we have

∆n(a)[Sn+1 − (1 + r)Sn(a)] = q∗n(a)[Vn(aH)− Vn+1(aT )]

Combining our results then using (6.11)

Wn+1(aH) = (1 + r)Vn(a) + q∗n(a)[Vn(aH)− Vn+1(aT )]

= p∗n(a)Vn(aH) + q∗nVn(aT ) + q∗n(a)[Vn(aH)− Vn+1(aT )] = Vn+1(aH)

The proof that Wn+1(aT ) = Vn+1(aT ) is almost identical.
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6.3 Black-Scholes formula

Many options take place over a time period of one or more months,
so it is natural consider St to be the stock price after t years. We
could use a binomial model in which prices change at the end of
each day but it would also be natural to update prices several times
during the day. Let h be the amount of time measured in years
between updates of the stock price. This h will be very small e.g.,
1/365 for daily updates so it is natural to let h→ 0. Knowing what
will happen when we take the limit we will let

Snh = S(n−1)h exp(µh+ σ
√
hXn)

where P (Xn = 1) = P (Xn = −1) = 1/2. This is binomial model
with a carefully chosen u and d. Iterating we see that

Snh = S0 exp

(
µnh+ σ

√
h

n∑
m=1

Xm

)
(6.16)

If we let t = nh the first term is just µt. Writing h = t/n the second
term becomes

σ
√
t · 1√

n

n∑
m=1

Xm

To take the limit as n→∞, we use the

Theorem 6.5. Central Limit Theorem. Let X1, X2, . . . be i.i.d. with
EXi = 0 and var (Xi) = 1 Then for all x we have

P

(
1√
n

n∑
m=1

Xm ≤ x

)
→ P (χ ≤ x) (6.17)

where χ has a standard normal distribution. That is,

P (χ ≤ x) =

∫ x

−∞

1√
2π
e−y2/2 dy

The conclusion in (6.17) is often written as

1√
n

n∑
m=1

Xm ⇒ χ
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where ⇒ is read “converges in distribution to.” Recalling that if we
multiply a standard normal χ by a constant c then the result has a
normal distribution with mean 0 and variance σ2, we see that

√
t · 1√

n

n∑
m=1

Xm ⇒
√
tχ

and the limit is a normal with mean 0 and variance t.
This motivates the following definition:

Definition. B(t) is a standard Brownian motion if B(0) = 0 and
it satisfies the following conditions:

(a) Independent increments. Whenever 0 = t0 < t1 < . . . < tk

B(t1)−B(t0), . . . , B(tk)−B(tk−1) are independent.

(b) Stationary increments. The distribution of Bt − Bs is normal
(0, t− s).
(c) t→ Bt is continuous.

To explain (a) note that if ni = ti/h then the sums∑
ni−1<m≤ni

Xm i = 1, . . . k

are independent. For (b) we note that that the distribution of the
sum only depends on the number of terms and use the previous
calculation. Condition (c) is a natural assumption. From a technical
point of view it is need because there are uncountably many values
of t, so the finite dimensional distributions described in (a) and (b)
do not completely describe the distribution of the process.

Using the new definition, our stock price model can be written
as

St = S0 · exp(µt+ σBt)

where Bt is a standard Brownian motion Here µ is the exponential
growth rate of the stock, and σ is its volatility. If we also assume
that the per period interest rate in the approximating model is rh,
and recall that(

1

1 + rh

)t/h

=
1

(1 + rh)t/h
→ 1

ert
= e−rt
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then the discounted stock price is

e−rtSt = S0 · exp((µ− r)t+ σBt)

Extrapolating wildly from discrete time, we can guess that the
option price is its expected value after changing the probabilities to
make the stock price a martingale. By the formula for the moment
generating function for the normal with mean 0 and variance σ2t

E exp(−(σ2/2)t+ σBt) = 1

Since Bt has independent increments, if we let

µ = r − σ2/2 (6.18)

then reasoning as for the exponential martingale, Example 5.5, the
discounted stock price, e−rtSt is a martingale.

A more satisfactory approach to this answer comes from using
the discrete approximation. Note that

u = exp(µh+ σ
√
h) d = exp(µh− σ

√
h)

The risk neutral probabilities, p∗h, which depend on the step size h,
satisfy

p∗hu+ (1− p∗h)d = 1 + rh

Solving gives

p∗h =
1 + rh− d
u− d

. (6.19)

Recalling that ex = 1 + x+ x2/2 + · · · ,

u = 1 + µh+ σ
√
h+

1

2
(µh+ σ

√
h)2 + . . .

= 1 + σ
√
h+ (σ2/2 + µ)h+ . . . (6.20)

d = 1− σ
√
h+ (σ2/2 + µ)h+ . . .

so from (6.19) we have

p∗h ≈
σ
√
h+ (r − µ− σ2/2)h

2σ
√
h

=
1

2
+
r − µ− σ2/2

2σ

√
h

If Xh
1 , X

h
2 , . . . are i.i.d. with

P (Xh
1 = 1) = p∗h P (Xh

1 = −1) = 1− p∗h
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then the mean and variance are

EXh
i =

(r − µ− σ2/2)

σ

√
h

var (Xh
i ) = 1− (EXh

i )2 → 1

To apply the central limit theorem we note that

σ
√
h

t/h∑
m=1

Xh
m = σ

√
h

t/h∑
m=1

(Xh
m − EXh

m) + σ
√
h

t/h∑
m=1

EXh
m

→ σBt + (r − µ+ σ2/2)t

so under the risk neutral measure, P ∗,

e−rtSt = S0 · exp(−(σ2/2)t+ σBt) (6.21)

Using the fact that log(St/S0) has a normal(µt, σ2t) distribution
with µ = −σ2/2, we see that

E∗(e−rt(St−K)+) = e−rt

∫ ∞

log(K/S0)

(S0e
y−K)

1√
2πσ2t

e−(y−µt)2/2σ2t dy

Splitting the integral into two and then changing variables y = µt+
wσ
√
t, dy = σ

√
t dw the integral is equal to

= e−rtS0e
µt 1√

2π

∫ ∞

α

ewσ
√

te−w2/2 dw − e−rtK
1√
2π

∫ ∞

α

e−w2/2 dw

(6.22)
where α = (log(K/S0) − µt)/σ

√
t. The handle the first term, we

note that

1√
2π

∫ ∞

α

ewσ
√

te−w2/2 dw = etσ2/2

∫ ∞

α

1√
2π
e−(w−σ

√
t)2/2 dw

= etσ2/2 P (normal(σ
√
t, 1) > α)

The last probability can be written in terms of the distribution func-
tion Φ of a normal(0,1) χ, i.e., Φ(t) = P (χ ≤ t), by noting

P (normal(σ
√
t, 1) > α) = P (χ > α− σ

√
t)

= P (χ ≤ σ
√
t− α) = Φ(σ

√
t− α)
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where in the middle equality we have used the fact that χ and −χ
have the same distribution. Using the last two computations in
(6.22) converts it to

e−rtS0e
µteσ2t/2Φ(σ

√
t− α)− e−rtKΦ(−α)

Using µ = −σ2/2 now the expression simplifies to the

Theorem 6.6. Black–Scholes formula. The price of the Euro-
pean call option (ST −K)+ is given by

S0Φ(σ
√
T − α)− e−rTKΦ(−α)

where α = {log(K/S0e
µT )}/σ

√
t and µ = r − σ2/2.

The Black-Scholes differential equation

The last derivation used special properties of the call option.
Suppose now that the payoff at time T is g(ST ). Let V (t, s) be
the value of the option at time t < T when the stock price is s.
Reasoning with the discrete time approximation and ignoring the
fact that the value in this case depends on h,

V (t− h, s) =
1

1 + rh
[p∗V (t, su) + (1− p∗)V (t, sd)]

Doing some algebra we have

V (t, s)−(1+rh)V (t−s, h) = p∗[V (t, s)−V (t, su)]+(1−p∗)[V (t, s)−V (t, sd)]

Dividing by h we have

V (t, s)− V (t− h, s)
h

− rV (t− h, s) (6.23)

= p∗
[
V (t, s)− V (t, su)

h

]
+ (1− p∗)

[
V (t, s)− V (t, sd)

h

]
Letting h→ 0 the left-hand side of (6.23) converges to

∂V

∂t
(t, s)− rV (t, s) (6.24)

Expanding V (t, s) in a power series in s

V (t, su)− V (t, s) ≈ ∂V

∂x
(t, s)(su− s) +

∂2V

∂x2
(t, s)

(su− s)2

2

V (t, sd)− V (t, s) ≈ ∂V

∂x
(t, s)(sd− s) +

∂2V

∂x2
(t, s)

(sd− s)2

2
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Using the last two equations, the right-hand side of (6.23) is

=
∂V

∂x
(t, s)s[(1− u)p∗ + (1− d)(1− p∗)]

− 1

2

∂2V

∂x2
(t, s)s2[p∗(1− u)2 + (1− p∗)(1− d)2]

From (6.19) and (6.20) the above is asymptotically

∂V

∂x
(t, s)s[−rh] +

1

2

∂2V

∂x2
(t, s)s2σ2h

Combining the last equation with (6.24) and (6.23) we have that
the value function satisfies

∂V

∂t
− rV (t, s) + rs

∂V

∂x
(t, s) +

1

2
σ2s2∂

2V

∂x2
(t, s) = 0 (6.25)

for 0 ≤ t < T with boundary condition V (T, s) = g(s).
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Appendix A

Review of Probability

Here we will review some of the basic facts usually taught in a first
course in probability, concentrating on the ones that are used more
than once in one of the six other chapters. This chapter may be
read for review or skipped and referred to later if the need arises.

A.1 Probabilities, Independence

We begin with a vague but useful definition. (Here and in what
follows, boldface indicates a word or phrase that is being defined
or explained.) The term experiment is used to refer to any process
whose outcome is not known in advance. Two simple experiments
are flip a coin, and roll a die. The sample space associated with
an experiment is the set of all possible outcomes. The sample space
is usually denoted by Ω, the capital Greek letter Omega.

Example A.1. Flip three coins. The flip of one coin has two
possible outcomes, called “Heads” and “Tails,” and denoted by H
and T . Flipping three coins leads to 23 = 8 outcomes:

HHT HTT
HHH HTH THT TTT

THH TTH

Example A.2. Roll two dice. The roll of one die has six possible
outcomes: 1, 2, 3, 4, 5, and 6. Rolling two dice leads to 62 = 36
outcomes {(m,n) : 1 ≤ m,n ≤ 6}.

259
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The goal of probability theory is to compute the probability of
various events of interest. Intuitively, an event is a statement about
the outcome of an experiment. Formally, an event is a subset of
the sample space. An example for flipping three coins is “two coins
show Heads,” or

A = {HHT,HTH, THH}

An example for rolling two dice is “the sum is 9,” or

B = {(6, 3), (5, 4), (4, 5), (3, 6)}

Events are just sets, so we can perform the usual operations of set
theory on them. For example, if Ω = {1, 2, 3, 4, 5, 6}, A = {1, 2, 3},
and B = {2, 3, 4, 5}, then the union A ∪ B = {1, 2, 3, 4, 5}, the
intersection A ∩ B = {2, 3}, and the complement of A, Ac =
{4, 5, 6}. To introduce our next definition, we need one more notion:
two events are disjoint if their intersection is the empty set, ∅. A
and B are not disjoint, but if C = {5, 6}, then A and C are disjoint.

A probability is a way of assigning numbers to events that sat-
isfies:

(i) For any event A, 0 ≤ P (A) ≤ 1.

(ii) If Ω is the sample space, then P (Ω) = 1.

(iii) For a finite or infinite sequence of disjoint events P (∪iAi) =∑
i P (Ai).

In words, the probability of a union of disjoint events is the sum
of the probabilities of the sets. We leave the index set unspecified
since it might be finite,

P (∪k
i=1Ai) =

k∑
i=1

P (Ai)

or it might be infinite, P (∪∞i=1Ai) =
∑∞

i=1 P (Ai).
In Examples A.1 and A.2, all outcomes have the same probability,

so
P (A) = |A|/|Ω|

where |B| is short for the number of points in B. For a very general
example, let Ω = {1, 2, . . . , n}; let pi ≥ 0 with

∑
i pi = 1; and define
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P (A) =
∑

i∈A pi. Two basic properties that follow immediately from
the definition of a probability are

P (A) = 1− P (Ac) (A.1)

P (B ∪ C) = P (B) + P (C)− P (B ∩ C) (A.2)

To illustrate their use consider the following:

Example A.3. Roll two dice and suppose for simplicity that they
are red and green. Let A = “at least one 4 appears,” B = “a 4
appears on the red die,” and C = “a 4 appears on the green die,”
so A = B ∪ C.

Solution 1. Ac = “neither die shows a 4,” which contains 5 ·5 = 25
outcomes so (1.1) implies P (A) = 1− 25/36 = 11/36.

Solution 2. P (B) = P (C) = 1/6 while P (B ∩ C) = P ({4, 4}) =
1/36, so (1.2) implies P (A) = 1/6 + 1/6− 1/36 = 11/36.

Conditional probability.

Suppose we are told that the event A with P (A) > 0 occurs.
Then the sample space is reduced from Ω to A and the probability
that B will occur given that A has occurred is

P (B|A) = P (B ∩ A)/P (A) (A.3)

To explain this formula, note that (i) only the part of B that lies in
A can possibly occur, and (ii) since the sample space is now A, we
have to divide by P (A) to make P (A|A) = 1. Multiplying on each
side of (A.3) by P (A) gives us the multiplication rule:

P (A ∩B) = P (A)P (B|A) (A.4)

Intuitively, we think of things occurring in two stages. First we see
if A occurs, then we see what the probability B occurs given that A
did. In many cases these two stages are visible in the problem.

Example A.4. Suppose we draw without replacement from an urn
with 6 blue balls and 4 red balls. What is the probability we will
get two blue balls? Let A = blue on the first draw, and B = blue
on the second draw. Clearly, P (A) = 6/10. After A occurs, the urn
has 5 blue balls and 4 red balls, so P (B|A) = 5/9 and it follows
from (1.4) that

P (A ∩B) = P (A)P (B|A) =
6

10
· 5
9
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To see that this is the right answer notice that if we draw two balls
without replacement and keep track of the order of the draws, then
there are 10 · 9 outcomes, while 6 · 5 of these result in two blue balls
being drawn.

The multiplication rule is useful in solving a variety of problems.
To illustrate its use we consider:

Example A.5. Suppose we roll a four-sided die then flip that num-
ber of coins. What is the probability we will get exactly one Heads?
Let B = we get exactly one Heads, and Ai = an i appears on the
first roll. Clearly, P (Ai) = 1/4 for 1 ≤ i ≤ 4. A little more thought
gives

P (B|A1) = 1/2, P (B|A2) = 2/4, P (B|A3) = 3/8, P (B|A4) = 4/16

so breaking things down according to which Ai occurs,

P (B) =
4∑

i=1

P (B ∩ Ai) =
4∑

i=1

P (Ai)P (B|Ai)

=
1

4

(
1

2
+

2

4
+

3

8
+

4

16

)
=

13

32

One can also ask the reverse question: if B occurs, what is the
most likely cause? By the definition of conditional probability and
the multiplication rule,

P (Ai|B) =
P (Ai ∩B)∑4

j=1 P (Aj ∩B)
=

P (Ai)P (B|Ai)∑4
j=1 P (Aj)P (B|Aj)

(A.5)

This little monster is called Bayes’ formula but it will not see
much action here.

Last but not least, two events A and B are said to be indepen-
dent if P (B|A) = P (B). In words, knowing that A occurs does not
change the probability that B occurs. Using the multiplication rule
this definition can be written in a more symmetric way as

P (A ∩B) = P (A) · P (B) (A.6)

Example A.6. Roll two dice and let A = “the first die is 4.”

Let B1 = “the second die is 2.” This satisfies our intuitive notion of
independence since the outcome of the first dice roll has nothing to
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do with that of the second. To check independence from (A.6), we
note that P (B1) = 1/6 while the intersection A ∩B1 = {(4, 2)} has
probability 1/36.

P (A ∩B1) =
1

36
6= 1

6
· 4

36
= P (A)P (B1)

Let B2 = “the sum of the two dice is 3.” The events A and B2 are
disjoint, so they cannot be independent:

P (A ∩B2) = 0 < P (A)P (B2)

Let B3 = “the sum of the two dice is 9.” This time the occurrence
of A enhances the probability of B3, i.e., P (B3|A) = 1/6 > 4/36 =
P (B3), so the two events are not independent. To check that this
claim using (A.6), we note that (A.4) implies

P (A ∩B3) = P (A)P (B3|A) > P (A)P (B3)

Let B4 = “the sum of the two dice is 7.” Somewhat surprisingly,
A and B4 are independent. To check this from (A.6), we note that
P (B4) = 6/36 and A ∩B4 = {(4, 3)} has probability 1/36, so

P (A ∩B3) =
1

36
=

1

6
· 6

36
= P (A)P (B3)

There are two ways of extending the definition of independence
to more than two events.

A1, . . . , An are said to be pairwise independent if for each i 6= j,
P (Ai ∩ Aj) = P (Ai)P (Aj), that is, each pair is independent.

A1, . . . , An are said to be independent if for any 1 ≤ i1 < i2 <
. . . < ik ≤ n we have

P (Ai1 ∩ . . . ∩ Aik) = P (Ai1) · · ·P (Aik)

If we flip n coins and let Ai = “the ith coin shows Heads,” then the
Ai are independent since P (Ai) = 1/2 and for any choice of indices
1 ≤ i1 < i2 < . . . < ik ≤ n we have P (Ai1 ∩ . . . ∩ Aik) = 1/2k. Our
next example shows that events can be pairwise independent but
not independent.
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Example A.7. Flip three coins. Let A = “the first and second
coins are the same,” B = “the second and third coins are the same,”
and C = “the third and first coins are the same.” Clearly P (A) =
P (B) = P (C) = 1/2. The intersection of any two of these events is

A ∩B = B ∩ C = C ∩ A = {HHH,TTT}

an event of probability 1/4. From this it follows that

P (A ∩B) =
1

4
=

1

2
· 1
2

= P (A)P (B)

i.e., A and B are independent. Similarly, B and C are independent
and C and A are independent; so A, B, and C are pairwise indepen-
dent. The three events A, B, and C are not independent, however,
since A ∩B ∩ C = {HHH,TTT} and hence

P (A ∩B ∩ C) =
1

4
6=
(

1

2

)3

= P (A)P (B)P (C)

The last example is somewhat unusual. However, the moral of the
story is that to show several events are independent, you have to
check more than just that each pair is independent.
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A.2 Random Variables, Distributions

Formally, a random variable is a real-valued function defined on
the sample space. However, in most cases the sample space is usually
not visible, so we describe the random variables by giving their
distributions. In the discrete case where the random variable can
take on a finite or countably infinite set of values this is usually done
using the probability function. That is, we give P (X = x) for
each value of x for which P (X = x) > 0.

Example A.8. Binomial distribution. If we perform an exper-
iment n times and on each trial there is a probability p of success,
then the number of successes Sn has

P (Sn = k) =

(
n

k

)
pk(1− p)n−k for k = 0, . . . , n

In words, Sn has a binomial distribution with parameters n and p,
a phrase we will abbreviate as Sn = binomial(n, p).

Example A.9. Geometric distribution. If we repeat an exper-
iment with probability p of success until a success occurs, then the
number of trials required, N , has

P (N = n) = (1− p)n−1p for n = 1, 2, . . .

In words, N has a geometric distribution with parameter p, a phrase
we will abbreviate as N = geometric(p).

Example A.10. Poisson distribution. X is said to have a Pois-
son distribution with parameter λ > 0, or X = Poisson(λ) if

P (X = k) = e−λλ
k

k!
for k = 0, 1, 2, . . .

To see that this is a probability function we recall

ex =
∞∑

k=0

xk

k!
(A.7)

so the proposed probabilities are nonnegative and sum to 1.

In many situations random variables can take any value on the
real line or in a certain subset of the real line. For concrete examples,
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consider the height or weight of a person chosen at random or the
time it takes a person to drive from Los Angeles to San Francisco.
A random variable X is said to have a continuous distribution
with density function f if for all a ≤ b we have

P (a ≤ X ≤ b) =

∫ b

a

f(x) dx (A.8)

Geometrically, P (a ≤ X ≤ b) is the area under the curve f between
a and b.

In order for P (a ≤ X ≤ b) to be nonnegative for all a and b and
for P (−∞ < X <∞) = 1 we must have

f(x) ≥ 0 and

∫ ∞

−∞
f(x) dx = 1 (A.9)

Any function f that satisfies (A.9) is said to be a density function.
We will now define three of the most important density functions.

Example A.11. The uniform distribution on (a,b).

f(x) =

{
1/(b− a) a < x < b

0 otherwise

The idea here is that we are picking a value “at random” from
(a, b). That is, values outside the interval are impossible, and all
those inside have the same probability density. Note that the last
property implies f(x) = c for a < x < b. In this case the integral is
c(b− a), so we must pick c = 1/(b− a).

Example A.12. The exponential distribution.

f(x) =

{
λe−λx x ≥ 0

0 otherwise

Here λ > 0 is a parameter. To check that this is a density function,
we note that ∫ ∞

0

λe−λx dx = −e−λx
∣∣∞
0

= 0− (−1) = 1

In a first course in probability, the next example is the star of
the show. However, it will have only a minor role here.
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Example A.13. The standard normal distribution.

f(x) = (2π)−1/2e−x2/2

Since there is no closed form expression for the antiderivative of f ,
it takes some ingenuity to check that this is a probability density.
Those details are not important here so we will ignore them.

Any random variable (discrete, continuous, or in between) has a
distribution function defined by F (x) = P (X ≤ x). If X has a
density function f(x) then

F (x) = P (−∞ < X ≤ x) =

∫ x

−∞
f(y) dy

That is, F is an antiderivative of f .
One of the reasons for computing the distribution function is

explained by the next formula. If a < b, then {X ≤ b} = {X ≤
a} ∪ {a < X ≤ b} with the two sets on the right-hand side disjoint
so

P (X ≤ b) = P (X ≤ a) + P (a < X ≤ b)

or, rearranging,

P (a < X ≤ b) = P (X ≤ b)− P (X ≤ a) = F (b)− F (a) (A.10)

The last formula is valid for any random variable. When X has
density function f , it says that∫ b

a

f(x) dx = F (b)− F (a)

i.e., the integral can be evaluated by taking the difference of the
antiderivative at the two endpoints.

To see what distribution functions look like, and to explain the
use of (A.10), we return to our examples.

Example A.14. The uniform distribution. f(x) = 1/(b − a)
for a < x < b.

F (x) =


0 x ≤ a

(x− a)/(b− a) a ≤ x ≤ b

1 x ≥ b
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To check this, note that P (a < X < b) = 1 so P (X ≤ x) = 1 when
x ≥ b and P (X ≤ x) = 0 when x ≤ a. For a ≤ x ≤ b we compute

P (X ≤ x) =

∫ x

−∞
f(y) dy =

∫ x

a

1

b− a
dy =

x− a
b− a

In the most important special case a = 0, b = 1 we have F (x) = x
for 0 ≤ x ≤ 1.

Example A.15. The exponential distribution. f(x) = λe−λx

for x ≥ 0.

F (x) =

{
0 x ≤ 0

1− e−λx x ≥ 0

The first line of the answer is easy to see. Since P (X > 0) = 1, we
have P (X ≤ x) = 0 for x ≤ 0. For x ≥ 0 we compute

P (X ≤ x) =

∫ x

0

λe−λy dy = −e−λy
∣∣x
0

= 1− e−λx

In many situations we need to know the relationship between
several random variables X1, . . . , Xn. If the Xi are discrete random
variables then this is easy, we simply give the probability function
that specifies the value of

P (X1 = x1, . . . , Xn = xn)

whenever this is positive. When the individual random variables
have continuous distributions this is described by giving the joint
density function which has the interpretation that

P ((X1, . . . , Xn) ∈ A) =

∫
· · ·
∫

A

f(x1, . . . , xn) dx1 . . . dxn

By analogy with (A.9) we must require that f(x1, . . . , xn) ≥ 0 and∫
· · ·
∫
f(x1, . . . , xn) dx1 . . . dxn = 1

Having introduced the joint distribution of n random variables,
we will for simplicity restrict our attention for the rest of the section
to n = 2, where will typically write X1 = X and X2 = Y . The first
question we will confront is: “Given the joint distribution of (X, Y ),
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how do we recover the distributions of X and Y ?” In the discrete
case this is easy. The marginal distributions of X and Y are
given by

P (X = x) =
∑

y

P (X = x, Y = y)

P (Y = y) =
∑

x

P (X = x, Y = y) (A.11)

To explain the first formula in words, if X = x, then Y will take on
some value y, so to find P (X = x) we sum the probabilities of the
disjoint events {X = x, Y = y} over all the values of y.

Formula (A.11) generalizes in a straightforward way to continu-
ous distributions: we replace the sum by an integral and the prob-
ability functions by density functions. To make the analogy more
apparent we will introduce the following:

If X and Y have joint density fX,Y (x, y) then the marginal den-
sities of X and Y are given by

fX(x) =

∫
fX,Y (x, y) dy

fY (y) =

∫
fX,Y (x, y) dx (A.12)

The verbal explanation of the first formula is similar to that of the
discrete case: if X = x, then Y will take on some value y, so to
find fX(x) we integrate the joint density fX,Y (x, y) over all possible
values of y.

Two random variables are said to be independent if for any two
sets A and B we have

P (X ∈ A, Y ∈ B) = P (X ∈ A)P (Y ∈ B) (A.13)

In the discrete case, (A.13) is equivalent to

P (X = x, Y = y) = P (X = x)P (Y = y) (A.14)

for all x and y. With our notation the condition for independence
is exactly the same in the continuous case, though in that situation
we must remember that the formula says that the joint distribution
is the product of the marginal densities. In the traditional notation,
the condition for continuous random variables is

fX,Y (x, y) = fX(x)fY (y) (A.15)
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The notions of independence extend in a straightforward way to
n random variables. Using our notation that combines the discrete
and the continuous case X1, . . . Xn are independent if

P (X1 = x1, . . . , Xn = xn) = P (X1 = x1) · · ·P (Xn = xn) (A.16)

That is, if the joint probability or probability density is the product
of the marginals. Two important consequences of independence are

Theorem A.1. If X1, . . . Xn are independent, then

E(X1 · · ·Xn) = EX1 · · ·EXn

Theorem A.2. If X1, . . . Xn are independent and n1 < . . . < nk ≤
n, then

h1(X1, . . . Xn1), h2(Xn1+1, . . . Xn2), . . . hk(Xnk−1+1, . . . Xnk
)

are independent.

In words, the second result says that functions of disjoint sets of
independent random variables are independent.

Our last topic in this section is the distribution of X + Y when
X and Y are independent. In the discrete case this is easy:

P (X + Y = z) =
∑

x

P (X = x)P (Y = z − x) (A.17)

To see the first equality, note that if the sum is z then X must take
on some value x and Y must be z−x. The first equality is valid for
any random variables. The second holds since we have supposed X
and Y are independent.

Example A.16. If X = binomial(n, p) and Y = binomial(m, p) are
independent, then X + Y = binomial(n+m, p).

Proof by direct computation.

P (X + Y = i) =
i∑

j=0

(
n

j

)
pj(1− p)n−j ·

(
m

i− j

)
pi−j(1− p)m−i+j

= pi(1− p)n+m−i

i∑
j=0

(
n

j

)
·
(

m

i− j

)
=

(
n+m

i

)
pi(1− p)n+m−i
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The last equality follows from the fact that if we pick i individuals
from a group of n boys and m girls, which can be done in

(
n+m

i

)
ways, then we must have j boys and i − j girls for some j with
0 ≤ j ≤ i.

Much easier proof. Consider a sequence of n + m independent
trials. Let X be the number of successes in the first n trials and
Y be the number of successes in the last m. By (2.13), X and Y
independent. Clearly their sum is binomial(n, p).

Formula (A.17) generalizes in the usual way to continuous dis-
tributions: regard the probabilities as density functions and replace
the sum by an integral.

P (X + Y = z) =

∫
P (X = x)P (Y = z − x) dx (A.18)

Example A.17. Let U and V be independent and uniform on (0, 1).
Compute the density function for U + V .

Solution. If U + V = x with 0 ≤ x ≤ 1, then we must have U ≤ x
so that V ≥ 0. Recalling that we must also have U ≥ 0

fU+V (x) =

∫ x

0

1 · 1 du = x when 0 ≤ x ≤ 1

If U + V = x with 1 ≤ x ≤ 2, then we must have U ≥ x− 1 so that
V ≤ 1. Recalling that we must also have U ≤ 1,

fU+V (x) =

∫ 1

x−1

1 · 1 du = 2− x when 1 ≤ x ≤ 2

Combining the two formulas we see that the density function for the
sum is triangular. It starts at 0 at 0, increases linearly with rate 1
until it reaches the value of 1 at x = 1, then it decreases linearly
back to 0 at x = 2.
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A.3 Expected Value, Moments

If X has a discrete distribution, then the expected value of h(X)
is

Eh(X) =
∑

x

h(x)P (X = x) (A.19)

When h(x) = x this reduces to EX, the expected value, or mean
of X, a quantity that is often denoted by µ or sometimes µX to
emphasize the random variable being considered. When h(x) = xk,
Eh(X) = EXk is the kth moment. When h(x) = (x− EX)2,

Eh(X) = E(X − EX)2 = EX2 − (EX)2

is called the variance of X. It is often denoted by var (X) or σ2
X .

The variance is a measure of how spread out the distribution is.
However, if X has the units of feet then the variance has units of
feet2, so the standard deviation σ(X) =

√
var (X), which has

again the units of feet, gives a better idea of the “typical” deviation
from the mean than the variance does.

Example A.18. Roll one die. P (X = x) = 1/6 for x = 1, 2, 3, 4, 5, 6
so

EX = (1 + 2 + 3 + 4 + 5 + 6) · 1
6

=
21

6
= 3

1

2
In this case the expected value is just the average of the six possible
values.

EX2 = (12 + 22 + 32 + 42 + 52 + 62) · 1
6

=
91

6

so the variance is 91/6−49/4 = 70/24. Taking the square root we see
that the standard deviation is 1.71. The three possible deviations,
in the sense of |X −EX|, are 0.5, 1.5, and 2.5 with probability 1/3
each, so 1.71 is indeed a reasonable approximation for the typical
deviation from the mean.

Example A.19. Geometric distribution. Suppose

P (N = k) = p(1− p)k−1 for k = 1, 2, . . .

Starting with the sum of the geometric series

(1− θ)−1 =
∞∑

n=0

θn
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and then differentiating twice and discarding terms that are 0, gives

(1− θ)−2 =
∞∑

n=1

nθn−1 and 2(1− θ)−3 =
∞∑

n=2

n(n− 1)θn−2

Using these with θ = 1− p, we see that

EN =
∞∑

n=1

n(1− p)n−1p = p/p2 =
1

p

EN(N − 1) =
∞∑

n=2

n(n− 1)(1− p)n−1p = 2p−3(1− p)p =
2(1− p)

p2

and hence

var (N) = EN(N − 1) + EN − (EN)2

=
2(1− p)

p2
+

p

p2
− 1

p2
=

(1− p)
p2

The definition of expected value generalizes in the usual way to
continuous random variables. We replace the probability function
by the density function and the sum by an integral

Eh(X) =

∫
h(x)fX(x) dx (A.20)

Example A.20. Uniform distribution on (a,b). SupposeX has
density function fX(x) = 1/(b − a) for a < x < b and 0 otherwise.
In this case

EX =

∫ b

a

x

b− a
dx =

b2 − a2

2(b− a)
=

(b+ a)

2

since b2− a2 = (b− a)(b+ a). Notice that (b+ a)/2 is the midpoint
of the interval and hence the natural choice for the average value of
X. A little more calculus gives

EX2 =

∫ b

a

x2

b− a
dx =

b3 − a3

3(b− a)
=
b2 + ba+ a2

3

since b3 − a3 = (b− a)(b2 + ba+ a2). Squaring our formula for EX
gives (EX)2 = (b2 + 2ab+ a2)/4, so

var (X) = (b2 − 2ab+ a2)/12 = (b− a)2/12
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Example A.21. Exponential distribution. Suppose X has den-
sity function fX(x) = λe−λx for x ≥ 0 and 0 otherwise. To compute
the expected value, we use the integration by parts formula:∫ b

a

g(x)h′(x) dx = g(x)h(x)|ba −
∫ b

a

g′(x)h(x) dx (A.21)

with g(x) = x and h′(x) = λe−λx. Since g′(x) = 1, h(x) = −e−λx

(A.21) implies

EX =

∫ ∞

0

xλe−λx dx

= −xe−λx
∣∣∞
0

+

∫ ∞

0

e−λx dx = 0 + 1/λ

where to evaluate the last integral we used
∫∞

0
λe−λx dx = 1. The

second moment is computed similarly

EX2 =

∫ ∞

0

x2 λe−λx dx

= −x2e−λx
∣∣∞
0

+

∫ ∞

0

2xe−λx dx = 0 + 2/λ2

where we have used the result for the mean to evaluate the last
integral. The variance is thus

var (X) = EX2 − (EX)2 = 1/λ2

To help explain the answers we have found in the last two exam-
ples we use

Theorem A.3. If c is a real number, then

(a) E(X + c) = EX + c (b) var (X + c) = var (X)

(c) E(cX) = cEX (d) var (cX) = c2 var (X)

Uniform distribution on (a,b). If X is uniform on [(a−b)/2, (b−
a)/2] then EX = 0 by symmetry. If c = (a+ b)/2, then Y = X + c
is uniform on [a, b], so it follows from (a) and (b) of Theorem A.3
that

EY = EX + c = (a+ b)/2 var (Y ) = var (X)

From the second formula we see that the variance of the uniform
distribution will only depend on the length of the interval. To see
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that it will be a multiple of (b − a)2 note that Z = X/(b − a) is
uniform on [−1/2, 1/2] and then use part (d) of Theorem A.3 to
conclude var (X) = (b − a)2 var (Z). Of course one needs calculus
to conclude that var (Z) = 1/12.

Exponential distribution. Changing variables x = y/λ, λ dx =
dy, ∫ ∞

0

xkλe−λx dx =
1

λk

∫ ∞

0

yke−y dy

What underlies this relationship between the moments is the fact
that if Y has an exponential(1) distribution and X = Y/λ then
X has an exponential(λ) distribution. Using Theorem A.3 now, it
follows that

EX = EY/λ and var (X) = var (Y )/λ2

Again, we have to resort to calculus to show that EY = 1 and
EY 2 = 1 but the scaling relationship tells us the dependence of the
answer on λ.

The next two results give important properties of expected value
and variance.

Theorem A.4. If X1, . . . , Xn are any random variables, then

E(X1 + · · ·+Xn) = EX1 + · · ·+ EXn

Theorem A.5. If X1, . . . , Xn are independent, then

var (X1 + · · ·+Xn) = var (X1) + · · ·+ var (Xn)

To illustrate the use of these properties we consider the

Example A.22. Binomial distribution. If we perform an exper-
iment n times and on each trial there is a probability p of success,
then the number of successes Sn has

P (Sn = k) =

(
n

k

)
pk(1− p)n−k for k = 0, . . . , n

To compute the mean and variance we begin with the case n = 1.
Writing X instead of S1 to simplify notation, we have P (X = 1) = p
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and P (X = 0) = 1− p, so

EX = p · 1 + (1− p) · 0 = p

EX2 = p · 12 + (1− p) · 02 = p

var (X) = EX2 − (EX)2 = p− p2 = p(1− p)

To compute the mean and variance of Sn, we observe that ifX1, . . . , Xn

are independent and have the same distribution as X, then X1 +
· · ·+Xn has the same distribution as Sn. Intuitively, this holds since
Xi = 1 means one success on the ith trial so the sum counts the
total number of success. Using Theorems A.4 and A.5, we have

ESn = nEX = np var (Sn) = n var (X) = np(1− p)

In some cases an alternate approach to computing the expected
value of X is useful. In the discrete case the formula is

Theorem A.6. If X ≥ 0 is integer valued then

EX =
∞∑

k=1

P (X ≥ k) (A.22)

Proof. Let 1{X≥k} denote the random variable that is 1 if X ≥ k
and 0 otherwise. It is easy to see that

X =
∞∑

k=1

1{X≥k}.

Taking expected values and noticing E1{X≥k} = P (X ≥ k) gives

EX =
∞∑

k=1

P (X ≥ k)

which proves the desired result.

The analogous result for the continuous case is:

Theorem A.7. Let X ≥ 0. Let H be a differentiable nondecreasing
function with H(0) = 0. Then

EH(X) =

∫ ∞

0

H ′(t)P (X > t) dt
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Proof. We assume H is nondecreasing only to make sure that the
integral exists. (It may be ∞.) Introducing the indicator 1{X>t}
that is 1 if X > t and 0 otherwise, we have∫ ∞

0

H ′(t)1{X>t} =

∫ X

0

H ′(t) dt = H(X)

and taking expected value gives the desired result.

Taking H(x) = xp with p > 0 we have

EXp =

∫ ∞

0

ptp−1P (X > t) dt (A.23)

When p = 1 this becomes

EX =

∫ ∞

0

P (X > t) dt (A.24)

the analogue to (A.23) in the discrete case is

EXp =
∞∑

k=1

(kp − (k − 1)p)P (X ≥ k) (A.25)

When p = 1, 2 this becomes

EX =
∞∑

k=1

P (X ≥ k) (A.26)

EX2 =
∞∑

k=1

(2k − 1)P (X ≥ k) (A.27)


