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1 Abstract

There are two fundamental ways to view coupled systems of chemical equations: as continuous, represented
by differential equations whose variables are concentrations, or as discrete, represented by stochastic processes
whose variables are numbers of molecules. Although the former is by far more common, systems with very
small numbers of molecules are important in some applications, e.g., in small biological cells or in surface
processes. In both views, most complicated systems with multiple reaction channels and multiple chemical
species cannot be solved analytically. There are ezact numerical simulation methods to simulate trajectories
of discrete, stochastic systems, methods that are rigorously equivalent to the Master Equation approach, but
they do not scale well to systems with many reaction pathways.

This paper presents the Next Reaction Method, an exact algorithm to simulate coupled chemical reactions
that is also efficient: it (a) uses only a single random number per simulation event, and (b) takes time
proportional to the logarithm of the number of reactions, not to the number of reactions itself. The Next
Reaction Method is extended to include time-dependent rate constants and non-Markov processes, and it
is applied to a sample application in biology: the lysis/lysogeny decision circuit of lambda phage. When
run on lambda, the Next Reaction Method requires approximately 1/15th as many operations as a standard
implementation of the existing methods.

2 Introduction

The process of creating a mechanistic, predictive model of a system can be broken into two steps: (a) creating
a complete description of the chemical, physical, and biological processes involved; (b) using mathematics to
generate predictions. For chemical processes, the first step is accomplished by writing a system of chemical
equations and perhaps a description of certain physical processes — temperature, volume, electric field,
diffusion, stirring, etc. In principle, (a) can be accomplished without any thought about or care for (b);
one may describe a system completely without reference to the subsequent process of calculation. In fact,
such a calculation-independent model is more fundamental than calculation-based models: the same process,
e.g., A+ B — C, occurs whether there are 20 or 10%° molecules of A and B. The mathematical problem,
(b), is very much different if there are 20 or 10?° molecules of A and B [4]. Additional mathematical
or computational assumptions may be used to simplify calculations. These assumptions are just that:
simplifying computational assumptions; they have nothing to do with the process, but rather with how one
represents that process so as to allow eflicient computation.

2.1 Mathematical descriptions of chemical processes

A coupled system of chemical reactions, of the form:
X+ Xy — X3+ ...

states that one molecules of substance X7 reacts with one of substance X5 to give one molecule of
substance X3, etc. A complicated chemical process can be decomposed into a set of many such reactions.
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(Although it is possible to write arbitrarily high order reactions, virtually all real systems can be broken up
into elementary reactions that have at most two reactants and rarely more than three products.)

One may make certain computational assumptions and proceed through to predictions. For example, one
may assume that there are sufficiently many molecules that the number of molecules can be approximated as
a continously varying quantity that varies deterministically over time. In this approach, one writes a coupled
system of differential equations for the concentration of each substance in terms of the concentrations of all
others:

d[éil] = fi([Xq], [X2],[X5]...)
d[giz] = fo([X1], [X2], [X3].-.) )

and so on. Solving these differential equations results in the concentration of each substance as a function
of time.

Sometimes, one assumes that the process in question is fast compared to the time scale of interest, and
can be considered to have reached equilibrium. In that case, one replaces the differential equation Eq. (1)
with the algebraic equations

0 = fi([Xu],[X2], [X5].-)
0 = fo([Xi],[X2], [X5]..)

and so on, whose solutions give only equilibrium concentrations, not dynamics. The assertion ‘the system
is in equilibrium’ is recognized as an assumption; it is not true in general. In fact, the very statement of
Eq. (1) was based on another assumption, namely that the number of molecules can be approximated as a
continously varying quantity that varies deterministically over time. This assumption is so fundamental to
the majority of chemical kinetics that it is frequently not even viewed as an assumption, but as a rigorous
consequence of chemical theory. Although this assumption holds for most systems one deals with, this does
not hold in very small systems (which are very important in biology).

Where does that leave us?

One may assume only that all molecules involved obey the laws of quantum mechanics; for systems
consisting of complex molecules interacting in complex ways over long times, this is completely intractable.

One may assume that quantum effects are small, and that molecules obey Newton’s laws of motion.
For very simple systems, this molecular dynamics approach has some merit; for systems with complex
macromolecules (e.g., biological proteins), long time scales, and interactions of several different molecule
types, this too becomes intractable.

Finally, one may assume that the solution is well mixed — that non-reactive collisions occur far more
often than reactive collisions — and hence that the fast dynamics of motion can be neglected, and one may
represent the system simply by the number of each kind of molecule. This approach leads rigorously to the
following statement: the probability that a certain reaction p will take place in the next instant of time di
is given by a,dt + o(dt), where a,, is independent of dt, and o(dt) denotes terms that are negligible for small
dt [7]. However, a, may depend on (a) y, (b) the current number of molecules of each kind, and (c) the
current time. (In particular, a, depends on temperature and volume, which may change with time.) The
remainder of this paper will assume the stochastic framework.

2.2 The stochastic framework[7, 15]

Consider, for example, the set of reactions:
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The propensities of the reactions are given by k1, k2, ... k5. For example, the probability that a given
molecule of A reacts with a given molecule of B in a small time d¢ is k1dt + o(dt). The ‘constants’ k; may
be a function of volume, temperature, electrolyte concentration, etc.

One way to proceed is to label each molecule of A: Ay, Aa, ... Axa, each molecule of B: By, Ba, ... Bug,
etc. Now there are (#A) x (#B) distinct copies of Reaction 1 that can occur, (#B) x (#C) distinct copies
of Reaction 2, etc. (The algorithm presented in [13] uses this approach, picks random molecules of A and
B, and sees whether they react.) Previous work on efficient simulation [11] focussed on surface processes,
where reactions may take place on a large matrix of (z,y) positions. The current work focusses on reactions
in solution, for which position is not important, and one can group by molecule type. The (#A) x (#B)
copies of Reaction 1 are thus grouped into a single reaction, whose propensity is k1 x (#A) x (#B)dt +o(dt).

The state of the system in the stochastic framework is defined by the number of molecules of each
specie and changes discretely whenever one of the reactions is executed. The probability that a certain
reaction p will take place in the next instant of time dt is given by a,dt 4+ o(dt). For example, the state
S = (#A,#B,#C,#D,#E,#F,#G) will change to §' = (#A — 1,#B — 1,#C + 1, #D,#FE, #F,#G) if

Reaction 1 is executed. The probability of this occurrance is given by:

P(S',t+ dt|S,t) = a1dt + o(dt) (3)

(Note that since the transition probability depends only on the current state and not on previous states,
the underlying process is Markov.) Grouping by molecule type allows immense improvements. Specifically,
this paper will demonstrate speedups above and beyond those in [11]. However, there are also cases in which
other kinds of groupings are even better, e.g., the case study in Section 5.2.1.

One standard way to deal with the stochastic framework is to create one probability variable for each
possible state(#A,#B, #C,#D,#E,#F,#G). Then, using Eq. (3) and the definition of the a;’s as a
function of state, one writes out a system of coupled diflerential equations that defines the system. This
coupled set of differential equations has probabilities as variables and is called a Master Equation. For a
system with very few states, such as an ion channel [2], one may write out this entire system of equations
and solve it. For larger systems, however, this approach quickly becomes unreasonable. In the example
above, suppose 0 < #A4 <9, 0 < #B <9, etc. Then there are 107 states in this simple 5-equation system.
In the Arkin et al. [1] model of lambda phage, reasonable limits on the number of each kind of molecule lead
to a number of states on the order of 107°. Ewven if this estimate is off, or a clever reduction of the number
of states is possible, say by a factor of 10°°, that still leaves 10%° states and is still untractable. Exact
stochastic simulation provides a more feasible approach.

2.3 Exact stochastic simulation

As a different way of dealing with the stochastic framework, consider the problem of generating a single
sample trajectory of a chemical process in the stochastic framework, as in Figure 1(a). The (intractable)
Master Equation approach tries to write a system of equations and solve simultaneously for the probability
of all possible trajectories. Generating a single trajectory is signficantly easier; as in Figure 1(b), one needs
to generate a sequence of state transitions and the times at which they occur. A naive way to generate legal
trajectories is to start with the initial state and repeatedly pick reactions arbitrarily and execute them, thus
generating a legal trajectory. A better way to generate trajectories is to pick reactions and times according
the the correct probability distributions so that the probability of generating a given trajectory with the
simulation algorithm is exactly the probability that would come out of the solution of the Master Equation.
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Figure 1: Example trajectory. (a) Graphical representation. Legend: A-blue, B-green, C-red, D-cyan, E-
purple, F-yellow, G-grey. (b) State representation. The ‘Reaction’ row merely indicates which reaction
occured; it is not part of the state.

Amagzingly, it is possible to create an algorithm that has this property, even if it is not possible to write
out the entire Master Equation explicitly, let alone solve it. (There are also inexact stochastic simulation
algorithms, that generate trajectories according to approximately the correct distribution. Our interest is
only in exact methods, however.)

Given the ability to generate a single trajectory with the correct probability, one may estimate any
parameter of interest by generating many trajectories, calculating the value of the parameter for each tra-
jectory, and observing the statistics of those calculated values. For example, to find the average number of
molecules of B present at time t, one can run many (say hundreds or thousands) of trajectories, and plot a
histogram of the values of the number of molecules of B at time t.

Gillespie [5, 6] developed two ezact stochastic simulation algorithms, discussed in the next section. The
tricky mathematical part of such an algorithm is specifying how to generate random numbers so that they
will have the correct distributions. The tremendous success of these exact stochastic simulation algorithms
has led to them being applied to much larger systems than was originally designed for. For example Arkin
et al. [1] used exact stochastic simulation to simulate a model of a simple virus, lambda phage, containing
75 equations in 57 chemical species. Because the original algorithms do not scale readily to large systems,
we have developed new versions that do scale well with number of reactions. (The tricky computer science
part is to develop efficient algorithms that do the right thing.)

2.4 Algorithms

Consider a system of r reactions as in Eq. (2). For now, assume that all rate constants (e.g., k1 ... ks in Eq.
(2)) are true constants; time-varying rate constants will be covered in Section 5. Gillespie [6] proposed two
exact stochastic simulation algorithms. At each time step, the system is in exactly one state. A transition
consists of executing a reaction, so there are at most r possible transitions from a given state. The key is
to choose random numbers using a computer’s random number generator, and use those to pick transitions.
One must be careful to choose from the correct distribution at each point in the algorithm.

Gillespie proposed two methods for accomplishing the simulation. The first method, which he calls the
Direct Method, calculates explicitly which reaction occurs next and when it occurs. The second method,
which he calls the First Reaction Method, generates, for each reaction i, a putative time 7,, at which reaction
e occurs, then choses the reaction p* with the smallest 7, (the first reaction) and executes reaction u* at

time T;. This section describes both of these methods.

2.5 Gillespie’s Direct Method

For a system in a given state, Gillespie’s direct algorithm asks two questions:

e Which reaction occurs next?



e When does it occur?

Clearly, both of these questions must be answered probabilistically, by specifying the probability density
P(u,7) that the next reaction is p and it occurs at time 7. It can be shown [6], that

P(u, 7)dT = a, exp —TZ a; | dr (1)
J

This leads directly to the answers of the two questions above. First, what is the probability distribution
for reactions? Integrating P(u,7) over all 7 from 0 to oo

Pr( Reaction =p ) =aqa,/ Zaj (5)

Second, what is the probability distribution for times? Summing P(g,7) over all p,

P(r)dr = Zaj €exp —TZaj dr (6)

These two distributions lead to Gillespie’s direct algorithm [6]:
Algorithm 1 Ezact Stochastic Simulation — Direct Method (Gillespie)
1. Initialize(i.e., set initial numbers of molecules, set 1 — 0.)
Calculate the propensity function, a;, for alli.
Choose p according to the distribution in Eq. (5).
Choose T according to an exponential with parameter Y, a; (as in Eg. (6)).

Change the number of molecules to reflect execution of reaction p. Sel t «— 14 7.

S N

Go to Step 2.

As written, this algorithm uses two random numbers per iteration, takes time proportional to the number
of reactions to update the a;’s, and takes time proportional to the number of reactions to calculate Zj a;
and to generate a random number according to the distribution in Eq. (5). The ideas in the rest of this
paper can be used to make the algorithm more efficient, so that the time it takes is proportional to the
logarithm of the number of reactions; that discussion is in the appendix. The rest of the paper will focus
ways of improving the First Reaction Method.

2.6 Gillespie’s First Reaction Method

The algorithm of the previous subsection is direct in the sense that it generates p and 7 directly. Gillespie
also developed the First Reaction Method [5], which generates a putative time 7; for each reaction to occur
— a time the reaction would occur if no other reaction occurred first — then lets p be the reaction whose
putative time is first, and lets T be the putative time 7,,. Formally:

Algorithm 2 (Ezact Stochastic Simulation — First Reaction Method)

1. Initialize(i.e., set initial numbers of molecules, set 1 — 0.)

2. Calculate the propensity function, a;, for alli.



For each 1, generate a pulative time, T;, according to an exponential distribution with parameler a;.
Let p be the reaction whose putalive time, T, s least.

3.

4.

5. Lel T beT,.
6. Change the number of molecules lo reflect execulion of reaction p. Sel L« t + 7.
7.

Go to Step 2.

At first glance, these two algorithms may seem very different, but they are provably equivalent [5], i.e.,
the probability distributions used to choose i and 7 are the same. We shall not repeat the proof here.

As written, this algorithm uses 7 random numbers per iteration (where r is the number of reactions),
takes time proportional to r to update the a;’s, and takes takes time proportional to 7 to identify the smallest
Ty

2.7 Organization

The remainder of this paper presents a modified version of the First Reaction Method, which we call the
Next Reaction Method, that is more efficient both in terms of number of operations and number of random
numbers used. Section 5 shows how to extend the Next Reaction Method to time-dependent stochastic
processes. The extended algorithm is applied to the Arkin et al. [1] model of lambda phage in Section 6.

3 The Next Reaction Method

Gillespie’s First Reaction Method has three activities that occur every iteration and take time proportional
to the number of reactions, r:

1. updating all r of the a;’s,
2. generating a putative time, 7;, for each ¢, and

3. identifying the smallest putative time, 7.
The Next Reaction Method will do away with each of these in turn. The main ideas used are:
e Store T;, not just a;.

e Be extremely sensilive in recalculating a; (and 7;); recalculate a; only if it changes. The preceeding
statement may seem circular: how can one know that a; has changed or not changed without calculating
it and comparing to its old value? In fact, one can analyze the set of reactions beforehand and determine
which reactions change which a;’s. Section 4.1 will introduce a data structure, called a dependency
graph, which allows one to update the minimum number of a;’s.

e Reuse 7;’s where appropriate. Theorem 1 in Section 4.3 plus two simple transformations make it
possible to reuse all 7;’s except for 7, the time of the reaction that was just executed.

o Switch from relalive time (lime belween reactions) to absolute time. This will obviate the need for
one of the two transformations above; for reactions whose underlying a; has not changed, the putative
time 7; will not have to change, either.

e Use appropriate dala structures to store a;’s (and 7;’s), so that updatling those thal change will be a
very efficient operation. Section 4.2 shows a data structure, called an indexed priority queue, that
achieves this goal.

The formal statement of the algorithm is:

Algorithm 3 (Ezact Stochastic Simulation — Nexl Reaction Method)
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1. Initialize:

(a) Set initial numbers of molecules, set t «— 0, generate a dependency graph G.
(b) Calculate the propensity function, a;, for all i.

(c) For each i, generale a pulative time, T;, according to an exponential distribution wilth parameter
Q.

(d) Store the T; values in an indezed priorily queve P.

2. Let i be the reaction whose putative time, T, stored in P, is least.

3. Let T beT,.

4. Change the number of molecules to reflect execulion of reaction p. Sel t «— T.
373

. For each edge (i, @) in the dependency graph G,

(a) Updale a,,.

(b) If a # p, set 7o — (aa,old/aa,new)(Ta - t) +1
(c) If o = p, generate a random nwmber, p, according to an exponential distribution with parameter
ay, and set 7o «+— p+1

(d) Replace the old T, value in P with the new value.
6. Go to Step 2.

Consider the time used by the algorithm. Step 1 of the Next Reaction Method is only executed once;
Steps 2-6 are executed once for each simulation event. Steps 3, 4, and 6 do not depend on the number of
reactions, 7. Step 2 does not either, because of the properties of indexed priority queues. Step 5 is executed
once for every edge (14, ) in G; suppose there are k such edges, where k is typically much less than r. Step
5a, executed & times, depends on the number of reactants for each (elementary) reaction, so it should take no
more than 3 multiplications (as was explained in the introduction). Step 5b, executed & — 1 times, requires
an addition, a subtraction, a multiplication and a division. Step 5c¢, executed 1 time, requires a call to the
random number generator, which can be very slow compared to the other operations discussed (a simple
test on our system indicates that a single call to the random number generator takes 10 times as long as a
division). Step 5d, executed k times, requires at most 2log(r) operations, although it may effectively take
far fewer (see the discussion in Section 4.2). (Throughout this paper, log means logarithm base 2, as per
the typical computer science usage.)

The total number of operations per iteration is at most ¢z 345406 + csp(k — 1) + 5. + c5q(k)(2log(r)),
where each ¢ is a machine specific constant. From a computer science perspective, this is O(log(r)), i.e.,
for very large r, only the last term will matter. From a more practical perspective, for r of 50 or 100, the
other terms, particularly cs., may not be negligible. Let us be very clear on this point: the Next Reaction
Method words even if k is large, but will achieve more of a speedup if & is small, relative to the number of
reactions. (An equivalent way of saying the same thing is ‘if the dependency graph is sparse.’)

Lukkien et al. [11] discuss ways to improve the Direct Method and the First Reaction Method. Their
improved First Reaction Method, which we shall call the Absolute Time First Reaction Method, consists
of switching from relative to absolute times and using a standard priority queue. .They conclude that for
time-invariant processes, the Direct Method is preferable to the Absolute Time First Reaction Method for
two reasons, which do not apply to the Next Reaction Method. First, in their domain it is difficult to do
the indexing necessary to implement the efficient update algorithm (Algorithm 4 of Section 4.2). Second,
the Absolute Time First Reaction Method generates too many random numbers. Since typical computer
pseudo-random number generators cycle with some regularity, using too many random numbers will quickly
exhaust the abilities of the generator, and should be avoided with extreme prejudice. (Also, from a purely
practical standpoint, generating random numbers is relatively slow.)

Amagzingly, the Next Reaction Method uses just a single random number per iteration. Clearly, the
optimum would be ezactly one random number per iteration. Our algorithm is slightly sub-optimal, in that
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Reaction a, DependsOn( a,, ) | Affects( 1)
A+B S0 |k x (#4) x (#B) A B A, B, C
B+C 25D | kyx (#B) x (#0) B, C B,C,D

D+E L B4 F | ks x (#D) x (#E) D, E D, F
F* piq ky X (#F) F D, F, G
E+G 25 A | ks x (#E) x (#G) E, G AE, G

Table 1: Example reactions used in the text.

the initialization step will generate an extra r random numbers, and at the end of the algorithm, » random
numbers will be left over. As the number of iterations increases, this initialization effect becomes negligible
in comparison. The only new random number generated, 7,, corresponds to the reaction that was just
executed and is generated in Step 5c. It is clear that reaction p requires a new random number, since the
value of the old random number has been used explicitly, thus reducing it to a sure variable. Section 4.3
will show that it is correct to do the other manipulations in 5, so as not to regenerate any other random
numbers.
For this reason we assert that the Next Reaction Method is superior to the Direct Method.

4 Details of the Next Reaction Method

This section presents the details of the Next Reaction Method. First, how to implement the Next Reaction
Method: Section 4.1 explains the dependency graph data structure, which tells exactly which propensities
need to be updated in Step 5 of the Next Reaction Method, and Section 4.2 explains the indexed priority
queue data structure used in Steps 2 and 5. Second, why the algorithm is correct: Section 4.3 shows it is
correct to re-use random numbers in Step 5.

4.1 Dependency Graphs

Consider, once again, the reactions in Eq. (2).

Definition 1 Lel Reactants( p ) and Products( p ) be the sets of reactants and products, respectively, of
reaction p. So, for example, Reactants( Reaction 1 ) = {A, B} and Products( Reaction 1 ) = {C}.

Definition 2 Let DependsOn( a, ) be the set of substances which affect the value a,,.

Evidently, Reactants( p ) = DependsOn( a, ). It is sometimes useful to add additional dependencies
(e.g., in the lambda model of Section 6.1), so we make this distinction.

Definition 3 Let Affects( u ) be the sel of substances that change quantity when reaction u is execuled.

Typically, Affects( p ) = Reactants( p ) U Products( p ), but again, there may be exceptions (e.g.
catalytic reactions, such as Reaction 3).
Table 1 illustrates each of these concepts.

Definition 4 (Dependency Graph) Let a set of reactions R be given. Let G(V, E) be a directed graph
with vertex set V' = R, and with a directed edge from v; to v; if and only if Affects( v; ) N DependsOn( a,; )#
(. (If for some strange reason, the self edges from v; to v; are not included in this definition, include them
as well.) Then G is called the dependency graph of the set of reactions R.

The dependency graph of the sample reactions is illustrated in Figure 2a.

In other words, a dependency graph is a data structure which tells precisely which a;’s to change when a
given reaction is executed. Using the dependency graph allows one to recalculate only the minimum number
of a;’s in Step 5 of the Next Reaction Method.



Figure 2: Dependency graphs for: (a) Example equations from Table 1, (b) lambda model (Table 2). For
simplicity, self-edges are not shown in (b). The star at the bottom right of (b) indicates a set of reactions
that are present in the complete model, but are not described in this paper.
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Figure 3: Example indexed priority queue. Top: tree structure. The positions in the tree structure are
labeled with letters A—J for pedigogical purposes. Bottom: Index structure. Each number has a pointer to
the corresponding position in the tree structure; these pointers are illustrated as letters A—J.

4.2 Indexed Priority Queues

Typically, the dependency graph is sparse, i.e., that the number of edges from a given vertex is small. It is
important to have data structures that are very efficient at handling a small number of updates.

The Next Reaction Method deals with two kinds of variables, 7;’s and a;’s. The latter are easy to handle:
the operations required are READ and UPDATE; they can be stored in a simple array. (A purist might not
even store them, but rather recalculate them as needed.) The 7,’s require the operations: FIND_MINIMUM
(in Step 2) and UPDATE (in Step 5d). The former is one of the operations of a priority queue (which is
often implemented as a heap), and with a little thought, the other can be implemented in terms of the
standard priority queue algorithms ADD_ELEMENT and DELETE_ELEMENT [3]. However, the standard
algorithms, although used in some contexts for this speedup [11], are not really what is called for in this
context. A better UPDATE, which takes into account the structure of the data, requires an indexing scheme
and a separate UPDATE algorithm.

Definition 5 An indexed priority queue consists of (a) a tree structure of ordered pairs of the form (i,7;),
where i is the number of a reaction, and T, is the pulative lime when reaction ¢ occurs, and (b) an index
structure whose i-th element is a pointer to the position in the tree thal contains (i,7;). The tree structure
in (a) has the property thal each parent has a lower 7; than either of ils children.

Figure 3 shows an example priority queue. Note the following: a) finding the minimum element takes
constant time — it is always in the top node, b) the ordering is only vertical, not horizontal, ¢) the number
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of nodes is precisely the number of reactions 7, not twice the number of reactions as in the efficient version
of the Direct Method in the appendix, d) because of the indexing scheme, it is possible to find any arbitrary
reaction in constant time, and e) 73 = oo, which corresponds to reaction 3 never occuring, i.e., a3 =0. In
fact, oo is a perfectly legitimate floating point number, so it is possible to implement this feature (in C, for
example) without any major headaches.

There are several algorithms that need to be defined in order to use the priority queue. Most of them
are analogous to algorithms for priority queues. In particular, one needs:

e SWAP(], j), which swaps the tree nodes i and j and updates the indez structure appropriately,

e BUILD, which takes a tree and an index structure and moves entries until the tree has the property
that each parent is less than its children,

e UPDATE(r), which updates a given reaction number.

SWARP is easy to implement. BUILD is completely analogous to the standard heap/priority queue
BUILD operation, but uses SWAP so as to keep the index structure correct. UPDATE is non-standard and
deserves comment.

Algorithm 4 UPDATE(node n, value new_value)
Change value of n to new_value
UPDATE.AUX( n )

Algorithm 5 UPDATE_AUX(node n)

If value(n) < value( parent(n ) )
SWAP n and parent( n )
Update_oux( parent( n ) )

FElse If value( n ) > minimum value( children( n ) )
SWAP n and minimum child( n )
Update_ouz( minimum child(n ) )

Else
Return

An example is called for.

Example 1 Suppose the value of 71 changes from 4.2 to 16. Looking in the index array, 71 is stored in
node B. In the tree structure, one changes node B’s T value to 16. Calling UPDATE_AUX on node B, one
executes the ‘Else If’ statement and swaps the ordered pairs in nodes B and E and the corresponding indices
(1 and 4) in the array. Calling UPDATE_AUX recursively on node F, one notes thal the new value of 16 is
in the correct position (5.5 < 16 < o0), so the final ‘Else’ clause is executed, and the algorithm stops with:
ordered pair (4, 5.5) in node B, (1, 16) in node E, index ‘E’ in position 1 of the array, and index ‘B’ at
position 4. The rest of the structure remains unchanged.

The converse case, where the new value is less than the old value, is completely analogous.

One way to implement UPDATE is simply to delete the offending node, and insert a new node with
the same reaction number but a different time value. This takes something like 2logr operations. Our
approach, on the other hand, changes the node in place, then bubbles it up or down the tree structure until
the priority property is re-established. This evidently takes logr, but has the advantage that if there are
a small number of reactions that have fast rate constants compared to the others, say there are r’ such
reactions, most of the updates will involve those, and take logr’ time, because once the algorithm reaches
a node that is already in the right spot, it does not continue further. So, for example, if some of the
reactions are “disabled” or “not possible” in the given state, and have ¢« = 0 and 7 = oo, they will not
slow down the computation. This effect can be significant, for example, the chemotaxis system of [13]
contains a large number of reactions which will not be “active” at any given time. Because of these inactive
reactions, [13] avoided the standard Gillespie algorithm (i.e., the Direct Method), which grows with the
number of reactions, and instead developed one that is not exact, but scales with number of molecules, since
the number of molecules is much less than the number of possible reactions. Note that our algorithm is not
only exact, but also scales with the logarithm of the number of “active” reactions. The Application section
(Section 6) gives some performance numbers.
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4.3 Reusing 7;’s

This section will demonstrate that the Next Reaction Method, with its switch from relative to absolute
times and all of the strangeness in Step 5, is equivalent to the First Reaction Method. This demonstration,
necessary to show that the algorithm works and why it works, is somewhat more mathematical than the
rest of the paper. The reader whose primary interest is implementing the Next Reaction Method may skip
ahead with impunity.

In what follows, T; will denote the random variable corresponding to the i-th reaction, and 7;, a number,
will denote a sample from that random variable.

One of the differences between the First Reaction Method and the Next Reaction Method is that the
former uses relative times, while the latter uses absolute times. This should not be a stumbling block or
a source of confusion. Suppose that during the n-th iteration of the First Reaction Method, the random
variables are denoted R, for 1 < a < (number of reactions). Then R, =Fxp(a,,), and the density of R, is
given by Pr_(7) = 0(7)a, exp(—as7). (0(7), the Heaviside function, is O for 7/ < 0 and 1 for 7/ > 0.) The
corresponding absolute time is given by the random variable T, = R,, +t,, the sum of the relative time and
the variable ¢ during the n-th iteration. (The n-th iteration ends, and the n + 1-st begins, when ¢ is updated
in Step 5.) What is the density of T,,7 By the random variable transformation (RVT) theorem [8],

Pr (r)= /00 Pr (TYo(T — [T + t,))dr’ = Pr (T — tn) = 0(T — t3)an exp(—an (T — 1)),

or, equivalently,

Pr(T) > u) = {exp(—aam(u —tn)) ifu>t, .

1 otherwise

Clearly, an absolute-time version of the First Reaction Method with no other changes would be entirely
equivalent to the original relative-time version.

Now we turn our attention to the Next Reaction Method. After Step 1, the random variables follow the
distribution in Eq. (7); {p was set to 0 in Step la. The real core of the Next Reaction Method is that each
subsequent iteration maintains Eq. (7).

At the risk of being overly mathematical, we state the key property that allows the Next Reaction Method
as a theorem:

Theorem 1 Assume that Eq 7 holds al the beginning of Step 2. Then, before Step 5 of the n-th ileration,
for all i # p, 7; is distributed according to

Pr(T} > u) = exp(—ain(u —tni1)) ifu>thi .
l otherwise

Proof. By assumption, before Step 2 of the n-th iteration, 7; is distributed according to Eq. (7). Steps
2 and 3 identify the least 7, namely 7,. The act of identification reduces uncertainty. In particular, 1),
becomes the sure variable 7,,, and all of the other 7;’s must be larger than 7,. Hence each of the other 7;’s is
distributed according to Pr(7; > u|T; > 7,). By definition, this is Pr((7; > u) AND (T; > 7,,))/ Pr(T; > 7,).
There are two cases. Case 1) for u > 7, the numerator simplifies to Pr(7; > u), and the resulting division is
exp(—a;in(u—1,))/ exp(—a;n (T, —tr)) = exp(—a;n(u—7,)). Case2)u < 7,, and the numerator simplifies
to Pr(7; > 7,). In this case, the numerator cancels the denominator, leaving 1. In Step 4, {41 is set to T
(which was set to 7, in Step 3), so the theorem holds.

Showing that Eq. (7) is maintained is just a matter of collecting the details:

e For those ¢ # 1 whose a; remains constant from the n-th to n + 1-st iteration, a; n+1 = @in, so Eq.
(8) is equivalent to Eq. (7). There is no need to change these 7;’s in Step 5. In fact, reactions whose
a; does not change are not in the dependency graph, so the 7,’s are not changed.
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e Tor those ¢ # u whose a; does change, 7; is now distributed according to Eq. (8). Simply plugging in to
the RVT theorem shows that the random variable T}, constructed by 7} = (@i n/ @i nt1)(Ti—tnt1)Hlnt1,
is distributed according to Eq. (7).

What is the intuition behind this transformation? By the theorem, 7; is distributed according to Eq.
(8). Going back to relative times, 7; — {41 is distributed according to Exp(a; »). It can be shown (by
the RVT, for example) that (ain/@ n+1)Exp(a;n)=Exp(a; n+1). Returning to absolute times gives
the transformation.

This transformation is applied to all the appropriate i’s in Step 5b.

e Finally, for ¢ = p, it is necessary to generate a new random number. Note that the theorem only
holds for ¢ # u. For i = y the variable T}, was reduced to a sure variable in Step 3, so a new random
variable is needed. That new value is supplied in Step 5c.

One key point has been overlooked thus far: the First Reaction Method requires statistically independent
random numbers. To complete the correctness argument amounts to showing that the manipulations done
by the Next Reaction Method do not introduce any statistical dependencies.

At each step in the algorithm T; = f;(R;); each random variable in the Next Reaction Method is a
transformed version of the corresponding random variable in the First Reaction Method, and there are no
cross dependencies. By the RV'T theorem,

Pry oy (T1,...TN) = / / {Hem exp( am}ljj — fi(r;))dry - dry
- H{ [t expicanys (- £}

1=1

The “product form” of this joint distribution function tells us that since the original variables R; were
statistically independent, then the transformed variables T; are as well.

In summary, Step 1 sets up the T; according to Eq. (7). FEach subsequent iteration maintains that
distribution, without introducing any statistical dependencies between the random variables. Thus the
Next Reaction Method is equivalent to the First Reaction Method, and in turn to the Direct Method and
the Master Equation approach.

5 Extension: Time Dependent and non-Markov Processes

The two approaches for efficient calculation of trajectories of chemical reactions in the stochastic framework
presented thus far assume that the probability of a reaction p occurring in a little bit of time d¢ (a) is given
by a, x dt, where a,, is a constant, and (b) depends only on the current state, not on the previous state or
states of the system. It can be shown [7] that many reasonable chemical systems have these properties.

This section will show how to deal with systems in which (a) and (b) do not hold. In particular,
it first relaxes assumption (a) by letting a, be a function time (as is necessary to model systems whose
rate “constants” change, due to changing temperature, volume, etc.), and second it relaxes assumption
(b), showing how to deal with non-Markov processes. Even though elementary reactions in the stochastic
framework are Markov (i.e., have property (b) ), it is sometimes useful to group consecutive steps to form a
composite process. The full model of that process is, of course, still Markov, but if one is only interested in
a subset of the variables, the resulting mathematical process is not guaranteed to be Markov.

5.1 Markov processes

Consider a system in which the probability of a reaction p occurring in a little bit of time dt is given by
a, X dt, but a, is a function of téime. For now, assume that the transition probabilities do not depend on
history, but only on the current state. For example, in Table 1, the first reaction has a; =ky x (#A4) x (#B).
The rate constant k; is a function of temperature and of volume. In an engineering system, one typically
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affects the rate constants by heating or cooling the reaction. In a biological system, cell growth changes the
volume. Either of these mechanisms, or others, might change rate constants as a function of time, which
requires a modification to the algorithms presented.

In place of the simple exponential distribution, the putative times are distributed [8] according to

P,(7]S,t,) = a,(S,T)exp <— /t: a, (S, t)dt) (9)

Notice two things: first, it is not easy in general to find a closed form solution of Eq. (9) for arbitrary
functions of time «a,,, and second, for non-constant a,, the resulting answer will not be a simple exponential
distribution, and hence will not have the temporal homogeneity property that Pr(T; > u|T; > 7,) = Pr(T; >
u—T7,). As a consequence of the latter, it will not, in general, be possible to let £y = 0, so absolute times
should be used.

5.1.1 How to do it: Next Reaction Method, Markov processes

To extend the Next Reaction Method to arbitrary Markov processes, one simply changes Step 3 to generate
T; according to the new process. This has two advantages over the time variant version of the Direct Method
in the appendix:

e Since one considers each reaction separately, the computation is easier, and may be analytically solvable
for some processes (e.g. in the example of the next section). The Direct Method, which considers all
reactions at once, involves a sum within the integral in Eq. (9); the exact form is given in the appendix.

e Conditioning. Since the Next Reaction Method stores 7;’s and not just a;’s, it does not have to
recondition on each iteration. Specifically, after executing reaction p it does not need to re-generate
7; according to Pr(T; > u|T; > 7,): the fact that the algorithm chose to execute reaction p implies
T; > 7. Therefore T; is already distributed according to the correct distribution, for all ¢ # 1 whose
a; has not changed.

We now show an example of how to generalize the Next Reaction Method for time varying Markov
processes, then consider the problem of re-using random numbers with the generalization.

5.1.2 Example: changing volume

Reaction 1 in Table 2 has propensity k x (#A) x (#B). TFor second order reactions, such as this one, the
k term depends on the volume, and should be replaced with &'/V (¢), where V() is the volume and &' is
independent of volume. This leads to the propensity a’/V (1), where o’ = k' x (#A) x (#B) is a constant
independent of volume (and hence time). For simple V(¢), Eq. (9) can be solved analytically, for example,
in Arkin et al., the volume is modeled as increasing linearly. Thus V (£) = Vb + ¢, which leads (by a simple
integration) to the distribution

a' (V(to) +ct) @71

P(t|t0) = V(to)fa’/c

(10)

Note also that in the limit as ¢ goes to zero, this distribution reduces to an exponential with parameter
a'/Vp, as expected.

It is a straightforward operation to generate random numbers according to this distribution, using the
inversion generating method [8, 10]: one calculates the cumulative distribution function F' (a simple integral
of P), takes a sample U from a uniform random number generator, and the variable /~1(U) has the correct
distribution. For the preceeding example, the variable R = V (to)[U~¢/ ' _ 1]/¢ is distributed according to
Eq. (10).
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5.1.3 Generating fewer random numbers

It was remarkably simple in the time-independent, exponential case to reuse the same random numbers.
The extension is somewhat more difficult. The method presented here works for reusing random variables
generated by the inversion generating method. Of course, not every random variable is generated that way,
and in practice it may be hard to reuse other random numbers.

Theorem 2 Lel 7 be a random number generaled according to an arbitrary distribulion with parameter a,
and distribution F, ,. Suppose the current simulation time is t,, and the new parameter (after the update
in Step 2) is any1. Then the transformation 7/ = F;71L+1([Fa7n(7') — Fon(tn)]/[1 — Fon(ts)]) generates a
new random variable from the correct (new) distribution.

The proof of this theorem is in Appendix 8.1. Here are some examples:

Example 2 For exponentials,

Fyn(u)=Pr(T, <u)=

1 —exp(—an(u—1tn_1)) ifu>ty_1
0 otherwise

and

FoU) = —In(l=U)/ap+1n—1 #fO0LSUL]
| undefined otherwise

Fo:vlL—&-l([Fa,n(T) - Fa,n(tn)]/[l - Fa,n(tn)])
_ -1 In(1 — [1 —exp(—an (T —tn_1))] — [1 — exp(—an(tn — tn_1))]
Gt 1—[1 —exp(—an(ty, —th-1))]

= (@n/ana)(T —tn) +1n

)+t

This is the transformation used by the Next Reaction Method.

Example 3 The previous section considered a process with V() =V (1) +c(t —tn_1),

Fon(u)=1- <%>an/c

and
Fya(U) = V(tn 0)[(1=U) " —1)fc+tns

By the theorem, one can reuse random numbers by the transformation

T = P ([Fan(n) = Fan(ta)l/[1 = Fon(ta)])

<1_< V(T) )an/c> _ <1_< V(tn) )an/c> 7C/QN+1
_ V(tn) 1 B V(tnfl) V(tnfl)

Vit —an/c
V(tnfl)

Vir Gn/anN+1

< (1) ) .
Vi(tn)

In some cases, as in the examples above, it is possible to calculate a closed form solution of the equations

that is relatively simple, so this method is practical. In general, it may not be at all practical, and it may
be easier to generate fresh random numbers.

— 1| +t,

Vita)

+tn
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Figure 4: Procedures, f, for generating random numbers. (a) A Markov process, in which no history is
stored. (b) A non-Markov process, which requires storing history.

5.2 Non-Markov processes

Even though elementary reactions are Markov (i.e., do not depend on history) in the stochastic framework,
it is sometimes useful to deal with non-Markov.processes. For example, one may model a system using a
certain set of variables for which the system is Markov, or one may use a smaller set for which the system is
not. Provided the simulation algorithm still works for non-Markov processes, a smaller number of variables
may be significantly faster to simulate.

For Markov processes, one generates 7; directly from the state and the time, as in Figure 4a. For
example, in the time independent case, the value a; is calculated from the state, and 7; is the sum of ¢ and
a random variable with exponential distribution and parameter a;. Notice that 1) f; is a random function,
i.e., calling it multiple times with the same parameters will give multiple answers, and 2) f; is a function
in the mathematical usage (or in the computer science sense of functional programming), i.e., it does not
contain any internal state. For non-Markov processes, as in Figure 4b, the distribution of 7; depends on
the history of (possibly all) states of the system from the initial time to the present. Hence one must use
a procedure (in the computer science sense of procedural programming), which can store previous values of
the system state and time.

In general, non-Markov processes are very difficult to deal with [8]. The distribution of next states, or
of transition times to the next state, may depend on the entire history of the system. Fortunately, the sort
of non-Markov processes that occur in chemical reaction simulations have some nice properties that make
them easier to deal with. First, the complete history of the system is uniquely determined by the series of
discrete transitions and transition times. Given the transitions and transition times, the state at any time ¢
is the same as the state at the last transition before . This is an enormous simplification: since continuous
transitions are not possible, one can hope to store the entire state history. Second, one may not even need
the entire history. For any given reaction p, one only needs to store that fraction of the history that affects
(in the dependency graph sense) the reaction p. TFor systems with many reactions, that leads to another
significant reduction in the amount of storage.

For arbitrary non-Markov chemical reaction models, even this reduction in storage may not be enough.
It may be very difficult to generate 7; given the appropriate subset of history. In that case, it may be
preferable to include the full gamut of variables so as to make the system Markov. In those special cases
where it is possible to generate 7;, one may achieve a substantial performance improvement. An example
follows.

5.2.1 Example: Gamma Distribution

Consider the set of equations:
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Figure 5: Ways of splitting reactions. (a) By state, (b) by molecule.
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Systems of equations very much like this comes up in the Arkin et al. [1] model of lambda phage, both
for transcription and for translation. Physically, this means that at some time a molecule of type Sy is
produced, it undergoes an n-step process, and then the resulting molecule, S,,, affects the rest of the system.

The first and last equations are different, but all the n intervening equations are identical. Assuming
time-independence (as is the case in the model; first order reactions are not affected by change in volume)
one may solve these n equations analytically. Rather than n exponentials, the combined waiting time is a
gamma distribution. Specifically, consider a single molecule of Sy, produced at tg, with no other molecules
of Sg produced. Then:

Pr (one molecule of S, is produced at ¢ | one molecule of Sy, %)

This is simply a gamma distribution, and there are efficient ways to generate random numbers according
to this distribution.

Now consider several molecules undergoing this process. This composite system can be described by
ordered pairs of the form (molecule identity, state). There are to ways to simplify this: grouping by state
and grouping by molecule identity. Thus far, the grouping has always by state, i.e., the number of molecules
in state Sy, the number in state molecules of S, etc.

For the context in which this problem occurs, with many more states than molecules, one achieves a
smaller system by grouping by molecule identity; by Eq. (11), one can simplify the n-step exponential
process into a 1-step gamma process, thus the number of processes to consider is equal to the number of
distinct molecules, much less than the number of states. (Note that this is possible because the reactions
involved are first order.) These two possibilities are schematized in Figure 5.

The procedure f; is as follows: rather than store state and time directly, f; will keep a list L of processed
values 7. Every time a new molecule of Sy is produced, f; generates a 7’ value for it according to Eq. (11)
and adds that value to L. The value of 7} that f; returns is simply the minimum of the 7 values in L.
(The astute reader will note that the operations required on L are insert, delete and minimum, so one could
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RNAPfce+DNA free 2 RNAPODNA pen, 0

RNAPeDNA ,en n ERNAPODNAOPem ntl forn=0...DMAX —1
RNAPeDNAgpen, DMAX ~ —SRNAPf e+ DNA free+RNAfrece

RNase+RNA{ e 4 RNase

Ribosome+RNAg e ﬂRibosomeoRNAo

RibosomeeRNA ﬁ>RibosomeoRNAn+1 forn=0...RMAX —1
RibosomeeRNARMAX LRibosomefree—l—RNAfree—l—protein

protein LT protein

protein+protein gproteinoprotein

proteineprotein ﬂ>pr0‘cein—|—pro‘cein

Table 2: Reactions involved in gene expression. In all cases, ‘free’ means ‘in solution’, i.e., not bound, and
‘MAX’ is the transcription length or translation length, depending on context. The notation A @ B means
“A is bound to B.” In particular, “protein e protein” is the dimer form of a given protein, typically written
as “proteiny.”

implement L as a priority queue. This implementation of L as a priority queue should not be confused with
the indexed priority queue in Section 4.2.)

In the the current context, the transcription or translation lengths, and hence the n values, may be in
the hundreds or even thousands, so this enhancement achieves quite a speedup (see Section 6).

6 Application

The Arkin et al. [1] model of the bacteriophage lambda provides a good, large, test case for the scalability
of stochastic simulation algorithms. The details of the model can be found in the original paper; this paper
shall just sketch out the model and focus on how the algorithmic improvements above apply to it.

6.1 The Model

The model consists of the complete set of equations governing the regulation of five genes in the temperate
bacteriophage lambda. The key reactions are summarized in Table 2. The model considers five genes, N, cro,
cl, ¢, and cIIl, and their protein products. There are five sets of equations similar to the ones in Table 2.
Two of the five genes have protein products that dimerize, i.e., can exist as a proteing form, as in Table 2,
Egs. (9) and (10). The other three proteins exist only as monomers, so Egs. (9) and (10) do not apply to
those proteins.

The key phenominon in gene regulation is that the expression of certain genes regulates the expression of
other genes: the “constants” k; in the equations may depend in some way on the number of proteins present.
This is the sort of extra dependency that was alluded to in the definition of DependsOn( a, ). For the
lambda model in particular, the k;’s can be calculated from the concentrations of the various proteins using
a straight-forward equilbrium thermodynamics model. See [1] or [14] for a complete description of how to
calculate the k1 values.

In addition to the equations shown, Arkin et al. provide a more detailed model of degradation for two of
the proteins and also a more detailed model of transcriptional termination. Also, these reactions take place
in a growing F. coli host cell, so they model the volume increase over time as well (see the discussion in
Section 5.1.2).

The dependency graph of these reactions is shown in Figure 2b.

6.2 Results

Table 3a shows performance data for the Next Reaction Method, with all the enhancements of Section 5, on
the (full) Arkin et al. model. Note that the average out-degree — the average number of edges from a given
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Reactions 78
Average Out-Degree 4.2
Trajectories Generated 500 Gamma Reactions 21
Simulation Events 35,000,000 Equivalent Elementary Reactions 10,000
Updates 206,000,000 Gamma Simulation Events 380,000
Operations 760,000,000 Equivalent Elementary Fvents 99,000,000
Operations/Event 22
Operations/Update 3.7

(a) (b)

Table 3: Performance data for simulation. a) General information:. Average out-degree = (number of out-
edges in dependency graph)/(number of vertices in dependency graph), Updates = number of executions of
Step 5. b) Information about the gamma distribution enhancement.

vertex in the dependency graph — is significantly lower than the number of reactions, so the dependency
graph is sparse, as mentioned in 4.1. Five hundred trajectories were generated for the condition ‘1 phage
per cell;” each required about 70,000 simulation events.

Based on the number of simulation events and the average out degree, one would expect 150 million
updates — one update per out edge per simulation event. The actual number is substantially higher at 206
million. This comes about because certain reactions are executed much more often than others. Under
the conditions used (one phage per host cell), the two most frequent reactions constitute nearly 90% of all
simulation events. Both of these most-frequent reactions have out-degree 6, which explains why the number
of updates per simulation event is approximately 6, not 4.2 as would be expected.

Which reactions are executed most often? By definition, those reactions with high propensities are more
likely to be executed. Unfortunately, since propensity is a function of rate constant and of state, it is very
difficult to calculate which reactions will occur most frequently without just running the whole simulation.
(For example, by changing the conditions to ‘six phages per host cell,” with all the same rate constants,
two additional reactions occur with approximately the same frequency as the original two. Under these
conditions, these four most likely reactions are responsible 95% of the the total of 180 million simulation
events.) It is not obvious whether there is a way to identify such reactions and deal with them separately
(e.g., by separation of time scales) withoul affecting the resulls.

Fortunately, as Figure 6b shows, the optimizations mentioned have the effect that the most frequently
executed reactions are also the most efficient. Note that each time a reaction is executed and a new 7; has
to bubble down, at least two comparison operations are required - namely comparing with the left and right
children. (Bubbling up only requires a single comparison.) The fact that the most frequently executed
reactions have efficiencies around 3 and the overall total is 3.7 means that the updated 7;’s do not typically
move very far from their original positions in the indexed priority queue, as mentioned in Section 4.2.

Also notice that by re-using random numbers, the number of calls to the pseudo random number generator
is approximately equal to the number of simulation events, not to the number of updates. This decreases
the number of random number generator calls 6 fold from the Absolute Time First Reaction Method in [L1].
Equivalently, one can simulate 6 times as much without having to worry about numerical problems.

Another big time savings comes from using the gamma distribution, as detailed in Table 3b for the
condition ‘one phage per host cell.” One could, in principle, write the composite reactions as their elementary
steps, however there would be nearly 500 times more reactions under that scheme. Furthermore, that would
involve 260 times the number of simulation events — nearly three times the total number of simulation events
— just for the gamma reactions. The total simulation would take four times as long without this particular
refinement. Thus, using the gamma distribution provides enormous savings: all 21 gamma reactions together
were only 1% of the simulation events.

Table 4 compares a simple implementation of Gillespie’s Direct Method with our Next Reaction Method
(including the gamma optimization) for the lambda model. All numbers are rounded. The simple implemen-
tation bogs down in Step 3: it calculates the cumulative sums a1, a1 +asg, a1 +ag+a3, a1+as+az+...+ars,
generates a random number between 0 and the sum a; + a2 + a3 4. .. 4+ arg, and then uses a binary search
to choose the appropriate . This takes 78 4 log,(78) operations per simulation event. Also, the Direct
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Figure 6: Performance data for lambda model. (a) Number of times each reaction is executed. (b) Number
of update operations per executed reaction.

Direct Method Next Reaction Method
11,300,000,000 760,000,000
268,000,000 35,000,000

Operations
Random Numbers

Table 4: Comparison of Gillespie’s Direct Method with the fully optimized Next Reaction Method. “Oper-
ations” encompasses additions, subtractions, and comparisons.

Method only deals with elementary reactions, so the composite reactions discussed above must be broken
into their components, increasing the number of simulation events. (We have assumed that one can keep
track of which of those reactions are allowed at any given time, so the total number of reactions remains 78,
not 10,078.) Finally, recall that the Direct Method uses two random numbers per simulation event, whereas
the Next Reaction Method uses one. The Direct Method requires roughly 15 times as many operations and
7 times as many random numbers as the Next Reaction Method.

7 Conclusions

This paper presents an exact, efficient way to do calculations for large systems of loosely coupled reactions
in the stochastic framework.

The algorithms presented are exact, i.e., provably equivalent to the chemical Master Equation approach,
and they are efficient, both in running time and in number of random numbers generated. For both the
Direct and the Next Reaction Method, the amount of time required per iteration is proportional to the
logarithm of the number of reactions, not the number itself. The number of random numbers generated by
the Next Reaction Method is (reactions)+(simulation events), only slightly higher than the optimal number,
simulation events. (For comparison, the Direct Method takes 2 xsimulation evenls.)

The paper extends the Next Reaction Method to time varying rate constants while maintaining both
types of efliciency. As an aside, the appendix shows how to extend the Direct Method to time varying rate
constants, but it is not clear whether this is useful.

The paper provides one specific example of extending of the Next Reaction Method to non-Markov
processes, and sketches a framework in which other examples might be formulated.

For loosely coupled chemical reaction systems in solution, the Next Reaction Method is preferable to the
Direct Method for a number of reasons:

e although the efficiency of updates in each is O(logr), if some reactions are much faster than others,
the Next Reaction Method may be effectively O(logr’), where 1" << r
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e the Next Reaction Method can easily be enhanced to reuse random numbers; this reduces the number
of random numbers to 1/2 as many as the Direct Method uses

e the Next Reaction Method is easily extended to time-varying processes, both Markov and non-Markov

Finally, the paper presents an example of the performance of these algorithmic improvements on a test
case from the biology literature.

8 Appendix
8.1 Proofs

Proof. (Theorem 2) The random number 7 is orginally distributed according to distribution F, ,, with
density P, . After Step 6, it is distributed according P, ,, = Pry o(T = u|T > t,), which is equal to

a,m

' () = {Pam(u)/[l — Fon(tn)] ifu>t,

0 otherwise

By the Random Variable Transform Theorem [8], the random variable Y = [F, »(7) — F, . (tn)]/[1 —
F, »(tn)] has the density

Qu) = [ Pias (v gt Y

)

-k el )
1 Fa,n(00)=1 o F. (L

1= Fun(tn) /Fa,n(tn) ° <y a WM) dv

- /1 6(y —w)dw

= fl 0<y<1

0 otherwise

The second line is just the definition of F, ,(u). The third line comes from the transformation v =

v—Fy n(tn)

Fon(u), dv = Wain(W) gy — P, n(u)du. The fourth line comes from the transformation w = TR

du

dw = dv. The final line comes from the definition of the delta function.

1
1—Fo n(tn)
Hence, the random variable Y is distributed uniformly on (0,1]. Finally, the inverse generation method
works by transforming a uniform random number U and to F~'(U). Here Y is such a uniform random
number, which proves the theorem.

8.2 Enhancing the Direct Method

The underlying ideas of the Next Reaction Method — use a dependency graph to update the minimal number
of variables, and use an efficient data structure — can be applied to the Direct Method as well.

Algorithm 6 (Efficient Exact Stochastic Simulation — Direct Method)
Replace Steps 1 and 2 of the Direct Method with:

1. Initialize(i.e., set initial numbers of molecules, set t =0, generale a dependency graph G)

2. Calculate the propensity function, a;, for the following ¢:

If this is the initial iteration, calculate a; for all i.
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Figure 7: Data structure used for a;’s for an efficient version of the direct method. Each leaf contains an a;

value. Each other node contains the sum of its left and right child. (a) generic construction, (b) numerical
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Otherwise, let p be the reaction that was just executed. For each edge (u, o) in the dependency graph
G, update a,,

It is clear from the definition of the dependency graph that this will update only the a;’s that need to
be updated. The only thing remaining is to use the right data structure to speed up the updates.

To complete the speed up of the Direct Method, one must do Steps 2, 3 and 4 efficiently. One might
consider using a simple array to store each of the a;’s. In this scheme, updates would be very fast. However,
Step 3 of the Direct Method would then take time proportional to the number of reactions. A better data
structure, which takes time proportional to the logarithm of the number of reactions, follows.

Store the a;’s as the leaves of a complete tree, and store in each non-leaf node the sum of its left child and
right child (see Figure 7a). Thus, the root will have value ), a;. When a;’s change, update 1) those a;’s that
have changed and 2) their ancestors. Notice that the tree contains r leaves and r/2 +r/4+r/8+ ... +1 =1
non-leaves. The height of the tree is simply log2r = 1+1logr. Each update affects one node at each level,
hence is O(logr).

Generating the random numbers 7 will be easy, since the root of the tree contains the appropriate
parameter. For the u value, generate a random number x between 0 and . a; (which can be found at the
root) and then use the following algorithm, starting at the root:

Algorithm 7 (Efficient Uniform Random Number Generation)

1. If the current node is a leaf, let p be its index.

2. Otherwise, if 0 < & < (left child value), then call this algorithm recursively on the left child with
parameter x.

3. Otherwise, (left child value) < z, so call this algorithm recursively on the right child with parameter
x — (left child value).

The discussion thus far has been somewhat abstract and calls for an example.

Example 4 Consider the numerical values in Figure 7b, the tree structure for ay = 6, ag = 2, a3 = 7,
ay =1 and a5 = 9. To calculate 7, generalte an exponential random variable wilth parameler 25. For the p
value, generale a random number x between 0 and 25. Suppose x = 15.5. Because x > 15 (the left child),
go to Step 3 of the algorithm, and descend the right sublree (i.e., the one whose root is “107) with parameler
2 =x—15=0.5. Now, 0 <z’ <1, so use Step 2 of the algorithm, and go to the left node, labeled “1”.
Finally, this is the leaf corresponding to ay, so stop and lel p be “4.”



One standard method of generating a random number of this distribution is to generate a random number
R between 0 and 1, then find the index p such that Zﬁ:ll a; < R(Y ) < Yia;. In fact, Algorithm 7
does precisely that, in an efficient way, and takes time proportional to the height of the tree, not the total
number of nodes in the tree.

With this algorithm, an update takes 14+logr operations. By the sparseness assumption, each simulation
event (time through the loop) takes at most k(1 + logr) operations, where k is a constant independent of r.
For F simulation events, the algorithm takes O(F logr) operations, not counting the initialization in Step
1.

As a side note, there are other efficient ways to generate random variates of a discrete distribution [12],
which are somewhat esoteric but have better expected times. One could do a thorough analysis of the
trade-ofl between programming complexity, run time, numerical stability, and number of uniform random
numbers required. However, since the Next Reaction Method is more easily enhanced to use fewer uniform
random numbers and handle time-varying processes, both Markov and non-Markov, we shall favor it.

8.3 Time varying Direct Method, Markov processes

Tt is well known how to generalize the Direct Method to arbitrary functions of time a;(¢) [8, 9]. One writes
an equation that is analogous to Eq. (4). If S is the state at time Zo, then the equation is:

Pl lS.t0) = a1V | = [ S oy
to

At each subsequent step of the algorithm, one must recondition, i.e., change the density P(u,7|S,t;) to
the density P(u,7|S,%i+1). Doing so works out to changing the lower limit of integration.

It may be hard to generate random numbers according to this distribution for arbitrary functions of time
a;. (Note, in particular, that the lower limit of integration changes each iteration, so methods which involve
numerical storage of partial values of the integral will have to do significant recalculation each iteration.) If
all the a;’s change in the same way, then one can use the enhancements of the previous section; if not, it
is not immediately clear how to run this algorithm efficiently for many reaction channels. Once again, the
Next Reaction Method is preferable.
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