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Approximate accelerated stochastic simulation of chemically
reacting systems

Daniel T. Gillespie®
Research Department, Code 4T4100D, Naval Air Warfare Center, China Lake, California 93555

(Received 29 December 2000; accepted 19 April 2001

The stochastic simulation algorithf8SA) is an essentially exact procedure for numerically
simulating the time evolution of a well-stirred chemically reacting system. Despite recent major
improvements in the efficiency of the SSA, its drawback remains the great amount of computer time
that is often required to simulate a desired amount of system time. Presented here iddhp™*
method, an approximate procedure that in some circumstances can produce significant gains in
simulation speed with acceptable losses in accuracy. Some primitive strategies for control parameter
selection and error mitigation for theleap method are described, and simulation results for two
simple model systems are exhibited. With further refinement,rleap method should provide a
viable way of segueing from the exact SSA to the approximate chemical Langevin equation, and
thence to the conventional deterministic reaction rate equation, as the system size becomes larger.

I. INTRODUCTION to program, it is significantly faster than even the Direct
The stochastic simulation algorith(8SA) allows one to _method when many species and many reaction channels are
involved. At present, the Next Reaction method appears to be

numerically simulate the time evolution of a well-stirred th ¢ tationally efficient t etact st
chemically reacting system in a way that takes proper ac- € most computationally etficient way o makeact sto-

count of the randomness that is inherent in such a sysfem chastic simulations of complex volumetric chemical systems.
The SSA is exact in the sense that it is rigorously based o Utl rr;odlglersth espec(;aflly of Cel:}"ir syst?f]n&:jre Ilrt-l(;:]eas;

the same microphysical premise that underlies the chemicdf9"Y '€€ling the need Tor even taster methods. eretore
master equatiofCME);3* thus, a history or “realization” seems prudent to ask if major gains in simulation speed can

produced by the SSA gives a more realistic representation (Be obtame_d by makmg minor sgcnﬁces n S|mu_lat|op accu-
the system’s evolution than would a history inferred from theacy: That is the question that will be addressed in this paper.

conventional deterministic reaction rate equatiBRE). The bri XVe shgll t.)eg'tnhm Shec. !l bly estatbhshmgt(_)ur rlcr)]tatmt)n z;nd
RRE can be particularly misleading if the molecular popula- rietly reviewing the chemical master equation, the stochas-
: ; ({\1{3 simulation algorithm, the chemical Langevin equation,

microscopic fluctuations can conspire with reaction Channe?md the reaction rate equation. In Sec. Ill we shall consider

feedback loops to produce macroscopic effects. It has bee‘ﬁhat kinds or degrees of simulation detail we might be will-

shown that this can happen with dramatic consequences IR to sacrifice in return for greater simulation speed; these

the genetic/enzymatic reactions that go on inside a “Vingconslderatlons will lead us to propose approximateaccel-
cell 56 eration procedure called theleap methodIn Sec. IV we

shall show how ther-leap method simplifies, given suffi-

the SSA were originally proposédDubbed the *Direct ciently large molecular population levels, to langevin
method” and the “First Reaction method.” both are eXac,[methodthat is equivalent to the chemical Langevin equation;

and straightforward to program. Since the Direct method iéh? I._angevm method in turn “S“‘?‘”y reduces, in the limit of
usually more efficient, it is usually the method employed.Inflnltely large molecular populations, to an updating algo-

But the Achilles’ heel of either method has always been Com_rithm that is equivalent to the deterministic reaction rate
puting speed: The computer times required to simulate reae_quatlon. In Sec. V we shall present a simple sirategy for

sonable system times tend to be prohibitively long if theChOOSimEl appropriate values of the parameters that govern

molecular populations of at leasbmeof the reactant species thet_r—lelap mtetTO?_ta ver?/ mSodes\t/Iﬂrst Stﬁ p”tc()jward.t:):l robust
are very large, and even in cellular systems that is nearl yplimal control strategy. In Sec. Vi we shall describe a re-
always the case. inement that in at least some cases will reduce the errors in

Recently, substantial improvements have been made iﬁleaplng. In Sec. VIl we shall demonstra;tdaeapling on tWO.
stochastic simulation methodology. Lukkienal.” have im- simple model systems.'ln Sec. .VIH we shaI_I briefly describe
proved the Direct method for the special but important Cas§n alter.nate .bUt es§entlally equivalent leaping strategy (?alled
of surface reactions. And Gibson and Briidiave trans- a-leap|_ng Finally, in Sec. IX, we shall offer some tentative
formed the First Reaction method into a clever new Schemgonclusmns.
called the Next Reaction method; although more challengingl, STOCHASTIC CHEMICAL KINETICS

We shall be concerned here a well-stirred mixtureNof
dElectronic mail: GillespieDT@mailaps.org =1 molecular specie§S,,...,Sy} that chemically interact,

Two mathematically equivalent recipes for implementing
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inside some fixed volumeg) at a constant temperature, But it is rarely possible to solve the CME, either analytically
throughM=1 reaction channel$R,,...,Ry}. We specify  or numerically, for any but the simplest of chemical systems.
the dynamical state of this system byX(t) Another rigorous consequence of E¢®). and(3) is the
=(X4(1),....Xn(1)), where existence and form of thaext-reaction density function
p(7.j|xt).1* By definition, p(7,j|x,t)d is the probabil-
ity, given X(t) =x, that thenextreaction in the system will
(i=1,..N). (1)  occur in the infinitesimal time intervt+ 7,t+ 7+d7) and

will be an R; reaction. It follows from Eqgs(2) and(3) that
Our goal will be to describe the evolution ¥{t) from some  this function takes the form

given initial stateX(ty)=Xxq. (All boldface vectors in this

X;(t)=the number of Smolecules in the system at tinte

paper are species indexed, withcomponents. p(r.jx=a(exp—ap(x)7) (r=0;j=1,.M), (5
The molecular populations;(t) will actually berandom  where
variables, because we choose not to track the positions and M
velocities of all the molecules in the system. Indeed, we de- g (x)=>" ay(x), (6)
i=1

liberately rely on the occurrence of mampnreactivemo-

lecular collisions to “stir” the system between successive,ng this provides the basis for the SSA. The SSA uses rigor-
reactivecollisions. Under these conditions, it can be provedOus Monte Carlo techniques to generate random paif (
using elementary kinetic theory arguméntsat there will according to the joint density functia®), then augments the
exist for each reaction chanrie] a well defined functiom;,  {ime t by 7 and the system stateby v, and finally recal-

. . . . ] L
called thepropensity functiorfor R;, which is such that culates the propensity functions as necessary in order to re-

a;(x)dt=the probability, givenX(t)=x, that oneR, p_eat these steps until a suff_iciently long _time span“ has_ been
simulated. The resultant trajectory constitutes an “unbiased
reaction will occur somewhere insid@ realization” of the procesX(t).

One way of generating random pairs, ) according to

in the next infinitesimal time interval the joint density function Eq(5) is the so-called Direct

[t,t+dt) (j=1,..M). (2 method. For it, we first writg in the “conditioned” form
The functiona; and thestate-change vectop;, whoseith P(7. ][, =P1(rIx,)Pa([ 7. X1), (@)
component is defined by and we then generateaccording top; andj according to

v;=the change in the number & molecules p,. It follows from Eq.(5) that the functiong, andp, are
given by
produced by oneR; reaction PL(7]x,) =ap(x)exp —ag(x)7) (7=0), (8a)
(j=1,..M;i=1..N), () _ aj(x) .
_ _ palil 0= 255 (1=LM), (80)

together completely characterize reaction charjel ao(

The physical rationale for Eq(2) has been detailed and from this we may conclude that is a sample of
elsewheré;* and is briefly summarized in Ref. 10. Here it E(ag(x)), the exponential random variable with decay con-
should suffice to give a couple of illustrative examplesR{f  stanta,y(x), while j is an independent sample of the integer
is the reactionX; +X,—2X,, thena;(X)=cix;X, and»;  random variable on[1M] with point probabilities
=(+1,-10,..,0), with the “specific reaction probability a;(x)/a,(x). The standard Monte Carlo inversion generating
rate constant’c, being algebraically related to the conven- ryle then dictates the following recipe for generating random
tional deterministic rate constakt by ¢;=k;/Q. And if R,  pairs (r,j): Draw two independent samples andr, of

is the inverse of that reaction, thep(x)=c,x,(X;—1)/2  74(0,1), the unit-interval uniform random variable, and take
andv,= — vy, with c,=2k,/Q. For the present, we do not 1 1

adopt any specific forms for the propensity functions - -
{a1(x),...,am(x)} and the state-change vectdus,...,»y}; ag(x) \rg
we simply assume that those quantities are specified, and i

hence that the chemically reacting system is defined. Equa}—:the smallest integer satisfyingz &,/ (X)>1,30(X).

In

(9a)

tions (2) and (3) together then imply thaxX(t) is a jump 1
Markov process on th&l-dimensional non-negative integer (9b)
lattice. Another method of generating values ferandj is the

One rigorous consequence of E¢®). and(3) is a time-  Fjrst Reaction method. It generateseatativereaction time
will equal x given thatX(ty)=x, (for t=ty). This is the

chemical master equatiofCME):>* TF%In i) (1=1,...M), (10)
(X r
M
J
rn P(X,t[Xg,to) = E [aj(X— 7)) P(X—; tXo,to) wherer (,... Iy, areM statistically independent samplings of
=1 U(0,2), and then takes
—a;(X)P(X,t[Xo,to) - (4) r=the smallest of{r,...,7y}, (11a
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j=the index of the smallest ofry,...,7y}. (11b Langevin equation as well as a Fokker—Planck equdfion,
but we shall not need either of those equations here.
That the random pairsr(j) produced by this procedure are  Finally, as discussed in Ref. 10, in the limit of infinitely
actually distributed according to the joint density function|arge molecular populations of the reactant species, the cu-
(5), and hence that this procedure is fully equivalent to theyylative contribution of each term in the second summation
Direct method (9), is proved in Ref. 1. Since the gon the right hand side of Eq12) usually becomes vanish-
M—1 unused tentative reaction times in H@0) are dis-  ingly small compared to that of the correspondingly indexed

carded after the selections in Ed41) are made, the First term in the first summation. Therefore, in that “thermody-
Reaction method is usually less efficient than the Direchamic limit,” Eq. (12) usually reduces to

method, and consequently is rarely used. But the mere fact

that the First Reaction method works carries an important  dX;(t) _
lesson: Whenevel reaction events with respective propen- gy~ ‘21 viiaj(X(1)) (i=1,..N). (13
sitiesay,...,ay are in “competition” with each other, one .

can resolve the .quesftl.on of which of those events_actuall)ﬂ.his equation is, apart from an inconsequential scaling factor
occurs next by imagining that each event occurs indepen-

; : . . of Q7+, the well knownreaction rate equatiofRRE) of
dently on _|ts own—i.e., at the times given by qu) and conventional chemical kinetics. As a set of coupled ordinary
thenallowing the occurrence obnly that event with thesar- . . . : . :

. . differential equations, it describe§(t) as acontinuous de-
liest occurrence time.

: . . . terministic process. For most macroscopic systems encoun-
A third way of generating random pairs,({) according P pic sy

to the joint density function5) is the recently developed tered in practice, Eq(13) suffices. But it is important to

. . . . recognize that the RREL3) is actually a limiting approxi-
Next Reaction method of Gibson and Brutitis possible o \ation of the CLE(12), and the CLE in turn is an approxi-
view that method as an extension of the First Reaction

method in which theinusedreaction timeg10) are suitably mate consequence of the premi¢5and (3) which rigor-

o . ously underlie the CME and the SSA.
modified for reuse. The Next Reaction method also employs
clever data storage structures for efficiently accomplishing
step(11). The overall result is a procedure for stepping from
one reaction to the next that is significantly faster than thdll. THE 7-LEAP METHOD
Direct method for largeM andN, requiring (asymptotically
only one random number per reaction event. Reference
describes the Next Reaction method in detail.

The Direct, First Reaction, and Next Reaction method
all produce exact realizations &f(t) by essentially generat-
ing random pairs £,j) rigorously according to the joint den- i e e . i
sity function (5). The three methods can therefore be re-POINtS the indicesjy.j;.j3,... of the respective reaction
garded as different but mathematically equivalent ways mchannelst that flre at thos_e |nstants. Th's history axis
implementing the SSA. completely describes a realizationX(t); indeed, we could

In addition to the foregoingxactconsequences of Egs. ima}gine it bging constructed by Simply mqnitoring the
(2) and (3), we shall also require here a recently identified (7:1)-9enerating procedure of the SSA as it dutifully steps us
approximateconsequenc¥ If the system possessesmac- ~ 210Ng from eacht, 10 t,,,. We note that this “stepping

roscopically infinitesimal time scalén the sense that during 2109 tr?e hdlsf[ow aX|ks approrz]ach of_thle SSA is both 'tSf
any time incremendt on that scalall the reaction channels Sréngth and its weakness: The meticulous construction o

fire many more times than once yetneof the propensity every individual reaction event gives us a complete and de-

functions changes appreciably, then the jump Markov proj[ailed history ofX(t), but that construction is usually a very

cessX(t) can be approximated by theontinuousMarkov time-consuming task for systems of practical interest, be-
process defined by the standard foahemical Langevin cause of the enormous number of reaction events that take

equation(CLE) place .in real systems. _ _
It is probably so that much of the detail on the history
M axis of the system is neither useful nor necessary. In particu-
Xi(t+d)=X;(t) + >, vja;(X(1))dt lar, it is conceivable that the system’s history axis could be
1=t divided into a set of contiguous subintervals in such a way
M that, if we could determine only how many times each reac-
+ 2 v AX ()N, (1) (dt)H? tion channel fired in each subinterval, we could forego
=1 knowing the precise instants at which those firings took
(i=1,...N) (12) place. Such a circumstance would allow useap along the
T system’s history axis from onsubintervalto the next, in-
Here,N4(t),...,Ny(t) areM temporally uncorrelated, statis- stead of stepping along from one reaction event to the next.
tically independent normal random variables with mean 0And if enough of the subintervals contained many individual
and variance 1, andt is a “macroscopically infinitesimal” reaction events, the gain in simulation speed could be sub-
time increment in the sense just describ@ssociated with — stantial, provided of course that each subinterval leap could
this standard form Langevin equation is a white noise formbe done expeditiously.

M

g As the time evolution oX(t) unfolds from some initial
statex, at some initial timeg, let us suppose the history of
§he system to be recorded by marking on a time axis the
successive instants;,t,,t;,... at which the first, second,
third,... reaction events occur, and also appending to those
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To get a mathematical handle on such a leaping strategy, M
consider the probability functio®, defined by A=, Kjv;. (18
=1

Q(kl,...,kM|T;X,t)

=the probability, givenX(t)=x, that in the
. ] o Thus we arrive at the following procedure.
time interval [t,t+7) exactly k; firings of ) _
Basic -Leap MethodChoose a value for that satisfies

reaction channeR; will occur, for each the Leap Condition; i.e., a temporal leap bwill result in a
state changa which is such that, for every reaction channel
j=1,..M. (14) R;, |aj(x+ )\)—aj(x)| is “effectively infinitesimal.” Gener-

o - N _ _ ate for eachj=1,..M a sample valuek; of the Poisson
Q is evidently the joint probability density function of thé¢  (andom variableP(a;(x),7), and computex==3k;v;. Fi-

integer random variables nally, effect the leap by replacingby t+ 7 andx by x+ X\.
Kj(mx,t)=the number of times, giverK(t)=x, The accuracy ofr leaping will depend upon how well
that reaction channeR; will fire the Leap Condition is satisfied. In the trivial case where none
of the propensity functions depend gnthe Leap Condition
in the time interval[t,t+7) would be satisfied exactly for any and 7 leaping would be
(=1,..M). (15) exact. Much more commonly, the propensity functions will

depend linearly or quadratically on the molecular popula-

To determine Q(Ky,...,ky|7;x,t) for arbitrary 7>0  tions, andrleaping will not be exact. But since each reaction
would be a task at least as formidable as solving the mastevent changes the reactant populations by no more than one
equation(4) for P(x,t|X,to) for arbitraryt>t,. But we can  or two molecules, theif the reactant molecule populations
get a simpleapproximateform for Q(ky,... ku|7;x,t) ifwe  are very large it will take a very large number of reaction
impose the following condition om. events to change the propensity functions “noticeably.” So,

Leap Condition Requirer to be small enough that the if we have large molecular populations, and the exact SSA is
change in the state duririg,t+ 7] will be so slight that no therefore slow, we should be able to satisfy the Leap condi-
propensity function will suffer an appreciablee., macro- tion with a choice forr that allowsmanyreaction events to
scopically noninfinitesimalchange in its value. occur in[t,t+ 7]; that of course will result in a “leap” down

Assuming this condition is satisfied, then during the en-the history axis of the system that is much longer than the

tire interval[t,t+ ) contemplated in Eq¢14) and(15), the ~ Single reaction “step” of the exact SSA. N
propensity function for each chann@| will remain essen- If, on the other hand, satisfying the Leap Condition turns
tially constantat the valuea;(x). This means thag;(x)dt out to requirer to be so small that only a very few reagtlons
will give the probability that channe®; will fire during any ~ are leaped over, then it would be faster to forego leaping and
infinitesimal intervaldt inside [t,t+ 7), regardless of what Use the exact SSA. For example, if we were to take be
the other reaction channels are doing. In that case, as wke relatively small value &4(x) [see Eq(6)], then the re-
remind ourselves in the AppendiX;(7;x,t) will be the sultant leap would be thexpectedsize of the next time step
Poissonrandom variable in the SSA[see Eqs(8a) and (9a)], and very likely one of
oy ) — . the generatedt;s would be 1 and all the others would be 0.

Ki(mx)=Pa;(x).7) - (1 =1....M). (18 Still smaller choices for would result in leaps in whichll
And since theseM random variables Ky(7;x,t),...,  of the kjs would likely be 0, a circumstance that clearly
Km(7;x,t) will be statistically independent, the joint density would gain us nothing. But, although it would beefficient
function (14) will simply be the product of the density func- to use therleap method wherr is less than or equal to

tions of the individual Poisson random variables: 1/ag(x), it would not be incorrect; indeed, leaps with no
M more than one reaction event should be virtually exact. We
QKy,... kulmix.t)=11 Pp(kj;aj(x),7). (17) may therefore expect that as decreases to a4(x) or
j=1

smaller, the results produced by leaping will segue

As noted in the Appendix, reliable numerical techniquesSMoothly to results that would be produced by the exact
exist for generating sample values of the Poisson randon?SA:
variable P(a, 7). So, provided the Leap Condition is satis- N order to successfully employleaping in a practical
fied, we can leap down the history axis of the system by théituation, we obviously need some way of quickly determin-
amount r from statex at timet by proceeding as follows. ing thelargestvalue of 7 that is compatible with the Leap
First we generate for each reaction chanRela sample Condition. We shall make an initial assault on this critical
valuek; of the Poisson random variable(a;(x), 7); k; will problem in Sec. V, although it must be stated in advance that
be the number of times reaction channg| fires in a completely satisfactory solution seems not yet to be in
[t,t+ 7). Since each firing oR; changes the&s population  hand. But before we address that problem, let us show how
by v;; molecules, the net change in the state of the system ithe -leap method segues, in the limit véry large reactant
[t,t+ 7) will be populations, to an even faster simulation method.
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IV. THE LANGEVIN METHOD The Langevin method will be fast not only because the
- o unit normal random numbers are relatively easy to gener-
~ Suppose conditions are such that, starting in sta# g6 Byt also because conditiek®) implies that eactk; will
timet, we can leap down the history axis of the system by anye |arge compared to 1, and hence that the leap will encom-
amountr that spans aery largenumber of firings ofevery 455 many reaction events. But it should be clearly under-
reaction channel andtill satisfy the Leap Condition. More ;04 that. in order to validly use the Langevin methuoth
quantitatively, suppose thexpectednumber of firings of  he | ean Condition and conditiorl9) need to be satisfied.
each reaction channel [it,t+ ) obeys(see Appendix If the ~leap method is used when &l conditions(19)
(P(aj(x),7)=a;(x)7 >1L(Vj=1,..M), (199 happen to be satisfied, the resultant leap will be entirely
o ) o ) equivalent to a Langevin method leap, since all Boésson
yet all those firings mduc_e only r_mmscule changes in _therandom numbers used in theleap will then be practically
values of all the propensity functions. Then the following ngjstinguishable fromnormal random numbers. This means
simplification can be made in theleap method: Since the ha¢ the r-leap method smoothly transitions to the Langevin
Poisson random variabf®(a,t) will, when at>1, be well  nethod as conditionél9) become satisfied. The Langevin
approximated by aormal random variable with the same eihod in turn smoothly transitions to the deterministic RRE
mean and variandesee Eq(A5)], then the number of firings  (13) \whenever the inequalitie€l9) becomestrongly satis-

of channelR; in [t,t+7) can be approximated by fied. This is because the limiting caag(x) — o of condi-
Ki(7x,1)=Pj(a;(x),7) tioE (19 implies thg'é, in the Langevin method formula_l
kj=aj(x) 7+ (a;(x)7)"n;, the second term becomes negli-
~Nj(aj(x)7,a;(x)7) gibly small compared to the first term; hence, the increment
] Ni=X(t+7)—X;(t) in the S; population becomes, in the
Ki(mx,h=a;(x)7+(a;(x) 1) 2N;(0,1)  (j=1,..M). limit a;(x) 7—s oo,
(20) : M M M

Here, the first line follows from the Leap Condition, with the ~ \i= 2>, kjv;i= 2, [a;()7]v;i= 2>, v;a(X)T,

subscriptj on P reminding us that a different, statistically =t = =1

independent Poisson random variable is used for each reaand this is nothing more than the Euler formula for numeri-
tion channel; the second line follows by virtue of the ap-cally solving the RRE13). The Langevin method therefore
proximation induced by conditio(19); and the last line fol- plays the important conceptual role of showing how the sto-
lows from the normal random variable propetty(m,o?) chastic simulation methodshe exact SSA and its approxi-
=m+ oMN0,1). Computationally, the third line in E€R0) is  mating ~-leap methot are related to the deterministic RRE
an improvement over the first lin@lbeit an approximate of traditional chemical kinetics.

ong, because normal random numbers can be generated

more quCk'y than Poisson random numbers. The re(§0)t V. A PROCEDURE FOR SELECTING TAU

provides the basis for a special case of tHeap method that

we shall call the Langevin method. To successfully applyr leaping, we obviously need a
procedure for quickly determining the largest valuerahat

is compatible with the Leap Condition. One way to do that

might be to make a postleap check of the differences

|aj(x+X) —a;(x)| for eachj from 1 toM, and then try either

a smaller value ot if any of those differences is too large, or

o . a larger value ofr if larger differences could be tolerated.

S_Xailii"i’ and effect the leap by replacin@y t+7andx g ihat brocedure would probably be time consuming:
y ' moreover, it might engender a bias against infrequent but

We call this the Langevin method because it is entirelynonetheless legitimate large fluctuations.

equivalent to the chemical Langevin equatid®), with dt A preleapcheck on the acceptability of might be car-

replaced byr. To see this, observe that the Langevin methodried out as follows: Since the mean or expected valuk; of

computes the changeg =X;(t+ ) —X;(t) in the §; popula-  will be (P(a;(x),7))=a;(x) 7, then theexpectechet change

Langevin Method Suppose it is possible to choose
7 so that (i) the Leap Condition is satisfiedand (ii)
7 >Max;{1/a;(x)}. Then for eachj=1,..M, generate
a sample valuen; of the “unit normal” random variable
MQO,1) and putk; =a;(x) 7+ (a;(x) 7-)1/2nj . Finally, compute

tion as in state in[t,t+ 7) will be
M M o M
Ajzjzl K; vji=j21 [a;(x) 7+ (&(x)7) N, Tw;; )\E)‘(XvT):JZl [a;(x) 7]y =7&(x), (22)
M M where we have defined

:2 Vjiaj(X)T+2 Vjia];l./Z(X)anlQ’ M

=1 =1 —

J =2, 2(x);. (22
and this is precisely the updating recipe dictated by CLE : .
(12). In fact, the derivation of Eq(12)'° requires that both ~ &(x) can be interpreted as the mean or expected state change
the Leap Condition and conditiof19) be satisfied, and the in a unit of time. We observe that can be calculated fairly
lines leading to Eq(20) essentially trace the logic of that easily for anyr. So, let us simply require that trexpected
derivation. changes in the propensity functions in timgnamely the
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differences|aj(x+f)—aj(x)|, be bounded by some speci- taking leaps that are Ia_rge enqugh to produce a fa;ter simu-
fied fractione (0<e<1) of the sumof all the propensity lation than the SSA will practically always result some

functions: changes in the propensity functions, and those changes will
_ _ inevitably give rise to computational errors.
|aj(x+N)—aj(x)[<€ay(x) (j=1,..M). (23 A similar difficulty arises when numerically solving an
We can estimate the difference on the left side of Eqordinary differential equation of the formX/dt=f(X) by
(23) by a first-order Tay|0|’ expansion: the Simple Euler method, where a Ieap downtthgis byAt
N g according toX(t+ At)=X(t) + f(X(t))At will produce er-
aj(x+_)—aj(x)~f- Vaj(x)zz 7&(X) —a;(X). rors whenever the functiohchanges during thait incre-
=1 IXi ment. As is well known, one way to reduce those errors is to
So, defining use the estimated-midpoirior second-order Runge—Kutta
92 (%) procedure instead: Withh ; X=f(X(t))At, take X(t+At)
bji ()= ! (j=1,..M;i=1,..N), (24) =X(t) + f(X(t)+ 3A,;X)At; in other words, use the simple
IXi Euler method to estimate the “midpoint” value of during
the requirement Eq23) becomes, to a reasonably good ap-[t.t+At), and then calculate the actual incrementXirby
proximation, evaluating the slope functiohat that estimated midpoint.
N In an attempt to adapt this estimated-midpoint strategy to
> E(0bji(X)| <e€ap(x) (j=1,..M). (25)  the ~leap method, let us take as the analogue of the simple
=1 Euler increment\; X the expectedtate changa in Eq. (21).

The largest value of that is consistent with this condition, More precisely, withz] denoting the largest integer in) let
and hence the optimal choice fegiven the value chosen for us takex+[\/2] to be the “estimated midpoint state” during
€, IS the leap, and then let us generate the Poisson random num-
bers k; for the leap using density functions evaluated at
7= Min [eao(x)/ ]
jel1M]

(268 x+[A/2] instead of ak. So, our estimated-midpoint method
for 7 leaping from state at timet will be as follows.

There will clgarly be some computational overhead in Estimated-Midpoint~Leap Method For the selected

ts;zle’(\:ltl?gr atl_ccordglrzg)tq Eclqz(26?)2:2\)Ne Sg‘ilr'] h:l/lVNe th evtgluate leaping timer (which satisfies the Leap Conditiprcompute
e N functions &;(x) in Eq. an e unctions - .

bji(x) in Eq. (24) (but note that the derivatives in the latter the expe_cted,st_ate changa=72;a,(x), durmg [t.t+7).
may be computed beforehand and they will usually be quitérhen’ with X =X+[M2]_' generate for e_ach—l,../.M a
simple, and we shall then have to compute and find theS2MPI€ valug; of the Poisson random variabia;(x’), 7).
smallest of theM ratios on the right side of EG26a. More- ~ COMPute the actual state changes = kj»;, and effect the
over, ther value thus found shouldot be used uncondition- '€aP Py replacing by t+7 andx by x+A.
ally; because, ifr turns out to be less than a few multiples of To examine the legitimacy of this strategy, let us con-
the time required for the SSA to make amacttime step, sider its effect on a reaction set that is simple enough to solve
then it would be better to use the SSA instead. So, since thexactly in the stochastic formalism. Tié=M =1 isomer-
expected time to the next reaction in the SSA i&ylX), we  ization reaction
supplement the selection rulg(26a with the proviso

N
El &(X)bji(x)

Cc

2 X—=Y (27)
Use exact SSA instead if < ——, (26b , i
ao(X) has propensity functiom(x)=cx and state change vector
where the numerator 2 could arguably be replaced by any?= — 1. The solution to its CME can be shown to be
thing between 1 and 10. |

The foregoingr-selection procedure should be viewed as ~ P(x—k,t+ 7|x,t)= m
only a first step towards a more robust control strategy for ’ ’
optimally using therleap method in conjunction with the (0=k=x;7=0). (28
SSA and the Langevin method. Note that the segue from
leaping to the Langevin method will occur almost invisibly if The correctness of this formula can be seen by noting that
the computer routine that generates samples of the Poisstine second factor is the probability that a specified group of
random variableéP(a; , 7) is written to return samples of the x—k molecules willnotisomerize in[t,t+ 7), the third fac-
normal random variable\V(a;7,a;7) whenevera;r is “suf- tor is the probability that a specified group lfmolecules
ficiently large.” When normal random variables are beingwill isomerize in[t,t+ 7), and the first factor is the number
returned forall the reaction channeR;, the ~-leap method  of distinct ways of dividing« molecules into two groups &
will have become the Langevin method. andx—k molecules.

To effect a leap\ =kv= —k for this reaction from state
X at timet using theplain ~leap method, we would first
choose a leaping time, and then obtain the numbér of

The Leap Condition requires that none of the propensityreactiong27) that occur in't,t+ 7) by sampling the Poisson
functions changes “appreciably” in the course of a leap. Butdensity function

[e7C7]ka[1_e7CT]k

VI. THE ESTIMATED-MIDPOINT TECHNIQUE
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FIG. 1. Probability density functions for the numbenf isomerizationg27)
occurring in a given timer, with c=1 andx=100. (a) has7=0.9, (b) has
7=0.4, and(c) has7=0.1. In each case, tteolid curve is the exact density
function (28), thedottedcurve is the density functiot293 predicted by the
plain ~leap method, and thdashedcurve is the density functioi29h)
predicted by the estimated-midpoirieap method.

e 7(cxr)K

K (k=0,...2).

Po(k;cx,7)= (29a

To leap using theestimated-midpoint-leap method, we
would first compute for the choservalue the expected state

change in [t,t+7), A=7a(X)v=-—7cx. Then, with
x'=x+[3\]=x—[37cx], we would obtaink by sampling
the Poisson density function

e—CX/T(CX/ T)k

Pr(kiex’,7)= K

(k=0,...20). (29b)

The exactway to choosé& would be to sample the binomial
density function(28), since that function is precisely the
probability that exactly k isomerizations will occur
in[tt+7).

In Fig. 1 we compare the exaktdensity function(28)
with the proposed approximation®9a and (29b) for c
=1, x=100, and three different values ef Figure Xa) has

Daniel T. Gillespie

isomerization for any individuak molecule isc™*=1; in-
deed, the exadsolid) curve in Fig. 1a) shows that between
40 and 80 of the 10X molecules should isomerize in that
time leap. In this case, the plairleap(dotted curve signifi-
cantly overestimatek, while the estimated-midpoint-leap
(dashedl curve, to a much lesser extent, underestim&tes
Note also that plairr leaping with7= 0.9 predicts a substan-
tial probability of producing ak value greater than 100,
which of course is physically unrealistic. Far=0.4 [Fig.
1(b)], the estimated-midpoirk distribution provides an ar-
guably acceptable approximation to the th@listribution.
The plaink distribution is still too high, although it no longer
predictsk values that are unphysically large. For 0.1[Fig.
1(c)], the estimated-midpoirk distribution matches the ex-
actk distribution extremely well, and the plakndistribution
has finally become arguably acceptable.

Figure 1 suggests that, at least for the simple isomeriza-
tion reaction, the estimated-midpoint technique allows a
roughly fourfold increase in the leap size for the same degree
of accuracy. But it remains to be seen how effective this
technique will be for other kinds of reactions. We also see
from Fig. 1 that the estimated-midpoint technique overcor-
rects the plainr~leapk distribution, at least insofar as peak
placement is concerned, so it might be better to take
=x+f\, wheref is a bitlessthan 1/2; however, we shall not
pursue that ad hoc refinement at this stage.

The estimated-midpoint technique should also be appli-
cable to the Langevin method. That would give us the fol-
lowing procedure.

Estimated-Midpoint Langevin Methodhoosing 7 so
that (i) the Leap Condition is satisfiedand (i) 7
>Max;{1/a;(x)}, computeA=72;a;(x)»;. Then, withx’
=x+[AN/2], for eachj=1,...M generate a sample val
of the “unit normal” random variableN(0,1) and putk;
=a;(x') 7+ (a;(x") ). Finally, compute \=S;k;;,
and effect the leap by replacindoy t+ 7 andx by x+A\.

In the special case that conditi¢in) here happens to be
satisfied so strongly that the second term in the above for-
mula for k; is for everyj negligibly small compared to the
first term, this method reduces to the second-order Runge—
Kutta algorithm for the deterministic reaction rate equation
(13). This plausible result must, however, be viewed in the
light of a rather more disquieting one: For any Langevin
equation whose diffusion functions are state dependent—as
are the diffusion functionsqjajl/z(x) in the chemical Lange-
vin equation(12)—the estimated-midpoint logic produces an
updating formula that is demonstrablyrong in the limit
7—0.212 But we can optimistically hope that this will not
pose a problem with our estimated-midpoint Langevin
method here because conditi¢in) serves to keep us away
from the limit 7—0; i.e., since the CME12) is valid only if
dt is a macroscopicinfinitesimal, then the limitdt—0 for
that particular Langevin equation is effectively precluded.

VII. TWO ELEMENTARY EXAMPLES

As our first application of ther-leap method we shall
take the simplest of all chemical reactions, the irreversible

7=0.9, a time leap that is “large” since the average time toisomerization
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70000 |-- \ [irreversible Isomerization Reaction
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- 800 steps per dot
60000 \ - 100,000 steps total
T 50000 \
40000
RY

0o \\
20000

Time

FIG. 2. Exact stochastic simulation of the simple isomerization rea¢86nwith c,=1. Each of the 100 000 reactions is simulated, and the state is plotted
as a dot after every 800 reactions. The last reaction in this run occurtedl&76. The two solid lines show the 1 sd envelope predicted by the chemical
master equation.

1 to the 100 000 steps in the exact run of Fig. 2. The accuracy
S,—0, (30 . .
appears to be good, although a close inspection reveals that

for whichN=M =1, a;(x) =CyX;, andw; = — 1. We shall let the trajectory is slightly biased to the low side of the 1 sd
c,=1, and assume that there ar@ B) molecules at time 0. €nvelope. Increasing the accuracy parametey a factor of
The solutionP(x4,t|10°,0) to the CME(4) for this reaction 5 gives the run in Fig. &), where now the state has been
can be read off from Eq28). plotted after every leap. The run is of course faster, but the
Figure 2 shows the result of an exact stochastic simulalow bias has become unacceptably large. Repeating this run
tion of reaction(30) in which (t,X;) has been plotted after using the estimated-midpoint technique yields the trajectory
every 800 reactions. What might appear to be a single soli¢h Fig. 3(c). The low bias appears to have been eliminated,
line in Fig. 2 is actually two lines, which demarcate the 1 sdand the run uses only 70 leaps.
envelope(Xy(t)) *sdeyX,(t)} as computed from the solu- Figures 3a) and 3c) together suggest that the estimated-
tion to the CME. Reactiori30) evidently exhibits little sto-  migpoint strategy allows the average leap size in a simula-
chasticity on the population scale of Fig. 2; nevertheless, thg, of reaction(30) to be increased by a factor of roughly 4

e?acrt]_ShS A dl;tlfl;llt);]g%%esratesltheIprep(sa)chast|§:1|[1§tapt | while maintaining the same degree of accuracy, consistent
at which each ot the 1 MOlecUles ISomerizes. 'he tnal i our findings in Sec. VI. Additional simulations with

reaction occurs in this particular runtat 12.76, a value that larger values ofe revealed that the slight high bias in the

will fluctuate considerably from run to run. ; .
Figures 3a)—3(c) show the results of three simulation estimated-midpoint method can be greatly reduced by de-

runs of reaction30) using therleap method. For each of creasing midpoint fraction from 0.5to0 0.45. But qther testing
these runs the leap sizewas chosen using the-control ~ Should be done before adopting suchaghhocrefinement.
strategy described in Sec. V, i.e., according to E2€a and For instance, we should plot histograms %f at various
(26b). So each leap advances time by the amount that makd&ed times(e.g.,t=0.5, 2.0, and 8.0for a thousand or so

the expected fractional decrease in the propensity functiofePeated runs of each of the three cases in Fig. 3, and then
equal toe, except that the final few reactions are generatec¢ompare those histograms with plots B{x;,t|10°,0) as
using the exact SSA. The plairleap run in Fig. 8) has  given by Eq.(28) to see how accurately thdispersionin X;
€=0.03. The dots show the state of the system after evergbout its mean is being replicated in these leaping simula-
second leap, and the entire run uses 305 leaps, as comparézhs. For now, though, we shall simply take these initial
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FIG. 3. Threer-leap simulations of the reaction in Fig. 2, using in each case the control sti@@&gyhe solid lines show the 1 sd envelope predicted by
the chemical master equation. (& the error control parameter=0.03, and the state is plotted after every second leap; a total of 305 leaps were needed to
complete the simulation, as compared to the 100 000 steps in Fig(R). &rhas been increased by a factor of 5, and the state is plotted after every leap; the
trajectory now falls off too rapidly. The problem is corrected (@ by using the estimated-midpoint technique, which evidently allows an acceptable
simulation to be accomplished in only 70 leaps.
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FIG. 3. (Continued)

results for reactiori30) as “encouraging,” and move on to a
slightly more complicated set of reactions.
We shall augment reactidi30) by adding two more mo-

populations have been plotted every 2000 reactions. We ob-
serve that the initial monomer population first plummets
sharply [for comparison we show in Fig.(d the pure

lecular species and three more reaction channels as followgomerization 1 sd envelope of Fig] &s reaction chann&,

C1
S]_—>0

C2
$+5—S,
(31

C3
Sz—> Sl+ Sl

S5,

Whenc, andcj are sufficiently large, the disappearance o
S; molecules through reactidR; is superimposed on a fast,
reversible dimerization of the “monomer$,; into an “un-

stable dimer”S,, which in turn can convert to a stable form

S;. We shall simulate these reactions using the rate constaff

values

c;=1, ¢,=0.002, c3=0.5, c,=0.04 (32a
and the initial conditions

X;=10, X,=X3=0. (32b

Figures 4a) and 4b) show the results of an exact sto-
chastic simulation of reaction€1), in which the species

Downloaded 09 Jun 2013 to 128.192.169.62. This article is copyrighted as indicated in the abstract

rapidly builds up the unstable dimer population. At abbut
~0.2, a quasiequilibrium is achieved between speSjesnd
S,. Thereatfter, those two volatile species are slowly depleted
through reaction channeR; andR,, respectively, with all
reactions ceasing wheX;=X,=0. The final value ofX;
gives the number of stable dimers that were created from the
initial pool of unstable monomers. The run shown in Fig. 4
actually ended at=43.06 withX;=17 027, after a total of
526 692 reactions. Of course, these terminal values will vary
from run to run: In 20 independent simulations, the 1 sd
ranges of those terminal values were found totbel6.4
fi2.0, X3=17066-106, and reaction count526 009
+1908.

Figures %a) and 3b) show the results of a simulation
using the plainm-leap method, with the leap size being
osen according to the strategy of E(6) with e=0.03.
The species populations here have been plotted after every
leap. The run ended after 459 leaps, with43.67 andXg
=17045. Simple overlays of these trajectories on those in
Figs. 4a) and 4b) show good agreement, although detailed
statistical comparison tests were not performed. A repetition
of this run using the estimated-midpoint technique produced
the results shown in Figs(® and &b), and these results are
a little disappointing: After successfully negotiating the dy-
namical transition that occurs aroute 0.2, the simulation
seems to “get lost” momentarily arountd= 1. But the simu-
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FIG. 4. Exact stochastic simulation of reaction §&t) for the rate constant632g and the initial condition32b). The state is plotted after every 2000
reactions(a) shows the evolution of the unstable monomer popula¥gnthe solid lines show the 1 sd envelope of Fig. 2, which would be obtained in the
absence of the last three reactiong3f). (b) shows the evolutions of the unstable dimer populadgrand the stable dimer populatiofy. All reactions end
whenX; andX, both reach zero; that happened in this simulatiot=a43.06, after a total of 526 692 reactions had occurred.

lation seems to recover itself quickly with no serious conse=17 093. Nevertheless, it appears that the prdi@ap run of
quences, as overlay comparisons with Fig&) 4and 4b) Fig. 5 provides a better simulation than the estimated-
show good agreement elsewhere; indeed, the run ends withidpoint -leap run of Fig. 6, which is in sharp contrast to
the quite acceptable terminal valuds-43.26 and Xj what we found for the simple isomerization reacti@®).
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FIG. 5. A plainleap simulation of the reactions in Figs. 4, using the control stra2gywith e=0.03. A dot is plotted after every leap, and only 459 leaps

were required to complete the run.

Perhaps we should apply the estimated-midpoint techpopulation of unstable dimers; otherwise, ordinarfgaping
nique to reactior{31) in a more selective way. An attempt to was used withe=0.03. The results of this simulation are a
do that led to the simulation shown in Fig. 7: This run usedlittle more encouraging. The simulation seems to track well

the estimated-midpoint technique witt=0.2 only when

with the exact SSA run in Fig. 4, but it uses only 289 leaps,
a,(x)>0.6a4(x), a condition that is obtained only during the as compared to 526 692 steps; moreover, it ends with values
early moments when the system is rapidly building up at=47.31 andX;=17 091, which compare favorably with the
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FIG. 6. Arepetition of ther-leap simulation in Figs. 5, but now using the estimated-midpoint technique. Notice the spurious momentary instability that occurs
aroundt=1.

ending values found in the run in Fig. 4. But te hoc  VIII. THE k,-LEAP METHOD

nature of this modestly improved simulation shows that more

remains to be understood abatieaping before an efficient, We now describe an alternative to théeap method that
robust control strategy can be devised. might, under some circumstances, be more convenient. Sup-
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FIG. 7. A rleap simulation of the reactions in Figs. 4 using a hybrid strategy: Wa€Rr)/ay(x) >0.6, the estimated-midpoint technique is used in
conjunction with the control strategy26) with €=0.2; otherwise, the control strateg6) is used with e=0.03 without the estimated-midpoint
technique. A dot is plotted after every leap, and only 289 leaps were required to complete the run.

pose that instead of leaping down the history axis by a preR, occurs, and also the numbers of contemporaneous firings
determined timer, we leap by a predetermined number of of all the other reaction channd®..,. Whereas inr leaping
firings k,, of a specified reaction channil,. With the sys- we generate values for thé random variablegK;(7;x,t)}
tem as before in state at timet, the task then would be to in Eq. (15), in k, leaping we generate values for tihé
determine the time¢+ 7 at which thek,th firing of channel random variables {T(k,;xt),Kj..(K,;Xt)},  where
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FIG. 8. Ak,-leap simulation of the reaction in Fig. 2 using the control strat€yy in conjunction with the estimated-midpoint technique. This
simulation, which usegammarandom numbers, is to be compared with thleap simulation in Fig. ) which usesPoissonrandom numbers.

T(k,;x,t) is the time required for exactly, firings of chan-

nel R,. Assuming as before that the Leap Condition is sat-  K.=

isfied, it can be shown thak(k,;x,t) will be the gamma
random variabld'(a,(x),k,) (see the Appendjx And once
a valuer has beerassignedo T(k,;x,t), eachK;(k,;x,t)
for j#a will then be the Poisson random variable
P(aj(x), ). We thus arrive at the following procedure.

Basic k,-Leap Method Choose a value fok, that sat-
isfies the Leap Condition; i.e., a leap ky of the R, reac-
tions will result in a state change which is such that, for
every reaction chann&;, |a;(x+\)—a;(x)| is “effectively
infinitesimal.” Generate a sample valueof the gamma ran-
dom variableI'(a,(x),k,), and then generate for eagh
#a a sample valuek; of the Poisson random variable
P(aj(x),7). Computer=Zk;»;, and effect the leap by re-
placingt by t+ 7 andx by x+A.

Since theaveragevalue of 7 will be (see Appendix
(I'(a,(x),ky))=k,/a,(x), then the average oexpected
change in state in &, leap will be the following simple
variation on Eq.(21):

Ka
a,(X)

A=A(x.k,)= &x). (33)

Min
jelim]

)

€a,(X)ao(X) /
(343

where[z] denotes the greatest integeranAnd we add the
proviso

N
Z;l &i(x)bji(x)

kaaO( X)
a,(X)

Use exact SSA instead ifk,<1 or <2, (34b

where the 2 could arguably be replaced by anything between
1 and 10.

In principle, thek,-leap method is no more nor no less
accurate or efficient than theleap method. For example,
Fig. 8 shows a simulation of the simple isomerization reac-
tion (30) using thek,-leap method in conjunction with the
estimated midpoint technique, and the results are quite on a
par with the corresponding-leap simulation in Fig. &).

The mathematical difference between those two runs is that
the =leap run in Fig. &) was generated using onBpisson
random numbersselectingr and generatingdg), whereas the
k,-leap run in Fig. 8 was generated using oggmmaran-
dom numbergselectingk and generating). Figures 9a) and

9(b) show ak_-leap simulation of reaction€31) using the
same auxiliary strategies as thdeap simulation in Figs.

Using this formula, we can easily adapt both the leap siz&(a) and 7b), and again the results are quite comparable. But
selection procedure of Sec. V and the estimated-midpoinive shall discuss in Sec. IX a reason for believing that the

technique of Sec. VI t&, leaping. In particular, we have in
place of Eqs(26) the following formula for the optimak,, :

7-leap method will usually be more convenient than the
k,-leap method.
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FIG. 9. Ak,-leap simulation of the reactions in Figs. 4, with the pacing chaRpelhosen at each leap to be the channel with the largest propensity function.
Whena,(x)/ay(x)>0.6, the estimated-midpoint technique is used in conjunction with the control str@égwith e=0.2; otherwise, the control strategy
(34) is used withe=0.03 without the estimated-midpoint technique.

IX. CONCLUSIONS AND PROSPECTS proximations to the SSA runs in Figs. 2 and 4, respectively,

The simulation results reported in Sec. VIl are prelimi-With the ratio of number of leaps to number of steps being

~leap method introduced in Sec. Ill can be made to workreal acceleration factor of psince it takes longer to ex-
The rleap runs in Figs. @) and 7 are reasonably good ap- ecute a leap than to take a step. Since these runs were not
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made with great attention to programming efficiency, itarise out of future efforts to apphyleaping to more compli-
seems premature to try to estimate real acceleration factorsated reaction schemes, such as model chemical oscillators,
Suffice it for now to say that the leaping runs were notice-bistable systems, and simple genetic regulatory reactions.
ably faster than the SSA runs. Such applications should also try to determine, through test
The r~leap method fills a critical gap in our spectrum of runs made in conjunction with exact SSA runs, the nature
tools for numerically simulating chemically reacting sys- and extent of the errors that are introduced by leaping. For
tems. At the exact end of that spectrum we have the methoelxample, whereas we show in Figs. 2 arid) 3respectively,
of molecular dynamics, which simulates every molecularsingle SSA and estimated-midpointleap runs, we really
collision that occurs in the system. Next we have the SSApeed to generate, say, 1000 runs of each, and then compare in
which simulates only those molecular collisions that e  detail the resultant SSA andleap histograms oX(t) at
active this is an approximating simplification which is valid various values of. And if it is found that therleap histo-
only for systems that are well stirred. If the well-stirred sys-grams differ substantially from the SSA histograms in either
tem is large enough that we can approximately satisfy thgeak placement or peak shape, then ways of reducing those
Leap Condition, we can speed up the SSA by using thélifferences should be sought.
rleap method. If, further, each leap encompasses\ary Finally, there are several purely computer science issues
large number of firings oéveryreaction channel, theleap  that deserve attention. First, sine¢eaping relies heavily on
method becomes the Langevin method. Finally, in the limitPoisson random numbers, then any improvements in the ef-
of infinitely large systems, the Langevin method typically ficiency of the standard methbtfor generating Poisson ran-
approaches the deterministic RRE of traditional chemical kidom numbers will naturally lead to faster leaping simula-
netics. tions. Also in that connection, when we can we reliably
An alternative to therleap method is thek,-leap invoke the simplifyingnormal approximation(A5) for the
method, described in Sec. VIII. It appears to work just agPoisson random variable? Second, instead of generating
well as therleap method, but the following considerations Values according to the estimated-midpoint form@ab),
lead us to expect that theleap method will usually be more Would it be feasible and preferable to generatealues ac-
convenient. It often happens in a simulation that a specifie§ording to the binomial formul&28)? Finally, in view of the
event becomes scheduled to occur at some future instant vector nature of the variables, N, and A, and also the
and that event will influence the subsequent evolution of thezector-matrix nature of ther~selection formula(26a, we
system. An example would be a determination that the trangnay expectr leaping to lend itself naturally to vectorized or
lation of a certain portion of an mRNA chain by a ribosome parallel computation, especially when the numbers of chemi-
will conclude at timet’, resulting in the release of a reactant cal species and reaction channels are large.
enzyme molecule into the system at that instant. If we were In summary,r leaping looks promising, but the present
doing 7 leaping, we could easily accommodate thesvent  work is only a beginning.
by proceeding as follows: Simulate as usual until we reach a
timgt vyhen our7-§election glgorithnsuggesta nexts value ACKNOWLEDGMENTS
satisfyingt+7>t'. Leap instead by themaller value 7
=t"—t, which is always permitted, and which brings us up ~ The author thanks Harley McAdams, Adam Arkin,
to the instantt’. Now introduce the scheduled event, andMichael Gibson, and Mark Ettinger for many helpful discus-
then resume ordinary leaping. But it would be much less sions. The author also thanks Carol Gillespie for assistance
easy to accommodate the scheduleévent when doind,  with the numerical computations. This work was supported
leaping. Note that theffectof a k, leap can always bap- by the Office of Naval Research, Grant No.
proximatedby doing arleap withr=k,/a,(x), which isthe ~ N0001499WX20544, and the NavAir/ONR ILIR program.
expectedime for k,, firings of reaction channd®,. But of
course, if ever the need should arise to step byeaact )
number of firings of a particular reaction channel, then weCZ:;%DLE(S'THE POISSON AND GAMMA RANDOM
should do &, leap for that step.
The shortcomings of theleap method as presented here =~ The Poissonrandom variablé”(a,t) is defined to be the
are most evident in the general raggedness of the trajectoriemimber of “events” that occur in a timg given thatadt is
in Figs. 5, 6, and 7 in the time interval<lt<20, which  the probability for an event to occur in any next infinitesimal
shows that the procedure described in Sec. V for selectingime intervaldt. The parametera andt can be any positive
optimal values forr needs improvement. Also, we need to real numbers; however, the random varigB(e,t) itself is a
understand why the estimated-midpoint technique describedgon-negative integer.
in Sec. VI does not work in all situations. More generally, we Letting P»r(k;a,t) denote the probability thaP(a,t)
need arobust control strategyfor dynamically deciding =Kk, itis easy to show tha®(0;a,t) =exp(—at), and by the
when to step exactly and when to leap approximately, and ifaws of probability, we have for any integke1,
leaping then with what parameter values and with what aux- ¢
iliary error-reduction schemeJntil such a robust control Pp(k;a,t)zf Pp(k—1;a,t")Xadt' X Pp(0;a,t—t").
strategy is developed, theleap method cannot be consid- t'=0
ered ready for practical applicatian Using this recursion relation and tlke=0 formula, one can
We may hope that such a robust control strategy willestablish by induction that
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e 2 (at)k Both the Poisson and the gamma random variables be-
Prkat)=—5— (k=01.2.). (A1)  comenormalrandom variables for suitable limiting values of
' their parameters. In the case #{a,t), one can use the
It can be shown from this result that the mean and Variancgtir”ng factorial approximation together with the Smah.p_

of P(a,t) are proximation for In(k€) to show from the density function
(P(a,t)y=vafP(a,t)}=at. (A2)  formula (A1) that
Equation(A2) is the basis for the well known rule-of-thumb P(a,t)—Mat,at) as at—e, (A5)

that, for_random events occurrirlgl at a raieor more pre- - A(m,o?) being the normal random variable with mean
cisely with mean time per evemt °, the number of events and variancer?. And in the case of (a,k), its definition as
expected in a time is at+ Jat. a sum ofk statistically independent random variables with

The gammarandom variabld’(a,k) is defined to be the meana~! and variancea™2 allows us to conclude from the
sum ofk statistically independent exponential random vari-central limit theorem that

ables with common decay constaaf so, in particular, K Kk

I'(a,1)=&(a). The parameterm can be any positive real F(a,k)-ﬁ%—,—z as k—oo, (AB)
number, and the parametkrcan be any positive integer; aa

however, the random variablg a,k) itself is a non-negative Computer algorithms for generating Poisson and gamma
real. random numbers are given in Presstal!®* Func-

To deduce the form of the probability density function tion poidev,iseed of Ref. 13 generates a sample of a Pois-
Pr(t;a,k) of I'(a,k), we observe from the foregoing defini- son random variable with meanso a sample oP(a,t) may
tion that F(a,k)=2!<:1Ti , Where the random variables be calculated as poideat,iseed. And function
Tq,...,T¢x have joint density functionl'[ikzl(a exp(—at)). gamadevk,iseed of Ref. 13 generates a sampleloflk);
Therefore, by the random variable transformation theaem, so, since it follows from the random variable transformation

the density function of the sum is theorem thai (a,k)=a 'I'(1k), then a sample of (a,k)
) may be calculated aa 'gamdevk,iseed. These are the
Pr(t;a,k) _ ;
. . methods for generating Poisson and gamma random numbers
o o that were used for all simulations reported in this paper.
= | dty- | dt ]I (aexp—at)) s t— 2 t;],
0 0 i=1 i=1
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