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CHAPTER 1 

Introduction to biological modelling 

1.1 What is modelling? 

Modelling is an attempt to describe, in a precise way, an understanding of the ele­
ments of a system of interest, their states, and their interactions with other elements. 
The model should be sufficiently detailed and precise so that it can in principle be 
used to simulate the behaviour of the system on a computer. In the context of molec­
ular cell biology, a model may describe (some of) the mechanisms involved in tran­
scription, translation, gene regulation, cellular signalling, DNA damage and repair 
processes, homeostatic processes, the cell cycle, or apoptosis. Indeed any biochemi­
cal mechanism of interest can, in principle, be modelled. At a higher level, modelling 
may be used to describe the functioning of a tissue, organ, or even an entire organ­
ism. At still higher levels, models can be used to describe the behaviour and time 
evolution of populations of individual organisms. 

The first issue to confront when embarking on a modelling project is to decide on 
exactly which features to include in the model, and in particular, the level of detail 
the model is intended to capture. So, a model of an entire organism is unlikely to 
describe the detailed functioning of every individual cell, but a model of a cell is 
likely to include a variety of very detailed descriptions of key cellular processes. 
Even then, however, a model of a cell is unlikely to contain details of every single 
gene and protein. 

Fortunately, biologists are used to thinking about processes at different scales and 
different levels of detail. Consider, for example, the process of photosynthesis. When 
studying photosynthesis for the first time at school, it is typically summarised by a 
single chemical reaction mixing water with carbon dioxide to get glucose and oxygen 
(catalysed by sunlight). This could be written very simply as 

'" c b n· 'd Sunlight Gl 0 vvater + ar on 10x1 e ----.. ucose + xygen, 

or more formally by replacing the molecules by their chemical formulas and balanc­
ing to get 

6H20 + 6C02----.. C6H1206 + 602. 

Of course, further study reveals that photosynthesis consists of many reactions, and 
that the single reaction was simply a summary of the overall effect of the process. 
However, it is important to understand that the above equation is not really wrong, it 
just represents the overall process at a higher level than the more detailed description 
that biologists often prefer to work with. Whether a single overall equation or a full 
breakdown into component reactions is necessary depends on whether intermediaries 
such as ADP and ATP are elements of interest to the modeller. Indeed, really accurate 
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modelling of the process would require a model far more detailed and complex than 
most biologists would be comfortable with, using molecular dynamic simulations 
that explicitly manage the position and momentum of every molecule in the system. 

The "art" of building a good model is to capture the essential features of the biol­
ogy without burdening the model with non-essential details. Every model is to some 
extent a simplification of the biology, but models are valuable because they take ideas 
that might have been expressed verbally or diagrammatically and make them more 
explicit, so that they can begin to be understood in a quantitative rather than purely 
qualitative way. 

1.2 Aims of modelling 

The features of a model depend very much on the aims of the modelling exerdse. We 
therefore need to consider why people model and what they hope to achieve by so 
doing. Often the most basic aim is to make clear the current state of knowledge re­
garding a particular system, by attempting to be precise about the elements involved 
and the interactions between them. Doing this can be a particularly effective way of 
highlighting gaps in understanding. In addition, having a detailed model of a system 
allows people to test that their understanding of a system is correct, by seeing if the 
implications of their models are consistent with observed experimental data. How­
ever, this work will often represent only the initial stage of the modelling process; 
Once people have a model they are happy with, they often want to use their mod­
els predictively, by conducting "virtual experiments" that might be difficult, time­
consuming, or impossible to do in the lab. Such experiments may uncover important 
indirect relationships between model components that would be hard to predict other­
wise. An additional goal of modem biological modelling is to pool a number of small 
models of well-understood mechanisms into a large model in order to investigate the 
effect of interactions between the model components. Models can also be extremely 
useful for informing the design and analysis of complex biological experiments. 

In summary, modelling and computer simulation are becoming increasingly im­
portant in post-genomic biology for integrating knowledge and experimental data 
and making testable predictions about the behaviour of complex biological systems. 

1.3 Why is stochastic modelling necessary? 

Ignoring quantum mechanical effects, current scientific wisdom views biological 
systems as essentially deterministic in character, with dynamics entirely predictable 
given sufficient knowledge of the state of the system (together with complete knowl: 
edge of the physics and chemistry of interacting biomolecules). At first this perhaps 
suggests that a deterministic approach to the modelling of biological systems is likely 
to be successful. However, despite the rapid advancements in computing technology, 
we are still a very long way away from a situation where we might expect to be able 
to model biological systems of realistic size and complexity over interesting time 
scales using such a molecular dynamic approach. We must therefore use models that 
leave out many details of the "state" of a system (such as the position, orientation, 
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and momentum of every single molecule under consideration), in favour of a higher 
level view. Viewed at this higher level, the dynamics of the system are not determinis­
tic, but intrinsically stochastic, and consideration of statistical physics is necessary to 
uncover the precise nature of the stochastic processes governing the system dynam­
ics. A more detailed discussion of this issue will have to be deferred until much later 
in the book, once the appropriate concepts and terminology have been established. 
In the meantime, it is helpful to highlight the issues using a very simple example that 
illustrates the importance of stochastic modelling, both for simulation and inference. 

The example we will consider is known as the linear birth-death process. In the 
first instance it is perhaps helpful to view this as a model for the number of bacteria 
in a bacterial colony. It is assumed that each bacterium in the colony gives rise to new 
individuals at rate .A (that is, on average, each bacterium will produce .A offspring per 
unit time). Similarly, each bacterium dies at rate p, (that is, on average, the proportion 
of bacteria that die per unit time is p,). These definitions are not quite right, but we 
will define such things much more precisely later. Let the number of bacteria in the 
colony at timet be denoted X(t). Assume that the number of bacteria in the colony 
at time zero is known to be x0 • Viewed in a continuous deterministic manner, this 
description of the system leads directly to the ordinary differential equation 

d~?) = (.A- p,)X(t), 

which can be solved analytically to give the complete dynamics of the system as 

X(t) = xo exp{ (.A- p,)t}. 

So, predictably, in the case .A > p, the population size will increase exponentially as 
t ___. oo,. and will decrease in size exponentially if .A < p,. Similarly, it will remain 
at constant size x0 if .A = p,. Five such solutions are given in Figure 1.1. There are 
other things worth noting about this solution. In particular, the solution clearly only 
depends on .A- p, and not on the particular values that .A and p, take (so, for example, 
.A = 0.5, p, = 0 will lead to exactly the same solution as .A = 1, p, = 0.5). In some 

, sense, therefore, .A - p, (together with xo) is a "sufficient" description of the system 
dynamics. At first this might sound like a good thing, but it is clear that there is a flip­
side: namely that studying experimental data on bacteria numbers can orily provide 
information about .A- p,, and not on tl).e particular values of .A and p, separately (as the 
data can only provide information about the "shape" of the curve, and the shape of 
the curve is determined by .A - p,). Of course, this is not a problem if the continuous 
deterministic model is really appropriate, as then .A - p, is the only thing one needs 
to know and the precise values of .A and p, are not important for predicting system 
behaviour. Note, however, that the lack of identifiability of .A and p, has implications 
for network inference as well as. inference for rate constants. It is clear that in this 
model we cannot know from experimental data if we have a pure birth or death 
process, or a process involving both births and deaths, as it is not possible to know if 
.A or p, is zero.* 

The problem of course, is that bacteria don't vary in number continuously and 

* This also illustrates another point that is not widely appreciated - the fact that reliable network in-
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Figure 1.1 Five detenninistic solutions of the linear birth-death process for values of .A - J-b 

given in the legend (xo =50) 

deterministically. They vary discretely and stochastically. Using the techniques that 
will be developed later in this book, it is straightforward to understand the stochastic 
process associated with this model and to simulate it on a computer. By their very 
nature, such stochastic processes are random, and each time they are simulated they 
will look different. In order to understand the behaviour of such processes it is there­
fore necessary (in general) to study many realisations of the process. Five realisations 
are given in Figure 1.2, together with the corresponding deterministic solution. 

It is immediately clear that the stochastic realisations exhibit much more inter­
esting behaviour and match much better with the kind of experimental data one is 
likely to encounter. They also allow one to ask questions and get answers to issues 
that can't be addressed using a continuous deterministic model. For example, ac- ·;' 
cording to the deterministic model, the population size at time t = 2 is given by 
X(2) = 50/ e2 c:o 6.77. Even leaving aside the fact that this is not an integer, we see 
from the stochastic realisations that there is considerable uncertainty for the value of 
X(2), and stochastic simulation allows us to construct, inter alia, a likely range of ~.·.·.· 
values for X(2). Another quantity of considerable practical interest is the "time to : 
extinction" (the time, t, at which X(t) first becomes zero). Under the deterministic 
model, X ( t) never reaches zero, but simply tends to zero as t -+ oo. We see from 
the stochastic realisations that these do go extinct, and that there is considerable ran­
domness associated with the time that this occurs. Again, stochastic simulation will 

ference is necessarily more difficult than rate-parameter inference, as determining the existence of a 
reaction is equivalent to deciding whether the rate of that reaction is zero. 
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Figure 1.2 Five realisations of a stochastic linear birth-death process together with the con­
tinuous deterministic solution (xo =50,)..= 3, J.L = 4) 

allow us to understand the distribution associated with the time to extinction, some­
thing that simply isn't possible using a deterministic framework. 

Another particularly noteworthy feature of the stochastic process representation is 
that it depends explicitly on both .A and J.L, and not just on .A - J.L. This is illustrated in 
Figure 1.3. It is clear that although .A- J.L controls the essential "shape" of the process, 
.A + J.L controls the degree of "noise" or "volatility" in the system. This is a critically 
important point to understand - it tells us that if stochastic effects are present in 
the system, we cannot properly understand the system dynamics unless we know 
both .A and J.L. Consequently, we cannot simply fit a deterministic model to available 
experimental data and then use the inferred rate constants in a stochastic simulation, 
as it is not possible to infer the stochastic rate constants using a deterministic model. 

This has important implications for the use of stochastic models for inference from 
experimental data. It suggests that given some data on the variation in colony size 
over time, it ought to be possible to get information about .A - J.L from the overall 
shape of the data, and information about .A + J.L from the volatility of the data. If we 
know both .A - J.L and .A + J.L, we can easily determine both .A and J.L separately. Once 
we know both .A and J.L, we can accurately simulate the dynamics of the system we 
are interested in (as well as inferring network structure, as we could also test to see 
if either .A or J.L is zero). However, it is only possible to make satisfactory inferences 
for both .A and J.L if the stochastic nature of the system is taken into account at the 
inference stage of the process. 

Although we have here considered a trivial example, the implications are broad. 
In particular, they apply to the genetic and biochemical network models that much of 
this book will be concerned with. This is because genetic and biochemical networks 
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Figure 1.3 Five realisations of a stochastic linear birth-death process together with the con­
tinuous deterministic solution for four different (A, J.t) combinations, each with A - J.t = -1 
andxo =50 

involve the interaction of integer numbers of molecules that react when they collide 
after random times, driven by Brownian motion. Although it is now becoming in­
creasingly accepted that stochastic mechanisms are important in many (if not most) 
genetic and biochemical networks, routine use of stochastic simulation in order to 
understand system dynamics is still not widespread. This could be because inference 
methods regularly used in practice work by fitting continuous deterministic models 
to experimental data. We have just seen that such methods cannot in general give 
us reliable information about all of the parameters important for determining the 
stochastic dynamics of a system, and so stochastic simulation cannot be done reli­
ably until we have good methods of inference for stochastic models. It turns out that 
it is possible to formalise the problem of inference for stochastic kinetic models from 
time-course experimental data, and this is the subject matter of Chapter 10. However, 
it should be pointed out at the outset that inference for stochastic models is at least an 
order of magnitude more difficult than inference for deterministic models (in terms 
of the mathematics required, algorithmic complexity, and computation time), and is 
still the subject of a great deal of on going research. 

1.4 Chemical reactions 

There are a number of ways one could represent a model of a biological system. Bi­
ologists have traditionally favoured diagrammatic schemas coupled with verbal ex­
planations in order to convey qualitative information regarding mechanisms. At the 
other extreme, applied mathematicians traditionally prefer to work with systems of 
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ordinary or partial differential equations (ODEs or PDEs). These have the advantage 
of being more precise and fully quantitative, but also have a number of disadvan­
tages. In some sense differential equation models are too low level a description, as 
they not only encode the essential features of the model, but also a wealth of accom­
panying baggage associated with a particular interpretation of chemical kinetics that 
is not always well suited to application in the molecular biology context. Somewhere 
between these two extremes, the biochemist will tend to view systems as networks 
of coupled chemical reactions, and it appears that most of the best ways of repre­
senting biochemical mechanisms exist at this level of detail, though there are many 
ways of representing networks of this type. Networks of coupled chemical reactions· 
are sufficiently general that they can be simulated in different ways using different 
algorithms depending on assumptions made about the underlying kinetics. On the 
other hand, they are sufficiently detailed and precise so that once the kinetics have 
been specified, they can be used directly to construct full dynamic simulations of the 
system behaviour on a computer. 

A general chemical reaction takes the form 

m1R1 + m2R2 + · · · + mrR,. ---> n1P1 + n2P2 + · · · + npPp, 

where r is the number of reactants and p is the number of products. Ri represents 
the ith reactant molecule and Pj is the jth product molecule. mi is the number 
of molecules of Ri consumed in a single reaction step, and ni is the number of 
molecules of Pj produced in a single reaction step. The coefficients mi and nj are 
known as stoichiometries. The stoichiometries are usually (though not always) as­
sumed to be integers, and in this case it is assumed that there is no common factor 
of the stoichiometries. That is, it is assumed that there is no integer greater than one 
which exactly divides each stoichiometry on both the left and right sides. There is 
no assumption that the ~ and Pj are distinct, and it is perfectly reasonable for a 
given molecule to be both consumed and produced by a single reaction. t The reac­
tion equation describes precisely which chemical species+ react together, and in what 
proportions, along with what is produced. 

In order to make things more concrete, consider the dimerisation of a protein P: 
This is normally written 

2P---. P2, 

as two molecules of P react together to produce a single molecule of P2 • Here P 
has a stoichiometry of 2 and P2 has a stoichiometry of 1. Stoichiometries of 1 are 
not usually written explicitly. Similarly, the reaction for the dissociation of the dimer 
would be written 

p2--+ 2P. 

A reaction that can happen in both directions is known as reversible. Reversible re-

t Note that a chemical species that occurs on both the left and right hand sides with the same stoichiom­
etry is somewhat special, and is sometimes referred to a8 a modifier:. Clearly the reaction will have no 
effect on the amount of this species. Such a species is usually included in the reaction because the rate 
at which the reaction proceeds depends on the level of this species. 

:j: The use of the term "species" to refer to a particular type of molecule will be explained later in the 
chapter. 
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actions are quite common in biology and tend not to be written as two separate reac­
tions. They can be written with a double-headed arrow such as 

If one direction predominates over the other, this is sometimes emphasised in the 
notation. So, if the above protein prefers the dimerised state, this may be written 
something like 

It is important to remember that the notation for a reversible reaction is simply a 
convenient shorthand for the two separate reaction processes taking place. In the 
context of the discrete stochastic models to be studied in this book. it will not usually 
be acceptable to replace the two separate reactions by a single reaction proceeding at 
some kind of combined rate. 

1.5 Modelling genetic and biochemical networks 

Before moving on to look at different ways of representing and working with sys­
tems of coupled chetnical reactions in the next chapter, it wijl be helpful to end this 
chapter by looking in detail at some basic biochetnical mechanisms and how their 
essential features can be captured with fairly simple systems of coupled chetnical 
reactions. Although biological modelling can be applied to biological systems at a 
variety of different scales, it turns out that stochastic effects are particularly impor­
tant and prevalent at the scale of genetic and biochetnical networks, and these will 
therefore provide the main body of examples for this book. 

1.5.1 Transcription (prokaryotes) 

Transcription is a key cellular process, and control of transcription is a fundamen­
tal regulation mechanism. As a result, virtually any model of genetic regulation is 
likely to require some modelling of the transcription process. This process is much 
simpler in prokaryotic organisms, so it will be helpful to consider this in the first 
instance. Here, typically, a promoter region exists just upstream of the gene of inter­
est RNA-polymerase (RNAP) is able to bind to this promoter region and initiate the 
transcription process, which ultimately results in the production of an mRNA tran­
script and the release of RNAP back into the cell. The transcription process itself is 
complex, but whether it will be necessary to model this explicitly will depend very 
much on the modelling goals. If the modeller is primarily interested in control and 
the downstream effects of the transcription process, it may not be necessary to model 
transcription itself in detail. 

The process is illustrated diagrammatically in Figure 1.4. Here, g is the gene of 
.interest, p is the upstream promoter region, and r is the mRNA transcript of g. A very 
simple representation of this process as a system of coupled chetnical reactions can 
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Figure 1.4 Transcription of a single prokaryotic gene 

be written as follows: 

p + RNAP ----> p · RNAP 

p · RNAP ----> p + RNAP + r. 

As discussed, the second reaction is really the end result of a very large number of 
reactions. It is also worth emphasising that the reactions do not represent a closed 
system, as r appears to be produced out of thin air. In reality, it is created from other 
chemical species within the cell, but we have chosen here not to model at such a 
fine level of detail. One detail not included here that may be worth considering is 
the reversible nature of the binding of RNAP to the promoter region. It is also worth 
noting that these two reactions form a simple linear chain, whereby the product of 
the first reaction is the reactant for the second. Indeed, we could write the pair of 
reactions as 

p + RNAP ----> p · RNAP ----> p + RNAP + r. 

It is therefore tempting to summarise this chain of reactions by the single reaction 

p+RNAP --t p+RNAP+r, 

but this is likely to be inadequate for any model of regulation or control where the 
intermediary compound p · RNAP is important, such as any model for competitive 
binding of RNAP and a repressor in the promoter region. 

If modelling the production of the entire RNA molecule in a single step is felt to be 
an oversimplification, it is relatively straightforward to model the explicit elongation 
of the molecule. As a first attempt, consider the following model for the transcription 
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of an RNA molecule consisting of n nucleotides. 

p + RNAP ___, p · RNAP 

p · RNAP ---> p · RNAP · r1 

p . RNAP . Tl ---t p . RNAP . T2 

\. 

p · RNAP · Tn-1 ---t p · RNAP · Tn 

p · RNAP · r n ---+ p + RNAP + r. 

This still does not model the termination process in detail; see Arkin, Ross, & McAd­
ams (1998) for details of how this could be achieved. One problem with the above 
model is that the gene is blocked in the first reaction and is not free for additional 
RNAP binding until it is released again after the last reaction. This prevents concur­
rent transcription from occurring. An alternative would be to model the process as 
follows: 

p + RNAP ---+ p · RNAP 

p · RNAP ___, p + RNAP · r 1 

RNAP · r1 ---+ RNAP · r2 

RNAP · Tn-1 ---+ RNAP · Tn 

RNAP · r n ---> RNAP + r. 

This model frees the gene for further transcription as soon as the transcription process 
starts. In fact, it is probably more realistic to free the gene once a certain number of 
nucleotides have been transcribed. Another slightly undesirable feature of the above 
model is that it does not prevent one RNAP from "overtaking" another during con­
current transcription (but this is not particularly important or easy to fix). 

1.5.2 Eukaryotic transcription (a very simple case) 

The transcription process in eukaryotic cells is rather more complex than in prokary­
otes. This book is not an appropriate place to explore the many and varied mecha­
nisms for control and regulation of eukaryotic transcription, so we will focus on a 
simple illustrative example, shown in Figure 1.5. In this model there are two tran­
scription factor (TF) binding sites upstream of a gene, g. Transcription factor TFl 
reversibly binds to site tfl, and TF2 reversibly binds to tf2, but is only able to bind 
if TFl is already in place. Also, TFl cannot dissociate if TF2 is in place. The tran­
scription process cannot initiate (starting with RNAP binding) unless both TFs are in 
place. 
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Figure 1.5 A simple illustrative model of the transcription process in eukaryotic cells 

We can model this as follows: 

g+TFl ~ TFl· g 

TFl · g + TF2 ~ TF2 · TFl · g 

RNAP + TF2 · TFl · g ~ RNAP · TF2 · TFl · g 

RNAP · TF2 · TFl · g ~ TF2 · TFl · g + RNAP + r. 

11 

Note that we have not explicitly included tfl, tf2, and g separately in the model, as 
they are all linked on a DNA strand and hence are a single entity from a modelling 
perspective. Instead we use g to represent the gene of interest together with its reg­
ulatory region (including tfl and tf2). Note that this system, like the previous, also 
forms a linear progression of ordered reactions and does not involve a "feedback" 
loop of any sort. 

1.5.3 Gene repression (prokaryotes) 

Regulation and control are fundamental to biological systems. These necessarily in­
volve feedback and a move away from a simple ordered set of reactions (hence the 
term biochemical network). Sometimes such systems are large and complex, but 
feedback, and its associated non-linearity, can be found in small and apparently 
simple systems. We will look here at a simple control mechanism (repression of a 
prokaryotic gene) and see how this can be embedded into a regulatory feedback sys­
tem in a later example. 

Figure 1.6 illustrates a model where a repressor protein R can bind to regulatory 
site q, downstream of the RNAP binding site p but upstream of the gene g, thus 
preventing transcription of g. We can formulate a set of reactions for this process in 
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Figure 1.6 A simple prokaryotic transcription repression mechanism 

the following way: 

g+R~g·R 

g+RNAP~g·RNAP 

g · RNAP ----+ g + RNAP + r. 

This set of equations no longer has a natural ordering and hence cannot be read from 
top to bottom to go from reactants to products in an obvious way. Each reaction 
represents a possible direction for the system to move in. Also note that there are 
actually five reactions represented here, as two of the three listed are reversible. The 
crucial thing to appreciate here is that from a modelling perspective, g · R is a different 
species tog, and so the fact that RNAP can bind tog does not suggest that RNAP can 
bind to g · R. Thus, this set of reactions precisely captures the mechanism of interest; 
namely that RNAP can bind to g when it is free but not when it is repressed by R. · 

1.5.4 Translation 

Translation (like transcription) is a complex process involving several hundred reac­
tions to produce a single protein from a single mRNA transcript. Again, however, it 
will not always be necessary to model every aspect of the translation process -just 
those features pertinent to system features of interest. The really key stages of the 
translation process are the binding of a ribosome (Rib) to the mRNA, the translation 
of the mRNA, and the folding of the resulting polypeptide chain into a functional 
protein. These stages are easily coded as a set of reactions. 

r+Rib ~ r·Rib 

r ·Rib----+ r +Rib+ P,. 
Pu----+ P. 
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Here, Pu denotes unfolded protein and P denotes the folded protein. In some sit­
uations it will also be necessary to model various post-translational modifications. 
Clearly the second and third reactions are gross simplifications of the full translation 
process. Elongation can be modelled in more detail using an approach similar to that 
adopted for transcription; see Arkin, Ross & McAdams (1998) for further details. 
Folding could also be modelled similarly if necessary. 

1.5.5 Degradation 

The simplest model for degradation is just 

r--> 0, 

where 0 is the "empty set" symbol, meaning that r is transformed to nothing (as far 
as the model is concerned). A more appropriate model for RNA degradation would 
be 

r + RNase --> r · RNase 

r · RNase --> RNase, 

where RNase denotes ribonuclease (an RNA-degrading enzyme). Modelling in this 
way is probably only important if there is limited RNase availability, but is interesting 
in conjunction with a translation model involving Rib, as it will then capture the 
competitive binding of Rib and RNase tor. 

Models for protein degradation can be handled similarly. Here one would typically 
model the tagging of the protein with a cell signalling molecule, t, and then subse­
quent degradation in a separate reaction. A minimal model would therefore look like 
the following: 

P+t-->P·t 
p. t __, t. 

In fact, cell protein degradation machinery is rather complex; see Proctor et al. (2005) 
for a more detailed treatment of this problem. 

1.5.6 Transport 

In eukaryotes, mRNA is transported out of the cell nucleus before the translation 
process can begin. Often, the modelling of this process will be unnecessary, but could 
be important if the transportation process itself is of interest, or if the number of 
available transportation points is limited. A model for this could be as simple as 

where r n denotes the mRNA pool within the nucleus, and r c the corresponding pool 
in the cytoplasm. However, this would not take into account the limited number of 
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Figure 1. 7 A very simple TTWdel of a prokaryotic auto-regulatory gene network. Here dimers 
of a protein P coded for by a gene g repress their own transcription by binding to a regulatory 
region q upstream of g and downstream of the prolTWter p. 

transport points. A more realistic model would therefore be 

Tn + N --+ Tn · N 

Tn • N --+ Tc + N, 

where N denotes the set of available mRNA transport points embedded in the outer 
shell of the cell nucleus. In fact, this system is very closely related to the Michaelis­
Menten enzyme kinetic system that will be examined in more detail later in the book. 
Here, the transport points behave like an enzyme whose abundance limits the flow 
from Tn to rc. 

1.5. 7 Prokaryotic auto-regulation 

Now that we have seen how to generate very simple models of key processes involved 
in gene expression and regulation, we can put them together in the form of a simple 
prokaryotic auto-regulatory network. 

Figure 1.7 illustrates a simple gene expression auto-regulation mechanism often 
present in prokaryotic gene networks. Here, dimers of the protein P coded for by the 
gene g repress their own transcription by binding to a (repressive) regulatory region 
upstream of g. 
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Figure 1.8 Key mechanisms involving the lac operon. Here an inhibitor protein I can repress 
transcription of the lac operon by binding to the operator o. However, in the presence of 
lactose, the inhibitor preferentially binds to it, and in the bound state can no longer bind to 
the operator, thereby allowing transcription to proceed. 

g + P2 {:::::> g · P2 Repression 
g ~ g + r Transcription 
r ~ r + P Translation 
2P {:::::> P2 Dimerisation 

r ~ 0 mRNA degradation 
P ~ 0 Protein degradation 

Notice that this model is ~in terms of the level of detail included. In particlilar, 
the transcription part ignores RNAP binding, the translation/mRNA degradation parts 
ignore Rib/RNase competitive binding, and so on. However, as we will see later, 
this model contains many of the interesting features of an auto-reglilatory feedback 
network. 

1.5.8 lac operon 

We will finish this section by looking briefly at a classic example of prokaryotic 
gene regulation - probably the first well-understood genetic regulatory network. 
The genes in the operon code for enzymes required for the respiration of lactose 
(Figure 1.8). That is, the enzymes convert lactose to glucose, which is then used as 
the "fuel" for respiration in the usual way. These enzymes are only required if there 
is a shortage of glucose and an abundance of lactose, and so there is a transcription 
control mechanism regulating their production. Upstream of the lac operon there is 
a gene coding for a protein which represses transcription of the operon by binding 
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to the DNA just downstream of the RNAP binding site. Under normal conditions 
(absence of lactose), transcription of the lac operon is turned off. However, in the 
presence of lactose, the inhibitor protein preferentially binds to lactose, and in the 
bound state can no longer bind to the DNA. Consequently, the repression of tran­
scription is removed, and production of the required enzymes can take place. We can 
represent this with the following simple set of reactions: 

i ----> i + r1 

r1 ----> r1 +I 
I + Lactose ¢==? I · Lactose 

I+o¢=?I·o 

o + RNAP ¢==? RNAP · o 

RNAP · o ----> o + RNAP + r 

r---->r+A+Y+Z 

Lactose + Z ----> Z. 

Here, i represents the gene for the inhibitor protein, r1 the associated mRNA, and 
I the inhibitor protein itself. The lac operon is denoted o and is treated as a single 
entity from a modelling viewpoint. The mRNA transcript from the operon is denoted 
by r, and this codes for all three lac proteins. The final reaction represents the trans­
formation of lactose to something not directly relevant to the regulation mechanism. 

Again, this system is fairly minimal in terms of the detail included, and all of the 
degradation reactions have been omitted, along with what happens to lactose once it 
has been acted on by ,B-galactosidase ( Z). In fact, there is also another mechanism we 
have not considered here that ensures that transcription of the operon will only occur 
when there is a shortage of glucose (as respiration of glucose is always preferred). 

1.6 Modelling higher-level systems 

We have concentrated so far on fairly low-level biochemical models where the con­
cept of modelling with "chemical reactions" is perhaps most natural. However, it is 
important to recognise that we use the notation of chemical reactions simply to de­
scribe things that combine and the things that they produce, and that this framework 
can be used to model higher-level phenomena in a similar way. In Section 1.3 the lin­
ear birth-death process was introduced as a model for the number of bacteria present 
in a colony. We can use our chemical reaction notation to capture the qualitative 
structure of this model. 

X----> 2X 

X----+ 0 

The first equation represents "birth" of new bacteria and the second "death." There 
are many possible extensions of this simple model, including the introduction of im­
migration of new bacteria from another source and emigration of bacteria to another 
source. 
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The ahove model represents a model for a "population" of individuals (here the 
individuals are bacteria), and it is possible to extend such models to populations 
involving more than one "species." Consider the Lotka-Volterra predator prey model 
for two interacting species: 

Y1 ~2Y1 

Y1 + Y2 ~ 2Y2 

Y2~0. 

Again, this is not a real reaction system in the strictest sense, but it is interesting and 
useful, as it is the simplest model exhibiting the kind of non-linear auto-regulatory 
feedback behaviour considered earlier. Also, as it only involves two species and three 
reactions, it is relatively easy to work with without getting lost in detail. Here, Y1 

represents a "prey" species (such as rabbits) and Y2 represents a "predator" species 
(such as foxes).§ The first reaction is a simple representation of prey reproduction. 
The second reaction is an attempt to capture predator-prey interaction (consumption 
of prey by predator, in turn influencing predator reproduction rate). The third reaction 
represents death of predators due to natural causes. We will revisit this model in 
greater detail in later chapters. 

1.7 Exercises 

1. Write out a more detailed and realistic model for the simple auto-regulatory net­
work considered in Section 1.5.7. Include RNAP binding, Rib/RNase competitive 
binding, and so on. 

2. Consider the lac operon model from Section 1.5.8. 

(a) First add more detail to the model, as in the previous exercise. 
(b) Look up the ,@-galactosidase pathway and add detail from this to the model. 
(c) Find details of the additional regulation mechanism mentioned that ensures 

lactose is only respired in an absence of glucose and try to incorporate that into 
the model. 

1.8 Further reading 

See Bower & Bolouri (2000) for more detailed information on modelling, and the dif­
ferent possible approaches to modelling genetic and biochemical networks. Kitano 
(2001) gives a more general overview of biological modelling and systems biology. 
McAdams & Arkin (1997) and Arkin et al. (1998) explore biological modelling in 
the context of the discrete stochastic models we will consider later. The lac operon 
is discussed in many biochemistry texts, including Stryer (1988). The original ref­
erences for the Lotka-Volterra predator-prey models are Lotka (1925) and Volterra 
(1926). 

§ Note that the use of reactions to model the interaction of "species" in a population dynamics context 
explains the use of the term "species" to refer to a particular type of chemical molecule in a set of 
coupled chemical reactions. 
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The website associated with this book, contains a range of links to online infor­
mation of relevance to the various chapters of the book. Now would probably be a 
good time to have a quick look at it and "bookmark" it for future reference. 

,URL:http://www.staff.ncl.ac.uk/d.j.wilkinson/smfsb/ 



CHAPTER2 

Representation of biochemical networks 

2.1 Coupled chemical reactions 

As was illustrated in the first chapter, a powerful and flexible way to specify a model 
is to simply write down a list of reactions corresponding to the system of interest. 
Note, however, that the reactions themselves specify only the qualitative structure 
of a model and must be augmented with additional information before they can be 
used to carry out a dynamic simulation on a computer. The model is completed by 
specifying the rate of every reaction, together with initial amounts of each reacting 
species. 

Reconsider the auto-regulation example from Section 1.5. 7: 

g+P2 ~g·P2 

g~g+r 

r~r+P 

2P~P2 

r~0, P~0. 

Although only six reactions are listed, there are actually eight, as two are reversible. 
Each of those eight reactions must have a rate law associated with it. We will de­
fer discussion of rate laws until Chapter 6. For now, it is sufficient to know that the 
rate laws quantify the propensity of particular reactions to take place and are likely 
to depend on the current amounts of available reactants. In addition there must be 
an initial amount for each of the five chemical species involved: g · P2 , g, r, P, and 
P2. Given the reactions, the rate laws, and the initial amounts (together with some as­
sumptions regarding the underlying kinetics, which are generally not regarded as part 
of the model), the model is specified and can in principle be simulated dynamically 
on a computer. 

The problem is that even this short list of reactions is hard to understand on its 
own, whereas the simple biologist's diagram (Figure 1.7) is not sufficiently detailed 
and explicit to completely define the model. What is needed is something between 
the biologist's diagram and the list of reactions. 

2.2 Graphical representations 

2.2.1 Introduction 

One way to begin to understand a reaction network is to display it as a pathway 
diagram of some description. The diagram in Figure 2.1 is similar to that used by 
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Figure 2.1 A simple graph of the auto-regulatory reaction network 

some biological model-building tools such as JDesigner, which is part of the Systems 
Biology Workbench (SBW). * 

Such a diagram is easier to understand than the reaction list, yet it contains the 
same amount of information and hence could be used to generate a reaction list. Note 
that auto-regulation by its very nature implies a "loop" in the reaction network, which 
is very obvious and explicit in the associated diagram. One possible problem with 
diagrams such as this, however, is the fact that it can sometimes be hard to distinguish 
which are the reactants and which are the products in any given reaction (particularly 
in large complex networks), and this can make it difficult to understand the flow of 
species through the network. Also, the presence of "branching" and "looping" arcs 
makes them slightly unnatural to work with directly in a mathematical sense. 

Such problems are easily overcome by formalising the notion of pathway diagrams 
using the concept of a graph (here we mean the mathematical notion of a graph, not 
the idea of the graph of a function), where each node represents either a chemical 
species or a reaction, and arcs are used to indicate reaction pathways. In order to 
make this explicit, some elementary graph theoretic notation is helpful. 

2.2.2 Graph theory 

Definition 2.1 A directed graph or digraph, g is a tuple (V, E), where V = { v1 , ... , 

vn} is a set of nodes (or vertices) and E = { (Vi, Vj )I vi, Vj E V, Vi -+ Vj} is a set 
of directed edges (or arcs), where we use the notation Vi -+ Vj if and only if there is 
a directed edge from node Vi to Vj· 

So the graph shown in Figure 2.2 has mathematical representation 

g = ({a,b,c}, {(a,c), (c,b)}). 

* Software web links tend to go out of date rather quickly, so a regularly updated list is available from 
the book's web page. 
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Figure 2.2 A simple digraph 

Definition 2.2 A graph is described as simple if there do not exist edges of the form 
(Vi, Vi) and there are no repeated edges. A bipartite graph is a simple graph where 
the nodes are partitioned into two distinct subsets vl and v2 (so that v = vl u v2 
and vl n v2 = 0) such that there are no arcs joining nodes from the same subset. 

Referring back to the previous example, the partition V1 = {a, b}, V2 = { c} gives 
a bipartite graph (Q is said to be bipartite over the partition), and the partition Vi = 
{a}, % = {b, c} does not (as the edge ( c, b) would then be forbidden). A weighted 
graph is a graph which has (typically positive) numerical values associated with each 
edge. 

2.2.3 Reaction graphs 

It turns out that it is very natural to represent sets of coupled chemical reactions using 
weighted bipartite graphs where the nodes are partitioned into two sets representing 
the species and reactions. An arc from a species node to a reaction node indicates that 
the species is a reactant for that reaction, and an arc from a reaction node to a species 
node indicates that the species is a product of the reaction. The weights associated 
with the arcs represent the stoichiometries associated with the reactants and products. 
There is a very strong correspondence between reaction graphs modelled this way, 
and the theory of Petri nets, which are used extensively in computing science for a 
range of modelling problems. A particular advantage of Petri net theory is that it is 
especially well suited to the discrete-event stochastic simulation models this book is 
mainly concerned with. It is therefore helpful to have a basic familiarity with Petri 
nets and their application to biological modelling. 

2.3 Petri nets 

2.3.1 Introduction 

Petri nets are a mathematical framework for systems modelling together with an 
associated graphical representation. Goss & Peccoud (1998) were among the first tO 
use stochastic Petri nets for biological modelling. Recent reviews of the use of Petri 
nets for biological modelling include Pinney, Westhead & McConkey (2003) and 
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Figure 2.3 A Petri net for the auto-regulatory reaction network 

Hardy & Robillard (2004). A brief introduction to key elements of Petri net theory 
will be outlined here - see Reisig ( 1985) and Murata ( 1989) for further details. 

By way of an informal introduction, the Petri net corresponding to the network 
shown in Figure 2.1 is shown in Figure 2.3. The rectangular boxes in Figure 2.3 
represent individual reactions. The arcs into each box denote reactants, and the arcs 
out of each box denote products. Numbers on arcs denote the weight of the arc (un­
numbered arcs are assumed to have a weight of 1). The weights represent reaction 
stoichiometries. The Petri net graph is only a slight refinement of the basic graph con­
sidered earlier, but it is easier to comprehend visually and more convenient to deal 
with mathematically (it is a bipartite graph). It is easy to see how to work through 
the graph and generate the full list of chemical reactions. 

Traditionally, each place (species) node of a Place/Transition (Pff) Petri net has 
an integer number of "tokens" associated with it, representing the abundance of that 
"species." This fits in particularly well with the discrete stochastic molecular kinetics 
models we will consider in more detail later. Here, the number of tokens at a given 
node may be interpreted as the number of molecules of that species in the model at 
a given time (Figure 2.4). The collection of all token numbers at any given point in 
time is known as the current marking of the net (which corresponds here to the state 
of the reaction system). The Petri net shows what happens when particular transitions 
''fire" (reactions occur). For example, in the above state, if two reactions occur, one 
a repression binding and the other a translation, the new Petri net will be as given in 
Figure 2.5. This is because the repression binding has the effect of increasing g · P2 

by 1, and decreasing g and P2 by 1, and the translation has the effect of increasing 
P by 1 (as r is both increased and decreased by 1, the net effect is that it remains 
unchanged). So the old and new Petri net markings can be written as 
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Figure 2.4 A Petri net labelled with tokens 

Figure 2.5 A Petri net with new numbers of tokens after reactions have taken place 

Species No. tokens Species No. tokens 

g · Pz 0 g·Pz 1 
g 1 and g 0 
r 2 r 2 
p 10 p 11 
Pz 12 Pz 11 
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Table 2.1 The auto-regulatory system displayed in tabular (matrix)form (zero stoichiometries 
omitted for clarity) 

Reactants (Pre) 

Species g · P2 

Repression 
Reverse repression 

Transcription 
Translation 

Dimerisation 
Dissociation 

mRNA degradation 
Protein degradation 

2 

1 

Products (Post) 

1 
1 

2 

respectively. A transition (reaction) can only fire (take place) if there are sufficiently 
many tokens (molecules) associated with each input place (reactant species). We are 
now in a position to consider Petri nets more formally. 

2.3.2 Petri net formalism and matrix representations 

Definition 2.3 A Petri net, N, is ann-tuple (P, T, Pre, Post, M), where P = {p1, 
... ,Pu}, ( u > 0) is a finite set of places, T = { t1, ... ,tv}, ( v > 0) is a finite set of 
transitions, and PnT = 0. Pre is a v xu integer matrix containing the weights of the 
arcs going from places to transitions (the (i, j)th element of this matrix is the weight 
of the arc going from place j to transition i), and Post is a v x u integer matrix 
containing the weights of arcs from transitions to places (the ( i, j)th element of this 
matrix is the weight of the arc going from transition ito place j). t Note that Pre and 
Post will both typically be sparse matrices. :t: M is a u-dimensional integer vector 
representing the current marking of the net (i.e. the current state of the system). 

The initial marking of the net is typically denoted M 0 . Note that the form of Pre 
and Post ensure that arcs only exist between nodes of different types, so the result­
ing network is a bipartite graph. A particular transition, ti can only fire if Mj ;::: 
Preij, j = 1, ... , u. 

In order to make this concrete, let us now write out the reaction list for Figure 2.3 
in the form of a table, shown in Table 2.1. We can then use this to give a formal Petri 
net specification of the system. 

t Non-existent arcs have a weight of zero. 

t A sparse matrix is a matrix consisting mainly of zeros. There are special algorithms for working with 
sparse matrices that are much more efficient than working with the full matrix directly. It is hard to be 
precise about how sparse a matrix has to be before it is worth treating as a sparse matrix, but for an 
n x n matrix, if the number of non-zero elements is closer to order n than order n 2 , it is likely to be 
worthwhile using sparse matrix algorithms. 
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Table 2.2 Table representing the overall effect of each transition (reaction) on the marking 
(state) of the network 

Species g·P2 g r p p2 

Repression 1 -1 0 0 -1 
Reverse repression -1 1 0 0 1 

Transcription 0 0 1 0 0 
Translation 0 0 0 1 0 

Dimerisation 0 0 0 -2 1 
Dissociation 0 0 0 2 -1 

mRNA degradation 0 0 -1 0 0 
Protein degradation 0 0 0 -1 0 

Repression 

. r·~J 
Reverse repression 

Transcription 

N~(P,T,Pre,Post,M), P~ 1 , T~ Translation 
Dimerisation 
Dissociation 

mRNA degradation 
Protein degradation 

0 1 0 0 1 1 0 0 0 0 
1 0 0 0 0 0 1 0 0 1 

.M~m 0 1 0 0 0 0 1 1 0 0 

Pre= 
0 0 1 0 0 

, Post= 
0 0 1 1 0 

0 0 0 2 0 0 0 0 0 1 
0 0 0 0 1 0 0 0 2 0 
0 0 1 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 

Now, when a particular transition (reaction) occurs (given by a particular row of 
Table 2.1), the numbers of tokens associated with each place (species) will decrease 
according to the numbers on the LHS (Pre) and increase according to the numbers 
on the RHS (Post). So, it is the difference between the RHS and the LHS that is 
important for calculating the change in state associated with a given transition (or 
reaction). We can write this matrix out in the form of a table, shown in Table 2.2, or 
more formally as a matrix 
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1 -1 0 0 -1 
-1 1 0 0 1 

0 0 1 0 0 

A = Post - Pre = 
0 0 0 1 0 
0 0 cf -2 1 
0 0 0 2 -1 
0 0 -1 0 0 
0 0 0 -1 0 

This "net effect" matrix, A, is of fundamental importance in the theory and appli­
cation of Petri nets and chemical reaction networks. Unfortunately there is no agreed 
standard notation for this matrix within either the Petri net or biochemical network 
literature. Within the Petri net literature, it is usually referred to as the incidence ma­
trix and is often denoted by the letter A, Cor I.§ Within the biochemical network 
field, it is usually referred to as the reaction or stoichiometry matrix and often de­
noted by the letter A or S. As if this were not confusing enough, the matrix is often 
(but by no means always) defined to be the transpose of the matrix we have called 
A, 1: as this is often more convenient to work with. Suffice to say that care needs to 
be taken when exploring and interpreting the wider literature in this area. For clar­
ity and convenience throughout this book, A (the reaction matrix) will represent the 
matrix as we have already defined it, and S (the stoichiometry matrix), will be used 
to denote its transpose. 

Definition 2.4 The reaction matrix 

A= Post- Pre 

is the v x u-dimensional matrix whose rows represent the effect of individual transi­
tions (reactions) on the marking (state) of the network. Similarly, the stoichiometry 
matrix 

S=A' 

is the u x v-dimensional matrix whose columns represent the effect of individual 
transitions on the marking of the network. II 

However, it must be emphasised that this is not a universally adopted notation. 
Now, suppose that we have some reactions. For example, suppose we have one 

repression binding reaction and one translation reaction. We could write this list of 
reactions in a table as 

§ I is a particularly bad choice, as this is typically used in linear algebra to denote the identity matrix, 
which has 1 s along the diagonal and zeros elsewhere. 

'If The transpose of a matrix is the matrix obtained by interchanging the rows and columns of a matrix. 
So in this case it would be a matrix where the rows represented places (species) and the columns 
represented transitions (reactions). 

II Here and elsewhere, the notation 1 is used to denote the transpose of a vector or matrix. 
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Reaction No. transitions 

Repression 1 
Reverse repression 0 

Transcription 0 
Translation 1 

Dimerisation 0 
Dissociation 0 

mRNA degradation 0 
Protein degradation 0 

or more neatly as a vector 

1 
0 
0 
1 

r= 0 
0 
0 
0 

Note that in order to save space, column vectors such as rare sometimes written as 
the transpose of row ve~tors, e.g. r = (1, 0, 0, 1, 0, 0, 0, 0)'. We can now use matrix 
algebra to update the marking (state) of the network. 

Proposition 2.1 If r represents the transitions that have taken place subsequent to 
the marking M, the new marking M is related to the old marking via the matrix 
equation** 

M=M+Sr. (2.1) 

Note that this equation (2.1) is of fundamental importance both for the mathematical 
analysis of Petri nets and biochemical networks and also for the development of sim­
ulation and inference algorithms. We will use this equation extensively in a variety 
of different ways throughout the book. Before we justify it, it is probably helpful to 
see a simple and direct application of it in practice. 

In the context of our example, we can compute the new marking from the old 

** Note that in matrix equations, addition is defined element-wise, but multiplication is defined in a special 
way. The product of the n X m matrix A and the m x p matrix B is the n x p matrix whose ( i, j)th 
element is 2:;;'=1 a;kbkj· A vector is treated as a matrix with one column. 
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marking as 

M=M+Sr 

=M +A'r 

1 -1 0 0 -1 1 

~m+ 
-1 1 0 0 1 0 

0 0 1 0 0 0 
0 0 0 1 0 1 
0 0 0 -2 1 0 
0 0 0 2 -1 0 
0 0 -1 0 0 0 
0 0 0 -1 0 0 

1 

~(I)+ ( -~ 
-1 0 Q 0 0 0 

-~) 
0 

1 0 0 0 0 0 
0 

0 1 0 0 0 -1 1 
0 0 0 1 -2 2 0 
0 12 -1 1 0 0 1 -1 0 
0 
0 

~ (:~) + ( j) 
~(!} 

We can see that (2.1) appears to have worked in this particular example, but we need 
to establish why it is true in general. 

Proof. The ith row of A represents the effect on the marking of the ith reaction. 
Similarly the ith column of S, which we denote si. Clearly ri is .the number of type 
i reactions that take place, so the change in marking, M - M is given by 
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i=l 

i=l 

= Sr, 

where ei is the ith unit v-vector. tt D 

2.3.3 Network invariants and conservation laws 
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There are two Petri net concepts that are of particular relevance to biochemical net­
works: P- and T-invariants. 

Definition 2.5 A ?-invariant (sometimes referred to in the literature as an S-invari­
ant) is a non-zero u-vector y that is a solution to the matrix equation Ay = 0. That 
is, y is any non-zero vector in the null-space of A.++ 

The null-space of A therefore characterises the set of P -invariants. These ?-invariants 
are interesting because they correspond to conservation laws of the network. 

In the example we have been studying, it is clear that the vector y = (1, 1, 0, 0, 0)' 
is a ?-invariant (as Ay = 0). This vector corresponds to the fairly obvious conserva­
tion law 

g · P2 + g = Constant. 

That is, the total number of copies of the gene does not change. It is true in general 
that if y is a: ?-invariant then the linear combination of states, y' M, is conserved 
by the reaction network. To see why this works, we can evaluate the current linear 
combination by computing y' M, where M is the current marking. Similarly, the 
value of the linear combination when the marking is M is y' M. So the change in the 
linear combination is 

y' M - y' M = y' (M- M) 

=y'Sr 
= (S'y)'r 

= (Ay)'r 

=0 

where the second line follows from (2.1) and the last line follows from the fact that 
y is a ?-invariant.§§ 

Definition 2.6 A T -invariant is a non-zero, non-negative (integer-valued) v-vector x 
that is a solution to the matrix equation Sx = 0. That is, x is in the null-space of S. 

tt The ith unit vector, e;, is the vector with a I in the ith position and zeros elsewhere. Multiplying a 
matrix by e; has the effect of picking out the ith column. 

H The null-space of a matrix (sometimes known as the kernel) is defined to be the set of all vectors that 
get mapped to zero by the matrix. 

§§ We also used the fact that for arbitrary (conformable) matrices A and B, we have (AB)' = B' A'. 
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These invariants are of interest because they correspond to sequences of transitions 
(reactions) that return the system to its original marking (state). This is clear im­
mediately from equation (2.1). If the primary concern is continuous deterministic 
modelling, then any non-negative solution is of interest. However, if the main in­
terest is in discrete stochastic models of biochemi~al networks, only non-negative 
integer vector solutions correspond to sequences of transitions (reactions) that can 
actually take place. Hence, we will typically want to restrict our attention to these. 

In the example we have been considering it is easily seen that the vectors x = 
{1, 1, 0, 0, 0, 0, 0, 0)' and x = (0, 0, 0, 0, 1, 1, 0, 0)' are both T-invariants of our net­
work. The first corresponds to a repression binding and its reverse reaction, and the 
second corresponds to a dimerisation and corresponding dissociation. However, not 
all T -invariants are associated with reversible reactions. 

Although it is trivial to verify whether a given vector is a P-orT-invariant, it is 
perhaps less obvious how to systematically find such invariants and classify the set 
of all such invariants for a given Petri net. In fact, the Singular Value Decomposition 
(SVD) is a classic matrix algorithm (Golub, & Van Loan 1996) that completely char­
acterises the null-space of a matrix and its transpose and hence helps considerably in 
this task. However, if we restrict our attention to positive integer solutions, there is 
still more work to be done even once we have the SVD. We will revisit this issue in 
Chapter 10 when the need to find invariants becomes more pressing. 

Before leaving the topic of invariants, it is worth exploring the relationship be­
tween the number of (linearly independent) P- and T-invariants. The column-rank 
of a matrix is the dimension of the image-space of the matrix (the space spanned by 
the columns of the matrix). The row-rank is the column-rank of the transpose of the 
matrix. It is a well-known result from linear algebra that the row and column ranks 
are the same, and so we can refer unambiguously to the rank of a matrix. It is fairly 
clear that the dimension of the image-space and null-space must sum to the dimen­
sion of the space being mapped into, which is the number of rows of the matrix. So, 
if we fix on S, which has dimension u x v, suppose the rank of the matrix is k. Let 
the dimension of the null-space of S be p and the dimension of the null-space of 
A(= S') bet. Then we have k + p = u and k + t = v. This leads immediately to the 
following result. 

Proposition 2.2 The number of linearly independent P-invariants, p, and the num­
ber of linearly independent T -invariants, t, are related by 

t-p= v -u. (2.2) 

In the context of our example, we have u = 5 and v = 8. As we have found a P­
invariant, we know that p ~ 1. Now using (2.2) we can deduce that t ~ 4. So there 
are at least four linearly independent T -invariants for this network, and we have so 
far found only two. 

2.3.4 Reachability 

Another Petri net concept of considerable relevance is that of reachability. 
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Definition 2.7 A marking M is reachable from marking M if there exists a finite 
sequence of transitions leading from M to M. 
If such a sequence of transitions is summarised in the v-vector r, it is clear that r 
will be a non-negative integer solution to (2.1). However, it is important to note that 
the converse does not follow: the existence of a non-negative integer solution to (2.1) 
does not guarantee the reachability of M from M. This is because the markings have 
to be non-negative. A transition cannot occur unless the number of tokens at each 
place is at least that required for the transition to take place. It can happen that there 
exists a set of non-negative integer transitions between two valid markings M and 
M, but all possible sequences corresponding to this set are impossible. 

This issue is best illustrated with an example. Suppose we have the reaction net­
work 

2x ____. x2 

X2---+2X 

x2 ____. x2 + Y. 

So, X can dimerise and dissociate, and dimers of X somehow catalyse the production 
ofY. If we formulate this as a Petri net with P = (X, X 2 , Y), and the transitions in 
the above order, we get the stoichiometry matrix 

s~ (Y ~, D 
If we begin by thinking about getting from initial marking M = (2, 0, 0)' to marking 
M = (2,0, 1)', we see that it is possible and can be achieved with the sequence 
of transitions t 1 , t3 , and t2 , giving reaction vector r = (1, 1, 1)'. We can now ask 
if marking M = (1, 0, 1)' is reachable from M = (1, 0, 0)'. If we look for a non­
negative integer solution to (2.1), we again find that r = (1, 1, 1)' is appropriate, 
as M - M is the same in both scenarios. However, this does not correspond to 
any legal sequence of transitions, as no transitions are legal from the initial marking 
M = (1, 0, 0)'. In fact, r = (0, 0, 1)' is another solution, since (1, 1, 0)' is aT­
invariant. This solution is forbidden despite the fact that firing of t3 will not cause 
the marking to go negative. 

This is a useful warning that although the matrix representation of Petri net (and 
biochemical network) theory is powerful and attractive, it is not a complete charac­
terisation - discrete-event systems analysis is a delicate matter, and there is much 
that systems biologists interested in discrete stochastic models can learn from the 
Petri net literature. 

2.4 Systems Biology Markup Language (SBML) 

Different representations of biochemical networks are useful for different purposes. 
Graphical representations (including Petri nets) are useful both for visualisation and 
analysis, and matrix representations are useful for mathematical and computational 
analysis. The Systems Biology Markup Language (SBML), described in Hucka et 
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al. (2003), is a way of representing biochemical networks that is intended to be 
convenient for computer software to generate and parse, thereby enabling communi­
cation of biochemical network models between disparate modelling and simulation 
tools. It is essentially an eXtensible Markup Language (XML) encoding (DuCharme 
1999) of the reaction list, together with the additional information required for quan­
titative modelling and simulation. It is intended to be independent of particular ki­
netic theories and should be as appropriate for discrete stochastic models as for con­
tinuous deterministic ones (in fact, there are a few minor problems using SBML for 
discrete stochastic models, and these will be discussed as therY become relevant). 

We will concentrate here on the version of SBML known as "Level2 (version 1)," 
as this is the current specification (at the time of writing) and contains sufficient 
features for the biochemical network models considered in this book. Further de­
tails regarding SBML, including the specification and XML Schema can be obtained 
from the SBML.org website. Note that SBML should perhaps not be regarded as an 
alternative to other representations, but simply as an electronic format which could in 
principle be used in conjunction with any of the representations we have considered. 
Also note that it is not intended that SBML models _should be generated and manip­
ulated "by hand" using a text editor, but rather by software tools which present to 
the user a more human-oriented representation. It is also worth bearing in mind that 
SBML continues to evolve. At the time of writing, SBML Level2 (version 1) is the 
current specification, but Level2 version 2 is in preparation, and many proposals are 
already in place for Level3. The principal differences between Levell and Level2 
are that Level 2 supports the notion of "events" and encodes all mathematical for­
mulae using MathML (an XML encoding for mathematical notation) rather than as 
strings containing algebraic expressions. However, there is another more subtle dif­
ference to be examined later which makes it difficult to correctly and unambiguously 
define models intended for discrete stochastic simulation in Level 1. This problem 
was addressed for Level 2, and this is the main reason for advocating that Level 2 is 
used in preference to Level 1 for the encoding of discrete stochastic models. 

2.4.1 Basic document structure 

An SBML (Level2) model consists oflists of functions, units, compartments, species, 
parameters, rules, reactions, and events. Each ofthese lists is optional. We will con­
centrate here on units, compartments, species, parameters, and reactions, as these 
are sufficient for adequately describing most simple discrete stochastic models. This 
basic structure is encoded in SBML as follows. 

<?xml version="l.O" encoding="UTF-8"?> 
<sbml xmlns="http://www.sbml.org/sbml/level2" 

level="2" version="l"> 
<model id="MyBiochemicalNetwork" 

name="My biochemical network"> 
<listOfUnitDefinitions> 

</listOfUnitDefinitions> 
<listOfCompartments> 
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c/listOfCompartments> 
clistOfSpecies> 

c/listOfSpecies> 
clistOfParameters> 

c/listOfParameters> 
clistOfReactions> 

c/listOfReactions> 
</model> 

c/sbml> 

2.4.2 Units 
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The (optional) units list allows definition and redefinition of the units used by the 
model. Discrete stochastic models will often have the following units declaration. 

clistOfUnitDefinitions> 
cunitDefinition id="substance"> 

clistOfUnits> 
cunit kind="item"/> 

c/listOfUnits> 
c/unitDefinition> 

c/listOfUnitDefinitions> 

This declaration has the effect of changing the default substance units from the de­
fault value (mole) to item. The effect of this is that subsequent (unqualified) specifi­
cations of (and references to) amounts will be assumed to be in the unit of item. That 
is, amounts will be interpreted as numbers of molecules rather than the default of 
numbers of moles. Units turn out to be a rather delicate issue. We will examine units 
in some detail later in the book when we look at kinetics and rate laws. For further 
details on using units with SBML, see the specification document. Note that most 
simulators in current use ignore the units section of the SBML document. In prac­
tice, this means that deterministic simulators will assume units of mole, and most 
stochastic simulators will assume units of item irrespective of the content of this sec­
tion. However, it is important to ensure that models are encoded correctly so that they 
are not misinterpreted later. 

2.4.3 Compartments 

The compartment list simply states the compartments in the model. So for a model 
with two nested compartments, the declaration might be as follows. 

clistOfCompartments> 
<compartment id="Cell" size="l"/> 
<compartment id="Nucleus" size="l" outside="Cell"/> 

c/listOfCompartments> 
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A model must have at least one compartment, and each compartment should be given 
an id. You may also specify a size (or volume), in the current units (the default size 
units are litres). A compartment that is contained inside another compartment should 
declare the compartment that is "outside." 

2.4.4 Species 

The species list simply states all species in the model. So, for the. auto-regulatory 
network model we have been considering throughout thl:s chapter, these could be 
declared using 

<listOfSpecies> 
<Species id="Gene" compartment="Cell" initialAmount="lO" 

hasOnlySubstanceUnits="true"/> 
<species id="P2Gene" name="P2.Gene" compartment="Cell" 

initialAmount="O" hasOnlySubstanceUnits="true"/> 
<species id="Rna" compartment="Cell" initialAmount="O" 

hasOnlySubstanceUnits="true"/> 
<species id="P" compartment="Cell" initia1Amount="0" 

hasOnlySubstanceUnits="true"/> 
<species id="P2" compartment="Cell" initia1Amount="0" 

hasOnlySubstanceUnits="true"/> 
</listOfSpecies> 

There are several things worth pointing out about this declaration. First, the initial 
amounts are assumed to be in the default substance units, unless explicit units are 
specified (see the specification for how to do this). This default will be moles unless 
substance units have been redefined (say, to item). Also note that each species is 
declared with the non-default attribute hasOnlySubstanceUnits. This has the effect of 
ensuring that wherever the species is referred to elsewhere in the model (for example, 
in rate laws), it will be interpreted as an amount (in the appropriate substance units), 
and not a concentration (which is the SBML default). Most stochastic simulators 
will make this assumption anyway, but it is important to encode models correctly 
so that they will not be misinterpreted later. One of the main problems with SBML 
Level 1 from the viewpoint of discrete stochastic modellers is that it does not have 
the attribute hasOnlySubstanceUnits, and therefore references to species necessarily 
refer to concentrations rather than amounts, which makes specification of reaction 
rate laws very unnatural. 

2.4.5 Parameters 

The parameters section can be used to declare names for numeric values to be used 
in algebraic formulae. They are most often used to declare rate constants for the 
kinetic laws of biochemical reactions, but can be used for other variables as well. An 
example parameter section might be as follows. 

<listOfParameters> 
<parameter id="kl" value="O.Ol"/> 



SYSTEMS BIOLOGY MARKUP LANGUAGE (SBML) 35 

<parameter id="k2" value="O.l"/> 
</listOfParameters> 

Parameters defined here are "global" to the whole model. In contrast, any parameters 
defined in the context of a particular reaction will be local to the kinetic law for that 
reaction only. 

2.4.6 Reactions 

The reaction list consists of a list of reactions. A reaction in turn consists of a list of 
reactants, a list of products and a rate law. A reaction may also declare "modifier" 
species - species that are not created or destroyed by the reaction, but figure in the 
rate law. For example, consider the following encoding of a dimerisation reaction. 

<reaction id="Dimerisation" reversible="false"> 
<listOfReactants> 

<speciesReference species="P" stoichiometry="2"/> 
</listOfReactants> 
<listOfProducts> 

<speciesReference species="P2"/> 
</listOfProducts> 
<kineticLaw> 

<math xmlns="http://www.w3.org/1998/Math/MathML"> 
<apply> 

<times/> 
<Ci> k4 </Ci> 
<Cn> 0.5 </en> 
<Ci> P </Ci> 
<apply> 

<minus/> 
<Ci> P </Ci> 
<Cn type="integer"> 1 </en> 

</apply> 
</apply> 

</math> 
<listOfParameters> 

<parameter id="k4" value="l"/> 
</listOfParameters> 

</kineticLaw> 
</reaction> 

There are several things to note about this declaration. One thing that perhaps appears 
strange is that the reaction is declared to be not reversible when we know that dimeri­
sation is typically a reversible process. However, reactions should only be flagged as 
reversible when the associated kinetic law represents the combined effects of both 
forward and backward reactions. It turns out that while this is fine for continuous 
deterministic models, there is no satisfactory way to do this for discrete stochastic 
models. As a result, when developing a model for discrete stochastic simulation, the 
forward and backward reactions must be specified separately (and declared notre­
versible) along with their separate kinetic laws. We will examine the meaning and 
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specification of reaction rates and kinetic laws later in this book. The specification of 
reactants and products and their associated stoichiometries is fairly self-explanatory. 
The kinetic law itself is a MathML (W3C 2000) encoding. of the simple algebraic 
formula k4*0. S*P* (P-1). Rate laws will be discussed in more detail later, but 
it is important to know that the units of this law are of the form substance I time, 
using the default substance and time units (the default time pnit is second). However, 
by default, any reference to a species within a rate law will refer to the concentra­
tion of that species (with units substance I size), uuless the species has declared the 
attribute hasOnlySubstanceUnits (or is in a compartment with zero dimensions), in 
which case it will refer to the amount of that species (with units substance). The ki­
netic law given above uses a local parameter k4. This constant will always be used 
in the formula of the kinetic law, masking any global parameter of i:he same name. 
To use a global parameter called k4, the entire section 

<listOfParameters> 
<parameter name="k4" value="l"/> 

</listOfParameters> ... 

should be removed from the kinetic law. Kinetic laws can use a mixture of global 

'i. 

and local parameters. Any reference to a compartment will be replaced by the size · j 
(volume) of the compartment. A list of reactions should be included in the SBML 
file between <listOf Reactions> and </listOfReactions> tags. 

2.4. 7 The full SBML model 

The various model components are embedded into the basic model structure. For 
completeness, Appendix A. I lists a full SBML model for the simple auto-regulatory 
network we have been considering. Note that as this model uses locally specified 
parameters rather than globally defined parameters, there is no <listOfParamet 
ers> section in the model definition. This model can also be downloaded from the 
book's website. 

2.5 SBML-shorthand 

2.5.1 Introduction 

SBML is rapidly becoming the lingua franca for electronic representation of models 
of interest in systems biology. Dozens of different software tools provide SBML sup­
port to varying degrees, many providing both SBML import and export provisions, 
and some using SBML as their native format. However, while SBML is a good for­
mat for computers to parse and generate, its verbosity and low signal-to-noise ratio 
make it rather inconvenient for humans to read and write. I have found it helpful 
to develop a shorthand notation for SBML that is much easier for humans to read 
and write, and can easily be "compiled" into SBML for subsequent import into other 
SBML-aware software tools. The notation can be used as a partial substitute for the 
numerous GUI-based model-building tools that are widely used for systems biology 
model development. An additional advantage of the notation is that it is much more 
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suitable than raw SBML for presentation in a book such as this (because it is more 
concise and readable). Many of the examples discussed in subsequent chapters will 
be presented using the shorthand notation, so it is worth presenting the essential de­
tails here. Here we describe a particular version of the shorthand notation, known 
as 2.1.1. A compiler for translating the shorthand notation into full SBML is freely 
available (see the book's website for details). 

2.5.2 Basic structure 

The description format is plain ASCII text. The suggested file extension is . mod, but 
this is not required. All whitespace other than carriage returns is insignificant (unless 
it is contained within a quoted "name" element). Carriage returns are significant. The 
description is case-sensitive. Blank lines are ignored. The comment character is # -
all text from a # to the end of the line is ignored. 

The model description must begin with the characters ®model: 2 .1.1= (the 
2.1.1 corresponds to the version number of the specification). The text following the 
= on the first line is the model identification string (ID). An optional model name 
may also be specified, following the ID, enclosed in double quotes. The model is 
completed with the specification of the five sections, ®units, ®compartments, 
®species, ®parameters, and ®reactions, corresponding to the SBML sec­
tions, <listOfUnitDefinitions>, <listOfCompartments>, <listOf 
Species>, <listOfParame ters>, and <listOfReactions>,respectively. 
The sections must occur in the stated order. Sections are optional, but if present, may 
not be empty. These are the only sections covered by this specification. 

2.5.3 Units 

The format of the individual sections will be explained mainly by example. The 
following SBML-shorthand 

®units 
substance= item 
fahrenheit=celsius:m=1.8,o=32 
mmls=mole:s=-3; litre:e=-1; second:e=-1 

would be translated to 

<listOfUnitDefinitions> 
<unitDefinition id="substance"> 

<listOfUnitS> 
<unit kind="item"/> 

</listOfUnits> 
</unitDefinition> 
<UnitDefinition id="fahrenheit"> 

<listOfUnits> 
<Unit kind="Ce1sius" multiplier="l.8" offset="32"/> 

</listOfUnits> 
</unitDefinition> 
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<unitDefinition id="mmls"> 
<listOfUnits> 

<unit kind="mole" scale="-3"/> 
<unit kind="litre" exponent="-1"/> 
<Unit kind="second" exponent="-1"/> 

</listOfUnits> 
</unitDefinition> 

</listOfUnitDefinitions> \. 

The unit attributes exponent, multiplier, scale, and offset are denoted 
by the letters e, m, s, and o respectively. Note that because there is no. way to refer to 
units elsewhere in SBML-shorthand, the only function for this section is to redefine 
default units such as substance and size. 

2.5.4 Compartments 

The following SBML-shorthand 

®compartments 
cell=l 
cytoplasm<cell=O.S 
nucleus<cell=O.l 
mito<cytoplasm "Mitochondria" 
cell2 

would be translated to 

<listOfCompartments> 
<Compartment id="cell" size="l"/> 
<compartment id="cytoplasm" size="0.8" outside="cell"/> 
<compartment id="nucleus" size="O.l" outside="cell"/> 
<Compartment id="mito" name="Mitochondria" 

<compartment id="cell2"/> 
</listOfCompartments> 

outside="cytoplasm"/> 

Note that if a name attribute is to be specified, it should be specified at the end of the 
line in double quotes. This is true for other SBML elements too. 

2.5.5 Species 

The following shorthand 

®species 
cell:Gene = lOb "The Gene" 
cell:P2=0 
cell:Sl=lOO s 
cell: [S2] =20 sc 
cell: [S3]=1000 be 
mito:S4=0 b 

would be translated to 
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<listOfSpecies> 
<species id="Gene" name="The Gene" compartment="cell" 

initia1Amount="l0" boundaryCondition="true"/> 
<species id="P2" compartment="cell" initialAmount="O"/> 
<Species id="Sl" compartment="cell" initialAmount="lOO" 

hasOnlySubstanceUnits="true"/> 
<species id="S2" compartment="cell" 

initialConcentration="20" 
hasOnlySubstanceUnits="true" constant="true"/> 

.<species id="S3" compartment="cell" 
initia1Concentration="l000" 
boundaryCondition="true" constant="true"/> 

<Species id="84" compartment="mito" initialAmount="O" 
boundaryCondition="true"/> 

</listOfSpecies> 

Compartments are compulsory. An initialConcentration (as opposed to 
an initialAmount) is flagged by enclosing the species id in brackets. The bool­
ean attributes hasOnlySubstanceUnits, boundaryCondition, and con­
stant can be set to true by appending the letters s, b, and c, respectively. The 
order of the flags is not important. 

2.5.6 Parameters 

The section 

®parameters 
kl=l 
k2=10 

would be translated to 

<listOfPararneters> 
<parameter narne="kl" value="l"/> 
<parameter name="k2" value="l0"/> 

</listOfParameters> 

2.5. 7 Reactions 

Each reaction is specified by exactly two or three lines of text. The first line declares 
the reaction name and whether the reaction is reversible (®rr= for reversible and 
®r= otherwise). The second line specifies the reaction itself using a fairly standard 
notation. The (optional) third line specifies the full rate law for the kinetics. If local 
parameters are used, they should be declared on the same line in a comma-separated 
list (separated from the rate law using a :) 

So, for example, 

®reactions 
®r=RepressionBinding "Repression Binding" 

Gene + 2P -> P2Gene 
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k2*Gene 
®rr=Reverse 

P2Gene -> Gene+2P 
klr*P2Gene : klr=l,k2=3 

®r=NoKL 
Harry->Jim 

®r=Test 
Fred -> Fred2 
k4*Fred : k4=1 

would translate to 
<listOfReactions> 

\. 

<reaction id="RepressionBinding"·name="Repression Binding" 
reversible= •1 false"> 

<listOfReactants> 
<speciesReference species="-Gene"/> 
<speciesReference species="P ... -stoichiometry="2"/> 

</listOfReactants> 
<listOfProducts> 

<speciesReference species="P2Gene"/> 
</listOfProducts> 
<kineticLaw> 

<math xmlns="http://www.w3.org/199B/Math/MathML"> 
<apply> 

<times/> 
<Ci> k2 </Ci> 
<Ci> Gene </Ci> 

</apply> 
</math> 

</kineticLaw> 
</reaction> 
<reaction id="Reverse"> 

<listOfReactants> 
<speciesReference species="P2Gene"/> 

</listOfReactants> 
<listOfProducts> 

<speciesReference species="Gene"/> 
<speciesReference species="P" stoichiometry="2"/> 

</listOfProducts> 
<kineticLaw> 

<math xmlns="http://www.w3.org/199B/Math/MathML"> 
<apply> 

<times/> 
<Ci> klr </Ci> 
<Ci> P2Gene </ci> 

</apply> 
</math> 
<listOfParameters> 

<parameter id="klr" value="l"/> 
<parameter id="k2" value="3"/> 



SBML-SHORTHAND 

</listOfParameters> 
</kineticLaw> 

</reaction> 
<reaction id="NoKL" reversible="false"> 

<listOfReactants> 
<speciesReference species="Harry"/> 

</listOfReactants> 
<listOfProducts> 

<speciesReference species="Jim"/> 
</listOfProducts> 

·</reaction> 
<reaction id="Test" reversible="false"> 

<listOfReactants> 
<speciesReference species="Fred"/> 

</listOfReactants> 
<listOfProducts> 

<speciesReference species="Fred2"/> 
</listOfProducts> 
<kineticLaw> 

<math xmlns="http://www.w3.org/1998/Math/MathML"> 
<apply> 

<times/> 
<Ci> k4 </Ci> 
<Ci> Fred </ci> 

</apply> 
</math> 
<listOfParameters> 

<parameter id="k4" value="l"/> 
</listOfParameters> 

</kineticLaw> 
</reaction> 

</listOfReactions> 

2.5.8 Example 
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The auto-regulatory network whose SBML is given in Appendix A.l can be repre­
sented in SBML-shorthand in the following way. 
®model:2.l.l=AutoRegulatoryNetwork "Auto-regulatory network" 
®units 

substance= item 
®compartments 
Cell 

®species 
Cell:Gene=lO s 
Cell:P2Gene=O s "P2.Gene" 
Cell:Rna=O s 
Cell: P=O s 
Cell:P2=0 s 

®reactions 
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®r=RepressionBinding "Repression binding" 
Gene+P2 -> P2Gene 
kl*Gene*P2 : kl=l 

®r=ReverseRepressionBinding "Reverse repression binding" 
P2Gene -> Gene+P2 
klr*P2Gene : klr=lO 

®r=Transcription 
Gene -> Gene+Rna 
k2*Gene : k2=0.01 

®r=Translation 
Rna -> Rna+P 
k3*Rna : k3=10 

®r=Dimerisation 
2P -> P2 
k4*0.5*P*(P-l) k4=1 

®r=Dissociation 
P2 -> 2P 
k4r*P2 : k4r=l 

®r=RnaDegradation "RNA Degradation" 
Rna -> 

kS*Rna : k5=0.1 
®r=ProteinDegradation "Protein degradation" 

p -> 

k6*P : k6=0.01 

2.6 Exercises 

1. Go to the book's website,, and follow the Chapter 2 links to explore the world 
of SBML and SBML-aware software tools. In particular, download and read the 
SBML Level 1 and Level2 specification documents. 

2. Consider this simple model of Michaelis-Menten enzyme kinetics 

S+E--. SE 

SE--> S+E 

SE--.P+E. 

(a) Represent this-reaction network graphically using a Petri net style diagram. 

(b) Represent it mathematically as a Petri net, N = (P, T, Pre, Post, M), as­
suming that there are currently 100 molecules of substrateS, 20 molecules of 
the enzyme E, and no molecules of the substrate-enzyme complex S E or the 
productP. 

(c) Calculate the reaction and stoichiometry matrices A and S. 
(d) If the first reaction occurs 20 times, the second 10 and the last 5, what will be 

the new state of the system? 

(e) Can you find a different set of transitions that will lead to the same state? 

11URL:http://www.staff.ncl.ac.uk/d.j.wilkinson/smfsb/ 
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· (t) Can you identify any P-orT-invariants for this system? 

(g) Write the model using SBML-shorthand (do not attempt to specify any kinetic 
laws yet). 

(h) Hand-translate the SBML-shorthand into SBML, then validate it using the on-
. i line validation tool at the the SBML.org website. 

(i) Download and install the SBML-shorthand compiler and use it to translate 
SBML-shorthand into SBML. 

G) Download and install some SBML-aware model-building tools. Try loading 
your valid SBML model into the tools, and also try building it from scratch 
(at the time of writing, JDesigner, Jigcell, Cellware, and Cell Designer are all 
popular tools - there should be links to each of these from the SBML.org 
website). 

2.7 Further reading 

Murata (1989) provides a good tutorial introduction to the general theory ofPtr Petri 
nets. Information on SBML and all things related can be found at the SBML.org web­
site. In particular, background papers on SBML, the various SBML specifications, 
SBML models, tools for model validation and visualisation, and other software sup­
porting SBML can all be found there. Pinney et al. (2003) and Hardy & Robillard 

~ ··· (2004) give introductions to the use of Petri nets in systems biology and Goss & 
Peccoud (1998) explore the use of Stochastic Petri Nets (SPNs) for discrete-event 
simulation of stochastic kinetic models. 

' ~. 





CHAPTER3 

Probability models 

3.1 Probability 

3.1.1 Sample spaces, events, and sets 

The models and representations considered in the previous chapter provide a frame­
work for thinking about the state of a biochemical network, the reactions that can 
take place, and the change in state that occurs as a result of particular chemical reac­
tions. As yet, however, little has been said about which reactions are likely to occur 
or when. The state of a biochemical network evolves continuously through time with 
discrete changes in state occurring as the result of reaction events. These reaction 
events are ~:andom, governed by probabilistic laws. It is therefore necessary to have 
a fairly good background in probability theory in order to properly understand these 
processes. In a short text such as this it is impossible to provide complete coverage of 
all of the necessary material. However, this chapter is meant to provide a quick sum­
mary of the essential concepts in a form that should be accessible to anyone with a 
high school mathematics education who has ever studied some basic probability and 
statistics. Readers with a strong background in probability will want to skip through 
this chapter. Note, however, that particular emphasis is placed on the properties of the 
exponentilil distribution, as these turn out to be central to understanding the various 
stochastic simulation algorithms that will be examined in detail in later chapters. 

Any readers finding this chapter difficult should go back to a classic introductory 
text such.as Ross (2003). The material in this chapter should provide sufficient back­
ground fot the next few chapters (concerned with stochastic processes and simulation 
of biochemical networks). However, it does not cover sufficient statistical theory for 
the later chapters concerned with inference from data. Suitable additional reading 
matter for those chapters will be discussed at an appropriate point in the text. 

Probability theory is used as a model for situations for which the outcomes occur 
randomly. Generically, such situations are called experiments, and the set of all pos­
sible outcomes of the experiment is known as the sample space corresponding to an 
experiment. The sample space is usually denoted by S, and a generic element of the 
sample space (a possible outcome) is denoted by s. The sample space is chosen so 
that exactly one outcome will occur. The size of the sample space is finite, countably 
infinite, or uncountably infinite. 

Definition 3.1 A subset of the sample space (a collection of possible outcomes) is 
known as an event We write E c S if E is a subset of S. Events may be classified 
into four types: 

the null event is the empty subset of the sample space; 

45 
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an atomic event is a subset consisting of a single element of the sample space; 

a compound event is a subset consisting of more than one element of the sample 
space; 

the sample space itself is also an event. 

Definition 3.2 

The union of two events E and F (written E U F) is the event that at least one of 
E and F occurs. The union of the events can be obtained by forming the union of 
the sets. 

The intersection of two events E and F (written En F) is the event that both 
E and F occur. The intersection of two events can be obtained by forming the 
intersection of the sets. 

The complement of an event, A, denoted A c or A, is the event that A does not occur, 
and hence consists of all those elements of the sample space that are not in A. 

Two events A and B are disjoint or mutually exclusive if they cannot both occur. 
That is, their intersection in empty 

AnB=0. 

Note that for any event A, the events A and A c are disjoint, and their union is the 
whole of the sample space: 

AnAc=0 and AUAc=S. 

The event A is true if the outcome of the experiment, s, is contained in the event A; 
that is, if s E A. We say that the event A implies the event B, and write A =? B, 
if the truth of B automatically follows from the truth of A. If A is a subset of B, 
then occurrence of A necessarily implies occurrence of the event B. That is 

(As;; B) ~ (An B =A) ~ (A=? B). 

In order to carry out more sophisticated manipulations of events, it is helpful to 
know some basic rules of set theory. 

Proposition 3.1 

Commutative laws: 

Associative laws: 

AUB=BUA 

AnB=BnA 

(AU B) U C = Au (B U C) 

(An B) n C = An (B n C) 
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Distributive laws: 

DeMorgan's laws: 

Disjoint union: 

(Au B) nC =(An C) u (B nC) 
(An B) u G = (Au G) n (BuG) 

(AU B)c = Ac n Be 

(An B)e = Ae U Be 

AU B = (An Be) U (Ae n B) U (An B) 

and An Be, Ac n B, and An Bare disjoint. 

3.1.2 Probability axioms 

47 

Once a suitable mathematical framework for understanding events in terms of sets 
has been established, it is possible to construct a corresponding framework for un­
derstanding probabilities of events in terms of sets. 

Definition 3.3 The real valued function P ( ·) is a probability measure if it acts on 
subsets of S and obeys the following axioms: 

I. P (S) = 1. 

·· ' II. /fA ~ S then P (A) 2: 0. 

Ill. If A and B are disjoint (A n B = 0) then 

P (AU B) = P (A)+ P (B). 

Repeated use of Axiom Ill gives the more general result that if A1, A2, ... , An 
are mutually disjoint, then 

Indeed, we will assume further that the above result holds even if we have a count­
ably infinite collection of disjoint events ( n = oo ). 

These axioms seem to fit well with most people's intuitive understanding of proba­
bility, but there are a few additional comments worth making. 

1. Axiom I says that one of the possible outcomes must occur. A probability of 1 is 
assigned to the event "something occurs." This fits in exactly with the definition 
of sample space. Note, however, that the implication does not go the other way! 
When dealing with infinite sample spaces, there are often events of probability 1 
which are not the sample space, and events of probability zero, which are not the 
empty set. 

2. Axiom II simply states that we wish to work only with positive probabilities, 
because in some sense, probability measures the size of the set (event). 
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3. Axiom III says that probabilities "add up" in a natural way. Allowing this result 
to hold for countably infinite unions is slightly controversial, but it makes the 
mathematics much easier, so it will be assumed throughout this text. 

These axioms are (almost) all that is needed in order to develop a theory of probabil­
ity, but there are a collection of commonly used properties which follow directly from 
these axioms and are used extensively when carrying out probability calculations. 

Proposition 3.2 

1. P (N) = 1 - P (A) 

2. p (0) = 0 

3. If A~ B, then P (A) :S P (B) 

4. (Addition Law) P (AU B) = P (A)+ P (B)- P (An B) 

Proof For 1, since An Ac = 0, and S = AU Ac, Axiom III tells us that P (S) = 
P (AU Ac) = P (A)+P (Ac). FromaxiomlweknowthatP (S) = 1. Re-arranging 
gives the result. Property 2 follows from property 1 as 0 = sc.lt simply says that the 
probability of no outcome is zero, which again fits in with our definition of a sample 
space. For property 3 write B as 

B = AU(BnN), 

where A and B n Ac are disjoint. Then, from the third axiom, 

P (B) = P (A)+ P (B n A c) 

so that 

P (A) = P (B)- P (B n A c) :S P (B). 

Property 4 is one of the exercises at the end of the chapter. D 

3.I .3 Interpretations of probability 

Most people have an intuitive feel for the notion of probability, and the axioms seem 
to capture its essence in a mathematical form. However, for probability theory to be 
anything other than an interesting piece of abstract pure mathematics, it must have an 
interpretation that in some way connects it to reality. If you wish only to study proba­
bility as a mathematical theory, there is no need to have an interpretation. However, if 
you are to use probability theory as your foundation for a theory which makes prob­
abilistic statements about the world around us, then there must be an interpretation 
of probability which makes some connection between the mathematical theory and 
reality. 

While there is (almost) unanimous agreement about the mathematics of probabil­
ity, the axioms, and their consequences, there is considerable disagreement about the 
interpretation of probability. The three most common interpretations are given below. 
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Classical interpretation 

The classical interpretation of probability is based on the assumption of underlying 
equally likely events. That is, for any events under consideration, there is always a 
sample space which can be considered where all atomic events are equally likely. If 
this sample space is given, then the probability axioms may be deduced from set­
theoretic considerations. 

This interpretation is fine when it is obvious how to partition the sample space 
into equally likely events and is in fact entirely compatible with the other two in­
terpretations to be described in that case. The problem with this interpretation is 
that for many situations it is not at all obvious what the partition into equally likely 
events is. For example, consider the probability that it will rain in a particular loca­
tion tomorrow. This is clearly a reasonable event to consider, but it is not at all clear 
what sample space we should construct with equally likely outcomes. Consequently, 
the classical interpretation falls short of being a good interpretation for real-world 
problems. However, it provides a good starting point for a mathematical treatment 
of probability theory and is the interpretation adopted by many mathematicians and 
theoreticians. 

Frequentist·interpretation 

An interpretation of probability widely adopted by statisticians is the relative fre­
quency interpretation. This interpretation makes a much stronger connection with 
reality than the previous one and fits in well with traditional statistical methodology. 
Here probability only has meaning for events from experiments which could in prin­
ciple be repeated arbitrarily many times under essentially identical conditions. Here, 
the probability of an event is simply the "long-run proportion" of times that the event 
occurs under many repetitions of the experiment. It is reasonable to suppose that this 
proportion will settle down to some limiting value eventually, which is the probabil­
ity of the event. In such a situation, it is possible to derive the axioms of probability 
from consideration of the long run frequencies of various events. The probability p, 
of an event E, is defined by 

l . r 
p= rm­

n-+oo n 
where r is the number of times E occurred in n repetitions of the experiment. 

Unfortunately it is hard to know precisely why such a limiting frequency should 
exist. A bigger problem, however, is that the interpretation only applies to outcomes 
of repeatable experiments, and there are many "one-off" events, such as "rain here 
tomorrow," on which we would like to be able to attach probabilities. 

Subjective interpretation 

This final common interpretation of probability is somewhat controversial, but does 
not suffer from the problems the other interpretations do. It suggests that the asso­
ciation of probabilities to events is a personal (subjective) process, relating to your 
degree of belief in the likelihood of the event occurring. It is controversial because 
it accepts that different people Win assign different probabilities to the same event. 
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While in some sense it gives up on an objective notion of probability, it is in no sense 
arbitrary. It can be defined in a precise way, from which the axioms of probability 
may be derived as requirements of self-consistency. 

A simple way to define your subjective probability that some event E will occur 
is as follows. Your probability is the number p such that you consider £p to be a fair 
price for a gamble which will pay you £1 if E occurs and nothing otherwise. 

So, if you consider 40 pence to be a fair price for a gamble which pays you £1 if 
it rains tomorrow, then 0.4 is your subjective probability for the event.* The subjec­
tive interpretation is sometimes known as the degree of belief interpretation, which 
is the interpretation of probabilitY underlying the theory of Bayesian Statistics - a 
powerful theory of statistical inference named after Thomas Bayes, the 18th-century 
Presbyterian minister who first proposed it. Consequently, this interpretation of prob­
ability is sometimes also known as the Bayesian interpretation. 

Summary 

While the interpretation of probability is philosophically very important, all interpre­
tations lead to the same set of axioms, from which the rest of probability theory is 
deduced. Consequently, for much of this text, it will be sufficient to adopt a fairly 
classical approach, taking the axioms as given and investigating their consequences 
independently of the precise interpretation adopted. However, the inferential theory 
considered in the later chapters is distinctly Bayesian in nature, and Bayesian infer­
ence is most naturally associated with a subjective interpretation of probability. 

3.1.4 Classical probability 

Classical probability theory is concerned with carrying out probability calculations 
based on equally likely outcomes. That is, it is assumed that the sample space has 
been constructed in such a way that every subset of the sample space consisting of 
a single element has the same probability. If the sample space contains n possible 
outcomes (#S = n), we must have for all s E S, 

and hence for all E ~ S 

More informally, we have 

1 
P({s})=-

n 

P(E)=#E. 
n 

p (E) = number of ways E can occur. 
total number of outcomes 

* For non-British readers, replace £ with $ and pence with cents. 
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Example 

Suppose that a fair coin is thrown twice, and the results are recorded. The sample 
space is 

8= {HH,HT,TH,TT}. 

Let us assume that each outcome is equally likely - that is, each outcome has a 
probability of 1/4. Let A denote the event head on the first toss, and B denote the 
event head on the second toss. In terms of sets 

A= {HH,HT}, B = {HH,TH}. 

So 

p (A) = #A = ~ = ~ 
n 4 2 

and similarly P (B) = 1/2. If we are interested in the event C = AUB we can work 
out its probability from the set definition as 

P(C) = #C = #(AUB) = #{HH,HT,TH} = ~ 
4 4 4 4 

or by using the addition formula 

1 1 
P (C)= P (Au B)= P (A)+ P (B)- P (An B)= 2 + 2 - P (An B). 

Now An B = { H H}, which has probability 114, so 

1 1 1 3 
p (C) = 2 + 2 - 4 = 4. 

In this simple example, it seems easier to work directly with the definition. However, 
in more complex problems, it is usually much easier to work out how many elements 
there arc:<in an intersection than in a union, making the addition law very useful. 

The multiplication principle 

In the above example we saw that there were two distinct experiments -first throw 
and second throw. There were two equally likely outcomes for the first throw and two 
equally likely outcomes for the second throw. This leads to a combined experiment 
with 2 x 2 = 4 possible outcomes. This is an example of the multiplication principle. 

Proposition 3.3 If there are p experiments and the first has n 1 equally likely out­
comes, the second has n 2 equally likely outcomes, and so on until the pth experiment 
has np equally likely outcomes, then there are 

p 

n1 x nz x · · · np = IT ni 
i=l 

equally likely possible outcomes for the p experiments. 
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3.1.5 Conditional probability and the multiplication rule 

We now have a way of understanding the probabilities of events, but so far we have 
no way of modifying those probabilities when certain events occur. For this, we need 
an extra axiom which can be justified under any of the interpretations of probability. 

Definition 3.4 The conditional probability of A given B, written P (AlB) is defined 
by 

P (An B) 
P (AlB) = p (B) , for P (B) > 0. 

Note that we can only condition on events with positive probability. 
Under the classical interpretation of probability, we can see that if we are told that 

B has occurred, then all outcomes in B are equally likely, and all outcomes not in B 
have zero probability - so B is the new sample space. The number of ways that A · 
can occur is now just the number of ways)A n B. can occur, and these are all equally 
likely. Consequently we have 

p (AlB) = #(An B) = #(An B)/#S = P (An B). 
#B #B/#S P (B) 

Because conditional probabilities really just correspond to a new probability mea­
sure defined on a smaller sample space, they obey all of the properties of "ordinary" 
probabilities. For example, we have 

and so on. 

P (BIB)= 1 

P (01B) = 0 

P (Au CIB) = P (AlB)+ P (CIB), for An C = 0 

The definition of conditional probability simplifies when one event is a special 
case of the other. If A<;:; B, then An B =A so 

p (A) 
P (AlB) = p (B)' for A <;:; B. 

Example 

A die is rolled and the number showing recorded. Given that the number rolled was 
even, what is the probability that it was a six? 

Let E denote the .event "even" and F denote the event "a six." Clearly F <;:; E, so 

P(FIE) = P(F) = 1/6 = .!:.. 
P(E) 1/2 3 

The formula for conditional probability is useful when we want to calculate P (AlB) 
from P (An B) and P (B). However, more commonly we want to know P (A nB) 
and we know P (AlB) and P (B). A simple rearrangement gives us the multiplication 
rule. 

Proposition 3.4 (multiplication rule) 

P (An B)= P (B) x P (AlB) 
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Example 

Two cards are dealt from a deck of 52 cards. What is the probability that they are 
both Aces? 

Let A1 be the event "first card an Ace" and A2 be the event "second card an Ace." 
P ( A2IA1) is the probability of a second Ace. Given that the first card has been drawn 
and was an Ace, there are 51 cards left, 3 of which are Aces, soP (A2IA1) = 3/51. 
So, 

P (A1 n A2) = P (A1) x P (A2IA1) 
4 3 

=-X-
52 51 
1 

= 221" 

The multiplication rule generalises to more than two events. For example, for three 
events we have 

3.1.6 Independent events, partitions and Bayes Theorem 

Recall the multiplication rule (Proposition 3.4): 

P (An B) = P (B) P (AlB). 

For some events A and B, knowing that B has occurred will not alter the probability 
of A, so that P (AlB) = P (A). When this is so, the multiplication rule becomes 

P (An B) = P (A) P (B), 

and the events A and B are said to be independent events. Independence is a very 
important concept in probability theory, and it is often used to build up complex 
events from simple ones. Do not confuse the independence of A and B with the 
exclusivity of A and B - they are entirely different concepts. If A and B both have 
positive probability, then they cannot be both independent and exclusive (this is an 
end-of-chapter exercise). 

When it is clear that the occurrence of B can have no influence on A, we will 
assume independence in order to calculate P (A n B). However, if we can calculate 
P (An B) directly, we can check the independence of A and B by seeing if it is true 
that 

P (An B) = P (A) P (B). 

We can generalise independence to collections of events as follows. 

Definition 3.5 The set of events A = { A1, A2 , ••• , An} is mutually independent if 
for any subset, B ~A, B = {B1, B2, ... , Br }, r ~ n we have 

p (Bl n ... n Br) = p (Bl) X •.• X p (Br). 

Note that mutual independence is much stronger that pair-wise independence, where 
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we only require independence of subsets of size r = 2. That is, pair-wise indepen­
dence does not imply mutual independence. 

Definition 3.6 A partition of a sample space is simply the decomposition of the sam­
ple space into a collection of mutually exclusive events with positive probability. That 
is, { B1, ... , Bn} forms a partition of S if 

n 

• S = B1 U B2 U · .. U Bn = UBi, 
i=l 

• Bi n Bi = 0, Vi # j, 
• P (Bi) > 0, Vi. 

Theorem 3.1 (Theorem of total probability) Suppose that we have a partition { B 1 , 

... , Bn} of a sample space, S. Suppose further that we have an event A. Then 
) 

n 

p (A) = L p (AIBi) p (Bi). 
i=l 

Proof A can be written as the disjoint union 

A= (An B 1 ) U · · · U (An Bn), 

and so the probability of A is given by 

0 

P (A)= P ((An B1) u .. · U (An Bn)) 

= P (An BI) + · · · + P (An Bn) 

= P (AIB1) P (B1) + · · · + P (AIBn) P (Bn) 
n 

= Lp (AIBi) P (Bi). 
i=l 

(by Axiom III) 

(by Proposition 3.4) 

Theorem 3.2 (Bayes Theorem) For all events A, B such that P (B) > 0 we have 

P (AlB) = P (BIA) P (A) 
P(B) . 

This is a very important result as it tells us how to "turn conditional probabilities 
around"- that is, it tells us how to work out P (AlB) from P (BIA), and this is 
often very useful. 

Proof By Definition 3.4 we have 

0 

P(AIB) = P(AnB) 
P(B) 

P (A) P(BIA) 
P(B) 

(by Proposition 3.4) 
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.Example 

A clinic offers you a free test for a very rare, but hideous disease. The test they offer 
is very reliable. If you have the disease it has a 98% chance of giving a positive 
result, and if you do not have the disease, it has only a 1% chance of giving a positive 
result. Despite having no a priori reason to suppose that you have the disease, you 
nevertheless decide to take the test and find that you test positive - what is the 
probability that you have the disease? 

Let P be the event "test positive" and D be the event "you have the disease." We 
know that 

P (PID) = 0.98 and that P (PIDc) = 0.01. 

We want to know P (DIP), so we use Bayes Theorem. 

p (DIP) = p (PID) p (D) 
P(P) 

P (PID)P (D) 
P (PI D) P (D) + P (PIDc) p (De) 

0.98P (D) 
= 0.98 P (D)+ 0.01(1- P (D)). 

(using Theorem 3.1) 

So we see that the probability you have the disease given the test result depends 
on the probability that you had the disease in the first place. This is a rare disease, 
affecting only one in ten thousand people, so that P (D) = 0.0001. Substituting this 
in gives 

P (DIP) = 0.9~ x 0.0001 ~ O 
0.98 X 0.0001 + O.Ql X 0.9999 - .Ol. 

So, your probability of having the disease has increased from 1 in 10,000 to 1 in 100, 
but still is not that much to get worried about! Note the crucial difference between 
P (PID) and P (DIP). 

Another important thing to notice about the above example is the use of the theo­
rem of total probability in order to expand the bottom line of Bayes Theorem. In fact, 
this is done so often that Bayes Theorem is often stated in this form. 

Corollary 3.1 Suppose that we have a partition { E1, ... , En} of a sample spaceS. 
Suppose further that we have an event A, with P (A) > 0. Then, for each Ej, the 
probability of Ej given A is 

P(E·IA) = P(AIEi)P(Ej) 
J p (A) 

P (AIEi) P (Ei) 
P (AIE1) P (E1) + · · · + P (AIEn) P (En) 

P(AIEi)P(Ej) 
n 

Lp (A!Ei) P (Ei) 
i=l 
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In particular, if the partition is simply { B, Be}, then this simplifies to 

P (AIB)P(B) 
p (BjA) = p (AlB) P (B) + P (AjBe) P (Be). 

3.2 Discrete probability models 

3.2.1 Introduction, mass functions, and distribution functions 

We have seen how to relate events to sets and how to calculate probabilities for events 
by working with the sets that represent them. So far, however, we have not developed 
any special techniques for thinking about random quantities. Discrete probability 
models provide a frl!lllework for thinking about discrete random quantities, and con­
tinuous probability models (to be considered in thenext section) form a framework 
for thinking about continuous random quantities. 

Example 

Consider the sample space for tossing a fair coin twice: 

S = {HH,HT,TH,TT}. 

These outcomes are equally likely. There are several random quantities we could 
associate with this experiment. For example, we could count the number of heads or 
the number of tails. 

Definition 3.7 A random quantity is a real valued function which acts on elements of 
the sample space (outcomes)~ That is, to each outcome, the random variable assigns 
a real number. 

Random quantities (sometimes known as random variables) are always denoted by 
upper case letters. · 

In our example, if we let X be the number of heads, we have 

X(HH) =2, 

X(HT) = 1, 

X(TH) = 1, 

X(TT) = 0. 

The observed value of a random quantity is the number corresponding to the actual 
outcome. That is, if the outcome of an experiment iss E S, then X(s) E lR is the 
observed value. This observed value is always denoted with a lower case letter -
here x. Thus X = x means that the observed value of the random quantity X is the 
number x. The set of possible observed values for X is 

Sx = {X(s)js E S}. 

For the above example we have 

Sx = {0, 1, 2}. 

Clearly here the values are not all equally likely. 

., .; 

' ~-
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Example 

Roll one die and call the random number which is uppermost Y. The sample space 
for the random quantity Y is 

Sy = {1,2,3,4,5,6} 

and these outcomes are all equally likely. Now roll two dice and call their sum Z. 
The sample space for Z is 

Sz = {2,3,4,5,6,7,8,9,10,11,12} 

and these outcomes are not equally likely. However, we know the probabilities of 
the events corresponding to each of these outcomes, and we could display them in a 
table as follows. 

Outcome 2 4 6 7 9 10 11 12 

Probability 1/36 2136 3/36 4/36 5/36 6136 5/36 4136 3/36 2136 1/36 

This is essentially a tabulation of the probability mass function for the random quan­
tity z. 
Definition 3.8 (probability mass function) For any discrete random variable X, 
we define the probability mass function (PMF) to be the function which gives the 

· •: probability of each x E S x. Clearly we have 

P(X=x)= P({s}). 
{sESJX(s)=x} 

That is, the probability of getting a particular number is the sum of the probabilities of 
all those outcomes which have that number associated with them. AlsoP (X = x) 2: 
0 for each x E S x, and P (X = x) = 0 otherwise. 

Definition 3.9 The set of all pairs { (x, P (X = x)) lx E Sx} is known as the prob­
ability distribution of X. 

Example 

For the example above concerning the sum of two dice, the probability distribution 
is 

{ (2, 1/36), (3, 2/36), ( 4, 3/36), (5, 4/36), (6, 5/36), (7, 6/36), 
(8,5/36),(9,4/36),(10,3/36),(11,2/36),(12,1/36)} 

and the probability mass function can be tabulated as follows. 
X 2 4 5 6 7 9 10 11 12 

p (X = X) 1/36 2/36 3/36 4/36 5136 6/36 5/36 4/36 3/36 2136 1/36 

For any discrete random quantity, X, we clearly have 

L P(X=x)=1 
xESx 

as every outcome has some number associated with it. It can often be useful to know 
the probability that your random number is no greater than some particular value. 
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Figure 3.1 CDF for the sum of a pair of fair dice 

Definition 3.10 (cumulative distribution function) The cumulative distribution func­
tion (CD F), is defined by 

Fx(x) = P (X::; x) = P(X=y). 
{yES x iy:Sx} 

Example 

For the sum of two dice, the CDF can be tabulated for the outcomes as 
X 2 3 4 6 7 8 9 J0 !! !2 

Fx(x) 1136 3/36 6/36 10/36 15/36 21136 26/36 30/36 33/36 35/36 36/36 

but it is important to note that the CDF is defined for all real numbers- not just the 
possible values. In our example we have 

Fx( -3) = P (X::; -3) = 0, 

Fx(4.5) = P (X::; 4.5) = P (X::; 4) = 6/36, 

Fx(25) = P (X::; 25) = 1. 

We may plot the CDF for our example as shown in Figure 3.1. 
It is clear that for any random variable X, for all x E JR, Fx(x) E [0, 1] and that 

Fx(x)--+ 0 as x--> -oo and Fx(x)--> 1 as x--> +oo. 

3.2.2 Expectation and variance for discrete random quantities 

It is useful to be able to summarise the distribution of random quantities. A location 
measure often used to summarise random quantities is the expectation of the random 
quantity. It is the "centre of mass" of the probability distribution. 
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Definition 3.11 The expectation of a discrete random quantity X, written E (X) is 
defined by 

E(X)= :LxP(X=x). 
xESx 

The expectation is often denoted by ;.tx or even just p,. Note that the expectation is 
a known function of the probability distribution. It is not a random quantity, and it 
is not the sample mean of a set of data (random or otherwise). In some sense (to be 
made precise in Proposition 3.14), it represents the value of the random variable that 
you expect to get on average. 

Example 

For the sum of two dice, X, we have 

1 2 3 1 
E (X) = 2 X 36 + 3 X 36 + 4 X 36 + · · · + 12 X 36 = 7. 

By looking at the symmetry of the mass function, it is clear that in some sense 7 is 
the "central" value of the probability distribution. 

As well as a method for summarising the location of a given probability distribu­
tion, it is also helpful to have a summary for the spread. 

Definition 3.12 For a discrete random quantity X, the variance of X is defined by 

Var(X)= L {(x-E(X))2 P(X=x)}. 
xESx 

The variance is often denoted o-~, or even just o-2 • Again, this is a known function 
of the probability distribution. It is not random, and it is not the sample variance of a 
set of data. The variance can be rewritten as 

Var(X) = L xrP(X =Xi)- [E(X)V, 
x,ESx 

and this expression is usually a bit easier to work with. We also define the standard 
deviation of a random quantity by 

SD(X) = y'Var (X), 

and this is usually denoted by o-x or just o-. The variance represents the average 
squared distance of X from E (X). The units of variance are therefore the square of 
the units of X (and E (X)). Some people prefer to work with the standard deviation 
because it has the same units as X and E (X). 

Example 

For the sum of two dice, X, we have 

L 2 ( ) 2 1 2 2 2 3 2 1 329 
X. p X = Xi = 2 X - + 3 X - + 4 X - + ... + 12 X - = -

S . ' 36 36 36 36 6 
XiE X 
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and so 

Var (X) = 329 _ 72 = 35, 
6 6 

{35 
and SD(X) = y 6 . 

3.2.3 Properties of expectation and variance 

One of the reasons that expectation is widely used as a measure of location for prob­
ability distributions is the fact that it has many desirable mathematical properties 
which make it elegant and convenient to work with. Indeed, many of the nice prop­
erties of expectation lead to corresponding nice properties for variance, which is one 
of the reasons why variance is widely used as a measure of spread. 

Suppose that X is a discrete random quantity, and that Y is another random quan­
tity that is a known function of X. That is, Y := g(X) for some function g(-). What 
is the expectation of Y? 

Example 

Throw a die, and let X be the number showing. We have 

Sx = {1,2,3,4,5,6} 

and each value is equally likely. Now suppose that we are actually interested in the 
square of the number showing. Define a new random quantity Y = X 2 • Then 

Sy = {1,4,9,16,25,36} 

and clearly each of these values is equally likely. We therefore have 

1 1 1 91 
E (Y) = 1 X 6 + 4 X 6 + .. · + 36 X 6 = 6. 

The above example illustrates the more general result, that for Y = g(X), we have 

E(Y)= 2: g(x)P(X=x). 
xESx 

Note that in general E (g(X)) f= g(E (X)). For the above example, E (X2) 

91/6 ~ 15.2, and E (X) 2 = 3.52 = 12.25. 
We can use this more general notion of expectation in order to redefine variance 

purely in terms of expectation as follows: 

Var (X)= E ([X- E (X}?) = E (X2)- [E (XW. 

Having said that E (g(X)) 1=- g(E (X)) in general, it does in fact hold in the (very) 
special, but important case where g ( ·) is a linear function. 

Lemma 3.1 (expectation of a linear transformation) If we have a random quan­
tity X, and a linear transformation, Y = aX+ b, where a and bare known real 
constants, then we have that 

E(aX +b)= aE(X) +b. 
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Proof. 

E (aX+ b)= L (ax+ b) P (X= x) 
xESx 

= L axP(X=x)+ L bP(X=x) 
xESx xESx 

=a L xP(X=x)+b L P(X=x) 
xESx xESx 

= aE(X) +b. 

0 
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Lemma 3.2 (expectation of a snm) For two random quantities X andY, the ex­
pectation of their sum is given by 

E (X+ Y) = E (X)+ E (Y). 

Note that this result is true irrespective of whether X and Y are independent. Let us 
see why. 

Proof. First, 
Sx+Y = {x + Yi(x E Sx) n (y E Sy )}, 

and so 

E(X + Y) = L (x + y) P ((X= x) n (Y = y)) 

= _L _L ( x + y) P ( ( x = x) n (Y = y)) 
xESx yESy 

= _L _L x P ((X = x) n (Y = y)) 
xESx yESy 

+ _L _L y P ((X = x) n (Y = y)) 
xESxyESy 

L L xP(X = x)P(Y = yiX = x) 
xESx yESy 

+ L L yP(Y=y)P(X=xiY=y) 
yESy xESx 

L xP(X=x) L P(Y=yiX=x) 
xESx yESy 

+ _LyP(Y=y) 2::: P(X=xiY=y) 
yESy xESx 

L xP(X=x)+ L yP(Y=y) 
xESx yESy 

= E (X)+ E (Y). 

0 
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We can now put together the result for the expectation of a sum, and for the ex­
pectation of a linear transformation in order to give the following important property, 
commonly referred to as the linearity of expectation. 

Proposition 3.5 (expectation of a linear combination) For any random quantities 
X 1, ... , Xn and scalar constants ao, ... , an we have 

E(ao + a1X1 +a2X2 + · · · + anXn) = ao + a1 E(X1) + a2E(X2) + · · · 
+anE(Xn). 

Lemma 3.3 (expectation of an independent product) If X andY are independent 
random quantities, then 

E (XY) = E (X)E (Y). 

Proof. 
Sxy = {xy!(x E Sx) n (y E Sy)}, 

and so 
' E(XY) = L xyP ((X= x) n (Y = y)) 

xyESxy 

= L L xyP(X=x)P(Y=y) 
xESx yESy 

= L xP(X=x) L yP(Y=y) 
xESx yESy 

= E(X)E(Y) 

0 

Note that here it is vital that X and Y are independent or the result does not hold. 

Lemma 3.4 (variance of a linear transformation) If X is a random quantity with 
finite variance Var (X), then 

Var(aX +b)= a2 Var(X). 

Proof. 

Var (aX+ b)= E ([aX+ b] 2)- [E (aX+ b)]2 

= E (a2 X 2 + 2abX + b2) - [aE (X)+ W 
= a2 [E (X2)- E(X)2] 

=a2 Var(X). 

0 

Lemma 3.5 (variance of an independent sum) If X and Y are independent ran­
dom quantities, then 

Var (X + Y) = Var (X) + Var (Y) . 
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Proof 

Var (X+ Y) = E ([X+ Y] 2) - [E (X+ Y)j2 
= E (X2 + 2XY + Y2)- (E(X) +E(Y)J 2 

=E(X2) +2E(XY)+E(Y2 ) -E(X)2 -2E(X)E(Y) 
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- E(Y)2 

= E (X2) + 2 E (X) E (Y) + E (Y2) - E (X)2 - 2 E (X) E (Y) 

- E (Y) 2 

0 

= E (X2) - E (X)2 + E (Y2) - E (Y)2 

= Var (X) + Var (Y) 

Again, it is vital that X and Y are independent or the result does not hold. Notice 
that this implies a slightly less attractive result for the standard deviation of the sum 
of two independent random quantities, 

SD(X + Y) = vSD(X)2 + SD(Y) 2 , 

which is why it is often more convenient to work with variances. t 
Putting together previous results we get the following proposition. 

Proposition 3.6 (variance of a linear combination) For mutually independent X1, 

X2, ... , Xn we have 

Var (ao + a1X1 + a2X2 + · · · + anXn) 

= ai Var (XI)+ a~ Var (X2) + · · · +a~ Var (Xn). 

Before moving on to look at some interesting families of probability distributions, 
it is worth emphasising the link between expectation and the theorem of total proba­
bility. 

Proposition 3.7 IfF is an event and X is a discrete random quantity with outcome 
space Sx, then by the theorem of total probability (Theorem 3.1) we have 

P(F)= L P(FIX=x)P(X=x) 
xESx 

= E (P (FIX)), 

where P (FIX) is the random quantity which takes the value P (FIX= x) when X 
takes the value x. 

t Note the similarity to Pythagoras' Theorem for the lengths of the sides of a triangle. Viewed in the 
correct way, this result is seen to be a special case of Pythagoras' Theorem, as the standard devia­
tion of a random quantity can be viewed as a length, and independence leads to orthogonality in an 
appropriately constructed inner-product space. 
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3.3 The discrete uniform distribution 

The theory of discrete random quantities covered in the previous section provides 
a generic set of tools for studying distributions and their properties. However, there 
are several important "families" of discrete probability models that occur frequently 
and are therefore worthy of special consideration. The first is the "discrete uniform 
distribution," which corresponds to a generalisation of the number obtained by rolling 
a single die. A random quantity X is discrete-uniform on the numbers from 1 to n, 
written 

X~ DU(n) 

if each of the integers from 1 to n is equally likely to be the observed value of X. We 
therefore have outcome space 

Sx={1,2, ... ,n} 

andPMF 
1-, 

P(X=k)=-, kESx. 
n 

The CDF at the points in Sx is therefore clearly given by 

P(X::;k)=~, kESx. 
n 

It is straightforward to compute the expectation of X as 

n 1 
E (X) = :E k x ;:;: 

k=l 

=~tk n 
k=l 

1 n(n + 1) 
n 2 
n+1 

2 

The variance can be calculated similarly to be 

n 2 -1 
Var(X)=~· 

Although this distributional family seems somewhat contrived, it is especially useful 
as it typically forms the starting point for the development of any stochastic simula­
tion algorithm. 

3.4 The binomial distribution 

The binomial distribution is the distribution of the number of "successes" in a series 
of n independent "trials," each of which results in a "success" (with probability p) or 
a "failure" (with probability 1 - p ). If the number of successes is X, we would write 

X rv B(n,p) 
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~~------------------==~ 

Figure 3.2 PMF and CDF for a B(B, 0. 7) distribution 

to indicate that X is a binomial random quantity based on n independent trials, each 
occurring with probability p. 

Let us now derive the probability mass function for X "' B(n,p). Clearly X 
can take on any value from 0 up to n, and no other. Therefore, we simply have to 
calculate P (X= k) fork= 0, 1, 2, ... , n. The probability of k successes followed 
by n ~. k failures is clearly pk (1 - p )n-k. Indeed, this is the probability of any 
particular sequence involving k successes. There are (~) such sequences, so by the 
multiplication principle, we have 

p (X= k) = (~)pk(l- p)n-k, k = 0, 1, 2, ... , n. 

Now, using the binomial theorem, we have 

:tp (X= k) = t (~)pk(1- p)n-k = (p + [1- p])n = 1n = 1, 
.k=O k=O 

and so this does define a valid probability distribution. There is no neat analytic 
expression for the CDF of a binomial distribution, but it is straightforward to compute 
and tabulate. A plot of the probability mass function and cumulative distribution 
function of a particular binomial distribution is shown in Figure 3.2. 

The expectation and variance of the binomiat distribution can be computed straight-
forwardly, and are found to be · 

E (X)= np and Var (X)= np(1- p). 

3.5 The geometric distribution 

The geometric distribution is the distribution of the number of independent suc­
cess/fail trials until tlte first success is encountered. If X is the number of trials until 
a success is encountered, and each independent trial has probability p of being a 
success, we write 

X""' Geom(p). 
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Clearly X can take on any positive integer(Sx = {1, 2, ... } ), so to deduce thePMF, 
we need to calculate P (X = k) for k = 1, 2, 3, .... In order to have X = k, we 
must have an ordered sequence of k - 1 failures followed by one success. By the 
multiplication rule, therefore, · 

P (X= k) = (1- p)k-1p, k = 1,2,3, .... 

For the geometric distribution, it is possible to calculate an analytic form for the 
CDF as follows. If X "" Geom(p ), then 

Fx(k) = P(X:::; k) 
k 

= 2:)1- p)j-1p 

j=1 

k 

= p 2.:(1 ~ p)!-l 
j=1 

1-(1-p)k = p X ----',,.----'-'-:-
1-(1-p) 

=1-(1-p)k. 

(geometric series) 

Consequently, there is no need to tabulate the CDF of the geometric distribution. 
Also note that the CDF tends to 1 as k increases. This confirms that the PMF we 
defined does determine a valid probability distribution. 

3.5.1 Useful series in probability 

Notice that we used the sum of a geometric series in the derivation of the CD F. There 
are many other series that crop up in the study of probability. A few of the more 
commonly encountered series are listed below. 

n 1 n 

I>i-1 = 1-::._: 
i=l 

Loo i-1 1 
a =--

1-a 
i=l 

00 1 
Liai-1 = (1- a)2 
t=1 

Loo ·2 i-1 1 +a z a = -,----'7::' 
. (1- a)3 
t=1 ti= n(n+1) 

i=l 2 

n 1 L i 2 = 6n(n + 1)(2n + 1). 
i=1 

(a > 0) 

(0 <a< 1) 

(0 <a< 1) 

(0 <a< 1) 
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We will use two of these in the derivation. of the expectation and variance of the 
geometric distribution. 

3.5.2 Expectation and variance of geometric random quantities 

Supp?se that X"' Geom(p). Then 

Similarly, 

and so 

00 

E(X) =LiP (X= i) 
i=l 
00 

i=l 

1 
= p X (1 - [1 - p])2 

1 
=-. 

p 

00 

E (X2) = L i 2 p (X= i) 
i=l 
00 

= :L i2(1- p)i-lp 
i=l 

1 + [1- p] 
= p X -:-:(1-----;[!,..-1 _--"-::pj'=)3 

2-p =y, 

Var (X) = E (X2) - E (X)2 

2 -p 1 
y-p2 
1-p 

=y· 

3.6 The Poisson distribution 

The Poisson distribution is a very important discrete probability distribution, which 
arises in many different contexts in probability and statistics. For example, Poisson 
random quantities are often used in place of binomial random quantities in situations 
where n is large, p is small, and the expectation np is stable. The Poisson distribu­
tion is particularly important in the context of stochastic modelling of biochemical 
networks, as the number of reaction events occurring in a short time interval is ap­
proximately Poisson. 
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A Poisson random variable, X with parameter ).. is written as 

X"' Po(>..). 

3.6.1 Poisson as the limit of a binomial 

Let X"' B(n,p). Put)..= E (X)= np and let n increase andp decrease so that).. 
remains constant. 

p (X= k) = (~)pk(1- p)n-k, 

Replacingp by :>..jn gives 

k = 0,1,2, .. . ,n. 

P(X=k)= (~) (~):(1-~)n-k 
n! ()..)·.k ( )..)·n-k 

= k!(n- k)! ;;; 1 - ;;; 

;>..k n! {1- :>..jn)n 
- k! (n- k)!nk (1- )..jn)k 

;>..k n (n- 1) (n- 2) (n- k + 1) (1- :>..jn)n 
= k!;;;-n--n- · · · n (1- :>..jn)k 

;>..k e-A 
-+-x1x1x1x···x1x- asn-+oo 

k! 1 ' 
)..k -A 

= k!e 

To see the limit, note that (1 - :>..jn)n -+ e->- as n increases (compound interest 
formula). 

3.6.2 PMF 

If X "' Po(>..), then the PMF of X is 

;>..k 
P(X=k)= k!e-A, k=0,1,2,3, .... 

The PMF and CDF of X rv Po(5) are given in Figure 3.3. It is easy to verify that 
the PMF we have adopted for X "' Po(.\) does indeed define a valid probability 
distribution, as the probabilities sum to 1. 

3.6.3 Expectation and variance of Poisson 

If X rv Po()..), the expectation and variance can be computed directly from the PMF, 
but it is clear from the binomial limit that we must have 

E(X) =).. and Var(X) = ;>... 

That is, the mean and variance are both .\. 
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Figure 3.3 PMF and CDF for a Po(5) distribution 

3.6.4 Sum of Poisson random quantities 

One of the particularly convenient properties of the Poisson distribution is that the 
sum of two independent Poisson random quantities is also a Poisson random quantity. 
If X"' Po( A.) andY"' Po(p,) and X andY are independent, then Z =X+ Y"' 
Po(>.. + p). Clearly this result extends to the sum of many independent Poisson 
random variables. The proof is straightforward, but omitted. 

This property of the Poisson distribution is fundamental to its usefulness for mod­
elling "counts." Consider, for example, modelling the number of counts recorded by 
a Geiger counter of relatively stable radioactive isotope (with a very long half-life). 
If we consider the number of counts in one second, the binomial limit argument 
suggests that since we are dealing with a huge number of molecules, and each inde­
pendently has a constant but tiny probability of decaying and triggering a count, then 
the number of counts in that one-second interval should be Poisson. Suppose that the 
rate of decay is such that the count is Po( A.), for some>... Then in each one-second 
interval the count will be the same, independently of all other intervals. So, using 
the above additive property, the number of counts in a two-second interval will be 
Po(2A.), and in a three-second interval it will be Po(3A.), etc. So in an interval of 
length t seconds, the number of counts will be Po(A.t).+ This is the Poisson process. 

3.6.5 The Poisson process 

A sequence of timed observations is said to follow a Poisson process with rate A. if 
the number of observations, X, in any interval of length t is such that 

X rv Po(A.t) 

+ Of course we are ignoring the fact that once a molecule has decayed, it cannot decay again. But we are 
assuming that the number of available molecules is huge, and the number of decay events over the time 
scale of interest is so small that this effect can be ignored. For an isotope with a much shorter half-life, 
a pure death process would provide a much more suitable model. However, a formal discussion of 
processes of this nature will have to wait until Chapter 5. 
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and the numbers of events in disjoint intervals are independent of one another. We see 
that this is a simple model for discrete events occurring continuously in time. It turns 
out that the Poisson process is too simple to realistically model the time-evolution 
of biochemical networks, but a detailed understanding of this simple process is key 
to understanding more sophisticated stochastic processes. It is interesting to wonder 
about the time between successive events of the Poisson process, but it is clear that 
such random times do not have a discrete distribution. This, therefore, motivates the 
study of continuous random quantities. 

3.7 Continuous probability models 

3.7.1 Introduction, PDF and CDF 

We now turn to techniques for handling continuous random quantities. These are 
random quantities with a sample space which is neither finite nor countably infinite. 
The sample space is usually taken to be the real line, or a part thereof. Continuous 
probability models are appropriate if the result of an experiment is a continuous 
measurement, rather than a count of a discrete set. In the context of systems biology, 
such measurements often (but not always) correspond to measurements of time. 

If X is a continuous random quantity with sample space S x, then for any particu­
lar a E S x, we generally have that 

P(X =a)= 0. 

This is because the sample space is so "large" and every possible outcome so "small" 
that the probability of any particular value is vanishingly small. Therefore, the prob­
ability mass function we defined for discrete random quantities is inappropriate for 
understanding continuous random quantities. In order to understand continuous ran­
dom quantities, a little calculus is required. 

Definition 3.13 (probability density function) If X is a continuous random quan­
tity, then there exists a function f x ( x ), called the probability density function (PDF), 
which satisfies the following: 

1. fx(x) ~ 0, Vx; (the symbol "V" means ''for all") 

2. I: fx(x) dx = 1; 

3. P (a :S X :S b) = 1b fx(x) dx for any a :S b. 

Consequently we have 

1x+8x 

P(x:SX:Sx+ox)= x fx(y)dy 

~ fx(x)ox, 

f () P(x::;X:::;x+ox) 
=} X X ~ --~--~------~ 

ox 

(for small ox) 
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and so we may interpret the PDF as 

f ( ) - r P(x~X~x+ox) 
x x - al~o ox · 

Note that PDFs are not probabilities. For example, the density can take values greater 
than 1 in some regions as long as it still integrates to 1. Also note that because 
P (X= a) = 0, we have P (X s; k) = P (X< k) for continuous random quan­
tities. 

Definition 3.14 (cumulative distribution function) Earlier in this chapter we de­
fined the cumulative distribution function of a random variable X to be 

Fx(x) = P (X s; x), Vx. 

This definition works just as well for continuous random quantities, and is one of 
the many reasons why the distribution function is so useful. For a discrete random 
quantity we had 

Fx(x) = P(X s; x) = p (X= y)' 
{yESx!y:$x} 

but for a continuous random quantity we have the continuous analogue 

Fx(x) = P (X s; x) 
= p ( -00 s; X s; X) 

= [xoo fx(z) dz. 

Just as in the discrete case, the distribution function is defined for all x E JR., even if 
the sample space S x is not the whole of the real line. 

Proposition 3.8 

1. Sinceitrepresentsaprobability,Fx(x) E [0,1]. 
2. Fx( -oo) = 0 and Fx(oo) = 1. 

3. lfa < b, then Fx(a) s; Fx(b). i.e. Fx(·) is a non-decreasingfunction. 

4. When X is continuous, Fx(x) is continuous. Also, by the Fundamental Theorem 
of Calculus, we have 

d 
dxFx(x) = fx(x), 

and so the slope of the CDF Fx(x) is the PDF fx(x). 

Proposition 3.9 The median of a random quantity is the value m which is the "mid­
dle" of the distribution. That is, it is the value m such that 

1 
P(X s; m) = 2. 

Equivalently, it is the value, m such that 

Fx(m) = 0.5. 
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Similarly, the lower quartile of a random quantity is the value l such that 

Fx (l) = 0.25, 

and the upper quartile is the value u such that 

Fx(u) = 0.75. 

3. 7.2 Properties of continuous random quantities 

Proposition 3.10 The expectation or mean of a continuous random quantity X is 
given by 

E(X) = ;_: xfx(x)dx, 

which is just the continuous analogue of the corresponding formula for discrete ran­
dom quantities. Similarly, the variance ,is given by 

Var(X) = ;_:[x-E(XWfx(x)dx 

= ;_: x 2 fx(x)dx- [E(X)J 2 . 

Note that the expectation of g(X) is given by 

E (g(X)) = ;_: g(x)fx(x) dx 

and so the variance is just 

Var (X) = E ([X - E (X)J2 ) = E (X2) - [E (X)J 2 

as in the discrete case. 

Note that all of the properties of expectation and variance derived for discrete random 
quantities also hold true in the continuous case. It is also worth explicitly noting the 
continuous version of Proposition 3. 7. 

Proposition 3.11 IfF is an event and X is a continuous random quantity, then 

P (F) = ;_: P (FIX= x) f(x) dx 

= E (P (FIX)), 

where P (FIX) is the random quantity which takes the value P (FIX = x) when X 
takes the value x. 

Proposition 3.12 (PDF of a linear transformation) Let X be a continuous random 
quantity with PDF fx(x) and CDF Fx(x), and let Y =aX+ b. The PDF ofY is 
given by 

. ~ 



CON1JNUOUS PROBABILITY MODELS 73 

Proof. First assume that a > 0. It turns out to be easier to work out the CDF first: 

Fy(y) = P (Y:::; y) 

= P(aX +b:::; y) 

( y-b) =P X:::;-a- (since a> 0) 

= Fx (Y: b). 
So, 

Fy(y) = Fx ( y: b), 
and by differentiating both sides with respect to y we get 

1 (y- b) fy(y) = ~ fx -a- · 

If a < 0, the inequality changes sign, introducing a minus sign in the expression for 
the PDF. Both cases can therefore be summarised by the result. 0 

Proposition 3.13 (PDF of a differentiable 1·1 transformation) Using a similar ar­
gument it is straightforward to deduce the PDF of an arbitrary differentiable invert­
ible transformation Y = g(X) as 

Jy(y) = fx (g-l(y)) I !g-l(y),. 

Note that the term I d~g- 1 (y) I is known as the "Jacobian" of the transformation. 

3. 7.3 The law of large numbers 

In many scenarios involving stochastic simulation, it is desirable to approximate the 
expectation of a random quantity, X, by the sample mean of a collection of indepen­
dent observations of the random quantity X. Suppose we have a computer program 
that can simulate independent realisations of X (we will see in the next chapter how 
to do this); X1, Xz, ... , Xn. The sample mean is given by 

1 n 

X=- Exi. 
n i=l 

If in some appropriate sense the sample mean converges to the expectation, E (X), 
then for large n, we can use X as an estimate of E (X).It turns out that for random 
quantities with finite variance, this is indeed true, but a couple of lemmas are required 
before this can be made precise. 

Lemma 3.6 If X has finite mean and variance, E (X)= 1-' andVar (X)= <r2, and 
X1, Xz, ... , Xn is a collection of independent realisations of X used to form the 
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sample mean X, then 

2 

E(.X) =f.L and Var(.X) = ~-
n 

Proof The result follows immediately from Propositions 3.5 and 3.6. D 

Lemma 3.7 (Markov's inequality) If X :::: 0 is a non-negative random quantity 
with finite expectation E (X) = f.L we have 

P(X::::a):::;t!:, Va>O. 
a 

Proof Note that this result is true for arbitrary non-negative random quantities, but 
we present here the proof for the continuous case. 

D 

f.L E(X) 
a a 

= ~ roo ~f(x) dx 
a lo 

= roo~ f(x)dx 
lo a 

:::=:: 100 ~ f(x)dx 
a a 

:::=:: 100 
'3:. f(x)dx 

a a 

= 1= f(x)dx 

= P (X :2: a). 

Lemma 3.8 (Chebyshev's inequality) If X is a· random quantity with finite mean 
E (X) = f.L and variance Var (X)= a 2 we have 

1 
P (JX- f.LI < ka) :::: 1- k2 , Vk > o. 

Proof Since (X - f.L )2 is positive with expectation a 2 , Markov's inequality gives 

IJ2 
P ([X- f.L]2 :::=::a)::::;-. 

a 
Putting a = k2 a 2 then gives 

D 

p ([X- f.L]2 :::: k2a2) ::::; :2 

1 '* P(JX- f.LI:::: ka)::::; k2 
1 '* P (JX- f.Li < ka) ;::: 1- k2 . 
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We are now in a position to state the main result. 

Proposition 3.14 (weak law of large numbers, WLLN) For X with finite mean 
E (X)·= p, and variance Var (X) = (]'2 , if X1 , X2 , ... , Xn is an independent sam­
ple from X used to form the sample mean X, we have 

- (]'2 n 
P (IX- J.£1 <c) ~ 1- - 2 --+ 1, Vc > o. 

nc oo 

In other words, the WLLN states that no matter how small one chooses the positive 
constant c, the probability that X is within a distance c of p, tends to 1 as the sample 
size n increases. This is a precise sense in which the sample mean "converges" to the 
expectation. 

Proof. Using Lemmas 3.6 and 3.8 we have 

Substihiting k = E .Jii / (j gives the result. D 

This result is known as the weak law, as there is a corresponding strong law, which 
we state without proof. 

Proposition 3.15 (strong law oflarge nnmbers, SLLN) For X with finite mean E (X) = 
p, and variance Var (X)= (]'2, if X 1 , X2, ... , Xn is an independent sample from X 
used to form the sample mean X, we have 

3.8 The uniform distribution 

Now that we understand the basic properties of continuous random quantities, we can 
look at some of the important standard continuous probability models. The simplest 
of these is the uniform distribution. This distribution turns out to be central to the 
theory of stochastic simulation that will be developed in the next chapter. 

The random quantity X has a uniform distribution over the range [a, b], written 

if the PDF is given by 

X"' U(a, b) 

fx(x)={b~a' 
0, 

a~ x ~ b, 

otherwise. 
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PDFforX-U(0,1) CDF for X- U(0,1) 

~ ~ 

~ ~ 

~ ~ 
;? ~ 

~ ~ 

~ ~ 

:l 0 
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Figure 3.4 PDF and CDF for a U(O, 1) distribution 

Thus if x E [a, b], then 

Fx(x) = j_xoo fx(y) dy 

= j_aoo fx(y) dy + 1x fx(y) dy 

1x 1 
= 0 + a b- ady 

x-a 
= b-a· 

Therefore, 

{
0, x <a, 
x-a 

Fx(x) = b _a, aS x S b, 

1, X> b. 

We can plot the PDF and CDF in order to see the "shape" of the distribution. Plots 
for X~ U(O, 1) are shown in Figure 3.4. 

Clearly the lower quartile, median, and upper quartile of the uniform distribution 
are 

a+b 
-2-, 



THE EXPONENTIAL DISTRIBUTION 

respectively. The expectation of a uniform random quantity is 

E (X) =I: x fx(x) dx 

= [~ x fx(x) dx + 1b x fx(x) dx + loo x fx(x) dx 

= 0 + 1b b : a dx + 0 

= [2(bx~ a)J: 
a+b 

2 

We can also calculate the variance of X. First we calculate E (X2) as follows: 

Now, 

l b 2 

E ( X2) = a b ~ a dx 

b2 + ab+ a2 

3 

Var (X)= E (X2) - E (X)2 

b2 +ab+a2 (a+b)2 
3 4 

(b- a)2 

12 

77 

The uniform distribution is too simple to realistically model actual experimental data, 
but is very useful for computer simulation, as random quantities from many different 
distributions can be obtained from U (0, 1) random quantities. 

3.9 The exponential distribution 

For reasons still to be explored, it turns out that the exponential distribution is the 
most important continuous distribution in the theory of discrete-event stochastic sim­
ulation. It is therefore vital to have a good understanding of this distribution and its 
many useful properties. We will begin by introducing this distribution in the abstract, 
but we will then go on to see why it arises so naturally by exploring its relationship 
with the Poisson process. 

The random variable X has an exponential distribution with parameter >. > 0, 
written 

X,...., Exp(>.) 
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PDF for X- Exp{1) CDF for X- Exp(1) 

:0 
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~ 

if 
;; 

~ 

~ 

Figure 3.5 PDF and CDF for an Exp(l) distribution 

if it has PDF 

fx(x) = {.>..e->-x, x ::2: 0,. 
0, otherwise. 

The distribution function, F x ( x) is therefore given by 

{
0, X< 0, 

Fx(x) = 1- e->-x, 
X ::2:0. 

The PDF and CDF for an Exp(1) are shown in Figure 3.5. 
The expectation of the exponential distribution is 

(by parts) 

Also, 

and so 

2 1 1 
Var(X) = .>,.2- .>,.2 = .>,.2" 

Note that this means the expectation and standard deviation are both 1 j .>... 
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Notes 

1. As A increases, the probability of small values of X increases and the mean de­
creases. 

2. The median m is given by 

log2 
m =-.A-= log2E(X) < E(X). 

3. The exponential distribution is often used to model times between random events 
(such as biochemical reactions). Some of the reasons are given below. 

Proposition 3.16 (memoryless property) If X"" Exp(.A), then for any s, t 2: 0 we 
have 

P (X> (s + t)IX > t) = P (X> s). 

If we think of the exponential random quantity as representing the time to an event, 
we can regard that time as a "lifetime." Then the proposition states that the probability 
of "surviving" a further time s, having survived time t, is the same as the original 
probability of surviving a time s. This is called the "memoryless" property of the 
distribution (as the distribution "forgets" that it has survived to time t).lt is therefore 
the continuous analogue of the geometric distribution, which is the (unique) discrete 
distribution with such a property. 

Proof. 

0 

P (X ( )IX ) = P ([X> (s + t)] n [X> t]) 
> s + t > t p (X > t) 

P(X > (s+t)) 
P(X > t) 

1- P (X :S (s + t)) 
1- P (X :S t) 

1-Fx(s+t) 
1- Fx(t) 

1 - [1 - e->-(s+t)] 

1- [1- e->-t] 
= e->-s 

= 1 - [1 - e->-s] 

= 1- Fx(s) 

=1-P(X:Ss) 
=P(X>s). 

Proposition 3.17 Consider a Poisson process with rate A. Let T be the time to the 
first event (after zero). Then T "" Exp( A). 
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Proof. Let Nt be the number of events in the interval (0, t] (for given fixed t > 0). 
We have seen previously that (by definition) Nt rv Po()..t). Consider the CDF ofT, 

Fr(t) = P (T::; t) 

= 1- P (T > t) 
= 1- P(Nt = 0) 

()..t)Oe->.t 
= 1 - -'--'-.--

0! 
=1-e->-t. 

This is the distribution function of an Exp()..) random quantity, and soT"' Exp(>..). 
D ' 

So the time to the first event of a Poisson process is an exponential random vari­
able. But then using the independence properties of the Poisson process, it should be 
reasonably clear that the time between any two such events has the same exponential 
distribution. Thus the times between events of the Poisson process are exponential. 

There is another way of thinking about the Poisson process that this result makes 
clear. For an infinitesimally small time interval dt we have 

P (T::; dt) = 1- e-)..dt = 1- (1- )..dt) = >..dt, 

and due to the independence property of the Poisson process, this is the probability 
for any time interval oflength dt. The Poisson process can therefore be thought of as 
a process with constant event "hazard" >.., where the "hazard" is essentially a measure 
of "event density" on the time axis. The exponential distribution with parameter >.. 
can therefore also be reinterpreted as the time to an event of constant hazard >... 

The two properties above are probably the most fundamental. However, there are 
several other properties that we will require of the exponential distribution when we 
come to use it to simulate discrete stochastic models of biochemical networks, and 
so they are mentioned here for future reference. The first describes the distribution 
of the minimum of a collection of independent exponential random quantities. 

Proposition 3.18 If Xi "' Exp(>...i), i = 1, 2, ... , n, are independent random vari­
ables, then 

n-

Xo =min{ Xi} rv Exp(>..o), where Ao = I>i· 
t 

i=l 
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Proof. First note that for X rv Exp()..) we have p (X > X) = e-AX. Then 

P (Xo > x) = P (~in{ Xi}> x) 

= P ([X1 > x] n [X2 > x] n · · · n [Xn > x]) 
n 

i=l 

i=l 

SoP (Xo :::; x) = 1- e->-ox and hence X 0 rv Exp(:>..0 ). 0 

The next lemma is for the following proposition. 

81 

Lemma 3.9 Suppose that X rv Exp(:>..) andY rv Exp(p,) are independent random 
variables. Then 

Proof. 

0 

).. 
P(X < Y) = -,-. 

/\+f.L 

p (X < Y) = 100 
p (X < YIY = y) f(y) dy 

= 1oo P(X < y)f(y)dy 

= 1oo (1 - e-AY)p,e-1-'Y dy 

).. 

:>..+p, 

(Proposition 3.11) 

This next result gives the likelihood of a particular exponential random quantity of 
an independent collection being the smallest. 

Proposition 3.19 If Xi rv Exp(;>..i), i = 1, 2, ... , n are independent random vari­
ables, let j be the index of the smallest of the Xi. Then j is a discrete random variable 
withPMF 

Proof. 

n 

i = 1, 2, ... , n, where >-o = 2.:::: >.i. 
i=l 

1r· = P (x· < min{x}) J J i#j • 

= P(Xi < Y) 
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(by the lemma) 

0 

This final result is a trivial consequence of Proposition 3.12. 

Proposition 3.20 Consider X rv Exp(:>..). Then for a > 0, y = aX has distribu­
tion 

Y "'Exp(:>..ja). 

3.10 The normal/Gaussian distribution 

3.1 0.1 Definition and properties 

Another fundamental distribution in probability theory is the normal or Gaussian 
distribution. It turns out that sums of random quantities often approximately fol­
low a normal distribution. Since the change of state of a biochemical network can 
sometimes be represented as a sum of random quantities, it turns out that normal 
distributions are useful in this context. 

Definition 3.15 A random quantity X has a normal distribution with parameters p, 
and a 2 , written 

if it has probability density function 

fx(x) = --exp -- -- , 1 { l(x-p,) 2
} 

a...!2if 2 a 
-oo < x < oo, 

fora> 0. 

Note that fx(x) is symmetric about x = p,, and so (provided the density integrates 
to 1 ), the median of the distribution will be p,. Checking that the density integrates ·to 
1 requires the computation of a difficult integral. However, it follows directly from 
the known "Gaussian" integral 

100 
-a:z:2 dx If e = -, 

-oo a 
a>O, 
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Figure 3.6 PDF and CDF for a N(O, 1) distribution 

since then 

j oo joo 1 { 1 (X p,) 2} . fx(x)dx= r.:cexp -- -- dx 
-oo -oo tTy 27r 2 tT 

(putting z = x - p,) 

Now that we know that the given PDF represents a valid density, we can calculate 
the expectation and variance of the normal distribution as follows: 

E(X) =I: xfx(x)dx 

j oo 1 { 1 (x-p,) 2
} = x--exp -- -- dx 

-00 (JJ27r 2 (J 
= p,. 

The last line follows after a little algebra and calculus. Similarly, 

Var (X) =I: (x- p,)2 fx(x) dx 

= joo (x- p,?-1 exp {-~ (x- p,) 2
} dx 

-oo (JJ27r 2 tT 

= az. 

The PDF and CDF for a N(O, 1) are shown in Figure 3.6. 
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3.10.2 The standard normal distribution 

A standard normal random quantity is a normal random quantity with zero mean and 
variance equal to l.lt is usually denoted Z, so that 

Z"'" N(O, 1). 

Therefore, the density of Z, which is usually denoted ifJ(z), is given by 

ifJ(z) = ~ exp { -~z2 }, -oo < z < oo. 

It is important to note that the PDF of the standard normal is symmetric about zero. 
The distribution function of a stanClard normal random quantity is denoted {{> ( z), that 
is 

{f>(z) = 1:
00 

ifJ(x)dx. 

There is no neat analytic expression for {f>(z), so tables of the CDF are used. Of 
course, we do know that{{>( -oo) = 0 and{{>( oo) = 1, as it is a distribution function. 
Also, because of the symmetry of the PDF about zero, it is clear that we must also 
have {1>(0) = 1/2, and this can prove useful in calculations. The standard normal 
distribution is important because it is easy to transform any normal random quantity 
to a standard normal randoni quantity by means of a simple linear scaling. Consider 
Z"'" N(O, 1) and put 

X= J.L+uZ, 

for u > 0. Then X "'"N(J.L, u 2 ). To show this, we must show that the PDF of X is 
the PDF for a N(J.L, u2) random quantity. Using Proposition 3.12 we have 

fx(x) = ~ifJ(X:J.L) 

=-1 exp{-~(X-J.L)2}' uV2if 2 u 

which is the PDF of a N(J.L, u 2 ) distribution. Conversely, if 

X "",N(J.L, u2 ) 

then 

Z = X- J.L "'"N(O, 1). 
a 

Even more importantly, the distribution function of X is given by 

( X-J.L) Fx(x) = {{> -a- , 

and so the cumulative probabilities for any normal random quantity can be calculated 
using tables for the standard normal distribution. 

It is a straightforward generalisation of the above result to see that any linear 
rescaling of a normal random quantity is another normal random quantity. However, 
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the normal distribution also has an additive property similar to that of the Poisson 
distribution. 

Proposition 3.21 If X 1 "'N(J-ti, a-?) and X 2 "'N(J-tz, a~) are independent normal 
random quantities, then their sum Y = X 1 + X 2 is also normal, and 

Y "' N(J-ti + J-tz, ai +a~). 

The proof is straightforward, but omitted. Putting the above results together, we can 
see that any linear combination of independent normal random quantities will be 
normal. We can then use the results for the mean and variance of a linear combination 
to deduce the mean and variance of the resulting normal distribution. 

3.10.3 The Central Limit Theorem 

Now that we know about the normal distribution and its properties, we need to un­
derstand how and why it arises so frequently. The answer is contained in the Central 
Limit Theorem, which is stated without proof; see (for example) Miller & Miller 
(2004) for a proof and further details. 

Theorem 3.3 (Central Limit Theorem) If X 1 , X2 , ... , Xn are independent reali­
sations of an arbitrary random quantity with mean J-t and variance a 2, let Xn be the 
sample mean and define 

Xn-J,-t 
Zn = aj..jn. 

Then the limiting distribution of Zn as n ---+ oo is the standard normal distribution. 
In other words, V z, 

P (Zn :S z) __:::_.. <I>(z). 
00 

Note that Zn is just Xn linearly scaled so that it has mean zero and variance 1. 
By rescaling it this way, it is then possible to compare it with the standard normal 
distribution. Typically, Zn will not have a normal distribution for any finite value of 
n, but what the CLT tells us is that the distribution of Zn becomes more like that of 
a standard normal as n increases. Then since Xn is just a linear scaling of Zn, Xn 
must also become more normal as n increases. And since Sn = 2:~1 Xi is just a 
linear scaling of Xn, this must also become more normal as n increases. In practice, 
values of n as small as 20 are often quite adequate for a normal approximation to 
work quite well. 

3.1 0.4 Normal approximation of binomial and Poisson 

A Bernoulli random quantity with parameter p, written Bern(p), is a B ( 1, p) random 
quantity. It therefore can take only the values zero or 1, and has mean p and variance 
p(l-p). It is of interest because it can be used to construct the binomial distribution. 
Let h "'Bern(p), k = 1, 2, ... , n. Then put 
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It is clear that X is a count of the number of successes in n trials, and therefore X "" 
B ( n, p). Then, because of the Central Limit Theorem, this will be well approximated 
by a normal distribution if n is large· and p is not too extreme (if p is very small or 
very large, a Poisson approximation will be more appropriate). A useful guide is that 
if 

0.1 :S p :S 0.9 and n > max , --[9(1-p) 9p] 
p 1-p 

then the binomial distribution may be adequately approximated by a normal distribu­
tion. It is important to understand exactly what is meant by this statement. No matter 
how large n is, the binomial will always be a discrete random quantity with a PMF, 
whereas the normal is a continuous random quantity with a PDF. These two distri­
butions will always be qualitatively different. The similarity is measured in terms of 
the CDF, which has a consistent definition for both discrete and continuous random 
quantities. It is the CDF of the binomial which can be well approximated by a nor­
mal CD F. Fortunately, it is the CDF which matters for typical computations involving 
cumulative probabilities: 

When the n and p of a binomial distribution are appropriate for approximation by 
a normal distribution, the approximation is achieved by matching expectation and 
variance. That is 

B(n,p):::: N(np,np[1- p]). 

Since the Poisson is derived from the binomial, it is unsurprising that in certain 
circumstances, the Poisson distribution may also be approximated by the normal. It 
is generally considered appropriate to apply the approximation if the mean of the 
Poisson is bigger than 20. Again the approximation is done by matching mean and 
variance: 

X rv Po(>.) :::: N(>., >.)for>. > 20. 

3.11 The gamma distribution 

The gamma function, r (X), is defined by the integral· 

r(x) = l"" yx-le-Y dy. 

By integrating by parts, it is easy to see that r(x + 1) = xr(x), and it is similarly 
clear that r(1) = 1. Together these give r(n + 1) = n! for integer n > 0, and so 
the gamma function can be thought of as a generalisation of the factorial function to 
non-integer values, x. § A graph of the function for small positive values is given in 
Figure 3.7. It is also worth noting that r(1/2) = y"i. The gamma function is used in 
the definition of the gamma distribution. 

Definition 3.16 The random variable X has a gamma distribution with parameters 

§Recall that n! (pronounced "n-factorial") is given by n! = 1 x 2 x 3 x · · · x (n- 1) x n. 
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Figure 3.7 Graph ojr(x) for small positive values ofx 

a, {3 > 0, written r (a, {3) if it has PDF 

{ 
{3a a-1 -(3x --x e 

f(x) = ~(a) 
x>O 

X::; 0. 

Using the ~ubstitution y = {3x and the definition of the gamma function, it is straight­
forward to see that this density must integrate to 1. It is also clear that r(l, >.) = 
Exp(J\), so the gamma distribution is a generalisation of the exponential distribu­
tion. It is also relatively straightforward to compute the mean and variance as 

a 
E(X) = /]' 

a 
Var (X) = {32 . 
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Figure 3.8 PDF and CDF for a r(3, 1) distribution 

The last line follows as the integral on the line above is the integral of a f(o: + 1, {3) 
density, and hence must be 1, A plot of the PDF and CDF of a gamma distribution is 
shown in Figure 3.8. The gamma distribution has a very important property. 

Proposition 3.22 If xl ~ r(o:I, !3) and x2 ~ r(o:2, !3) are independent, andy = 
X1 + X2, then 

Y ~ r(a1 + a2,f3). 
The proof is straightforward but omitted. This clearly generalises to more than two 
gamma random quantities, and hence implies that the sum of n independent Exp(>-.) 
random quantities is f(n, ..\). Since we know that the interevent times of a Poisson 
process with rate..\ are Exp(..\), we now know that the time to the nth event of a 
Poisson process is f(n, ..\).This close relationship between the gamma distribution, 
the exponential distribution, and the Poisson process is the reason why the gamma 
distribution turns out to be important for discrete stochastic modelling. 

3.12 Exercises 

1. Prove the addition law (item 4 of Proposition 3.2). 

2. Show that if events E and F both have positive probability they cannot be both 
independent and exclusive. 

3. Prove Proposition 3.13. 

4. Suppose that a cell produces mRNA transcripts for a particular gene according to 
a Poisson process with a rate of 2 per second. 

(a) What is the distribution of the number of transcripts produced in 5 seconds? 

(b) What is the mean and variance of the number produced in 5 seconds? 

(c) What is the probability that exactly the mean number will be produced? 

(d) What is the distribution of the time until the first transcript? 

(e) What is the mean and variance of the time until the first transcript? 

(f) What is the probability that the time is more than 1 second? 

(g) What is the distribution of the time until the third transcript? 
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(h) What is the mean and variance of the time until the third transcript? 

(i) What is the probability that the third transcript happens in the first second? 

5 . .Derive from first principles the variance of the gamma distribution. 

3.13 Further reading 

For a more comprehensive and less terse introduction to probability models, classic 
texts such as Ross (2003) are ideal. However, most introductory statistics textbooks 
also cover much of the more basic material. More advanced statistics texts, such 
as Rice (1993) or Miller & Miller (2004), also cover this material in addition to 
statistical methodology that will be helpful in later chapters. 





CHAPTER4 

Stochastic simulation 

4.1 Introduction 

As we saw in the previous chapter, probability theory is a powerful framework for un­
derstanding random phenomena. For simple random systems, mathematical analysis 
alone can provide a complete description of all properties of interest. However, for 
the kinds of random systems that we are interested in (stochastic models of biochem­
ical networks), mathematical analysis is not possible, and the systems are described 
as analytically intractable. However, this does not mean that it is not possible to 
understand such systems. With the aid of a computer, it is possible to simulate the 
time-evolution of the system dynamics. Stochastic simulation is concerned with the 
computer simulation of random (or stochastic) phenomena, and it is therefore essen­
tial to know something about this topic before proceeding further. 

4.2 Monte-Carlo integration 

The rationale for stochastic simulation can be summarised very easily: to understand 
a statistical model, simulate many realisations from it and study them. To make this 
more concrete, one way to understand stochastic simulation is to percieve it as a , .. 
way of numerically solving the difficult integration problems that naturally arise in 
probability theory. 

Suppose we have a (continuous) random variable X, with probability density func­
tion (PDF), f(x), and we wish to evaluate E (g(X)) for some functiong(·). We know 
that 

E (g(X)) = L g(x)f(x) dx, 

and so the problem is one of integration. For simple f ( ·) and g( ·) this integral might 
be straightforward to compute directly. On the other hand, in more complex scenar­
ios, it is likely to be analytically intractable. However, if we can simulate realisa-
tions x1, ... , Xn of X, then we can form realisations of the random variable g(X) as 
g(x1), ... , g(xn). Then, provided that the variance of g(X) is finite, the laws oflarge 
numbers (Propositions 3.14 and 3.15) assure us that for large n we may approximate 
the integral by 

1 n 

E (g(X)) ~ - L g(xi)· 
n i=l 

In fact, even if we cannot simulate realisations of X, but can simulate realisations 
Yl, ... , Yn of Y (a random variable with the same support as X), which has PDF 

91 



92 

h(·), then 
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E (g(X)) = L g(x)f(x) dx 

~- = { g(x)f(x) h(x) dx 
lx h(x) 

and so E (g(X)) may be approximated by 

E (g(X)) ~ ~ :t g(yi)f(yi). 
n i=l h(yi) 

This procedure is known as importance sampling, and it can be very useful when 
there is reasonable agreement between fO and h(·). 

The above examples show that it is possible to compute summaries of interest such 
as expectations provided we have a mechanism for simulating realisations of random 
quantities. It turns out that doing this is a rather non-trivial problem. We begin first 
by thinking about the generation of uniform random quantities, and then move on to 
thinking about the generation of random quantities from other standard distributions. 

4.3 Uniform random number generation 

4.3.1 Discrete uniform random numbers 

Most stochastic simulation begins with a uniform random number generator (Ripley 
1987). Computers are essentially deterministic, so most random number generation 
strategies begin with the development of algorithms which produce a deterministic 
sequence of numbers that appears to be random. Consequently, such generators are 
often referred to as pseudo-random number generators. 

Typically, a number theoretic method is used to generate an apparently random 
integer from 0 to 2N- 1 (often, N = 16, 32, or 64). The methods employed these 
days are often very sophisticated, as modern cryptographic algorithms rely heavily 
on the availability of "good" random numbers. A detailed discussion would be out of 
place in the context of this book, but a brief explanation of a very simple algorithm 
is perhaps instructive. 

Linear congruential generators are the simplest class of algorithm used for pseudo­
random number generation. The algorithm begins with a seed x 0 then generates new 
values according to the (deterministic) rule 

Xn+l = (axn + b mod 2N) 

for carefully chosen a and b. Clearly such a procedure must return to a previous 
,value at some point and then cycle indefinitely. However, if a "good" choice of a, b, 
and N are used, this deterministic sequence of numbers will have a very large cyCle 
length (significantly larger than the number of random quantities one is likely to 
want to generate in a particular simulation study) and give every appearance of being 
uniformly random. One reasonable choice is 

N = 59, b = 0, a = 1313• 
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4.3.2 Standard uniform random numbers 

Most computer programming languages have a built-in function for returning a pseu­
do-random integer. The technique used will be similar in principle to the linear 
congruential generator described above, but is likely to be more sophisticated (and 
therefore less straightforward for cryptographers to "crack"). Provided the maximum 
value is very large, the random number can be divided by the maximum value to give 
a pseudo-random U ( 0, 1) number (and again, most languages will provide a function 
which does this). We will not be concerned with the precise mechanisms of how this 
is done, but rather take it as our starting point to examine how these uniform ran­
dom numbers can be used to simulate more interesting distributions. Once we have 
a method for simulating U "' U(O, 1), we can use it in order to simulate random 
quantities from any distribution we like. 

4.4 Transformation methods 

Suppose that we wish to simulate realisations of a random variable X, with PDF 
f(x), and that we are able to simulate U"' U(O, 1). 

Proposition4.1 (inverse distribution method) IJU"' U(O, 1) and F(·) is a valid 
invertible cumulative distribution function (CDF), then 

has CDF F(·). 

Proof. , 

0 

X= F-1 (U) 

P (X~ x) = P (F-1 (U) ~ x) 
= P(U ~ F(x)) 

= Fu(F(x)) 
= F(x). (as Fu(u) = u) 

So for a given f ( ·), assuming that we also compute the probability distribution func­
tion F(·) and its inverse p-1 (·), we can simulate a realisation of X using a single 
U"' U(O, 1) by applying the inverse CDF to the uniform random quantity. 

4.4.1 Uniform random variates 

Recall that the properties of the uniform distribution were discussed in Section 3.8. 
Given U"' U(O, 1), we can simulate V"' U(a, b) (a < b) in the obvious way, that 
is 

V =a+ (b- a)U. 

We can justify this as V has CDF 

v-a 
F(v) = -b -, 

-a 
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and hence inverse 
F-1 (u) =a+ (b- a)u. 

4.4.2 Exponential random variates 

For discrete-event simulation of the time evolution of biochemical networks, it is 
necessary to have an efficient way to simulate exponential random quantities (Sec­
tion 3.9). Fortunately, this is very straightforward, as the following result illustrates. 
Proposition 4.2 If U "' U ( 0, 1) and A > 0, then 

1 
X= -:\ log(U) 

has an Exp(A) distribution. 

Proof Consider X"' Exp(A). This has density f(x) and distribution F(x), where 

f(x) = Ae-.\x, F(x) = 1- e-.\x, X 2:: 0 

and so 

1 
F- 1 (u) = ->: log(1- u), o:::;u:::;l. 

The result follows as U and 1- U clearly both have a U(O, 1) distribution. D 

So, to simulate a realisation of X, simulate u from U(O, 1), and then put 

1 
x = ->: log(u). 

4.4.3 Scaling 

It is worth noting the scaling issues in the above example, as these become more 
important for distributions which are more difficult to simulate from. If U "' U ( 0, 1), 
then Y = -log U"' Exp(1). The parameter, A, of an exponential distribution is a 
scale parameter because we can obtain exponential variates with other parameters 
from a variate with a unit parameter by a simple linear scaling. That is, if 

Y rv Exp(1) 

then 
1 

X= ):y"' Exp(A). 

In general, we can spot location and scale parameters in a distribution as follows. If 
Y has PDF f(y) and CDF F(y), and X= aY + b, then X has CDF 

Fx(x)=P(X:Sx) 

= P (aY + b:::; x) 

=P(Y:::;x:b) 
=F(x:b) 
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and PDF 

fx(x) = ~ f ( x: b) . 
Parameters like a are scale parameters, and parameters like b are location parameters. 

4.4.4 Gamma random variates 

The inverse transformation method is ideal for distributions with tractable CDF and 
inverse CDF, but the gamma distribution (Section 3.11) is a good example of a dis­
tribution where it is not practical to compute an analytic expression for the inverse of 
the CDF, and so it is not possible to use the inverse transformation method directly. 
In this case it is possible to use numerical techniques to compute the CDF and its 
inverse, but this is not very efficient. More sophisticated techniques are therefore re­
quired in general. One way to simulate X""' r(n, J..) random variates for integer n is 
to use the fact that if 

Yi "-' Exp(J..), 
and the Yi are independent, then 

n 

X= l:Yi ""'r(n,J..). 
i=1 

So, just simulate n exponential random variates and add them up. 
The first parameter of the gamma distribution (here n) is known as the shape pa­

rameter, and the second (here A) is known as the scale parameter. It is important 
to undt<rstand that the second parameter is a scale parameter, because many gamma 
generation algorithms work by first generating gamma variables with arbitrary shape 
but unit scale. Once this has been achieved, it can then easily be rescaled to give the 
precise gamma variate required. This can be done easily because the r(a, (3) PDF is 

f ( ) f3a a-1 -f3x 0 
X X = r(a) X e , X> 

and so the r( a, 1) PDF is 

1 a-1 -y 
jy(y) = r(a)y e ' y > 0. 

We can see thatifY ""'r(a, 1), then X= Y/(3 ""'r(a,/3) because 

fx(x) = f3Jy(f3x). 

Consequently, the CDFs must be related by 

Fx(x) = Fy(f3x). 

Techniques for efficiently generating gamma variates with arbitrary shape parameter 
are usually based on rejection techniques (to be covered later). Note, however, that 
for shape parameters which are an integer multiple of0.5, use can be made of the fact 

that x; = r(n/2, 1/2).* So, given a technique for generating x2 quantities, gamma 

*We did not discuss the x2 (or chi-square) distribution in Chapter 3, but it is usually defined as the 
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variates with a shape parameter that is an integer multiple of 1/2 can be generated by 
a simple rescaling. 

4.4.5 Normal random variates 

The ability to efficiently simulate normal (or Gaussian) random quantities is of cru­
cial importance for stochastic simulation. However, the inverse transformation meth­
od is not really appropriate due to the analytic intractability of the CDF and inverse 
CDF of the normal distribution, so another method needs to be found. Note that 
all we need is a technique for simulating Z "' N(O, 1) random variables, as then 
X = f.L + O" Z "' N (f.L, 0"2 ). Also note that standard normal random variables can be 
used to generate x2 random variables. If Zi "' N(O, 1) and the Zi are independent, 
then 

n 

has a x~ distribution. 

CLT-based method 

One simple way to generate normal random variables is to make use of the Central 
Limit Theorem (Theorem 3.3). Consider 

12 

z = L:ui- 6 
i=l 

where Ui "' U(O, 1). Clearly E (Z) = 0 and Var (Z) = 1, and by the Central Limit 
Theorem (CLT), Z is approximately normal. However, this method is not exact. For 
example, Z only has support on [ -6, 6] and is poorly behaved in the extreme tails. 
However, for Z "'N(O, 1) we have P (IZI > 6) -::::!. 2 x 10-9 , and so the truncation 
is not much of a problem in practice, and this method is good enough for many 
purposes. The main problem with this method is that for "good" random number 
generators, simulating uniform random numbers is qUite slow, and so simulating 12 
in order to get one normal random quantity is undesirable. 

Box-Muller method 

A more efficient (and "exact") method for generating normal random variates is the 
following. Simulate 

e rv U(O, 21r), R2 rv Exp(1/2) 

independently. Then 

X= Rcose, Y = Rsine 

sum of squares of independent standard normal random quantities, which leads directly to the simu­
lation method discussed in the next section. That the x2 distribution is a special case of the gamma 
distribution is demonstrated in Miller & Miller (2004). 
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are two independent standard normal random variables. It is easier to show this the 
other way around. 

Proposition 4.3 If X and Y are independent standard normal random quantities, 
and they are regarded as the Cartesian coordinates (X, Y) of a 2-d random vari­
able, then the polar coordinates of the variable ( R, 6) are independent with R2 ~ 
Exp(1/2) and 6 ~ U(O, 21r). 

Proof Suppose that X, Y ~ N(O, 1) and that X andY are independent. Then 

1 
fx,Y(x,y) = 27r exp{-(x2 +y2)/2}. 

Put 
X= Rcose and Y = Rsin6. 

Then, 

la(x,y)l 
!R,e(r, e) = Jx,y(x, y) 8(r, e) 

= ~e_,.212 1c?sB 
27r sme 

=~X re-,.2/2. 
27r 

-rsinBI 
rcos() 

So, 6 and Rare independent, 6 "' U(O, 21r), and fR(r) = re-r2 12. It is then easy 
to show (using Proposition 3.13) that R2 "'Exp(1/2). 0 

Note that here we have used a couple of results that were not covered directly in 
Chapter 3: namely, that independence of continuous random quantities corresponds 
to factorisation of the density, and also that the random variable transformation for­
mula (Proposition 3.13), generalises to higher dimensions (where the "Jacobian" of 
the transformation is now the determinant of the matrix of partial derivatives). Note 
also that algorithms for efficiently simulating normal random quantities are built in 
to most scientific and numerical libraries, and it is preferable to use these where 
available. 

4.5 Lookup methods 

The so-called lookup method is just the discrete. version of the inverse transformation 
method. However, as it looks a little different at first sight, it is worth examining in 
detail.· Suppose one is interested in simulating a discrete random quantity X with 
outcome spaceS = {0, 1, 2, ... }, or a subset thereof. Put Pk = P (X= k), k = 
O, 1, 2, ... , the PMF of X. Some of the Pk may be zero. Indeed, if X is finite, then 
all but finitely many of the Pk will be zero. Next define 

k 

qk = p (X:::; k) = I>i· 
i=O 

Realisations of X can be generated by first simulating U rv U(O, 1) and then putting 

X= min{klqk 2: U}. 
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This works because then by definition we must have Qk-1 < U :::; Qk, and so 

P (X= k) = P (U E (qk-l.Qk]) = qk- qk-1 = Pk, 

as required. In practice, for a one-off simulation, first simulate a U and then compute 
a running sum of the Pi. At each stage check to see if the running sum is as big 
as U. If it is, return the index, k of the final Pk· If many realisations are required, 
more efficient strategies are possiblp but in the context of discrete-event simulation 
of biochemical networks, a one-off simulation is usually all that is required. As we 
will see, typically one picks one of a finite set of reactions using a lookup method 
and chooses a time to wait until that reaction occurs by simulating an exponential 
random quantity. 

4.6 Rejection samplers 

We have now examined a range of useful techniques for random number generation, 
but we still have not seen a technique that can be used for general continuous ran­
dom quantities where the inverse CDF cannot easily be computed. In this situation, 
rejection samplers are most often used. 

Proposition 4.4 (uniform rejection method) Suppose we want to simulate from 
f(x) with (finite) support on (a, b), and that f(x) :::; m, 'Vx E (a, b). Then con­
sider simulating 

X"" U(a,b) and Y"" U(O,m). 

Accept X ifY < f(X), otherwise reject and try again. Then the accepted X values 
have PDF f(x). 

Intuitively, we can see that this will work because it has the effect of scattering points 
uniformly over the region bounded by the PDF and the x-axis. 

Proof Call the acceptance region A, and the accepted value X. Then 

Fx(x) = P (X:::; x) 

= P (X :$ xi(X, Y) E A) 

P ((X:::; x) n ((X, Y) E A)) 
P ((X,Y) E A) 

1b 1 
P ((X :::; x) n ((X, Y) E A) IX= z) x ~ dz 

= a 1b 1 
a P((X,Y)EAIX=z)x b-adz 
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D 

1 r 
b _a Ja P ((X, Y) E A\X = z) dz 

- a 
- b 

b~a1 P((X,Y)EAIX=z)dz 

1x f(z) dz 
- a m 
- rb f(z) dz 

Ja m 

= 1"' f(z) dz 

= F(x). 
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So, in summary, we simulate a value x uniformly from the support of X and accept 
this value with probability f ( x) I m, otherwise we reject and try again. Obviously the 
efficiency of this method depends on the overall proportion of candidate points that 
are accepted. The actual acceptance probability for this method is 

P (Accept) = P ((X, Y) E A) 

= 1b P ((X, Y) E AIX = x) x b ~a dx 

= 1b f(x) x _1_dx 
a m b-a 

= m(b1- a) 1b f(x)dx 

1 
m(b- a)' 

If this acceptance probability is very low, the procedure will be very inefficient, and 
a better procedure should be sought- the envelope method is one possibility. 

4.6.1 Envelope method 

Once we have established that scattering points uniformly over the region bounded 
by the density and the x-axis generates x-values with the required distribution, we can 
extend it to distributions with infinite support and make it more efficient by choosing 
our enveloping region more carefully. 

Suppose that we wish to simulate X with PDF f(·), but that we can already simu­
late values of Y (with the same support as X), which has PDF g( · ). Suppose further 
that there exists some constant a such that 

f(x) :S: ag(x), 'Vx. 

That is, a is an upper bound for f ( x) I g( x). Note also that a :C:: 1, as both f ( x) and 
g( x) integrate to 1. 
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Consider the following algorithm. Draw Y = y fi;om g(·), and then U = u "' 

U(O, ag(y)). Accept y as a simulated value of X if u < f(y), otherwise reject and 
try again. This works because it distributes points uniformly over a region covering 
f(x), and then only keeps points in the required region (under f(x )): 

P (X :::; x) = P (Y :S xiU:::; f(Y)) 

= 

P ([Y :::; x] n [U :S f(Y)]) 
P (U :S j(Y)) I: P ([Y :S xtn [U:::; f(Y)]IY = y) g(y)dy 

I: p (U:::; f(Y)IY = y) g(y)dy 

Ixoo P (U:::; f(Y)IY = y)g(y)dy 

I: p (U:::; J(Y)IY = y) g(y)dy 

1x J(y) g(y)dy 
-oo ag(y) 

= 100 f(y) g(y)dy 
-oo ag(y) 

- J:oo !Jfdy -I: f~)dy 
= Ixoo J(y) dy 

= F(x). 

To summarise, just simulate a proposed value from g(·) and accept this with prob­
ability f(y)j[ag(y)], otherwise reject and try again. The accepted values will have 
PDF J(·). 

Obviously, this method will work well if the overall acceptance rate is high, but 
not otherwise. The overall acceptance probability can be computed as 

p (U < f(Y)) =I: p (U < f(Y)IY = y) g(y)dy 

= 100 f(y) g(y)dy 
-oo ag(y) 

= !00 f(y) dy 
-oo a 

1 
a 
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Consequently, we want a to be as small as possible (that is, as close as possible to 1). 
What "small enough" means is context-dependent, but generally speaking, if a > 10, 
the envelope is not adequate- too many points will be rejected, so a better envelope 
needs to be found. If this is not practical, then an entirely new approach is required. 

4.7 The Poisson process 

Consider a Poisson process with rate>. defined on the interval [0, T]. As we know, the 
inter-event times are Exp(>.), and so we have a very simple algorithm for simulating 
realisations of the process. Initialise the process at time zero. Then simulate t 1 "' 

Exp(>.), the time to the first event, and put X 1 = t 1 . Next simulate t2 "' Exp(>.), 
the time from the first to the second event, and put X 2 = X 1 + t 2 . At step k, simulate 
tk ""'Exp(>.), thetimefromthe k-1 to kthevent,andputXk = Xk_ 1 +tk. Repeat 
until Xk > T, and keep the X 1 , X2, ... as the realisation of the process. 

4.8 Using the statistical programming language, R 

4.8.1 Introduction 

R is a programming language for data analysis and statistics. It is a completely free 
open-source software application, and very widely used by professional statisticians. 
It is also very popular in certain application areas, including bioiuformatics. R is a 
dynamically typed interpreted language, and it is typically used interactively. It has 
many b~Jilt-in functions and libraries and is extensible, allowing users to define their 
own functions and procedures using R, C, or Fortran. It also has a simple object 
system. R is a particularly convenient environment to use for stochastic simulation, 
visualisation, and analysis. It will therefore be used in the forthcoming chapters in 
order to provide concrete illustrations of the theory being described. It is strongly rec­
ommended that readers unfamiliar with R download and install it, then work through 
this mini-tutorial. 

4.82 Vectors 

Vectors are a fundamental concept in R, as many functions operate on and return 
vectors, so it is best to master these as soon as possible. For the technically inclined, 
in R, a (numeric) vector is an object consisting of a one-dimensional array of scalars. 

> rep(l,lO) 
[1] 1 1 1 1 1 1 1 1 1 1 

> 

Here rep is a function that returns a vector (here, 1 repeated 10 times). You can get 
documentation for rep by typing 

> ?rep 

You can assign any object (including vectors) using the assignment operator<- (or 
= ), and combine vectors and scalars with the c function. 

j 
' • 
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> a<-rep {1, 10) 
> b<-1:10 
> c{a,b) 

[1] 1 1 1 
[17] 7 8 9 
> a+b 

[1] 2 3 4 

> a+2*b 
[1] 3 5 7 

> a/b 
[1] 1.0000000 
[6] 0.1666667 

> c(1,2,3) 
[1] 1 2 3 
> 

STOCHASTIC SIMULATION 

1 1 1 1 1 1 1 1 2 3 4 5 6 
10 

5 6 7 8 9 10 11 

9 11 13 15 17 19 21 

0.5000000 0.3333333 0.2500000 0.2000000 
0.1428571 0.1250000 0.1111111 0.1000000 

Note that arithmetic operations act element-wise on vectors. To look at any object 
(function or data), just type its name. 

> b 
[1] 1 2 3 4 5 6 7 8 9 10 

To list all of your objects, use l s { ) . Note that because of the existence of a function 
called c (and another called t) it is best to avoid using these as variable names in 
user-defined functions (this is a common source of bugs). 

Vectors can be "sliced" very simply: 

> d<-C(3,5,3,6,8,5,4,6,7) 
> d 
[1] 3 5 3 6 8 5 4 6 7 
> d [4] 
[1] 6 

> d[2:4] 
[1] 5 3 6 
> d<7 
[1) TRUE TRUE TRUE TRUE FALSE TRUE TRUE TRUE FALSE 
> d[d<7] 
[1] 3 5 3 6 5 4 6 

> 

Vectors can be sorted and randomly sampled. The following command generates 
some lottery numbers. 

> sort(sample(1:49,6)) 
[1] 2 17 23 24 25 35 

Get help (using ?) on sort and sample to see how they work. R is also good at 
stochastic simulation of vectors of quantities from standard probability distributions, 
so 
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> rpois(20,2) 
[1] 1 4 0 2 2 3 3 3 3 4 2 2 4 2 1 3 4 1 2 1 

generates 20 Poisson random variates with mean 2, and 

> rnorm(5,1,2) 
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[1) -0.01251322 -0.03181018 0.30426031 3.24302197 -2.04370284 

generates 5 normal random variates with mean 1 and standard deviation (not vari­
ance) 2. There are lots of functions that act on vectors. 
> X<-rnorm(S0,2,3) 
> X 

[1] 2.04360635 5. 01113289 -1.52215979 -0.19789766 1.41945311 -0.08850784 
[7] -0.91161025 3. 47199019 6.13447194 4.62796165 0.07600234 -2.99687943 

[13] 1.75153104 8.55000833 3.11921624 3.38411717 3.86860456 0.29103619 
[19] 1. 25823419 3.88427191 -0 0 77722215 -0.57774833 2.99937058 4.29042603 
[25] 6.10597239 2.83832381 3.73618138 4.12999252 6. 23009274 1. 07251421 
[31] -0.19645150 1.77581296 2.08783542 1.62948606 2.74911850 0.44028844 
[37] 1.80996899 1.86436309 0 0 29372974 2.37077354 1.54285955 4.40098545 
[43] -3.01913118 -0.23174209 3.58252631 5.18954147 3.61988373 4.08815220 
[49] . 6. 30878505 4.56744882 
> mean(x) 
[1] 2.36i934 
> 1ength(x) 
[1] 50 
> var (x) 
[1] 6.142175 
> surnmary(x) 

Min. 1st Qu. Median Mean 3rd Qu. Max. 
-3.0190 0.3304 2.2290 2.3620 4.0370 8.5500 
> cumsum(x) 

[1] 2.043606 7.054739 5.532579 5.334682 6.754135 6.665627 
[7] 5.754017 9.226007 15.360479 19.988441 20.064443 17.067563 

(13] 1'8.819095 27.369103 30.488319 33 0 872436 37.741041 38.032077 
[19] 39.290311 43.174583 42.397361 41. 819613 44.818983 49.109409 
[25] 55.215382 58.053705 61.789887 65.919879 72.149972 73.222486 
[:i1] 73.026035 74.801848 76.889683 78.519169 81.268288 81.708576 
[37] 83.518545 85.382908 85.676638 88.047412 89 0 590271 93 0 991257 
[43] 90 0 972125 90.740383 94.322910 99.512451 103.132335 107.220487 
[49] 113.529272 118.096721 
> sum(x) 
[1] 118 0 0967 

Note that the function var computes and returns the sample variance of a data vector 
(and the function sd returns the square root of this). The sample variance, usually 
denoted by s2 , is an estimator of the population variance in the same sense that the 
sample mean, X, is an estimator of the population mean, J.t. It is defined by 

4.8.3 Plotting 

R has many functions for data visualisation and for producing publication quality 
plots - running demo (graphics) will give an idea of some of the possibilities. 
Some more basic commands are given below. Try them in turn and see what they do. 

> plot(l:SO,cumsum(x)) 
> plot(l:SO,cumsum(x),type="l",col="red") 

< 
i 

"!' 
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> plot(x,0.6*x+rnorm(S0,0.3)) 
> curve(0.6*x,-5,10,add=TRUE) 
> hist(x) 
> hist (x,20) 
> hist(x,freq=FALSE) 

STOCHASTIC SIMULATION 

> curve(dnorm(x,2,3),-5,10,add=TRUE) 
> boxplot(x,2*x) r 

> barplot(d) 
> 

Study the Help file for each of these commands to get a feel for the way each can be 
customised. 

4.8.4 User-definedfunctions 

R is a full programming language, and before long, you are likely to want to add 
your own functions. Consider the following declaration. 

rchi<-function(n,p=2) { 
X<-matrix(rnorm(n*p) ,nrow=n,ncol=p) 
Y<-X*X 
as.vector(y %*% rep(1,p)) 
} 

The first line declares the object rchi to be a function with two arguments, n and 
p, the second of which will default to a value of 2 if not specified. Then everything 
between { and } is the function body, which can use the variables n and p as well 
as any globally defined objects. The second line declares a local variable x to be 
a matrix with n rows and p columns, whose elements are standard normal random 
variables. The next line forms a new matrix y whose elements are the squares of the 
elements in x. The last line computes the matrix-vector product of y and a vector 
of p ones, then coerces the resulting n by 1 matrix into a vector. The result of the 
last line of the function body is the return result of the function. In fact, this function 
provides a fairly efficient way of simulating Chi-squared random quantities with p 
degrees of freedom, but that is not particularly important. The function is just another 
R object, and hence can be viewed by entering rchi on a line by itself. It can be 
edited by doing fix ( rchi) . The function can be called just like any other, so 

> rchi(10,3) 
[1] 1.847349 5.590369 3.994036 4.243734 2.104224 
[6] 1.027634 1.119508 6.653095 5.660968 5.384954 

> rchi(10) 

> 

[1] 0.09356735 3.63633129 1.34073206 1.79412360 
[5] 1.46038656 2.67362870 0.50413958 6.04307710 
[9] 1. 03116671 1. 39662895 

generates 10 chi-squared random variates with 3 and 2 degrees of freedom, respec­
tively. 
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4.8.5 Reading and writing data 
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Of course, in order to use R for data analysis, it is necessary to be able to read data 
into R from other sources. It is often also desirable to be able to output data from 
R in a format that can be read by other applications. Unsurprisingly, R has a range 
of functions for accomplishing these tasks, but we shall just look here at the two 
simplest. 

The simplest way to get data into R is to read a list of numbers from a text file 
using the scan command. This is most easily illustrated by first writing some data 
out to a text file and then reading it back into R. A vector of numbers can be output 
with a command like 
> write(x, "scandata.txt") 
> 
Then, to load data from the file scandata. txt, use a command like 

> x<-scan ( "scandata. txt") 
Read s'o i terns 
> 

In general, you may need to use the getwd and setwd commauds to inspect and 
change the working directory that R is using. 

More often, we will be concerned with loading tabular data output from a spread­
sheet or database or even another statistics package. R copes best with whitespace­
separated data, but can be persuaded to read other formats with some effort. The key 
command here is read. table (and the corresponding output command write. 
table). So, suppose that mytable. txt is a plain text file containing the follow­
ing lines. 
"Name" "Shoe size" "Height" 
"Fred" 9 170 
"Jim" 10 180 
"Bill" 9 185 
"Jane" 7 175 
"Jill" 6 170 
"Janet" 8 180 
To read this data into R, do 

> mytab<- read. table ( "mytable. txt" , header=TRUE) 
> mytab 

Name Shoe.size Height 
1 Fred 9 170 
2 Jim 10 180 
3 Bill 9 185 
4 Jane 7 175 
5 Jill 6 170 
6 Janet 8 180 
> 

Note that R does contain some primitive functions for editing data frames like this 
(and other objects), so 

J 
' .. 
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> mytabnew<-edit(mytab) 

will pop up a simple editor for mytab, and on quitting, the edited version will be 
stored in mytabnew. Data frames like mytab are a key object type in R, and tend 
to be used often. Here are some ways to interact with data frames. 

> mytab$Height 
[1] 170 180 185 175 170 180 
> mytab [,2] 
[1] 9 10 9 7 6 8 
> plot(mytab(,2] ,mytab[,3]) 
> mytab [4,] 

Name Shoe.size 
4 Jane 7 
> mytab[5,3] 
[1] 170 

Height 
175 

> mytab[mytab$Name=="Jane",] 
Name Shoe.size Height 

4 Jane 7 175 
> mytab$Height[mytab$Shoe.size > 8] 
[1] 170 180 185 
> 

Also see the Help on source and dump for input and output of R objects of other 
sorts. 

4.8.6 Further reading for R 

One of the great things about R is that it comes with a great deal of excellent docu­
mentation (from the Comprehensive R Archive Network- CRAN). The next thing 
to work through is the official Introduction to R, which covers more material in more 
depth than this very quick introduction. Further pointers are given on this book's 
website. 

4.9 Analysis of simulation output 

This chapter finishes with the analysis of a random quantity using stochastic simu­
lation. Suppose interest lies in Y = exp(X), where X "' N(2, 1). In fact, Y is a 
standard distribution (it is log-normally distributed), and all of the interesting prop­
erties of Y can be derived directly, analytically. However, we will suppose that we 
are not able to do this, and instead study Y using stochastic simulation, using only 
the ability to simulate normal random quantities. Using R, samples from Y can be 
generated as follows: 

> x<-rnorm(10000,2,1) 
> y<-exp(x) 

The variable Y has a long-tailed distribution, which can be visualised with 

> hist(y,breaks=50,freq=FALSE) 
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and a version of this plot is shown in Figure 4.1. The samples can also be used for 
computing summary statistics. Basic sample statistics can be obtained with 

> summary(y) 
Min. 1st Qu. 

0.134 3.733 
> sd(y) 

Median 
7.327 

Mean 3rd Qu. Max. 
12.220 14.490 728.700 

[1] 17.21968 
> 

and the sample mean, median, and quartiles provide estimates of the true population 
quantities. Focussing on the sample mean, x, the value obtained here (12.220) is an 
estimate of the population mean. Of course, should the experiment be repeated, the 
estimate will be different. However, we can use the fact that X rv N (f.L, a 2 In) (by the 
CLT), to obtain Z rv N(O, 1), where Z rv y'n(X- f.L)Ia. Then since P (IZI < 2) ~ 
0.95, we have 

P (IX- Ml < 2a I v'n) ~ 0.95, 

and substituting inn and the estimated value of <T (17.21968), we get 

P (IX - f.Li < 0.344) ~ o.95. 

We therefore expect that X is likely to be within 0.344 of f.L (though careful readers 
will have noted that the conditioning here is really the wrong way around). In fact, in 
this particular case, the true mean of this distribution can be calculated analytically 
as exp(2.5) = 12.18249, which is seen to be consistent with the simulation estimate. 
Thus, in more complex examples where the true population properties are not avail­
able, estimated sample quantities can be used as a substitute, provided that enough 
samples can be generated to keep the "Monte-Carlo error" to a minimum. 

4.10 Exercises 

1. The random variable X has PDF 

f(x) = {sin(x), 0::; x::; 1rl2, 
0, otherwise. 

(a) Derive a transformation method for simulating values of X based on U(O, 1) 
random variates. 

(b) Derive a uniform rejection method for simulating values from X. What is the 
acceptance probability? 

(c) Derive an envelope rejection method for simulating values of X based on a 
proposal with density 

g(x) = {kx, 0::; x: 1rl2, 
0, otherwise, 

for some fixed k. You should use the fact that sin(x) ::; x, Vx 2 0. What is 
the acceptance probability? 
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Figure 4.1 Density ofY = exp(X), where X rv N(2, 1). 

2. If you have not already done so, follow the links from this book's website and 
download and install R. Work through the mini-tutorial from this chapter. 

3. Download the official Introduction to R from CRAN (linked from this book's 
website) and work through the first half at least. 

4. Write your own function myrexp, which does the same as rexp, but does not 
rely on the built-in version. 

5. Write a function to simulate normal random quantities using the CLT method. Use 
plots and summary statistics to compare the distribution you obtain with those of 
the built-in rnorm function (which is exact). 

6. Write your own function to simulate r(3, 2) random quantities (and again, com­
pare with the built-in version). See if you can also write your own function to 
simulate r(3.5, 5) random quantities. 

7. Obtain Monte-Carlo solutions to the problems posed in Exercise 4 from Chapter 3. 

4.11 Furtherreading 

There are several good introductory texts on stochastic simulation, including Morgan 
(1984) and Ripley (1987)~ Devroye (1986) is an excellent reference work on the 
subject. The standard reference for R is the R Development Core Team (2005). 



CHAPTERS 

Markov processes 

5.1 Introduction 

We now have a grounding in elementary probability theory and an understanding of 
stochastic simulation. The only remaining theory required before studying the dy­
namics of genetic and biochemical networks (and chemical kinetics more generally) 
is an introduction to the theory of stochastic processes. A stochastic process is a ran­
dom variable (say, the state of a biochemical network) which evolves through time. 
The state inay be continuous or discrete, and it can evolve through time in a discrete 
or continuous way. A Markov process is a stochastic process which possesses the 
property that the future behaviour depends only on the current state of the system. 
Put another way, given information about the current state of the system, information 
about the past behaviour of the system is of no help in predicting the time-evolution 
of the process. It turns out that Markov processes are particularly amenable to both 
theoretical and computational analyses. Fortunately, the dynamic behaviour of bio­
chemical networks can be effectively modelled by a Markov process, so familiarity 
with Ma'rkov processes is sufficient for studying many problems that arise naturally 
in systems biology. 

5.2 Finite discrete time Markov chains 

5.2.1 Introduction 

The set { g(t) it= 0, 1, 2, ... } is a discrete time stochastic process. The state spaceS 
is such that g(t) E S, 'it and may be discrete or continuous. 

A (first order) Markov chain is a stochastic process with the property that the future 
states are independent of the past states given the present state. Formally, for A ~ S, 
n = 0, 1, 2, ... , we have 

p ( g(n+1) E AJB(n) = X, g(n-1) = Xn-1' ... 'g(O) = Xo) 

= P (e(n+l) E AIB(n) =X), '1:/x,Xn-1, ... ,xo E S. 

The past states provide no information about the future state if the present state is 
known. The behaviour of the chain is therefore determined by P(eCn+l) E AJO(n) = 

x). In general this depends on n, A and x. However, if there is no n dependence, so 
that 

P (e<n+l) E Ale(n) = x) = P (x, A), '1:/n, 

then the Markov chain is said to be (time) homogeneous, and the transition kernel, 

109 
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P (x, A) determines the behaviour of the chain. Note that Vx E S, P (x, ·) is a 
probability measure over S. 

5.2.2 Notation 

When dealing with discrete state spaces, it is easier to write 

P (x, {y}) = P (x,y) = P (eCn+l) = yl11(n) = x). 

In the case of a finite discrete state space, S = { x1 , ... , Xr}, we can write P ( ·, ·) as 
a matrix 

P= (P(x~,x1) 
P (xnxl) 

The matrix P is a stochastic matrix. 

Definition 5.1 A real r x r matrix P is said to be a stochastic matrix if its elements 
are all non-negative and its rows sum to 1. 

Proposition 5.1 The product of two stochastic matrices is another stochastic matrix. 
Every eigenvalue .A of a stochastic matrix satisfies I .AI :::; 1. * Also, every stochastic 
matrix has at least one eigenvalue equal to 1. 

The proof of this proposition is straightforward and left to the end-of-chapter exer­
cises. 

Suppose that at time n, we have 

P (e(n),;, X1) = 1r(n)(x1) 

P ( g(n) = Xz) = 7r(n) (xz) 

P ( g(n) = Xr) = 7r(n) (xr ). 

We can write this as an r-dimensional row vector 

7r(n) = (7r(n)(xl), 7r(n)(xz), ... '7r(n)(xr)). 

The probability distribution at time n + 1 can be computed using Theorem 3.1, as 

P (e(n+l) = x1) = P (x1,x1) 1r(n)(x1) + P (xz,xl) 7r(n)(xz)+ 

· · · + P (xr, X1) 7r(n) (xr ), 

* When considering a matrix A, the vector v is called a (column) eigenvector of A if Av = >.v for 
some real number >., which is known as an eigenvalue of A, corresponding to the eigenvector v. The 
row eigenvectors of A are the column eigenvectors of A'. Although row and column eigenvectors 
are different, the corresponding eigenvalues are the same. That is, A and A' have the same (column) 
eigenvalues. 
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and similarly for P (eCn+l) = x 2 ), P (eCn+l) = x 3 ), etc. We can write this in matrix 

form as 

( 7r(n+l) (xl)' 7r(n+l) ( X2), ... '7r(n+l) ( Xr)) = ( 7r(n) (xl)' 7r(n) (x2)' ... '7r(n) (Xr)) 

or equivalently 

So, 

X (P (x~, x1) P (x~, Xr)) 

P(xr,xl) P(xr,xr) 

7r(n+l) = 7r(n) P. 

7r(l) = 7r(O) p 

7r(2) = 7r(l) p = 7r(O) p p = 7r(O) p2 

7r(3) = 7r(2) p = 7r(O) p2 p = 7r(O) p3 

= 

That is, the initial distribution 7r(o), together with the transition matrix P, determine 
the proBability distribution for the state at all future times. Further, if the one-step 
transitio'u. matrix is P, then then-step transition matrix is pn. Similarly, if them-step 
transition matrix is pm and then-step transition matrix is pn, then the ( m + n )-step 
transition matrix is pm pn = pm+n. The set of linear equations corresponding to 
this last statement are known as the Chapman-Kolmogorov equations. 

5.2.3 Stationary distributions 

A distribution 1r is said to be a stationary distribution of the homogeneous Markov 
chain governed by the transition matrix P if 

7r=7rP. (5.1) 

Note that 1r is a row eigenvector of the transition matrix, with corresponding eigen­
value equal to 1. It is also a fixed point of the linear map induced by P. The sta­
tionary distribution is so-called because if at some time n, we have 1r(n) = 1r, then 
7r(n+l) = 1r(n) P = 7r P = 1r, and similarly 7r(n+k) = 1r, Vk 2: 0. That is, if a chain 
has a stationary distribution, it retains that distribution for all future time. Note that 

1r=1rP ~ 1r-1rP=O 

~ 1r(l- P) = 0 

where I is the r x r identity matrix. Hence the stationary distribution of the chain 
may be found by solving 

1r(l- P) = 0. (5.2) 
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Note that the trivial solution 7f = 0 is not of interest here, as it does not correspond 
to a probability distribution (its elements do not sum to 1). However, there are al­
ways infinitely many solutions to (5.2), so proper solutions can be found by finding 
a positive solution and then imposing the unit-sum constraint. In the case of a unique 
stationary distribution (just one eigenvalue of P equal to 1), then there will be a one­
dimensional set of solutions to (5.2), and the unique stationary distribution will be 
the single solution with positive elements summing to 1. 

5.2.4 Convergence 

Convergence of Markov chains is a rather technical topic, which we do not have time 
to examine in detail here. This short section presents a very informal explanation of 
why Markov chains often do converge to their stationary distribution and how the · 
rate of convergence can be understood. 

By convergence to stationary distribution, we mean that irrespective of the start­
ing distribution, 7r(O), the distribution at time n, 1r(n), will converge to the stationary 
distribution, 1r as n tends to infinity. If the limit of 1r(n) exists, it is referred to as 
the equilibrium distribution of the chain (sometimes referred to as the limiting dis­
tribution). Clearly the equilibrium distribution will be a stationary distribution, but a 
stationary distribution is not guaranteed to be an equilibrium distribution. t The rela­
tionship between stationary and equilibrium distributions is therefore rather subtle. 

Let 1r be a (row) eigenvector of P with corresponding eigenvalue A. Then 

7rP=A7r. 

Also 1r pn = An 1r. It is easy to show that for stochastic P we must have I A I :::; 1 (see 
Exercises). We also know that at least one eigenvector is equal to 1 (the correspond­
ing eigenvector is a stationary distribution). Let 

(1r1, AI), (7rz, Az), ... , (7rr, Ar) 

be the full eigen-decomposition of P, with IAil in decreasing order, so that A1 = 1, 
and 1r1 is a (rescaled) stationary distribution. To keep things simple, let us now make 
the assumption that the initial distribution 1r(o) can be written in the form 

7r(o) = a11r1 + az1r2 + · · · + ar'lrr 

for appropriate choice of ai (this might not always be possible, but making the as­
sumption keeps the mathematics simple). Then 

7r(n) = 71"(0) pn 

= (a11r1 + az7rz + · · · + ar'lrr )Pn 

= a11r1Pn + az7rzPn + · · · + ar'lrrPn 

= a1Al'lr1 + azA27rz + · · · + arA~'lrr 
as n--. oo, 

t This is clear if there is more than one stationary distribution, but in fact, even in the case of a unique 
stationary distribution, there might not exist an equilibrium distribution at all. 
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provided that 1>-zl < 1. The rate of convergence is governed by the second eigen­
value, .Az. Therefore, provided that 1>-zl < 1, the chain eventually converges to an 
equilibrium distribution, which corresponds to the unique stationary distribution, ir­
respective of the initial distribution. If there is more than one unit eigenvalue, then 
there is an infinite family of stationary distributions, and convergence to any partic­
ular distribution is not guaranteed. For more details on the theory of Markov chains 
and their convergence, it is probably a good idea to start with texts such as Ross 
(1996) and Cox & Miller (1977), and then consult the references therein as required. 
For the rest of this chapter we will assume that an equilibrium distribution exists and 
that it corresponds to a unique stationary distribution. 

5.2.5 Reversible chains 

If g(o), IJ(l), ... , g(N) is a Markov chain, then the reversed sequence of states, g(N), 

g(N-l), · ... , g(o) is also a Markov chain. To see this, consider the conditional distri­
bution of the current state given the future: 

p (e(n) = yJ(J(n+l) = Xn+1, ... , (J(N) = XN) 

_ p (e<n+1) = Xn+1> ... , (J(N) = XNifJ(n) = y) p (e(n) = y) 
- p (fJ(n+l) = X~+1, ... , (J(N) = XN) 

_ P (e<n+Il = xn+1Je<nl = y) · · · · · · P (e<Nl = xNJe<N-1) = XN-1) P (e<nl = y) 
- P (fJ(n+1l = Xn+1) P (fJ(n+2) = Xn+2J(J(n+l) = Xn+1) · · · P (fJ(N) = XNJ(J(N 1) = XN-1) 

P (e<n+I) = Xn+1Je<n) = y) P (e<nl = y) 
P (fJ(n+l) = Xn+I) 

= p ( e<n) = yJO(n+l) = Xn+l) . 

This is exactly the condition required for the reversed sequence of states to be Marko­
vian. 

Now let P~ ( x, y) be the transition kernel for the reversed chain. Then 

P~(x, y) = P (e(n) = Ylg(n+l) = x) 
p (eCn+l) = xi!J(n) = y) p (eCn) = y) 

p (!J(n+l) = x) 
P(y,x)7rCnl(y) 

n(n+ll(x) 

(by Theorem 3.2) 

Therefore, in general, the reversed chain is not homogeneous. However, if the chain 
has reached its stationary distribution, then 

P*( )=P(y,x)n(y) 
x, y n(x) ' 

and so the reversed chain is homogeneous, and has a transition matrix which may 
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be determined from the transition matrix for the forward chain (and its stationary 
distribution). 

If 
P*(x,y) = P(x,y), Vx,y 

then the chain is said to be (time) reversible (as then the sequence of states appear 
the same if time is reversed), and we have the detailed balance equations: 

rr(x)P(x,y) = rr(y)-P(y,x), Vx,y. (5.3) 

The detailed balance equations capture symmetry in the flow of probability between 
pairs of states. The left hand side is the probability that a particular transition will 
be a move from x toy, and the right hand side is the probability that a particular 
transition will be a move from y to x. 

If we have a chain with transition kernel P(x, y) and a distribution rr(·) satisfying· 
(5.3), then it follows that the chain is reversible with stationary distribution rr(·). 
The chain also has other nice properties (such as positive recurrence) which make it 
comparatively well behaved. 

Proposition 5.2 Consider a Markov chain with transition matrix P, satisfying ( 5.3) 
for some probability vector ?r. Then the chain has 1r as a stationary distribution and 
is time reversible. 

Proof. Summing both sides of (5.3) with respect to x gives 

"L>(x)P·(x,y) = "L>(y)P(y,x) 
X X 

= rr(y) LP(y,x) 
X 

= rr(y), Vy. 

In other words, 1r P = 1r. Hence 1r is a stationary distribution. Assuming that this sta­
tionary distribution is the equilibrium distribution of the chain, we can immediately 
conclude that the chain is reversible by dividing (5.3) through by rr(x). 0 

5.2.6 Stochastic simulation and analysis 

We next turn our attention to the problem of stochastic simulation of Markov chains 
on a computer and analysis of the simulation results. The key requirement is the abil­
ity to simulate a new state randomly, with probabilities given by an arbitrary proba­
bility vector p. The solution is given in Section 4.5. For simulation of a Markov chain 
to take place, a transition matrix P and an initial distribution rr<0> is required. Sim­
ulation begins with sampling an initial state e<0> from rr<0> using a lookup method. 
Once the initial state has been obtained, a value for e<1> can be sampled using .the 
set of probabilities from the e<0lth row of P. Indeed, at timet, the state e<t> can be 
sampled using the probabilities from the eCt-l)th row of P. A simpleR function for 
simulating the path of a Markov chain is given in Figure 5.1, and an example R ses­
sion illustrating its use is given in Figure 5.2. The example session shows how to plot 
and summarise the simulated sample path and how to calculate the proportion of time 
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rfmc <- function(n,P,piO) 

v=vector ("numeric" , n) 
r=length(piO) 
v[l]=sample(r,l,prob=piO) 
for (i in 2:n) { 

v[i]=sample(r,l,prob=P[v[i-1] ,]) 

ts(v) 
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Figure 5.1 An R function to simulate a sample path of length n from a Marlwv chain with 
transitidn matrix P and initial distribution pi 0 

spent' in each state. These latter proportions approximate the equilibrium distribution 
of the chain. 

5.3 Markov chains with continuous state space 

Mostly we will regard biochemicai networks as having a discrete state, but sometimes 
it is h~lpful to regard the state of certain quantities as continuous. In this case, we 
have to understand how the concept of a discrete state Markov chain extends to the 
continuous state case. In fact, this extension is exactly analogous to the generalisation· 
of discrete random quantities to that of continuous random quantities. 

Here we are still working with discrete time, but we are allowing the state space S 
of the Markov chain to be continuous (e.g. S <;;;JR.). 

Example- First-order auto-regressive model 

Consider the AR(l) model, which arises in elementary time-series analysis. Here, 
AR stands for auto-regressive, and the ( 1) means that the order of the auto-regression 
is 1. The essential structure of the model for an AR(1) process { Ztlt = 1, 2, ... } can 
be summarised as follows: 

This model captures the idea that the value of the stochastic process at time t, Zt, 
depends on the value of the stochastic process at timet - 1, and that the relationship 
is non-deterministic, with the non-determinism is captured in the "noise" term, ct. It 
is assumed that the noise process, { ctlt = 1, 2, ... } is independent (that is, the pair 
of random quantities ci and c i will be independent of one another Vi f= j). However, 
it is clear that the stochastic process of interest { Zt it = 1, 2, ... } is not independent 
due to the dependence introduced by auto-regressing each value on the value at the 
previous time. 

It is clear that the conditional distribution of Zt given Zt-1 = Zt- 1 is just 

Zti(Zt-1 = Zt-1) "'N(CY.Zt-1, o-2), 
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> P=matrix(c(0.9,0.1,0.2,0.8),ncol=2,byrow=TRUE) 
> p 

[,1) [,2) 
[1,) 0.9 0.1 
[2' l 0. 2 0. 8 
> piO=c(0.5,0.5) 
> piO 
[1) 0.5 0.5 
> samplepath=rfmc(200,P,pi0) 
> samplepath "• 
Time Series: 
Start = 1 
End = 200 
Frequency = 

[1] 1 1 1 
[38] 1 1 2 

1 
1 1 1 2 
2 2 2 2 

2 2 2 2 2 
2 2 2 2 2 

1 1 1 1 1 
2 2 2 2 2 

[75] 1 1 2 1 1 1 1 1 1 1 1 1 2 2 1 1 1 

1 1 1 1 
2 2 2 2 
1 1 1 1 

[112] 2 2 2 2 2 22221111 1 1 1 1 1 1 1 1 
[149] 1 1 1 1 1 1 1 1 2 
[186] 2 2 2 2 2 2 2 2 2 
> plot[samplepath) 
> hist(samplepath) 
> summary(samp1epath) 

Min. 1st Qu. Median 
1.00 1. 00 

> table(samplepath) 
samplepath 

1 2 
112 88 

1.00 

2 2 2 2 2 2 2 2 2 2 
2 1 1 1 1 1 

Mean 3rd Qu. 
1.44 2.00 

> table(samplepath)/length(samplepath) 
samplepath · 

1 2 
0.56 0.44 

2 2 

Max. 
2.00 

2 2 
1 2 
1 1 
1 2 
2 2 

>#now compute the exact stationary distribution ... 
> e=eigen(t(P))$vectors[,1] 
> e/sum(e) 
[1] 0. 6666667 0. 3333333 
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2 1 1 1 1 1 1 1 1 1 2 1 1 1 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 
1 1 1 1 1 1 1 1 1 2 2 2 2 2 
1 1 1 1 1 1 1 1 1 1 1 2 2 1 ' 
2 2 2 2 2 2 2 '2 2 2 1 2 2 2 

Figure 5.2 A sample R session to simulate and analyse the sample path of a finite Markov 
chain. The last two commands show how to use R to directly compute the stationary distribu­
tion of a finite Markov chain. 

and that it does not depend (directly) on any other previous time points. Thus, the 
AR(l) is a Markov chain and its state space is the real numbers, so it is a continuous 
state space Markov chain. t 

5.3.1 Transition kernels 

Again, for a homogeneous chain, we can define 

P (x, A)= P ((;l(n+l) E AJB(n) =X). 

t Note, however, that other classical time series models such as MA(l) and ARMA(l,l) are not Markov 
chains. The AR(2) is a second order Markov chain, but we will not be studying these. 
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For continuous state spaces we always have P(x, {y}) = 0, so in this case we define 
P(x,y) by 

P(x, y) = P (eCn+l) $ yl9(n) = x) 

= P (e(l) $ yl9(o) =X), 'Vx,y E S, 

the conditional cumulative distribution function (CDF). This is the distributional 
form of the transition kernel for continuous state space Markov chains, but we can 
also define the corresponding conditional density 

a 
p(x, y) = {)y P(x, y), x, y, E S. 

We can use this to define the density form of the transition kernel of the chain. Note 
that p(x, y) is just the conditional density for the next state (with variable y) given 
that the current state is x, so it could also be written p(ylx ). The density form of the 
kernel can be used more conveniently than the CDF form for vector Markov chains, 
where the state space is multidimensional (sayS ~ !Rn). 

Example 

If we write our AR(l) in the form 

e<t+l) = ae<t) + €t, 

then 
(9(t+l)l&(t) = x) "'N(ax,o-2 ), 

and so the density form of the transition kernel is just the normal density 

1 1 y- ax { ( )2} p(x,y) = uv'z7rexp -2 -u- , 

and this is to be interpreted as a density for y for a given fixed value of x. 

5.3.2 Stationarity and reversibility 

Let the state at time n, e<n) be represented by a probability density function, 1r(n) (x ), 
x E S. By the continuous version of the theorem of total probability (Proposition 
3.11), we have 

1r(n+l)(y) = fsp(x,y)1r(n)(x)dx. 

We see from (5.4) that a stationary distribution must satisfy 

1r(y) = fsp(x,y)1r(x)dx, 

(5.4) 

(5.5) 

which is clearly just the continuous version of the discrete matrix equation 1r = 1r P. 
Again, we can use Bayes Theorem to get the transition density for the reversed 
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chain 

* p(y,x)7r(n)(y) 
Pn(x,y) = 1r(n+l)(x) ' 

which homogenises in the stationary limit to give 

*( ) - p(y,x)7r(y) 
P x,y - 1r(x) . 

So, if the chain is (time) reversible, we have the continuous form of the detailed 
balance equations 

1r(x)p(x,y) = 1r(y)p(y,x), 't/x,y E S. (5.6) 

Proposition 5.3 Any homogeneous Markov chain satisfying (5.6) is reversible with 
stationary distribution 1r( · ). 

Proof We can see that detailed balance implies stationarity of 1r(·) by integrating 
both sides of (5.6) with respect to x and comparing with (5.5). Once we know that 
1r( ·) is the stationary distribution, reversibility follows immediately. 0 

This result is of fundamental importance in the study of Markov chains with con­
tinuous state space, as it allows us to verify the stationary distribution 1r( ·) of a (re­
versible) Markov chain with transition kernel p( ·, ·) without having to directly verify 
the integral equation (5.5). Note, however, that a given density 1r( ·) will fail detailed 
balance (5.6) regardless of whether or not it is a stationary distribution of the chain 
if the chain itself is not time reversible. 

Example 

We know that linear combinations of normal random variables are normal (Sec­
tion 3.10), so we expect the stationary distribution of our e:xample AR(l) to be nor­
mal. The normal distribution is characterised by its mean and variance, so if we can 
deduce the mean and variance of the stationary distribution, we can check to see if 
it really is normal. At convergence, successive distributions are the same. In partic­
ular, the first and second moments at successive time points remain constant. First, 
E (o<n+I)) = E (o<n)), and so 

E (o<n)) = E (o<n+t)) 

= E ( ao<n) +En) 

= aE (o<n)) 

=? E (o<n)) = 0. 
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Similarly, 

Var (e<n)) = Var (e<n+l)) 

= Var ( ae(n) +En) 
= a 2 Var (e<n)) + (}2 

=?- Var (e<nl) = _:C__ 
l-a2 
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So, we think the stationary distribution is normal with mean zero and variance (} 2 j (1-
a2). That is, we think the stationary density is 

1T(x) = {gl exp {--214} = Jl2- ~2 exp {- x2(~ ~ a2)}. 
21ro-2 ~ 1T(} (j 
1-a2 -a 

Since we know the transition density for this chain, we can see if this density satisfies 
detailed balance: 

1r(x)p(x,y) = /fg-exp{ x2 (~;2 a2)} x (j~exp{ -~ (y-(jaxr} 

= ~ exp {- 2~2 [x2 - 2axy + y2]} 

after a little algebra. But this expression is exactly symmetric in x andy, and so 

1r(x)p(x,y) = 1r(y)p(y,x). 

So we see that 1r(-) does satisfy detailed balance, and so the AR(l) is a reversible 
Markov chain and does have stationary distribution 1r(· ). 

5.3.3 Stochastic simulation and analysis 

Simulation of Markov chains with a continuous state in discrete time is easy provided 
that methods are available for simulating from the initial distribution, 1T(0l(x), and 
from the conditional distribution represented by the transition kernel, p( x, y). 

1. First (J(O) is sampled from 1r(O) ( ·), using one of the techniques discussed in Chap­
ter 4. 

2. We can then simulate (}(l) fromp((J(O), ·),as this is justa density. 

3. In general, once we have simulated a realisation of e<n), we can simulate e<n+l) 
from p( e<nJ, · ), using one of the standard techniques from Chapter 4. 

Example 

Let us start our AR(l) off at ()(O) = 0, so we do not need to simulate anything 
for the initial value. Next we want to simulate (J(l) from p(B(0 ), ·) = p(O, ·),that 
is, we simulate (J(l) from N(O, (}2 ). Next we simulate (}(2) from p(B<1l, ·),that is, 
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we simulate ()(2) from N(a()(l), a 2). In general, having simulated O(n), we simulate 
e<n+l) from N(ae<n), a 2). 

As n gets large, the distribution of ()(n) tends to the distribution with density 1r(-), 
the equilibrium distribution of the chain. All values sampled after convergence has 
been reached are draws from 1r(·). There is a ''burn-in" period before convergence 
is reached, so if interest is in 1r(·), these values should be discarded before analysis 
takes place. 

If we are interested in an integral 

fsg(x)1r(x)dx = E1r (g(8)), 

then if (J(l) ;B(2), ... , ()(n) are draws from 1r(·), this integral may be approximated by 

However, draws from a Markov chain are not independent, so the variance of the 
sample mean cannot be computed in the usual way. 

Suppose ()(i) "'.11"(·), i = 1, 2, .... Then 

Let Var (8) = Var (B(i)) = v2 • Then if the (}i were independent, we would have 

. 2 

Var (Bn) = ~. 
n 

However, if the ()(i) are not independent (e.g. sampled from a non-trivial Markov 
chain), then 

Example 

This example relies on some results from multivariate probability theory not covered 
in the text. It can be skipped without significant loss. 

and 

Var (B(i)) = ~ = v2 
1- a:2 
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so 

Var (Bn) = ~2 Var (t g(i)) 

2 ( n-1 ) 
= ~2 n+ L2(n-i)o/ , 

•=1 

which sums to give 

- 1 CJ2 n+2an+1 -2a-na2 
Var (Bn) = 2-1 - 2 (1 )2 n -a -a 

1 CJ 2 [1 +a 2a(1- an)] 
= n 1- a2 1- a - n(1- a)2 . 

To a first approximation, we have 

- 1 CJ2 1 +a 
Var (Bn) ~ -----, 

n1-a2 1-a 
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and so the "correction factor" for the naive calculation based on an assumption of 
independence is ( 1 + a)/ ( 1 - a). For a close to one, this can be very large, for 
example, for a= 0.95, (1 + a)/(1- a) = 39, and so the variance of the sample 
mean is actually around 40 times bigger than calculations based on assumptions of 
independence would suggest. Similarly, confidence intervals should be around six 
times wider than calculations based on independence would suggest. 

We can actually use this analysis in order to analyse other Markov chains. If the 
Markov chain is reasonably well approximated by an AR(l) (and many are), then we 
can estimate the variance of our sample estimates by the AR( 1) variance estimate. For 
an AR(1), a is just the lag 1 auto-correlation of the chain (Corr(B(i), gCi+1l) = a), 
and so we can estimate the a of any simulated chain by the sample auto-correlation 
at lag 1. We can then use this to compute or correct sample variance estimates based 
on sample means of chain values. 

5.4 Markov chains in continuous time 

We have now looked at Markov chains in discrete time with both discrete and con­
tinuous state spaces. However, biochemical processes evolve continuously in time, 
and so we now tum our attention to the continuous time case. We begin by studying 
chains with a finite number of states, but relax this assumption in due course. 

Before we begin we should try to be explicit about what exactly a Markov process 
is in the continuous time case. Intuitively, it is a straightforward extension of the 
discrete time definition. In continuous time, we could write this as 

P (X(t + dt) = xJ{X(t) = x(t)jt E [0, t]}) 

= P (X(t + dt) = xjX(t) = x(t)), \:It E [0, oo), xES. 
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Again, this expresses the idea that the future behaviour of the process depends on the 
past behaviour of the process only via the current state. 

5.4.1 Finite state-space 

Consider first a process which can take on one of r states, which we label S 
{1, 2, ... , r }. If at timet the process is in state x E S, its future behaviour can be 
characterised by the transition kernel 

p(x, t, x', t') = P (X(t + t') = x'IX(t) = x). 

If this function does not depend explicitly on t, the process is said to be homogeneous, 
and the kernel can be written p(x,x', t'). For each value oft', this kernel can be 
expressed as an r x r transition matrix, P(t'). It is clear that P(O) = I, the r x r 
identity matrix, as no transitions will take place in a time interval of length zero. Also 
note that since P( ·) is a transition matrix for each value oft, we can multiply these 
matrices together to give combined transition matrices in the usual way. In particular, 
we have P(t+ t') = P(t)P(t') = P(t')P(t),just as in the discrete time'case.§ Now 
define the transition rate matrix, Q, to be the derivative of P(t') at t' = 0. Then 

Q- .:!__P(t')l 
- dt' t'=O 

= lim P(5t)- P(O) 
ot--.o lit 

= lim P(lit)- I. 
Ot-->0 lit 

The elements of the Q matrix give the "hazards" of moving to different states. Re­
arranging gives the infinitesimal transition matrix 

P(dt) =I+ Qdt. 

Note that for P(dt) to be a stochastic matrix (with non-negative elements and rows 
summing to 1), the above implies several constraints which must be satisfied by 
the rate matrix Q. Since the off-diagonal elements of I are zero, the off-diagonal 
elements of P( dt) and Q dt must be the same, and so the off-diagonal elements of Q 
must be non-negative. Also, since the diagonal elements of P ( dt) are bounded above 
by one, the diagonal elements of Q must be non-positive. Finally, since the rows 
of P(dt) and I both sum to 1, the rows of Q must each sum to zero. These properties 
must be satisfied by any rate matrix Q. 

The above rearrangement gives us a way of computing the stationary distribution 
of the Markov chain, as a probability row vector 1r will be stationary only if 

1r P(dt) = 1r 

:::}- 1r(I + Qdt) = 1r 

=?-1rQ=0. 

§When these equations are written out in full, asp(i,j,t + t') = 2:~=1 p(i,k,t)p(k,j,t'), i,j = 
1, ... , r, they are known as the Chapman-Kolmogorov equations. 
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Solving this last equation (subject to the constraint that the elements of 1r sum to 1), 
will give a stationary distribution for the system. 

If P(t) is required for finite t, it may be computed by solving a matrix differential 
equation. This can be derived by considering the derivative of P(t) for arbitrary 
times t. 

~P(t) = P(t + dt)- P(t) 
dt dt 

_ P(dt)P(t)- P(t) 
- dt 

= P(dt)- I P(t) 
dt 

= QP(t). 

Therefore, P(t) is a solution to the matrix differential equation 

!P(t) = QP(t), 

subjecrto the initial condition P(O) =I. This differential equation has solution 

P(t) = exp{Qt}, 

where exp{-} denotes the matrix exponential function (Golub & Van Loan 1996). 
Working with the matrix exponential function is straightforward, but beyond the 
scope of this book. 'If Note that if we prefer, we do not have to work with the dif­
ferential equation in matrix form. If we write it out in component form we have 

!p(i,j,t) = tqikP(k,j,t), i,j = 1,2, ... ,r. 
k=l 

(5.7) 

These are known as Kolmogorov's backward equations (Allen 2003). It is also worth 
noting that had we expanded P(t + dt) as P(t)P(dt) rather than P(dt)P(t), we 
would have ended up with the matrix differential equation 

!P(t) = P(t)Q, 

which we can write out in component form as 

!p(i,j,t) = tqkjP(i,k,t), i,j ~ 1;2, ... ,r. 
k=l 

(5.8) 

These are known as Kolmogorov'sforward equations. 

, Note that the exponential of a matrix is not the matrix obtained by applying the exponential func­
tion to each element of the matrix. In fact, it is usually defined by its series expansion, exp{ A} = 
l::~o A k / k! = I+ A+ A 2/2 + · · · , but this expansion does not lead to an efficient way of comput­
ing the function. Note also that many scientific libraries for numerical linear algebra provide a function 
for computing the matrix exponential. 

J 
,;: 

:~ 
:~ 
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®model:2.1.1=Activation 
®units 

substance= item 
®compartments 
Cell 

®species 
Cell:A=O s 
Cell:I=l s 

®reactions 
®r=Activation 

I -> A 
alpha : alpha=O.S 

®r=Inactivation 
A -> I 
beta : beta=l 

MARKOV PROCESSES 

Figure 5.3 SBML-shorthandfor the simple gene activation process with a = 0.5 and (3 = 1 

Example 

Consider a very simple model for the activation of a single prokaryotic gene. In this 
model, the gene will be activated unless a repressor protein is bound to its regulatory 
region. We will consider just two states in our system: state 0 (inactive), and state 
1 (active). In the inactive state (0), we will assume a constant hazard of a > 0 for 
activation. In the active state, we will assume a constant hazard of {3 > 0 for inac­
tivation. Given that the rows of Q must sum to zero, it is now comple.tely specified 
as 

( -0! 0! ') Q = {3 -{3 . 

Solving 1rQ = 0 gives the stationary distribution 

7r= (-{3 
a+f3 

We can also compute the infinitesimal transition matrix 

( 1- adt adt ) 
P(dt) =I +Qdt = fjdt 1 _ fjdt . 

It is straightforward to encode this model in SBML. The SBML-shorthand for it is 
given in Figure 5.3 (and the full SBML can be downloaded from this book's website). 
A simulated realisation of this process is shown in Figure 5.4. 

5.4.2 Stochastic simulation 

There are three straightforward approaches one can take to simulating this process on 
a computer. The first is based on a fine time-discretisation of the process, similar in 
spirit to the first-order Euler method for integrating ordinary differential equations. 
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Given the definition of the infinitesimal transition matrix 

P(dt) =I+ Qdt, 

for small time steps l:.t we will have 

P(t:.t) ~I+ Q t:.t. 

P (!::. t) can then be regarded as the transition matrix of a discrete time Markov chain, 
and a simulated sequence of states at times 0, t:.t, 2 l:.t, 3 t:.t, ... may be generated 
in the usual way. 

The above method can be easily improved by replacing the above approximation 
for P(t:.t) by its exact value 

P(t:.t) = exp{Q l:.t}, 

provided a method for computing the matrix exponential is available. Then it does 
not matter how small l:.t is chosen to be, provided it is small enough to clearly show 
the behaviour of the process and not so large that interesting transitions are "missed." 

A third approach to simulation may be taken by simulating each transition event 
and its corresponding time sequentially, rather than simply looking at the processes 
only at times on a given lattice. Like the previous method, this gives an exact realisa­
tion of the process and offers the additional advantage that recording every reaction 
event ensures none will be "missed." Such an approach is known as discrete event 
simulation. If the process is currently in state x, then the xth row of Q gives the 
hazards for the transition to other states. As the row sums to zero, -qxx gives the 
combined hazard for moving away from the current state - a discrete transition 
event (note that qxx is non-positive). So, the time to a transition event is exponential 
with rate -qxx. When that transition event occurs, the new state will be random with 
probabilities proportional to the xth row of Q (with qxx omitted). The above intuitive 
explanation can be formalised as follows. 

To understand how to simulate the process we must consider being in state i at 
time t, and think about the probability that the next event will be in the time interval 
(t + t', t + t' + dt], and will consist of a move to state j. Let this probability divided 
by dt be denoted by f(t',jlt, i), so that the probability is f(t',Jit, i)dt. It is clear 
that as the Markov process is homogeneous, there will be no explicit dependence on 
t in this probability, but we will include it to be clear about exactly what we mean. 
Then 

f(t',jlt,i)dt = P (Next event in (t +t', t + t' + dt]!t,i) 

x P (jiNext event in (t + t', t + t' + dt], t, i). 

Thinking about the first term, we know that the hazards for the individual transitions 
are given by the off-diagonal elements of the ith row of Q. The combined hazard 
is the sum of these off-diagonal elements, which is -qii (as the row sums to zero). 
Combined hazards can always be computed as the sum of hazards in this way because 
the probability that two events occur in the interval ( t, t + dt] is of order dt2 and can 
therefore be neglected. Now we know from our consideration of the exponential 
distribution as the time to an event of constant hazard that the time to the next event 
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is Exp( -Qii), and so the first term must be -Qiieq,,t' dt. The second term is 

P (X(t + t' + dt) = ji[X(t + t') = i] n [X(t + t' + dt) I- i]) 
P (X(t + t' + dt) = j!X(t + t') = i) Qijdt = Qij 

P(X(t+t'+dt)=f.iiX(t+t')=i) Lk,Piqikdt -qii 

Taking the two terms together we have 

f(t',jlt,i) = -qiieq,,t' x QiJ . 
-Qii 

The fact that this function facto rises into the form of a probability density for the time 
to the next event and a probability mass function for the type of that event means that 
we can simulate the next event with the generation of two random variables. Note 
also that there is no j dependence in the PDF fort' and not' dependence in the PMF 
for j, so the two random variables are independent of one another and hence can be 
simulated independently. 

It is the consideration off ( t', j It, i) that leads to the standard discrete event simu­
lation algorithm which could be stated as follows: 

1. Initialise the process at t = 0 with initial state i; 

2. Call the current state i. Simulate the time to the next event, t', as an Exp( -Qii) 
random quantity; 

3. Putt:= t + t'; 
4. Simulate new state j as a discrete random quantity with PMF -Qik/qii, k I- i; 

5. Output the timet and state j; 

6. 1ft< Tmax, return to step 2. 

This particular discrete event simulation technique is known as the direct method. A 
simpleR function to implement this algorithm is given in Figure 5.5. The function 
returns a step-function object, which is easy to plot. Using this function, a plot similar 
to Figure 5.4 can be obtained with the following command: 

plot(rcfmc(20,matrix(c(-0.5,0.5,1,-1) ,ncol=2, 
byrow=TRUE) ,c(l,O))) 

All of these simulation methods give a single realisation of the Markov process. 
Now obviously, just as one would not study a normal distribution by looking at a 
single simulated value, the same is true with Markov processes. Many realisations 
must be simulated in order to get a feel for the distribution of values at different times. 
In the case of a finite number of states, this distribution is relatively straightforward to 
compute directly without any simulation at all, but for the stochastic kinetic models 
we will consider later, simulation is likely to be the only tool we have available to us 
for gaining insight into the behaviour of the process. 

5.4.3 Countable state-space 

Before moving on to thinking about continuous state spaces, it is worth spending 
a little time looking at the case of a countably infinite state space. Rather than at-
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Figure:5.4 A simulated realisation of the simple gene activation process with a = 0.5 and 

/3=1 

tempting to present the theory in generality, we will concentrate on a simple exam­
ple, which illustrates many of the interesting features. The model is known as the 
immigration-death process. In this model, individuals arrive into the population with 
constant hazard >., and each individual dies independently with constant hazard g. 
Consequently, the population of individuals increases by one when an immigration 
event occurs and decreases by one when a death event occurs. There is no repro­
duction in this model. Figure 5.6 gives the SBML-shorthand corresponding to this 
model. The key transition equations are: 

P (X(t + dt) = x + 1IX(t) = x) = >.dt 
P (X(t + dt) = x- 1jX(t) = x) = xgdt 

P (X(t + dt) = xiX(t) = x) = 1- (>.- xg)dt 

P (X(t + dt) = yjX(t) = x) = 0, Vy rt {x- 1, x, x + 1}. 

These equations clearly define a homogeneous Markov process, but with infinite state 
spaceS = 0, 1, 2, .... We therefore cannot easily write down a set of matrix equa­
tions for the process, as the matrices are infinite dimensional, but this does not pre­
vent us from working with the process or from simulating it on a computer. 

First let's think about understanding this process theoretically. Although the Q 
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rcfmc <- function(n,Q,piO) 

xvec=vector ("numeric", n+l) 
tvec=vector ("numeric", n) 
r=length(piO) 
x=sample(r,l,prob=piO) 
t=O 
xvec[l]=x 
for (i in l:n) { 

t=t+rexp(l,-Q[x,x]) 
weights=Q [x,] 
weights[x]=O 
x=sample(r,l,prob=weights) 
xvec[i+l]=x 
tvec[i]=t 

stepfun(tvec,xvec) 

MARKOV PROCESSES 

Figure 5.5 An R function to simulate a sample path with n events from a continuous time 
Markov chain with transition rate matrix Q and initial distribution pi 0 

®model:2.l.l=ImmigrationDeath 
®units 

substance= item 
®compartments 
Cell 

®species 
Cell:X=O s 

®reactions 
@r=Immigration 

-> X 
lambda : lambda=l 

®r=Death 
X -> 

mu*X : mu=O.l 

Figure 5.6 SBML-shorthand for the immigration-death process with >. = 1 and p, = 0.1 

matrix is infinite in extent, we can write its general form as follows: 

->.. >.. 0 0 0 

J-1 -A- J-1 A 0 0 

Q= 
0 2p, -A- 2p, A 0 

0 0 3p, -A- 3p, A 
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Then for an infinite dimensional n = (no, n1 , n2 , ... ) we can solve nQ = 0 to get 
the 'stationary distribution one equation at a time, expressing each nk in terms of no 
to find the general form 

)..k 
nk = -k1 k no, k = 1, 2, .... 

·11 

But these are terms in the expansion of n0e>-l ~', and so imposing the unit-sum con­
straint we get no = e-AIJL giving the general solution 

This is easily recognised as the PMF of a Poisson random quantity with mean >.j p, 
(Section 3.6). Hence, the stationary distribution of this process is Poisson with mean 

>.ill· 
We_can also simulate realisations of this process on a computer. Here it is easiest 

to use the technique of discrete event simulation. If the current state of the process 
is x, the combined hazard for moving away from the current state is ).. + XJl, and so 
the time to the next event is an exponentially distributed random quantity with rate 
>. + XJ1. When that event occurs, the process will move up or down with probabilities 
proportional to their respective hazards,).. and xp,. That is, the state will increase by 
1 with probability >.j(>.+xJl) and decrease by 1 withprobabilityxJ1/(>.+xJ1). This 
sequence can be easily simulated on a computer to give a set of states and event times 
which can be plotted, summarised, etc. A simulated realisation of this immigration­
death process is shown in Figure 5.7. An R function to simulate the process is given 
in Figure 5.8. 

5.4.4 Inhomogeneous Poisson process 

Our treatment of the Poisson process has so far been fairly low level and intuitive. 
The relationship between the (homogeneous) Poisson process, the Poisson distribu­
tion, and the exponential distribution was made explicit in Proposition 3.17. The 
Poisson process is described as homogeneous because the event hazard ).. is constant 
throughout time. In this section we will see that the Poisson process can be regarded 
as a Markov process and understand how it may be generalised to the inhomogeneous 
case. Understanding the inhomogeneous Poisson process will be necessary for some 
of the fast, accurate hybrid stochastic simulation algorithms considered in Chapter 8. 

Recall that for a (homogeneous) Poisson process with rate >., we previously de­
fined Nt to be the number of events of the Poisson process in the interval (0, t], 
noting that we therefore have Nt "' Po(>..t). The process Nt is the counting process 
associated with the point process that is the Poisson process itself (represented by 
a collection of random event times). It turns out that the counting process Nt is a 
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Figure 5.7 A single realisation of the immigration-death process with parameters .A = 1 and 
p. = 0.1, initialised at X(O) = 0. Note that the stationary distribution of this process is 
Poisson with mean 10. 

Markov process, governed by the homogeneous Markovian transition equations 

P (Nt+dt = x +liNt= x) = >..dt 

P (Nt+dt = x!Nt = x) = 1- )..dt 

P (Nt+dt = yjNt = x) = 0, Vy r/: {x,x + 1}. 

The Poisson process is special because its transition rates do not depend on the cur­
rent state. It is this lack of dependence on the current state that leads to the analytical 
tractability of the Poisson process. Associating the Poisson (point) process with the 
Markov (counting) process Nt gives a new and powerful way of thinking about the 
relation between the two. Indeed, many standard texts choose to define the Poisson 
process in terms of the associated counting process, as the latter is much more conve­
nient mathematically (it is a state-independent time-homogeneous Markov process). 
However, in my opinion, the distinction between a point process and its associated 
counting process is conceptually quite important. 

All of the Markov processes that we have considered so far have been homoge­
neous in the sense that the transition equations do not depend explicitly on the current 
time, t. Consider now a generalisation of the Poisson process where the event hazard 
is not a constant>.., but a function, >..(t). That is, the probability of an event in the 
interval (t, t + dt] is >..(t)dt, so the inhomogeneous Markovian transition equations 
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imdeath <- function(n=20,x0=0,lambda=1,mu=0.1) 
( 

xvec=vector ("numeric", n+1) 
tvec=vector ("numeric", n) 
t=O 
X=XO 
xvec[1]<-X 
for (i in 1 :n) 

t=t+rexp(1,lambda+x*mu) 
if ( runif(1,0,1) < lambda/(lambda+x*mu) 

X <- X+1 
else 

x <- x-1 
xvec[i+1]<-x 
tvec[i]<-t 

stepfun(tvec,xvec) 
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Figure 5.8 R function for discrete-event simulation of the immigration-death process 

for the associated counting process Nt are 

P (Nt+dt = x +liNt= x) = >-.(t)dt 
P (Nt+dt = xiNt = x) = 1- >-.(t)dt 
P (Nt+dt = y!Nt = x) = 0, 'Vy ¢ {x,x + 1}. 

A formal analysis of this process is fairly straightforward, and the reader is referred to 
a standard text such as Ross ( 1996) for the technical details. Intuitively, as the hazard 
is approximately constant in a sufficiently small interval, the number of events in 
that interval will be approximately Poisson. In the limit, the number of events in 
the interval (t, t + dt} will be Po(>-.(t)dt), independent of all other intervals. The 
number of events in the interval (0, t], Nt will then be the sum (integral) over all 
such intervals. As the sum of independent Poissons is Poisson, we get 

Nt "'Po (lot >-.(s)ds). 

It is helpful to define the cumulative hazard 

A(t) =lot >-.(s)ds 

which then gives Nt "' Po(A(t)). Similarly, the number of events in the interval 
(s, t], 0 < s <tis Po(A(t)- A(s)). 

Proposition 5.4 For the inhomogeneous Poisson process with rate function >-.(t), the 
time, T, to the first event has distribution function 

F(t) = 1- exp{ -A(t)}, 
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and hence has density function 

f(t) = .A(t) exp{ -A(t)}, t > 0, 

where A(t) is the cumulative hazard defined above. 

Proof 

D 

F(t) = P (T ~ t) 
= 1- P (T > t) 
= 1- P (Nt = 0) 

= 1 __ A..:....(t'-)0_ex-=p-"'"{_-A_(.:....;t)'""-} 
0! 

= 1- exp{ -A(t)}. 

In stochastic simulation one will often want to simulate the time to the first (or next) 
event of such a process. Using the inverse distribution method (Proposition 4.1) we 
can simulate u ~ U(O, 1) and then solve F(t) = u fort. Rearranging gives A(t) = 
-log(1- u). However, as observed previously, 1- u has the same distribution as u, 
so we just want to solve 

A(t) = -logu (5.9) 

for t. For simple hazards it will often be possible to solve this analytically, but in 
general a numerical procedure will be required. 

Note that by construction the function A(t) is monotonically increasing. So, for a 
given u E (0, 1), (5.9) will have at most one solution. It is also clear that unless the 
function A( t) has the property that it tends to infinity as t tends to infinity, there may 
not be a solution to (5.9) at all. That is, the first event may not happen at all ever. 
Consequently, when dealing with the inhomogeneous Poisson process, attention is 
usually restricted to the case where this is true. In practice this means that the event 
hazard .A(t) is not allowed to decay faster than 1/t. Assuming this to be the case, there 
will always be exactly one solution to (5.9). This turns out to be useful if rather than 
knowing the exact event time, one simply needs to know whether or not the event 
has occurred before a given timet. For then itis clear that if A( t) +log u is negative, 
the event has not yet occurred, and hence the event time is greater than t, and if it is 
positive, the event time is less than t. The event time itself is clearly the unique root of 
the expression A( t) +log u (regarded as a function oft). Then if the event time really 
is required, it can either be found analytically, or failing this, an interval bisection 
method can be used to find it extremely quickly. Although this discussion might 
currently seem a little theoretical, it turns out to be a very important practical part of 
several hybrid stochastic simulation algorithms for biochemical network simulation, 
so is important to understand. II · 

II In the context of biochemical network simulation, the cumulative hazard, A(t), is often known analyt­
ically, which makes the procedure just discussed fairly efficient However, if only the hazard function, 
;>.( t) is known, and the cumulative hazard cannot be evaluated without numerical integration, then the 
procedure is not at all efficient. It turns out that as long as one can establish an upper bound for ;>.(t) 
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Example 

Consider the inhomogeneous Poisson process with rate function .A(t) =.At for some 
constant .A > 0. This process has an event hazard that linearly increases with time. 
The cumulative hazard is clearly given by A(t) = .At2 /2. From this we can immedi­
ately deduce that Nt ""' Po(.At2 /2) and that the number of events in the interval (s, t] 
is Po(.A(t2 - s2)/2). The time to the first event has PDF 

f(t)=.Atexp{-).~2 }, t>O 

and this time can be simulated by sampling u ""' U(O, 1) and solving .At2 /2 
-log'u fort to get 

t = J- 2l:gu_ 

5.5 Diffusion processes 

Markov processes with continuous states that evolve continuously in time are often 
termed diffusion processes. While these processes are extremely important, a formal 
discussion of the theory of such processes is beyond the scope of a book such as this. 
Nevertheless, it is useful to provide a brief non-technical introduction at this point, as 
these processes provide an excellent approximation to biochemical network models 
in certain situations. 

A d-dimensional Ito diffusion process Y is governed by a stochastic differential 
equation (SDE) of the form 

dyt = J.L(Yt)dt + A(yt)dWt, (5.10) 

where JL : JRd -+ JRd is a d-dimensional drift vector and A : JRd -+ JRd x JRd is a 
( d x d)-dimensional diffusion matrix. The SDE can be thought of as a recipe for con­
structing a realisation of Y from a realisation of a d-dimensional Brownian motion 
(or Wiener process), W. A d-dimensional Brownian motion has d independent com­
ponents, each of which is a univariate Brownian motion, B. A univariate Brownian 
motion B is a process defined for t :2: 0 in the following way. 

1. Eo= 0, 

2. Bt- Bs ""'N(O, t- s), Vt > s, 
3. The increment Bt - Bs is independent of the increment Bt' - Bs', Vt > s :2: 

t' > s'. 
It is clear from property 2 that Bt ""' N(O, t) (and so E (Bt) = 0 and Var (Bt) = t). It 
is also clear that if for some small time increment t:J.t we define the process increment 
.6.Bt = Bt+At- Bt, we then have !::J.Bt ,.._, N(O, t:J.t), Vt, and since we know that the 

over the time interval of interest (usually trivial), it is possible to use exact sampling techniques to 
definitively decide if an event has occurred and if so at what time, based only on the ability to evaluate 
the hazard at a small number of time points. Such techniques are used frequently in applied proba­
bility and computational statistics, but do not yet seem to be widely known in the stochastic kinetics 
literature; see Wilkinson (2006) for further details. 
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rdiff <- function(afun, bfun, xO 0, t 50, dt = 0.01, ... ) 
{ 

n <- t/dt 
xvec <- vector ("numeric", n) 
X <- xO 
sdt <- sqrt(dt) 
for (i in l:n) { 

t <- i*dt 
x <- x + afun(x, ... )*dt + 

bfun(x, ... )*rnorm(l,O,sdt) 
xvec[i] <- x 

ts(xvec, deltat = dt) 
} 

Figure 5.9 Rfunction for simulation of a diffusion process using the Euler method 

increments are independent of one another, this provides a mechanism for simulating 
the process on a regular grid of time points. 

If we define the increment in the diffusion process Y (and the multivariate Brow­
nian motion W) similarly, then we can interpret the SDE (5.10) as the limit of the 
difference equation 

D.yt = J.L(Yi)D.t + A(yt)D.Wt, (5.11) 

as D.t gets infinitesimally small. For finite D.t, (5.11) is known as the Euler approxi­
mation (or, more correctly, as the Euler-Maruyama approximation) of the SDE, and 
it provides a simple mechanism for approximate simulation of the process Y on a 
regular grid of time points.** 

In the case d = 1 we have a univariate diffusion process, and it is clear that then 
the increments of the process are approximately distributed as 

D.yt rv N(J.L(Yt)D.t, A(yt)2 D.t). 

An R function to simulate a univariate diffusion using an Euler approximation is 
given in Figure 5.9. Note that more efficient simulation strategies are possible; see 
Kloeden & Platen (1992) for further details. 

We can approximate a discrete Markov process using a diffusion by choosing the 
functions J.L( ·) and A(·) so that the mean and variance of the increments match. This 
is best illustrated by example. 

Example- diffusion approximation of the immigration-death process 

Suppose we have an immigration-death process with immigration rate .A and death 
rate J.L, and that at time t the current state of the system is x. Then at time t + dt, the 

** "Euler" is pronounced, "oil-er." 
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Figure 5 .I 0 A single realisation of the diffusion approximation, to the immigration-death pro­
cess witkparameters >. = 1 and J.£ = 0.1, initialised at X(O) = 0 

state of the system is a discrete random quantity with PMF, 

P (Xt+dt = x -1) = xp,dt, 

P (Xt+dt = x) = 1- (.A+ xp,)dt, 

P (Xt+dt = x + 1) = .Adt. 

So the increment of the process has PMF 

P (dXt = -1) = xp,dt, P (dXt = 0) = 1- (.A+ xp,)dt, P (dXt = 1) = .Adt. 

From this PMF we can calculate the expectation and variance as 

E (dXt) =(.A- p,x)dt, Var (dXt) =(.A+ p,x)dt. 

We therefore set p,(x) =.A- p,x and A(x)2 = .>. + p,x to get the diffusion approxi­
mation 

dXt =(.A- p,x)dt + ..).>. + p,x dWt· 

We can use our code for simulating diffusion processes to get sample paths like that 
shown in Figure 5.10 using the R code shown in Figure 5 .11. 

5.6 Exercises 

1. (a) Show that the product of two stochastic matrices is stochastic. 

(b) Show that for stochastic P, and any row vector 1r, we have ll7rPII1 ::; ll1rlh, 
where llvll1 = Li lvil· Deduce that all eigenvalues, .A, of P must satisfy 
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afun <- function(x,lambda,mu) 

lambda-mu*x 
} 
bfun <- function(x,lambda,mu) 
{ 

sqrt(lambda+mu*x) 

plot(rdiff(afun,bfun,lambda=l,mu=O.l,t=30)) 

Figure 5.11 R code for simulating the diffusion approximation to the immigration-death pro­
cess 

1>..1 :::; 1. As an aside, note that as a consequence of (a), it is clear that for 
all probability row vectors, 1r, we have ll1r Pll1 = ll1rlll· 

(c) Show that a stochastic matrix always has a row eigenvector with eigenvalue 
1. Show that this row eigenvector can be chosen to correspond to a stationary 
distribution of the induced Markov chain. Hint: It is an easy consequence of 
the Brouwer Fixed Point Theorem, which says, inter alia, that any continuous 
map from a compact convex set to itself must have a fixed point. 

2. For the AR(l) process 

Zt = aZt-1 + Et, Et rv Exp(>..), a E (0, 1), ).. > 0, 

(a) what is the transition kernel, p(x, y ), of the chain? 

(b) Hence, deduce an integral equation satisfied by the stationary distribution, 
7r(x). 

(c) If Z has density 1r(x ), calculate the expected value of Z and show that the 
variance of Z is given by 

1 
Var (Z) = )..2(1- a2)" 

(d) Is this chain reversible? Hint: You do not need to work out the stationary den­
sity! 

(e) Simulate the time evolution of the chain by writing appropriate functions for 
R. Discard the initial bum-in phase from a long run and then use the rest to get 
empirical estimates of the mean and variance of the stationary distribution. Use 
this to verify your calculations from (c) for a couple of different combinations 
of>.. and a. 

3. Starting with the R function for the simulation of the immigration-death process, 
modify it to include "births" in addition to immigrations and deaths. Use your 
modified function to simulate a long realisation from the birth-immigration-death 
process where the birth, death, and immigration rates are all one, starting from an 
initial condition of zero. 
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4. Use stochastic simulation to investigate the stationary distribution of the diffusion 
approximation to the immigration-death process. How well does it approximate 
the Poisson distribution of the original discrete process? By solving E ( dXt) = 0, 
show that the stationary mean of the diffusion approximation is )..j f-t· Then (this 
one is slightly tricky) by solving Var (Xt) = Var (Xt + dXt), show that the 
stationary variance is also >../ f-t· 

5.7 Further reading 

The literature on the theory of Markov processes is vast. For further information, it is 
sensible to start with classic texts such as Cox & Miller (1977) and Ross (1996), be­
fore moving on to applied texts such as Allen (2003), Gillespie (1992a), Van Kampen 
(1992), and references therein. The theory of diffusion processes and stochastic dif­
ferential equations is particularly technical. An excellent starting point in this area, 
which is more accessible than most, is 0ksendal (2003), but it is not appropriate 
for novices. For numerical methods related to SDEs, the standard text is Kloeden & 
Platen (1992). 

.;~ 

·, 

... 
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CHAPTER6 

Chemical and biochemical kinetics 

6.1 Classical continuous deterministic chemical kinetics 

6.1.1 Introduction 

Chemical kinetics is concerned with the time-evolution of a reaction system specified 
by a given set of coupled chemical reactions. In particular, it is concerned with sys­
tem behaviour away from equilibrium. In order to introduce the concepts it is helpful 
to use a very simple model system. Consider the "Lotka-Volterra" (LV) system in­
troduced in Section 1.6, 

Y1 --+ 2Yl 

Yi + Y2 --+ 2Yz 

Y2--+ 0. 

Although the reaction equations capture the key interactions between the competing 
species, on their own they are not enough to determine the full dynamic behaviour of 
the system. For that, we need to know the rates at which each of the reactions occurs 
(together with some suitable initial conditions). 

6.1.2 Mass-action kinetics 

The above model encourages us to think about the number of prey (Y1) and predators 
(Y2) as integers, which can change only by discrete (integer) amounts when a reac­
tion event occurs. This picture is entirely correct, and we will study the implications 
of such an interpretation later in this chapter. However, we will introduce the study 
of kinetics by thinking about a more classical chemical reaction setting of macro­
scopic amounts of chemicals reacting in a "beaker of water." There, the amount of 
each chemical is generally regarded as a concentration, measured in (say) moles per 
litre, M, which can vary continuously as the reaction progresses. Conventionally, the 
concentration of a chemical species X is denoted [X). 

It is generally the case that the instantaneous rate of a reaction is directly propor­
tional to the concentration (in turn directly proportional to mass) of each reactant 
raised to the power of its stoichiometry. We will see the reason behind this when we 
study stochastic kinetics later, but for now we will accept it as an empirical law. This 
kinetic "law" is known as mass-action kinetics. So, for the LV system, the second 
reaction will proceed at a rate proportional to [Y1][Yz]. Consequently, due to the ef­
fect of this reaction, [Y1) will decrease at instantaneous rate k2 [Yl)[Y2 ) (wherek2 is 
the constant of proportionality for this reaction), and [Y2) will increase at the same 

139 
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rate (since the overall effect of the reaction is to decrease [Y1) at the same rate [Y2) 

increases). k2 [Yi) [1'2) is known as the rate law of the reaction, and k2 is the rate con· 
stant. Considering all three reactions, we can write down a set of ordinary differential 
equations (ODEs) for the system: 

d[Y1] 
d,t = k1[Y1]- k2[Y1l[Y2] 

d[Y2] 
d,t = k2[Y1][Y2]- ks[Y2]. 

The three rate constants, k 1, k2 , and k3 (measured in appropriate units) must be 
specified, as well as the initial concentrations of each species. Once this has been 
done, the entire dynamics of the system are completely determined and can be re­
vealed by "solving" the set of ODEs, either analytically (in the rare cases where this 
is possible) or numerically using a computer. 

It is instructive to rewrite the above ODE system in matrix form as 

where the 2 x 3 matrix is just the stoichiometry matrix, S, of the reaction system 
(Definition 2.4). This leads to a general strategy for constructing ODE models from 
the Petri net reaction network representation discussed in Chapter 2. 

6.1.3 Equilibrium 

Even when the set of ODEs is analytically intractable, it may be possible to discover 
an "equilibrium" solution of the system by analytic (or simple numerical) means. An 
equilibrium solution is a set of concentrations which will not change over time, and 
hence can be found by solving the set of simultaneous equations formed by setting 
the RHS of the ODEs to zero. In the context of the LV example, this is: 

k1[Y1]- k2[Y1l[Y2] = 0 

k2[Y1][Y2]- k3[Y2] = 0. 

Solving these for [Y1] and [Y2] in terms of k1, k2, and k3 gives two solutions. The 
first is the rather uninteresting 

and the second is 

Further analysis (beyond the scope of this text and rather tangential to it), reveals 
that this second solution is not unstable, and hence corresponds to a realistic stable 
state of the system. However, it is not an "attractive" stable state, and so there is no 
reason to suppose that the system will tend to this state irrespective of the starting 
conditions. 

Despite knowing the existence of an equilibrium solution to this system, we have 
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Figure6.1 Lotka-Volterradynamicsfor[Yl](O) = 4, [Y2](0) = 10, k1 = 1, k2 = 0.1, kg= 
0.1. Note that the equilibrium solution for this combination of rate parameters is [E] 
1, [Y2] = 10. 

no reason to suppose that any particular set of initial conditions will lead to this 
equilibrium, and even if we did, it would say nothing (or little) about how the sys­
tem reaches it. To answer this question we need to specify the initial conditions of the 
system and integrate the ODEs to uncover the full dynamics. The dynamics for a par­
ticular combination of rate parameters and initial conditions are shown in Figure 6.1. 
An alternative way of displaying these dynamics is as an "orbit" in "phase-space" 
(where the value of one variable is plotted against the others, and time is not shown 
directly). Figure 6.2 shows the dynamics in this way. 

6.1.4 Reversibility 

Before going on to examine numerical integration of ODEs (which will explain how 
plots such as Figure 6.1 are produced), it is worth considering an important special 
class of reactions, namely reversible reactions. These are reactions that can proceed 
in both directions. For example, consider a dimerisation reaction, 



142 CHEMICAL AND BIOCHEMICAL KINETICS 

"' "' 
0 

"' 

"' 
(\j' 
c. 

~ 

"' 
0 

0 2 4 6 8 

[Y1] 

Figure 6.2 Lotka-Volterra dynamics in phase-space for rate parameters k1 = 1, k2 = 
0.1, k3 = 0.1 The dynamics for the initial condition [E](O) = 4, [Y2](0) = 10 are shown as 
the bold orbit. Note that the system moves around this orbit in an anti-clockwise direction. Or­
bits for other initial conditions are shown as dotted curves. Note that the equilibrium solution 
for this combination of rate parameters is [Y1] = 1, [Y2] = 10. 

If we make the very strong assumption that neither of these species are involved in 
any other reactions, then we get the ODEs 

(6.1) 

where k1 and k2 are the forward and backward rate constants, respectively. We 
clearly have equilibrium whenever 

Another way of writing this is 

[Pz] k1 _ 
[PJ2 = kz = Keq (6.2) 

where Keq is the equilibrium constant of the system. It turns out that this equilib­
rium is stable and attractive, as can be seen from the sample simulated dynamics in 
Figure6.3. 

For this system it is possible to make further progress by noting that [P] and [P2] 

are deterministically related in this system. One way to see this is to add twice the 
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Figure 6.3 Dimerisation kinetics for [P](O) = 1, [P2](0) = 0, k1 = 1, k2 = 0.5. This 
combination of parameters gives Keq = 2, c = 1, and hence equilibrium concentrations of 
[P] = 0.39, [P2] = 0.30. 

second ODE to the first to get 

d[P] 2 d[P2] = 0 
dt + dt 

d 
:=;, dt ([P] + 2[P2]) = 0 

:=;, [P] + 2[P2] = c (6.3) 

where cis the concentration of [P] we would have if the dimers were fully disasso­
ciated. Equation (6.3) is known as a conservation equation, as the value of the LHS 
is conserved by the reaction system. A more direct approach to finding conservation 
equations is to use the Petri net theory from Chapter 2. Here, the reaction matrix 
(Definition 2.4) for the system is given by 

( -2 A-- 2 

The conservation equation corresponds to the P -invariant (Definition 2.5) y = ( 1, 2 )' 
which can be found directly by looking for non-trivial solutions of the linear system 
Ay=O. 

Conservation equations are useful for reducing the dimension of the system under 
consideration. Here, for example, we can rearrange (6.3) for [P2] and substitute back 
into the equilibrium relation (6.2) in order to find the equilibrium concentration of 

I"' 
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[P] to be a solution of the quadratic equation 

2Keq[Pj2 + [P] - c = 0. 

This clearly has a single positive real root given by 

[P] = J8cKeq + 1 - 1. 
4Keq 

We can therefore find exactly the equilibrium concentrations of [P] and [P2] in the 
absence of other reactions. 

Alternatively, we can use the conservation equation (6.3) to reduce the pair of 
ODEs to a single first-order ODE 

d[P] 2 dt = k2(c- [P])- 2k1[P] , (6.4) 

which can be solved for given initial conditions to give the full dynanrical behaviour 
of the system. It turns out that (6.4) can be solved analytically to give an explicit 
expression for [P] as a function oft, but the solution is not elegant, and solving 
ODEs is not the main focus of this book. Note, however, that in order to be able to do 
this (analytically or otherwise), we must know both the forward and backward rate 
constants k1 and k2, and not just their ratio, Keq· 

6.1.5 Numerical integration of ODEs 

We will finish the section on deterministic kinetics by exanrining numerically in­
tegrate a system of ODEs on a computer. We will just look at this simplest possi­
ble technique, known as the first-order Euler method.* It is worth bearing in mind, 
however, that there are more sophisticated techniques that can be used which give 
much more accurate dynanrics for an equivalent amount of computation time. A good 
example of this is the fourth-order Runge-Kutta method, which is implemented by 
many biochemical simulators. 

We can write any of tile ODE systems tilat we have considered so far very simply 
as a vector ODE 

dX = J(X) 
dt 

where X is a p-dimensionalvector and!(·) : JRP - JRP is an arbitrary (non-linear) 
p-dimensional function of X. Recall tilat tile derivative is defined by 

dX (t) = lim X(t + b.t)- X(t). 
dt L:l.t-+0 b.t 

So for small b.t we have 

X(t +b.~~- X(t) ~ f(X(t)), 

* In fact, this technique is a special case of the Euler method for numerically solving SDEs that was 
examined in Section 5.5. 
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' euler<- function(t=50, dt=O.OOl, fun=f, ic=c(l,l), ... ) 

p=length(ic) 
n=t/dt 
xmat=matrix(O,ncol=p,nrow=n) 
x=ic 
xmat[l,]=x 
for (i in 2:n) 

x = x + fun(x, ... ) * dt 
xmat[i,]=x 

ts(xmat,start=O,deltat=dt) 
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Figure 6.4 An Rfunction to numerically integrate a system of coupled ODEs using a simple 
first-order Euler method 

and rearranging gives 

X(t + t:.t) c:: X(t) + t:.tf(X(t)). (6.5) 

Equation ( 6.5) gives us a simple method for computing X ( t + t:.t) from X ( t). If we 
start off at known X(O), we can compute X(t:.t), X(2t:.t), X(3t:.t), ... to get the 
full dynamics of the system. This is the so-called Euler method. 

A very simple R function to implement this algorithm is given in Figure 6.4. The 
function returns an R time series object, which can easily be plotted. For example, to 
simulate the dynamics of the LV system, first define the function 

lv <- function(x, kl=l, k2=0.1, k3=0.1) 
{ 

c( kl*x[l] - k2*x[l]*x[2] , 
k2*x[l]*x[2] - k3*x[2] 

Then typing plot (euler (t=lOO, fun=lv, ic=c (4,10))) gives a plot sim­
ilar to the one shown in Figure 6.1. For more sophisticated numerical integration 
strategies, consult a standard numerical analysis text such as Burden & Faires (2000). 
Note that the R package ode solve (available from CRAN) provides an interface 
to a fairly sophisticated ODE solving library. 

6.2 Molecular approach to kinetics 

The deterministic approach to kinetics fails to capture the discrete and stochastic 
nature of chemical kinetics at low concentrations. As many intra-cellular processes 
involve reactions at extremely low concentrations, such discrete stochastic effects 
are often relevant for systems biology models. We are now in a position to see how 
chemical kinetics can be modelled in this way. 
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Consider a bi-molecular reaction of the form 

X+Y--+? 

(the RHS is not important). What this reaction really means is that a molecule of 
X is able to react with a molecule of Y if the pair happen to collide with one an­
other (with sufficient energy), while moving around randomly, driven by Brownian 
motion. Considering a single pair of such molecules in a container of volume V, 
it is possible to use statistical mechanical arguments to understand the hazard of 
molecules colliding. Under fairly weak assumptions regarding the container and its 
contents (essentially that it is small or well stirred, and in thermal equilibrium), it can 
be rigorously demonstrated that the collision hazard is constant, provided the volume 
is fixed and the temperature is constant. A comprehensive treatment of this issue is 
given in Gillespie (1992b), to which the reader is referred for further details. How­
ever, the essence of the argument is that as the molecules are uniformly distributed 
throughout the volume and this distribution does not depend on time, then the prob­
ability that the molecules are within reaction distance is also independent of time. In 
the case of time varying V (which can be quite relevant in the biological context), 
the hazard is inversely proportional to V. Again, for the careful statistical mechanical 
argument see Gillespie (1992b ), but an intuitive explanation can be given as follows. 
Let the molecules position in space be denoted by P 1 and P2 , respectively. Then P1 

and P2 are uniformly and independently distributed over the volume V. This means 
that for a region of space d with volume v' we have 

v' 
P (Pi E d) = V, i = 1, 2. 

Now if we are interested in the probability that X and Y are within a reacting distance 
( r) of one another at any given instant of time (assuming that r is very small relative 
to the dimensions of the container, so that boundary effects can be ignored), this 
probability can be computed as 

(by Proposition 3.11) 

but the conditional probability will be the same for any P2 away from the boundary, 
rendering the expectation redundant, and reducing the expression to 

= P (IPI -PI < r) 
= P(P1 Ed) 

41l'r3 

= 3V. 

(for any p away from the boundary) 

(where d is a sphere of radius r) 

This probability is inversely proportional to V. Then conditional on the molecules 
being within reaction distance, they will not necessarily react, but will do so with 
a probability independent of V (as other important variables, such as the velocity 
distributions, are independent of V), thus preserving the inverse dependence on V 
in the combined probability of being within reaction distance and reacting. The case 
of time varying V is a little messy to deal with, so a detailed discussion will be 
deferred until Section 8.2.3. A fixed volume V will be assumed throughout the rest 
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of this chapter. The case of non-constant temperature or other environmental factors 
are likely not to have such a straightforward relationship to the reaction hazard, and 
so again, throughout this chapter, it will be assumed that temperature, pressure, and 
all other environmental factors not explicitly described in the reaction network are 
held constant. 

6.3 Mass-action stochastic kinetics 

We will consider a system of reactions involving u species X 1 , X 2 , ... , Xu and 
v reactions, R 1, R2, ... , Rv. Typically there will be more reactions than species, 
v > u. We will assume that the qualitative structure of the reaction network can 
be encoded in the form of a Petri net N = (P, T, Pre, Post, M), where P = 
(X1, X2, ... , Xu)' and T = (R1, R2, ... , Rv)', as described in Section 2.3. 
In addition, each reaction, R;, will have a stochastic rate constant, q, and an asso­
ciated rate law (or hazard function), hi(x, ci), where x = (x1, x2, ... , xu) is the 
current state (or marking) of the system. The form of hi (x, ci) (and the interpreta­
tion of the rate constant ci) is determined by the order of reaction Ri. In all cases 
the hazard function has the same interpretation, namely that conditional on the state 
being x at time t, the probability that an Ri reaction (or transition) will occur in the 
time interval (t, t + dt] is given by hi(x, ci) dt. Thus, in the absence of any other 
reactions taking place, the time to such a reaction event would be an Exp(hi(x, ci)) 
random quantity. Note, however, that since the hazard depends on the state x, and 
other reactions could change the state, the actually time until an Ri reaction most 
likely will not be exponential at all. 

6.3.1 Zeroth-order reactions 

First consider a reaction of the form 

R;: 0~X. 

Although in practice things are not created from nothing, it can sometimes be useful 
to model a constant rate of production of a chemical species (or influx from another 
compartment) via a zeroth-order reaction. In this case, Ci is the hazard of a reaction 
of this type occurring, and so 

6.3.2 First-order reactions 

Consider the first-order reaction 

Here, Ci represents the hazard that a particular molecule of Xj will undergo the 
reaction. However, there are Xj molecules of Xj, each of which having a hazard of 
Ci of reacting. This gives a combined hazard of 

hi(X, Ci) = CiXj 



148 CHEMICAL AND BIOCHEMICAL KINETICS 

for a reaction of this type. Note that first-order reactions of this nature are intended 
to capture the spontaneous change of a molecule into one or more other molecules, 
such as radioactive decay, or the spontaneous dissociation of a complex molecule 
into simpler molecules. It is not intended to model the conversion of one molecule 
into another in the presence of a catalyst, as this is really a second-order reaction. 
However, in the presence of a large pool of catalyst that can be considered not to 
vary in level during the time evolution of the reaction network, a first-order reaction 
may provide a reasonable approximation. Michaelis-Men ten enzyme kinetics will be 
examined in detail in the next chapter. 

6.3.3 Second-order reactions 

For second-order reactions of the form 

Ri: Xj +Xk ~? 

Ci represents the hazard that a particular pair of molecules of type Xj and Xk will 
react. But since there are Xj molecules of Xj and Xk molecules of Xk, there are 
Xj Xk different pairs of molecules of this type, and so this gives a combined hazard 
of 

hi(X, Ci) = CiXj Xk 

for this type of reaction. There is another type of second-order reaction which needs 
to be considered: 

R: 2Xj~? 
Again, Ci represents the hazard of a particular pair of molecules reacting. But here 
there are only xj(Xj- 1)/2 pairs of molecules of type Xj, and so 

Xj(Xj- 1) 
hi(X, Ci) = Ci 2 . 

Note that this does not match exactly the form of the corresponding deterministic 
mass-action rate law -this will be further discussed in Section 6.6. 

6.3.4 Higher-order reactions 

It is straightforward to extend this theory to higher-order reactions, but in reality, 
most (if not all) reactions that are normally written as a single reaction of order 
higher than two, in fact represent the combined effect of two or more reactions of 
order one or two. In these cases it is usually better to model the reactions in detail 
rather than via high-order stochastic kinetics. Consider, for example, a trimerisation 
reaction 

R: 3X~X3. 

Taken at face value, the rate constant Ci should represent the hazard of triples of 
molecules of X coming together simultaneously and reacting, leading to a rate law 
of the form 

( x) x! x(x- 1)(x- 2) 
h(x, Ci) = Ci 3 = ci (x _ 3)!3! = Ci 6 . 
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However, in most cases it is likely to be more realistic to model the process as the 
pair of second-order reactions 

2x---+ x2 

X2 +X ---+ X3, 

and this pair of second-order reactions will have quite different dynamics to the cor­
responding third-order system. 

6.4 The Gillespie algorithm 

The discussion in the previous sections shows that the time-evolution of a reaction 
system can be regarded as a stochastic process. Further, due to the fact that the reac­
tion hazards depend only on the current state of the system (the number of molecules 
of each type), it is clear that the time-evolution of the state of the reaction system 
can be regarded as a continuous time Markov process with a discrete state space. 
Detailed mathematical analysis of such systems is usually intractable, but stochastic 
simulation of the time-evolution of the system is quite straightforward. 

In a given reaction system with v reactions, we know that the hazard for a type i 
reaction is hi ( x, Ci), so the hazard for a reaction of some type occurring is 

v 

ho(x, c) = 2:::: hi(x, Ci)· 
i=l 

We now follow the discrete event stochastic simulation procedure from Section 5.4.2 
to update the state of the process. It is clear that the time to the next reaction is 
Exp(ho(x, c)), and also that this reaction will be a random type, picked with proba­
bilities proportional to the hi(x, ci). independent of the time to the next event. That 
is, the reaction type will be i with probability hi(x, Ci)/h0 (x, c). Using the time to 
the next event and the event type, the state of the system can be updated, and simu­
lation can continue. In the context of chemical kinetics, this standard discrete event 
simulation procedure is known as "the Gillespie algorithm" (or "Gillespie's direct 
method"), after Gillespie (1977).t The algorithm can be summarised as follows: 

The Gillespie algorithm 

1. Initialise the system at t = 0 with rate constants c1 , c2 , •.. , Cv and initial numbers 
of molecules for each species, x 1 , x2, ... , Xu. 

2. For each i = 1, 2, ... , v, calculate hi(x, ci) based on the current state, x. 

3. Calculate ho(x, c) = :2::~=1 hi(x, Ci), the combined reaction hazard. 

4. Simulate time to next event, t', as an Exp( ho ( x, c)) random quantity. 

5. Putt:= t + t'. 
6. Simulate the reaction index, j, as a discrete random quantity with probabilities 

hi(x, Ci) / ho(x, c), i = 1, 2, ... , v. 

t Despite its publication date, this paper is still well worth reading. 
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gillespie<- function(N, n, ... ) 
{ 

tt=O 
X=N$M 
S=t(N$Post-N$Pre) 
u=nrow(S) 
v=ncol(S) 
tvec=vector ("numeric", n) 
xrnat=rnatrix(O,ncol=u,nrow=n+l) 
xrnat[l,)=x 
for (i in l:n) { 

h=N$h(x, ... ) 
tt=tt+rexp(l,surn(h)) 
j=sarnple(v,l,prob=h) 
X=X+S (, j) 
tvec[i)=tt 
xrnat[i+l,)=x 

return(list(t=tvec,x=xrnat)) 

Figure 6.5 An R function to implement the Gillespie algorithm for a stochastic Petri net rep­
resentation of a coupled chemical reaction system 

7. Update X according to reaction j. That is, put X : = X + sCj)' where sUl denotes 
the jth column of the stoichiometry matrix S. 

8. Output x and t. 

9. Ift < Tmax. return to step 2. 

6.5 Stochastic Petri nets (SPNs) 

A stochastic Petri net (SPN) is a Petri net where the state (represented by the number 
of tokens at each node) changes dynamically and randomly by choosing event firings 
in a carefully prescribed random manner (Goss & Peccoud 1998). 

If the Petri net is used to describe a chemical reaction network (Section 2.3), where 
the number of tokens at a node represents the number of molecules of a given type, 
then the rates of event firings are given by stochastic rate laws, and the Gillespie 
algorithm can be used to determine the time to the next event firing and which event 
to fire. So a SPN is simply a convenient mathematical and graphical representation 
of a stochastic kinetic process. 

A very simple R function for simulating the time-evolution of a SPN using the 
Gillespie algorithm is given in Figure 6.5. To illustrate its use, consider the stochastic 
kinetic formulation of the Lotka-Volterra system. 



STOCHASTIC PETRI NETS ·(SPNS) 

Here we will use the usual equations 

leading to stochastic rate laws 

Y1 ~2Y1 

Y1+Y2 ~2Y2 

y2~0 

h1 (y, c1) = c1Y1 

h2(y, c2) = C2Y1Y2 

h3(y, C3) = CJY2· 

The SPN corresponding to this system could be written 

N = (P, T, Pre, Post, M, h, c), P = (Prey, Predator)', 

T = (Prey reproduction, Predator-prey interaction, Predator death)', 

Pre~ G D , Poat ~ G ~) , h(y, e) ~ (e,y, e,y,y,, 03y,)'. 
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It remains only to specify the initial state of the system, M, and the vector of rate 
constants, c. Some R code that formulates this problem as a SPN and then simulates 
it using the Gillespie algorithm assuming initial state M = (50, 100)' and stochastic 
rate constants c = (1, 0.005, 0.6)' is given in Figure 6.6. Note that the vector of 
rate constants is called th (for ()) rather than c, as c has special meaning in R. The 
output from the Gillespie algorithm consists of a list containing two items. The first 
item, t, is a vector of event times, and the second item, x, is a matrix whose rows 
represent the state of the system immediately before the corresponding event time. 
The matrix x therefore has an additional row, corresponding to the state of the system 
immediately after the final event simulated. As shown in the Figure 6.6, this output 
can be used to construct R "step function" objects which can be plotted. A single 
realisation of this process is shown in Figure 6.7 and Figure 6.8. These should be 
contrasted with the corresponding deterministic kinetics (Figure 6.1 and Figure 6.2). 
It is clear that although the stochastic solution approximately follows the path of the 
deterministic phase-space orbits, it is not constrained to follow them slavishly, but 
rather free to wander to nearby orbits in a stochastic manner. 

The SBML-shorthand for this model is given in Figure 6.9, and the full SBML 
is listed in Appendix A.2 (as well as on this book's websit!!). Software suitable for 
taking the SBML as input and simulating the system dynamics will be discussed in 
Section 6.8. 

Although it is sometimes useful to have output corresponding to each event that 
occurs in the simulation of the reaction network, often this is not desirable. This 
is because for systems of realistic size and complexity, there will be a very large 
number of events, and all that is likely to be of interest is the state of the sys­
tem on a relatively fine regular grid of time points. One approach to this prob­
lem is to time-discretise the discrete-event output post-hoc. An R function to ac-
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N=list () 
N$M=c (50, 100) 
N$Pre=matrix(c(l,O,l,l,O,l) ,ncol=2,byrow=TRUE) 
N$Post=matrix(c(2,0,0,2,0,0),ncol=2,byrow=TRUE) 
N$h=function(y,th=c(l,0.005,0.6)) 
{ return(c(th[l]*y[l], th[2]*y[l]*y[2], th[3]*y[2) ) ) } 

out=gillespie(N,lOOOO) 

op=par(mfrow=c(2,2)) 
plot(stepfun(out$t,out$x[,l]),pch="") 
plot (stepfun(out$t,out$x[,2]) ,pch="") 
plot(out$x,type="l") 
par(op) 

Figure 6.6 Some R code to set up the LV system as a SPN and then simulate it using the 
Gillespie algorithm. The state of the system is initialised to 50 prey and 100 predators, and the 
stochastic rate constants are c = (1, 0.005, 0.6)'. 
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Figure 6.7 A single realisation of a stochastic LV process. The state of the system is initialised 
to 50 prey and 100 predators, and the stochastic rate constants are c = (1, 0.005, 0.6)'. 

complish this is given in Figure 6.1 0. This could be used with a command such 
as plot (discretise (out, dt=O. 01)), where out is the result of a call to 
the gillespie function. However, even this solution turns out to be slightly un­
wieldy in practice. In particular, one cannot know in advance how many reaction 
events correspond to a particular length of simulation time. For this reason (and 
others, relating to code efficiency), it is usually better to build the discretisation 
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50 100 150 200 250 300 350 

Y1 

Figure 6.8 A single realisation of a stochastic LV process in phase-space. The state of the 
system is initialised to 50 prey and 100 predators, and the stochastic rate constants are c = 
(1, 0.005, 0.6)'. 

process into the Gillespie algorithm itself. This turns out to be relatively straight­
forward, and a discretised version of gillespie, called gillespied, is given 
in Figure 6.11. It can be called with a pre-defined SPN with a command such as 
plot (gillespied (N, T=lOO, dt=O. 01) ) . Note that the function gUles­
pied also contains a small amount of code to gracefully handle the case of the 
reaction network going "extinct," that is, reaching a point where no more reactions 
will occur. The previous function (Figure 6.5) would fail in that case, but can be 
easily modified to return something sensible in this eventuality. 

Interestingly, although Petri nets are often used to model autonomous systems 
acting locally and in parallel (which is entirely appropriate for a reaction network), 
the Gillespie algorithm is "global," in the sense that it acts on the network as a whole, 
and not "locally" at the level of reaction nodes. So the Gillespie algorithm does not 
really feel quite right in this context. However, the Gillespie algorithm is just one 
possible way of carrying out exact stochastic simulation of the underlying Markov 
process, and some of the other methods are more local in nature and more naturally 
lead to parallel implementations, which in tum fit better with a Petri net formulation 
of the problem. We will explore some of these alternative simulation strategies in 
Chapter 8. 

6.6 Rate constant conversion 

Much of the literature on biochemical reactions is dominated by a continuous deter­
ministic view of kinetics. Consequently, where rate constants are documented, they 

;;.... 

::;; 
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®model:2.l.l=LotkaVolterra 
®units 

substance= item 
®compartments 

Cell 
®species 

Cell:Prey=SO s 
Cell:Predator=lOO s 

®reactions 
®r=PreyReproduction 

Prey -> 2Prey 
cl*Prey : cl=l 

®r=PredatorPreyinteraction 
Prey+Predator -> 2Predator 
c2*Prey*Predator : c2=0.005 

®r=PredatorDeath 
Predator -> 
c3*Predator : c3=0.6 

Figure 6.9 SBML-shorthand for the stochastic Lotka-Volterra system 

discretise <- function(out, dt=l, start=O) 
{ 

events=length(out$t) 
end=out$t[events] 
len=(end-start)%/%dt+l 
x=matrix(O,nrow=len,ncol=ncol(out$x)) 
target=O 
j=l 
for (i in l:events) { 

while (out$t[i]>=target) 
x[j,] =out$x[i,] 
j=j+l 
target=target+dt 

ts(x,start=O,deltat=dt) 

Figure 6.10 An Rfunction to discretise the output of gillespie onto a regular grid of time 
points. The result is returned as an R multivariate time series object. 

are usually deterministic rate constants, k. In order to carry out a stochastic simu­
lation, these constants must be converted in an appropriate way to stochastic rate 
constants, c, representing molecular reaction hazards. In order to make this conver­
sion, we need to understand the relationship between the deterministic and stochastic 
kinetic models. 
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gillespied <- function(N, T=lOO, dt=l, ... ) 

{ 
tt=O 
n=T%/%dt 
X=N$M 
8=t(N$Post-N$Pre) 
U=nrow(S) 
v=ncol(S) 
xmat=matrix(O,ncol=u,nrow=n) 
i=l 
target=O 
repeat { 

h=N$h (x, ... ) 
hO=sum(h) 
if (hO<le-10) 

tt=le99 
else 
tt=tt+rexp(l,hO) 
while (tt>=target) 

xmat[i,]=x 
i=i+l 
target=target+dt 
if (i>n) 
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return(ts(xmat,start=O,deltat=dt)) 

j=sample(v,l,prob=h) 
X=X+S [, j] 

Figure 6.11 An Rjunction to implement the Gillespie algorithm for a SPN, recording the state 
on a regular grid of time points. The result is returned as an R multivariate time series object. 

6.6.1 Concentrations to molecule numbers 

The first issue that needs to be addressed is the difference in the representation of 
the amount of any species. In the stochastic model, this is an integer representing the 
number of molecules of the species, but in the deterministic model, it is usually a 
concentration, measured in M (moles per litre). In order to carry out the conversion 
from concentration to numbers of molecules, we also need to know the volume of 
the container, V, measured in litres. 

Then for a concentration of X of [X] Min a volume of V litres, there are clearly 
[X]V moles of X and hence nA[X]V molecules, where nA c:= 6.023 x 1023 is 
Avogadro's constant (the number of molecules in a mole). 



156 

Example 

CHEMICAL AND BIOCHEMICAL KINETICS 

Consider the following example, based loosely on an example from Bower & Bolouri 
(2000). An E. coli cell is a rod-shaped bacterium 2p,m long with a diameter of lp,m. 
Its volume is therefore 

V = 1rr2 l 

= 7r(0.5 X 10-6?(2 X 10-6) 

= ~ x 10-18 ma 
2 

= i X 10-15 L. 

Now if a chemical species X has a concentration [X] = 10-5 M within an E. coli 
cell, the number of molecules is 

nA(XjV = 6.023 X 1023 X 10-5 X i X 10-15 = 9, 461. 

Once we are happy with converting amounts, we can think about converting rate 
constants. 

6.6.2 Zeroth order 

For the reaction 
0----. X, 

the deterministic rate law is k Ms - 1, and so for a volume V, X is produced at a rate 
of nAkV molecules per second. As the stochastic rate law is just c molecules per 
second, we have 

6.6.3 First order 

For the reaction 

c=nAVk. 

X----.?, 

the deterministic rate law is k[X] Ms-1. As this involves [X], we need to know that 
for a volume V, a concentration of [X] corresponds to x = nA[X]V molecules. Now 
since X decreases at rate nAk[X]V = kx molecules per second, and the stochastic 
rate law is ex molecules per second we have 

c=k. 

That is, for first-order reactions, the stochastic and deterministic rate constants are 
always equal. . 

6.6.4 Second order 

For the reaction 
X+ y ----.?, 
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the detenninistic rate law is k[X][Y] Ms-1. Here, for a volume V, the reaction pro­
ceeds at a rate of nAk[X][Y]V = kxyj(nAV) molecules per second. Since the 
stochastic rate law is cxy molecules per second, we have 

k 
c= nAv· 

We also need to consider dimerisation-style reactions, of the fonn 

2X --+?. 

Here the deterministic rate law is k[X] 2, so the concentration of X decreases at rate 
nA2k[Xj2V = 2kx2 / ( nA V) molecules per second. Now the stochastic rate law is 
cx(x- 1)/2 so that molecules of X are consumed at a rate of cx(x- 1) molecules 
per second. Now these two laws do not match, but for large x, x(x - 1) can be 
approximated by x2, and so to the extent that the kinetics match, we have 

2k 
c=--. 

nAV 

Note the additional factor of two in this case. 

6.6.5 Higher order 

It should be fairly clear how to extend this analysis to higher-order reactions, but 
such reactions are not often used in stochastic kinetic models. 

6.7 The Master equation 

In the stochastic kinetics literature there is often reference to "the (chemical) mas­
ter equation." Unfortunately this seems to be an overused (and misused) tenn, and 
seems now to apply to any set of differential equations whose solution gives the full 
transition probability kernel for the system dynamics. We have already seen sets of 
differential equations that determine the time evolution of the transition kernel of a 
Markov process- the Kolmogorov differential equations (5.7, 5.8). It turns out that 
the set of differential equations most often labelled as the "master equation" is just 
Kolmogorov's forward equation for a stochastic kinetic process. 

Proposition 6.1 Kolmogorov'sforward equations (5.8)for a SPN can be written in 
the form 

!p(xo, to, x, t) = t [ hi(x- S(i), ci)p(x0 , t 0 , x- S(i), t) 

- hi(x,c.)p(xo,to,x,t)], \Ito E JR, xo,x EM, 

wh~re M is the countable state space of the process (the set of all possible markings 
of the SPN). This set of differential equations is often referred to as the chemical 
master equation. 
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Proof We start with the forward equation for amove from (x0 , t0 ) to (x, t), and then 
expand Qx,x as follows, 

~p(xo, to, x, t) = 2: Qx',xP(Xo, to, x', t) 
{x'EM} 

[ L qx' ,xP(Xo, to, x', t)l + Qx,xP(Xo, to, x, t) 
{x'EM!x'#x} 

[ L Qx',xP(Xo, to, x', t)]- p(xo, to, x, t) L Qx,x' 
{x'EM!x'#x} {x'EM!x'#x} 

L [qx',xP(Xo, to, x', t)- qx,x'P(Xo, to, X, t)]. 
{x'EM!x'#x} 

This is just Kolmogorov's forward equation rewritten more appropriately for a Mar­
kov process with general countable state space M. The equation involves a sum over 
all possible transitions, but for a SPN, only a finite number of transition events are 
possible, corresponding to the v different reaction channels. Considering first the 
hazard Qx,x'• we note that starting from x, it is only possible to move to x+ S(i), i = 
1, 2, ... , v, and then by definition we have qx,x+SC'l = hi(x, Ci). Similarly, in order 
to get to x, the process must have come from one of x- S(i), i = 1, 2, ... , v, and 
in this case we have qx-S(i) X = hi(X- sCi)' Ci). Substituting these into the above 
equation gives the result. 0 

A more extensive discussion of the chemical master equation can be found in Van 
Kampen (1992). We will not have much more to say about it, as the cases where it 
can be solved exactly and explicitly are very few in number. These special cases are 
examined in McQuarrie (1967). The cases that can be solved exactly are interesting 
for a variety of reasons, including the testing of stochastic simulation algorithms. 
The derivation of the stationary distribution of the immigration-death process in Sec­
tion 5.4.3 could be described as a "master equation approach," and we will do some­
thing similar with the analysis of stochastic dimerisation kinetics in Chapter 7. In 
general, however, a master equation approach to the analysis of stochastic kinetic 
models of realistic size and complexity will not be possible, and then stochastic sim­
ulation will be the only practical approach to gaining insight into the system dynam­
ics. 

Before leaving the master equation, it is instructive to see that it sheds light on 
the relationship between the continuous deterministic formulation and the expected 
value of the stochastic kinetic model. In certain special cases these are the same, and 
we can see this by using the master equation to derive a set of differential equations 
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for the expected value of the stochastic kinetic model as 

{) {) 
7f E (Xt) = 7f L x p(x, t) 

t t xEM 

{) 
= L x Otp(x, t) 

xEM 

= L X t [ hi(X- sCi)' ci)P(X- sCi)' t)- hi(x, ci)p(x, t)] 
xEM i=l 
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= t [ L X hi(X- sCi)' Ci)p(x- sCi)' t)- L X h;(x, c;)p(x, t)] 
i=l xEM xEM 

= t [ L (x + sCil) h;(x, c;)p(x, t) - L X hi(x, c;)p(x, t)] 
i=l xEM xEM 

v 

= L [E ( (Xt + sCil)hi(Xt, c;)) - E (Xth;(Xt, c;))] 
i=l 

v 

= LE (sCi)h;(Xt,Ci)) 
i=l 

v 

= :L sCil E (hi(Xt, e;)). 
i=l 

Now in general it is not possible to solve this set of differential equations directly, 
but in the case where all reactions have zero- or first-order mass action rate laws we 
can use the linearity of expectation to get E (h;(Xt, ci)) = hi(E (Xt), ci) giving 

Putting y(t) = E (Xt) we get 

d v . . 

dty(t) = :LsC•lhi(y(t),ci) = Sh(y(t),c), 
•=1 

which is just the ODE system for the deterministic modeL+ So, when all reactions 
are zero- and first -order mass-action kinetics, the deterministic solution will correctly 
describe the expected value of the stochastic kinetic model. However, it will not give 
any insight into variability, and in any case, cannot be used to describe the expectation 
of any system containing second-order reactions. 

t Note that this ODE model uses mass rather than concentration units (and the mass is measured in 
molecules rather than moles), and uses stochastic rate constants. 
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6.8 Software for simulating stochastic kinetic networks 

Although it is very instructive to develop simple algorithms for simulating the dy­
namic evolution of biochemical networks using a high-level language such as R, this 
approach will not scale well to large, complex networks with many species and many 
reaction channels. For such models, it will be desirable to encode them in SBML, and 
then import them into simulation software designed with such models in mind. Such 
"industrial-strength" simulators are often developed in fast compiled languages such 
as C/C++, and written carefully to be memory efficient, accurate, and fast. 

Tl)ere are many software systems available for simulating the continuous deter­
ministic kinetics corresponding to an SBML model (many such packages are listed 
on the SBML.org web page). However (at the time of writing), when it comes to dis­
crete stochastic simulation there is less choice, and there are serious problems of lack 
of rigorous testing and inconsistencies in interpretation of SBML as one moves from 
one software product to another. There are several reasons for this. The deterministic 
framework has been around longer and is still more widely used than the stochas­
tic framework, and so SBML was originally designed with continuous deterministic 
modelling in mind and involved the authors of several of the standard determinis­
tic simulators. There is also a fairly sophisticated SBML test suite for deterministic 
simulators, which can be used to ensure the correctness of SBML interpretation and 
simulator correctness in the deterministic case. On the other hand, SBML Level 1 
was not entirely appropriate for encoding discrete stochastic models (as discussed in 
Chapter 2), and so developers of stochastic simulators had to either ignore SBML or 
adopt their own particular conventions for the interpretation of SBML. Although it 
is possible to correctly encode a discrete stochastic model in SBML Level 2 in an 
unambiguous way, there is little in the way of guidance on this issue in version 1 
of the specification, so the "Level 1 effect" has not yet gone away. This problem is 
further compounded by the difficulty of testing stochastic simulators, and the lack of 
a good test suite for stochastic simulators. In response to this, I have co-developed 
a test suite for discrete stochastic simulators that support SBML Level2 (there is a 
link to it from this book's website). It consists of a range of simple models for which 
direct analytic analysis of the implied stochastic process is possible (using a master 
equation approach), together with time-course data on the mean and standard devi­
ation of the output that would be expected from many runs of the simulator on the 
same model. One simulator that passes most of the tests in the suite is a simulator 
known as gillespie2, developed for the BASIS project, described in Kirkwood 
et al. (2003), and based on a core stochastic simulation engine I wrote in C. Another 
well-known and highly regarded stochastic simulator is known as "Dizzy," which is 
written in Java. However, at the time of writing, it only accepts models encoded in 
SBML Level 1 (in addition to its own native format), but this may well change in the 
future. There is also a simple Gillespie simulation service bundled with the Systems 
Biology Workbench (SBW). 
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6.9 Exercises 

1. Define the auto-regulatory network from Chapter 2 (given as SBML in Appendix 
A.l) as a SPN in R, and then use the function gillespied to simulate its time­
course behaviour. 

2. Write an R function to simulate the time-course behaviour of the LV system 1,000 
times and compute the sample mean of the prey and predator numbers at times 
1, 2, ... , 20. Plot them. 

3 . .Install some SBML-compliant stochastic simulation software. Use it to simulate 
the auto-regulatory network from Appendix A.1. Check that the results seem con­
sistent with those obtained from Exercise 1. 

4. Simulate the auto-regulatory model using a deterministic simulator and interpret 
the results. 

5. Consider the dimerisation kinetics example with parameters and initial conditions 
as given in Figure 6.3. Assume that the reaction is taking place in a compart­
ment with volume V. By converting to a stochastic kinetic model and simulating, 
discover how small the volume V needs to be in order for stochastic effects to 
become important and prevalent. 

6.10 Further reading 

Cornish-Bowden (2004) is a classic text on modelling biochemical reactions from a 
continuous deterministic perspective. For numerical techniques for integrating ODEs, 
start with a basic numerical analysis text such as Burden & Faires (2000). Kitano 
(2001) and Bower & Bolouri (2000) give a good overview of systems biology and 
the role that biochemical network modelling and simulation has to play in it. The 
latter also includes a couple of chapters on stochastic simulation. To understand the 
role of Dan Gillespie in making physical scientists aware of the utility of stochastic 
modelling and simulation techniques, it is worth reading Gillespie (1977, 1992a, and 
1992b). Another important book for physical scientists is Van Kampen (1992). Fi­
nally, seminal papers on the modelling of stochastic kinetic effects in the regulation 
of gene expression include McAdams & Arkin (1997) and Arkin et al. (1998). 
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Case studies 

7.1 Introduction 

This chapter will focus on how the theory developed so far can be used in practice by 
applying it to a range of illustrative examples. The examples are relatively "small" 
compared to the kinds of models that systems biologists are mainly interested in (see 
McAdams & Arkin (1997) and Arkin et al. (1998) for a couple of good early ex­
amples), but smaller models tend to be more effective for elucidating key principles. 
Although the examples themselves are interesting in their own right, each one will 
be used to address particular modelling issues that arise in practice. So, Section 7.2 
will illustrate the conversion of a deterministic model to a stochastic model, and the 
visualisation, summarisation, and analysis of the output of stochastic simulators. Sec­
tion 7.3 will discuss conservation laws and dimensionality reduction, Section 7.4 will 
illustrate sensitivity and uncertainty analysis for stochastic models, and Section 7.5 
will examine the analysis of external interventions (known as events in the SBML 
world). 

7.2 Dimerisation kinetics 

Let us consider in greater detail the problem of dimerisation kinetics briefly exam­
ined in Section 6.1.4. For this problem we will consider the dimerisation kinetics of 
a protein, P, at very low concentrations in a bacterial cell. We will begin by con­
sidering the usual continuous deterministic kinetics and then go on to examine the 
corresponding stochastic kinetic behaviour of the system. The forward and backward 
reactions respectively are 

2P ~ P2, and P2 ~ 2P, 

where k1 and k2 denote the usual deterministic mass-action kinetic rate constants, 
leading to the ordinary differential equations (6.1) for the time evolution of the sys­
tem. We will assume an initial concentration of p0 M (moles per litre) for Pat time 
t = 0, and an initial concentration of 0 for P2. Although knowing the volume of the 
container (in this case the bacterium) is not strictly necessary for either a determin­
istic or stochastic analysis, it is required in order to compare the two. So here we 
assume a volume of V L (litres, or dm3). 

For the particular problem we are interested in, the initial concentration of Pis 0.5 
J-LM, giving Po = 5 X w-7, and the volume of the bacterium is v = w-15. It will 
be assumed that the values of k1 and k2 have been determined from a macroscopic 
experiment and found to be k1 = 5 x 105 , k2 = 0.2. The SBML-shorthand that en-
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@model:2.l.l=DimerKineticsDet "Dimer Kinetics (deterministic)" 
®compartments 
Cell=le-15 

®species 
Cell: [P] =Se-7 
Cell: [P2] =0 

®reactions 
®r=Dimerisation 

2P->P2 
Cell*kl*P*P : k1=5e5 

®r=Dissociation 
P2->2P 
Cell*k2*P2 : k2=0.2 

Figure 7.1 SBML-shorthand for the dimerisation kinetics model (continuous deterministic 
version) 
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Figure 7.2 Left: Simulated continuous deterministic dynamics of the dimerisation kinetics 
model. Right: A simulated realisation of the discrete stochastic dynamics of the dimerisation 
kinetics model. 

codes this model is given in Figure 7.1 (and the full SBML is listed in Appendix A.3). 
Note the additional factor of Cell in the rate laws. This is interpreted as the volume 
of the container and is necessary because SBML rate laws are expected to be in units 
of substance (here moles) per unit time, and not concentration per unit time, which 
is how continuous deterministic rate laws are traditionally written. 

The dynamics associated with this model can be simulated either by integrating 
the ODEs directly or by using an SBML-compliant simulator to give the dynam~ 
ics shown in Figure 7.2 (left). However, we know from the stochastic kinetic theory 
developed in the previous chapter that for reactions involving species at low con­
centration in small volumes, the continuous deterministic formulation is a poor ap­
proximation to the true stochastic kinetic behaviour of the system. We therefore now 
turn our attention to recasting the above model in the stochastic kinetic framework in 
order to be able to study it from this perspective. 

Algebraically, the initial amount of P is n APo V molecules, and the stochastic rate 
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®model:2.l.l=DimerKineticsStoch "Dimer,Kinetics (stochastic)" 
®units 

substance=item 
®compartments 
Cell=1e-15 

®species 
Cell:P=301 s 
Cell:P2=0 s 

®reactions 
®r=Dimerisation 

2P->P2 
c1*P*(P-1)/2 : c1=1.66e-3 

®r=Dissociation 
P2->2P 
c2*P2 : C2=0.2 

Figure 7.3 SBML-shorthandfor the dimerisation kinetics model (discrete stochastic version) 

constants are obtained as c1 = 2k!/(nA V), c2 = k2 , using the results from Sec­
tion 6.6. For our particular constants, this gives an initial value of 301 molecules of P 
(and no molecules of P2 ) and stochastic rate constants c1 = 1.66 x 10-3 , c2 = 0.2. 
The SBML-shorthand encoding of the discrete stochastic version of this model is 
given in Figure 7.3 (and the full SBML is listed in Appendix A.3.2). Note that in 
principle it should be possible for an SBML-aware software tool to automatically 
convert the SBML in Appendix A.3.2 into the SBML listed in Appendix A.3.1 (and 
possibly even the reverse, though this is harder). However, careful study of the two 
models reveals that this is not quite as trivial as it might first seem, as it will re­
quire the tool to have a fairly deep understanding of SBML units and semantics, as 
well as the relation between deterministic and stochastic rate laws, and the ability to 
recognise mass-action rate laws (possibly written in slightly different ways). Conse­
quently, at the time of writing, it is typically easier to make the conversion by hand. 
It is also worth noting that there is nothing particularly discrete or stochastic about 
the discrete stochastic version of the model. A continuous deterministic simulator 
with a good understanding of SBML units should be able to correctly simulate the 
dynamics of the model described in Figure 7.3 to give output similar to that shown 
in Figure 7.2 (left). In practice, however, there are few (if any) simulator tools with 
this degree of SBML compliance at the time of writing. 

We now have the model encoded in a suitable format f01; studying the stochastic 
dynamics. We will see shortly that this model is analytically tractable. However, 
we will ignore this fact for the present and instead use stochastic simulation as our 
primary investigative tool. The dynamics can be simulated using an SBML Level 2 
stochastic simulator (such as gillespie2), or by encoding it as a SPN for Rand 
using the R functions from Chapter 6. An appropriate SPN object for R can be built 
with the commands given in Figure 7 .4. 

Regardless of the tool used to conduct the simulation, the results should be the 
same. A single realisation of the process is given in Figure 7.2 (right). Note again 
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N=list () 
N$M=c(30:t,O) 
N$Pre=matrix(c(2,0,0,1) ,ncol=2,byrow=TRUE) 
N$Post=matrix(c(0,1,2,0) ,ncol=2,byrow=TRUE) 
N$h=function(x,th=c(1.66e-3,0.2)) { 

return( c( th[l]*x[l]*(x[l]-1)/2, 
th[2]*x[2] ) ) 

CASE STUDIES 

Figure 7.4 R code to build an SPN object representing the dimerisation kinetics model 

that a different realisation will be obtained each time the simulation is run (provided 
the random number seed is not fixed). Comparing this to Figure 7.2 (left) it is clear · 
that the qualitative behaviour is somewhat similar, but that the stochastic fluctuations 
are very pronounced. Again it must be emphasised that these fluctuations are intrinsic 
to the system and have nothing to do with experimental measurement error (which 
we have not yet considered at all). Obviously the scales are different in the two cases, 
but if desired, the stochastic output can easily be mapped onto a concentration scale 
by dividing through by nA V. A different realisation of the process is shown on this 
scale in Figure 7.5 (left). These two realisations are not really sufficient to give good 
insight into the range of behaviour that the model is likely to exhibit. This insight is 
typically obtained by running the simulation model many times and summarising the 
output in a sensible way. If we focus now on P (remember that P and P 2 are deter­
ministically related, so it is not necessary to consider both), we begin to understand 
the range of dynamics it exhibits by running a relatively small number of simulations 
and overlaying the trajectories (Figure 7.5, right). A more sophisticated approach is 
to carry out many runs of the simulator and summarise the distribution of the level 
by computing appropriate statistics (such as the sample mean and variance). These 
can then be used to produce a plot such as Figure 7.6 (left), which is based on 1,000 
runs of the simulator. Note that although it is the case here that the results of the 
deterministic analysis are consistent with the mean of the stochastic kinetic study, 
this is not true in general (and even here, the mean of the stochastic process is not 
exactly the deterministic solution, but it provides a reasonable approximation). In 
general the deterministic analysis provides no useful information about the stochas­
tic kinetic analysis. If the marginal distribution at each time point was normal (which 
clearly is not the case, but is often a reasonable approximation), we would then expect 
over 99% of realisations to lie within 3 standard deviations of the mean. It therefore 
seems reasonable to use the sample mean plus/minus 3 sample standard deviations 
as a guide to the range of likely values at each time point. For a more detailed under­
standing of the distribution of values at particular time points, it is possible to study 
the full set of realisations at a given time. For example, Figure 7.6 (right) shows the 
empirical PMF for the distribution of Pat timet = 10. Note the discrete nature of 
the distribution and the fact that only odd-numbered values are possible (the process 
was initialised at an odd number of molecules and can only change by a multiple of 
two). Also note how "normal" the distribution of realisations appears to be, justifying 
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Figure 7.5 Left: A simulated realisation of the discrete stochastic dynamics of the dimerisation 
.kinetics model plotted on a concentration scale. Right: The trajectories for levels of P from 
20 runs overlaid. 
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Figure 7.6 Left: The mean trajectory of P together with some approximate (point-wise) "con­
fidence bounds" based on 1,000 runs of the simulator. Right: Density histogram of the simu­
lated realisations of Pat timet = 10 based on 10,000 runs, giving an estimate of the PMF 
for P(!O). 

the use of a "mean plus/minus 3 SD" approach to summarising the output. Also note 
that Figure 7.6 (left) suggests that the system seems to have converged to a stationary 
distribution at timet = 10, and hence Figure 7.6 (right) is essentially the equilibrium 
distribution of the process. 

For a problem as simple as this one, it is possible to make a direct analytic attack 
on the equilibrium probability distribution. In this case, it is made most straightfor­
ward by using the deterministic relationship between the number of molecules of p 
and P2 to reduce the two-dimensional state space to a one-dimensional state space, 
which can then be analysed in a similar way to the immigration-death model from 
Chapter 5. So to start, we put 

P+2P2 = n, 

where n is the number of molecules of P that would be present if they were fully 
disassociated (son = 301 in our example). Next we can rewrite the rate laws in 

•:)· 

~· 

~ . ... 
···' 
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terms of P2 only, which we will denote by x, 

( n - 2x) ( n - 2x - 1) 
h1 (x, c1) = c1 2 

hz(x, cz) = czx 

( n - 2x) ( n - 2x - 1) 
ho(x, c) = c1 2 + czx. 

Since reaction 1 corresponds to increasing x by 1 and reaction 2 corresponds to de­
creasing x by. 1, the transition rate matrix Q again has a tri-diagonal form. Note that 
here the state space (and corresponding Q matrix) is finite, as the size of x cannot ex­
ceed n/2. Numerical or analytical analysis of this matrix can then yield information 
regarding the dynamic behaviour of the system. This is essentially what physical 
scientists would refer to as a "Master equation approach" (although they probably 
would not approach the problem in exactly this way). However, the actual analysis 
is somewhat technical and not particularly relevant in the context of this book. It is 
important to bear in mind that although analytic analysis of simple processes is intel­
lectually attractive and can sometimes give insight into more complex problems, the 
class of models where analytic approaches are possible is very restricted and does 
not cover any models of serious interest in the context of systems biology (where we 
are typically interested in the complex interactions between several intricate mech­
anisms). Therefore, computationally intensive study based on stochastic simulation 
and analysis is the only realistic way to gain insight into system dynamics in general. 

7.3 Michaelis-Menten enzyme kinetics 

Another reaction system worthy of special study is the Michaelis-Menten enzyme 
kinetic system. Here a substrate S is converted to a product P only in the presence 
of a catalyst E (for enzyme). A plausible model for this is 

S+E~SE 

SE~S+E 

SE~P+E. 

If we assume that k1 , k2 , and k3 are deterministic mass-action kinetic rate constants, 
then the ODEs governing the deterministic dynamics are 

d~~] = k2[SE]- k1[S][E] 

d[E] dt = (k2 + k3)[SE]- k1[S][E] 

d[SE] 
"(it= k1[S][E]- (k2 + k3)[SE] 

d!:] = k3[SE]. 
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®model:2.l.l=MMKineticsDet "M-M Kinetics (deterministic)" 
@compartments 
Cell=le-15 

®species 
Cell: [S) =Se-7 
Cell: [E] =2e-7 
Cell: [SE] =0 
Cell: [P] =0 

®reactions 
®r=Binding 

S+E->SE 
Cell*kl*S*E : kl=le6 

®r=Dissociation 
SE->S+E 
Cell*k2*SE : k2=le-4 

®r=Conversion 
SE->P+E 
Cell*k3*SE : k3=0.1 
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Figure 7.7 SBML-shorthandfor the Michaelis-Menten kinetics model (continuous determin­
istic version) 

This ODE system is most easily constructed from its matrix representation, 

.!!._ [E] - -1 1 1 (kl[S][E]) 
( 

[S] ) ( -1 1 0 ) 
dt [SE] - 1 -1 -1 k2 [SE] . 

[P] 0 0 1 k3[SE] 

For a given set of rate constants and initial conditions, we can integrate this system 
numerically on a computer. 

Again we will assume the setting of low concentrations in small volumes. The 
compartmental volume is V = w- 15L, the initial concentrations of SandE will be 
5 X w-7M and 2 X w-7M respectively, and the initial concentrations of SE and 
P will be zero. The model specification is completed with the three rate constants 
kl = 1 X w-6 , k2 = 1 X w-4 , k3 = 0.1. The SBML-shorthand for this model is 
given in Figure 7.7. The simulated dynamics for this model are shown in Figure 7.8 
(left). 

It is clear from this plot that there are conservation laws in this system (it is par­
ticularly clear that the sum of [E] and [SE] is constant). Such laws can be used to 
reduce the dimensionality of the system under consideration. Recalling the Petri net 
theory from Chapter 2, the reaction matrix has the form 

(
-1 

A= ~ 
-1 
1 
1 

1 0) -1 0 . 
-1 1 

It is clear that this matrix is rank deficient (the first two rows sum to zero), so to find 
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Figure 7.8 Left: Simulated continuous deterministic dynamics of the Michaelis-Menten ki­
netics model. Right: Simulated continuous deterministic dynamics of the Michaelis-Menten 
kinetics model based on the two-dimensional representation. 

the ?-invariants we just need to solve the linear system 

1 
1 

-1 
-1 

Straightforward Gaussian elimination leads to the two invariants y = (0, 1, 1, 0)' and 
(1, 0, 1, 1)', corresponding to the conservation laws 

[E] + [SE] = eo 

[S] + [SE] + [P] =so, 

where the conservation constants are determined from the initial conditions of the 
system (here, e0 is the initial value for [E] and s0 is the initial value for [S]). The first 
conservation law can be used to eliminate [E] from the ODE system, then the second 
can be used to eliminate [ S E] giving 

d[S] dt = k2(so- [S]- [P])- k1[S](eo- s0 + [S] + [P]) 

d[P] dt = k3(so- [S] - [P]). 

This two-dimensional system of ODEs is exactly equivalent to the original (appar­
ently) four-dimensional system. To confirm this, the simulated dynamics for this sys­
tem are given in Figure 7.8 (right) (note that the missing components can be easily 
reconstructed using the conservation laws if required). Such dimension-reduction 
techniques are particularly important in the continuous-deterministic context. First, 
mathematical analysis of the system in most cases requires an ODE system of full­
rank. Second (of more direct practical relevance), reducing the dimension of the sys­
tem will improve the speed, accuracy, and general numerical stability of the ODE­
integration algorithm. 

It is straightforward to convert the Michaelis-Men ten system to a discrete stochas­
tic model. The SBML-shorthand for the conversion is given in Figure 7.9, and a 
single realisation of the process is given in Figure 7.10 (left). Dimensionality reduc-
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®model:2.l.lo:MMKineticsStoch "M-M Kinetics (stochastic)" 
®units 

substance=item 
®compartments 
Celhle-15 

®species 
Cell:So:301 s 
Cell:Eo:l20 s 
Cell:SEo:O s 
Cell:P=O s 

®reactions 
®ro:·Binding 

S+E->SE 
cl*S*E : cl=l.66e-3 

®ro:Dissociation 
SE->S+E 
c2*SE : c2=le-4 

®r=Conversion 
SE->P+E 
c3*SE : c3=0.1 
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Figure 7.9 SBML-shorthand for the Michaelis-Menten kinetics model (discrete stochastic ver­
sion) 

tion techniques can also be used in the context of discrete stochastic models. Again, 
the Petri net theory can be used to identify the conservation laws of the system, and 
these can be used to remove E and S E from the model. The SBML-shorthand for 
the reduced model obtained in this way is given in Figure 7.11, and a single reali­
sation of the process is given in Figure 7.10 (right). It is clear that a software tool 
could be written to automatically reduce models in this way.* This model is some­
what noteworthy in that it is a valid discrete stochastic model with rate laws that are 
not immediately recognisable as mass-action. 

Although dimensionality reduction is clearly applicable in the context of discrete 
stochastic modelling, it is somewhat less important than in the continuous deter­
ministic case. This is for two main reasons. The first is that the speed improvement 
obtained by working with the reduced dimension system is not that significant. The 
second (arguably more fundamental) reason is that exact simulation algorithms such 
as the Gillespie algorithm are just that- exact. There is therefore no improvement in 
accuracy or numerical stability to be gained by working with the reduced dimension 
system. That said, for some of the fast approximate algorithms to be considered in 
Chapter 8 (notably those that exploit diffusion or ODE approximations), dimension­
ality reduction is just as important as in the continuous deterministic framework. 

* Indeed, using the SBML construct of assignment rules, it is possible to do this simply by replacing 
redundant species with appropriate assignment rules based on the conservation laws. 

~ 
?. .. .. 
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Figure 7.10 Left: A simulated realisation of the discrete stochastic dynamics of the Michaelis­
Menten kinetics model. Right: A simulated realisation of the discrete stochastic dynamics of 
the reduced-dimension Michaelis-Menten kinetics model. 

®model:2.1.1=RedMMKineticsStoch "Reduced M-M Kinetics (stoch)" 
®units 

substance=item 
®compartments 

Cell=1e-15 
®species 

Cell:S=301 s 
Cell:P=O s 

®reactions 
®r=Binding 

8-> 
c1*S*(120-301+S+P) 

®r=Dissociation 
->S 

c1=1.66e-3 

c2*(301-(S+P)) 
®r=Conversion 

c2=1e-4 

->P 
c3* (301- (S+P)) : c3=0 .1 

Figure 7.11 SBML-shorthand for the reduced dimension Michaelis-Menten kinetics model 
(discrete stochastic version) 

7.4 An auto-regulatory genetic network 

The dimerisation kinetics and Michaelis-Menten kinetics models are interesting to 
study from a stochastic viewpoint, but both are somewhat unsatisfactory in the sense 
that unless the concentrations and volumes involved are really very small, the stochas­
tic fluctuations are not particularly significant. In both cases the continuous determin­
istic treatment, while clearly an approximation to the truth, actually captures the most 
important aspects of the dynamics reasonably well. If all models of interest to sys­
tems biologists were of this nature, it would be quite proper to question whether the 
additional effort associated with discrete stochastic modelling is worthwhile. How-
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ever, for any model where there can be only ahandful (say, less than ten) of molecules 
of any of the key reacting species, then stochastic fluctuations can dominate, and the 
models can (and often do) exhibit behaviour that would be impossible to predict from 
the associated continuous deterministic analysis. A good example of this is the possi­
bility of the Lotka-Volterra model to go extinct (or explode). Similar things can also 
happen in the context of molecular cell biology. As a trivial example, random events 
can trigger apoptosis or other forms of cell death. However, stochastic fluctuations 
are a normal part of life in the cell, which can have important consequences, and are 
not just associated with catastrophic events such as cell death. 

A good example of a noisy process is gene expression (and its regulation). For this 
example we will return to the model of prokaryotic gene auto-regulation introduced 
in Section 1.5.7 and used as the main example throughout Chapter 2. The SBML­
shorthand for this model is given in Section 2.5.8, and the full SBML is listed in 
Appendix A.l. It should be noted that this is an artificial model, with rate constants 
in arbitrary units, chosen simply to make the model exhibit interesting behaviour. 
A simulated realisation of this process over a 5,000-second period is shown in Fig­
ure 7.12 (left). Only the three key "outputs" of the model are shown. The discrete 
bursty stochastic dynamics of the process are clear in this realisation. RNA transcript 
events are comparatively rare and random in their occurrence. The number of protein 
monomers oscillates wildly between 10 and 50 molecules, and the number of protein 
dimers jumps abruptly at random times and then gradually decays away. Looking 
more closely at the first 250 seconds of the same realisation (Figure 7 .12, right), it is 
clear that the jumps in protein dimer levels coincide with the RNA transcript events. 
This illustrates an important point regarding stochastic variation in complex models: 
despite the fact that there are a relatively large number of protein dimer molecules, 
their behaviour is strongly stochastic due to the fact that they are affected by the 
number of RNA transcripts, and there are very few RNA transcript molecules in 
the model. Consequently, even if primary interest lies in a species with a relatively 
large number of molecules, a continuous deterministic model will not adequately 
capture its behaviour if it is affected by a species which can have a small number of 
molecules. 

Figure 7.13 (left) shows (for the same realisation) the time-evolution of the number 
of molecules of protein monomers, P, over the first 10 seconds of the simuiation. 
It is clear that even over this short time period the stochastic fluctuations are very 
significant. In order to understand this variation in more detail, let us now focus on 
the number of molecules of P at time t = 10. By running many simulations of 
the process it is possible to build up a picture of the probability distribution for the 
number of molecules, and this is shown in Figure 7.13 (right) (based on 10,000 runs). 
This clearly shows that there is an almost even chance that there will be no molecules 
of P at time 10 (and the most likely explanation for this is that there will not yet have 
been a transcription event). The distribution is clearly far from normal, so a mean 
plus/minus three SD summary of the distribution is unlikely to be adequate in this 
case. 

Once a model becomes as complex as this one, there is likely to be some uncer­
tainty regarding some quantitative aspects of the model specification. This could be, 

·• •' 
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Figure 7.12 Left: A simulated realisation of the discrete stochastic dynamics of the prokaryotic 
genetic auto-regulatory network model, for a period of 5,000 seconds. Right: A close-up on 
the first period of 250 seconds of the left plot. 
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Figure 7. 13 Left: Close-up showing the time-evolution of the number of molecules of P over 
a 10-second period. Right: Empirical PMF for the number of molecules of Pat timet = 10 
seconds, based on 10,000 runs. 

for example, uncertainty about the initial conditions or the stochastic rate constants 
adopted. For concreteness, we will suppose here that there is a degree of uncertainty 
regarding the value of the gene transcription rate k2 .t A value of k2 = 0.01 was 
specified in the model, but let us suppose that any value between 0.005 and 0.03 is 
plausible. It is therefore natural to want to investigate the sensitivity of the model 
dynamics to this particular specification. 

For continuous deterministic models, a sophisticated framework for sensitivity 
analysis is well established. However, the techniques from this domain do not transfer 
well to the stochastic modelling paradigm. One of the main motivations for think­
ing about model sensitivity is a desire to understand uncertainty in the true pro­
cess dynamics. However, in the context of stochastic modelling, uncertainty about 
the process dynamics is integral to the whole approach. Consequently, even in the 

t Note that in contradiction to the convention adopted this far in the book, k2 is a stochastic rate constant 
and not a deterministic one. This is because in practice, stochastic modellers often use k rather than c 
for their rate constants, so it is best not to become over-reliant on this notational cue. 
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case of complete certainty regarding the model structure, rate laws, rate constants, 
and initial conditions, the time-evolution of the process is uncertain (or random, or 
stochastic, depending on choice of terminology). A natural way to incorporate un­
certainty regarding model parameters is to adopt a subjective Bayesian interpretation 
of probability. In the Bayesian paradigm, uncertainty regarding model parameters is 
not fundamentally different to uncertainty regarding the time evolution of the process 
due to the stochastic kinetic dynamics. We have already constructed mechanisms for 
handling uncertainty in the process dynamics by trying to understand the probability 
distribution of the outcomes, rather than by simply looking at a particular realisa­
tion of the process. There is no reason why these probability distributions should 
not include uncertainty regarding the model parameters in addition to the uncertainty 
induced by the stochastic kinetics. This is best illustrated by example. 

Figure 7.13 (right) shows our uncertainty about the level of Pat timet= 10 based 
on a value of k2 = 0.01. Similar plots can be produced based on other plausible val­
ues; Figure 7.14 (left) shows the plot corresponding to k2 = 0.02, for example. In 
order to obtain a summary of our uncertainty regarding the level of P, we need to 
average over our uncertainty for k2 in an appropriate way. In order to do this prop­
erly, we need to specify a probability distribution which reflects our uncertainty in 
k2 • It was previously stated that all values between 0.005 and 0.03 are plausible. 
We will now make the much stronger assumption that all values in this range are 
equally plausible, which leads directly to the probability distribution U(0.005, 0.3). 
Within the Bayesian framework, this is known as a prior probability distribution for 
a parameter. t Having specified the prior probability distribution (in practice, there is 
likely to be uncertainty regarding several parameters, but it is completely straightfor­
ward to assign independent prior probability distributions to each uncertain value), it 
is then straightforward to incorporate this into the subsequent analysis. Rather than 
running many simulations with the same parameters, each run begins by first picking 
uncertain parameters from their prior probability distributions. This has the effect of 
correctly embedding the parameter uncertainty into the model; all subsequent anal­
ysis then proceeds as normal. For example, if interest is in the level of P at time 
t = 10, the values can be recorded at the end of each run to build up a picture of the 
marginal uncertainty for the level of P. Such a distribution is depicted in Figure 7.14 
(right). Unsurprisingly, it looks a bit like a compromise between Figure 7.13 (right) 
and Figure 7.14 (left). 

In practice one is not simply interested in the uncertainty of the level of one par­
ticular biochemical species at one particular time, but it is clear that exactly the same 
approach can be applied to any numerical summary of the simulation output (for ex­
ample, cell-cycle time, time to cell death, population doubling time, time for RNA 
expression levels to increase five-fold, etc.). When applied to derived simulation out­
puts of genuine biological interest (possibly directly experimentally measurable), 

:j: It is known as a prior distribution because it is possible to use tbe model and experimental data to 
update tbis prior distribution into a posterior distribution, which describes the uncertainty regarding 
tbe parameter having utilised the information in the data. This is Bayesian statistics, and it will be 
discussed futtber in tbe final chapters of tbis book. 
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Figure 7.14 Left: Empirical PMF for the number of molecules of Pat timet= 10 seconds 
when k2 is changed from 0.01 to 0.02, based on 10,000 runs. Right: Empirical PMF for the 
prior predictive uncertainty regarding the observed value of P at time t = 10 based on the 
prior distribution k2 rv U(0.005, 0.03). 

Bayesian uncertainty analysis provides a powerful framework for model introspec­
tion. 

7.5 The lac operon 

We now return to the lac operon model introduced in Section 1.5.8. Given some ap­
propriate :rate constants, we are now in a position to completely specify this model 
and study its dynamics. Some SBML-shorthand that specifies (a very simplified ver­
sion of) the model is given in Figure 7.15. The rate constants have been chosen to 
be biologically plausible (with a time unit of seconds), then fine~tuned to make the 
model behave sensibly. Again, the model is meant to be illustrative and does not rep­
resent a serious effort to accurately model the true dynamics of the lac regulation 
dynamics (or even the actual mechanism, as several simplifying assumptions have 
been made here as well). Like the auto-regulatory model, from a sensible set of ini­
tial conditions, this model will go through a transient phase then settle down to an 
equilibrium probability distribution which is not particularly interesting on its own. 
The most interesting aspect of the lac mechanism is the· dynamic response to an in­
flux of lactose. Whether or not such an external intervention should be regarded as 
being part of the model is actually somewhat controversial. However, SBML Level2 
provides a means for encoding interventions via the event element. SBML events 
were not discussed in Chapter 2, but the discussion in the SBML Level 2 specifica­
tion document is quite readable. Events are also supported in SBML-shorthand from 
version 2.1.2 onward - again, see the specification document for further details. 
The event listed at the end of the shorthand model in Figure 7.15 has the effect of 
introducing 10,000 molecules oflactose into the cell at timet= 20,000. 

Conceptually, simulating a model that includes a timed intervention of this kind is 
quite straightforward. In this particular case, it coUld be done by running the simula­
tor until time 20,000, then recording the state at this time, addi.Dg 10,000 to the final 
level of Lactose, and then restarting the simulator from the new state. In practice, 
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®model:2.1.2=lac0peron "lac operon model (stochastic)" 
·®units 

substance=item 
®compartments 

Cell=1e-15 
®species 
Cell:Idna=l s 
Cell.: Irna=O s 
Cell:I•50 s 
Cell:Op=1 s 
Cell:Rnap=100 s 
Cell:Rna=O s 
Cell :Z=O s 
Cell:Lactose=20 s 
Cell:ILactose=O s 
Cell : IOp=O s 
Cell:RnapOp=O s 

®reactions 
®r=IrihibitorTranscription 

Idna -> Idna + Irna 
cl*Idna : cl=0.02 

®r=InhibitorTranslation 
Irna -> Irna + I 
c2*Irna : c2=0.1 

®r=LactoseinhibitorBinding 
I + Lactose -> !Lactose 
c3*I*Lactose : c3=0.005 

®r=LactoseinhibitorDissociation 
!Lactose -> I + Lactose 
c4*ILactose : c4=0.1 

®r=InhibitorBinding 
I + 0p -> IOp 
c5*I*Op : c5=1 

®r=InhibitorDissociation 
IOp -> I + Op 
c6*IOp : c6=0.01 

®r=RnapBinding 
Op + Rnap -> RnapOp 
c7*0p*Rnap : c7=0.1 

®r=RnapDissociation 
Rna pOp - > Op + Rnap 
cS*RnapOp : c8=0.01 

®r=Transcription 
RnapOp -> Op + Rnap + Rna 
c9*Rnap0p : c9=0.03 

®r=Translation 
Rna -> Rna + z 
clO*Rna : cl0=0.1 

®r=Conversion 
Lactose + z -> z 
cll*Lactose*Z : cll=le-5 

®r=InhibitorRnaDegradation 
Irna -> 
cl2*Irna : c12=0.01 

®r=InhibitorDegradation 
I -> 
Cl3*I : cl3=0.002 

®r=LactoseinhibitorDegradation 
ILactose -> Lactose 
cl3*ILactose : cl3=0.002 

®r=RnaDegradation 
Rna -> 

cl4*Rna : cl4=0.01 
®r=ZDegradation 
z -> 

cl5*Z : cl5=0.001 
®events 

Intervention = t>=20000 : Lactose=Lactose+lOOOO 

Figure 7.15 SBML-shorthandfor the lac-operon model (discrete stochastic version) 
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Figure 7.16 A simulated realisation of the discrete stochastic dynamics of the lac-operon 
model for a period of 50,000 seconds. An intervention is applied at time t = 20, 000, when 
10,000 molecules of lactose are added to the cell. 

some simulators include built-in support for SBML events, which simplifies the pro­
cess greatly. The realisation of the process plotted in Figure 7.16 was generated using 
the simulator gillespie2. The plot shows that under equilibrium conditions the 
expression level of the lac-Z protein is very low. However, in response to the intro­
duction of lactose, the rate of transcription of the lac operon is increased, leading to a 
significant increase in the expression levels of the lac-Z protein. The result of this is 
that the lactose is quickly converted to something else, allowing the cell to gradually 
return to its equilibrium behaviour. 

7.6 Exercises 

1. Carry out the simulations described in each section of this chapter and reproduce 
all of the plots. This is probably the most important exercise in the entire book! 
Of course it will not be possible to exactly reproduce the plots showing individual 
stochastic realisations, but even here it should be possible to obtain plots showing. 
qualitatively similar behaviour. 

2. Use a Master equation approach to exactly compute and plotthe exact version of 
Figure 7.6 (right). Also compute the exact equilibrium distribution and compare 
the two. 

3. Identify the conservation laws in the auto-regulatory network and use them to 
reduce the dimension of the model. Simulate the dynamics of the reduced model 
to ensure they are consistent with the original. 



FlJRii.HER READING 179 

4. Deduce the continuous deterministic version of the auto-regulatory model ( assum­
ing a container volume of 10-15L) and simulate it. Compare it to the stochastic 
version. How well does it describe the mean behaviour of the stochastic version? 

5. In the dimerisation kinetics ·model, the dissociation rate constant c2 took the value 
0.2. Suppose now that there is uncertainty regarding this value which can be well 
described by a U(O.l, 0.4) probability distribution. Produce a new version of Fig­
ure 7.6 (right) which incorporates this uncertainty. 

7.7 Further reading 

This chapter provides only the briefest of introductions to stochastic modelling of 
genetic and biochemical networks, but it should provide sufficient background in or­
der to render the literature in this area more accessible. To build large and complex 
stochastic models of interesting biological processes, it is necessary to read around 
the deterministic modelling literature in addition to the stochastic literature, as the 
deterministic literature is much more extensive, and can still provide useful informa­
tion for building stochastic models. Good starting points include Bower & Bolouri 
(2000), Kitano (2001) and Klipp et al. (2005); also see the references therein. The 
existing literature on stochastic modelling is of course particularly valuable, and I 
have found the following articles especially interesting: McAdams & Arkin (1997), 
Arkin et al. (1998), McAdams & Arkin (1999), Goss & Peccoud (1998), Pinney et al. 
(2003), Hardy & Robillard (2004), Salis & Kaznessis (2005b). Readers with an in­
terest in stochastic modelling of aging mechanisms might also like to read Proctor 
et al. (2005). In addition to the modelling literature; it is invariably necessary to 
trawl the wet-biology literature and online databases f()r information on mechanisms 
and kinetics - mastering this process is left as an additional exercise for the reader, 
though some guidance is provided in Klipp et al. (2005). 





CHAPTERS 

Beyond the Gillespie algorithm 

8.1 Introduction 

In Chapter 6 an algorithm for simulating the time-course behaviour of a stochastic 
kinetic model was introduced. This discrete-event simulation algorithm, usually re­
ferred· to as the Gillespie algorithm, has the nice properties that it simulates every re­
action event and is exact in the sense that it generates exact independent realisations 
of the underlying stochastic kinetic model. It is also reasonably efficient in terms 
of computation time among all such algorithms with those properties. However, it 
sho~d be emphasised that the Gillespie algorithm is just one approach out of many 
that could be taken to simulating stochastic biochemical dynamics. In this chapter 
we will look at some other possible approaches, motivated by problems in apply­
ing the Gillespie algorithm to large models containing species with large numbers of 
molecules and fast reactions. In Section 8.2, refinements of the Gillespie algorithm 
will be considered that still generate exact realisations of the stochastic kinetic pro­
cess. In Section 8.3, methods based on approximating the process by another that 
is faster to simulate will be examined. Then in Section 8.4, hybrid algorithms that 
combine both exact and approximate updating strategies will be considered. 

8.2 Exact simulation methods 

Let us begin by reconsidering discrete event simulation of a continuous time Markov 
process with a finite number of states, as described in Section 5.4 (p. 121). We saw 
how to do this using the direct method in Section 5.4.2. There is an alternative algo­
rithm to this, known as the first event method, which also generates an exact realisa­
tion of the Markov process. It can be stated as follows: 

1. Initialise the process at t = 0 With initial state i. 

2. Call the current state i. For each potential other state k (k =/= i), compute a putative 
time to transition to that state tk ""Exp(qik). 

3. Let j be the index of the smallest of the tk. 

4. Putt : = t + tj. 
5. Let the new state be j. 

6. Output the time t and state j. 

7. 1ft< Tmax• return to step 2. 

It is perhaps not immediately obvious that this algorithm is exactly equivalent to the 
direct method. In order to see that it is, we need to recall some relevant properties 
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of the exponential distribution; presented in Section 3.9 (p. 77). By Proposition 3.18, 
the minimum of the putative times has the correct distribution for the time to the first 
event, and by Proposition 3.19, the index associated with that minimum time clearly 
has the correct probability mass function (PMF). 

Although the first event method is just as correct as the direct method, the direct 
method is generally to be preferred, as it is more efficient. In particular, the direct 
method requires just two random numbers to be simulated per event, whereas the 
first event method requires r (where r is the number of states). The first event method 
is interesting, however, as it gives us another way of thinking about the simulation 
of the process, and forms the basis of a very efficient exact simulation algorithm for 
stochastic kinetic models. 

8.2.1 First reaction method 

Before looking at the Gibson-Brock algorithm in detail, it is worth thinking briefly 
about how the first event method for finite state Markov processes translates to 
stochastic kinetic models with a potentially infinite state space. We have already 
seen how the direct method translates into the Gillespie algorithm (Section 6.4). The 
first event method translates into a variant of the Gillespie algorithm known as the 
first reaction method (Gillespie 1976), which can be stated as follows: 

1. Initialise the starting point of the simulation with t : = 0, rate constants c = 
(Ct. ... , Cv) and initial state x = ( Xt. ... , x,..). 

2. Calculate the reaction hazards hi(x, ci), i = 1, 2, ... , v. 
3. Simulate a putative time to the next type i reaction, ti "' Exp(hi(x, q)), i = 

1,2, ... ,v. 

4. Let j be the index of the smallest ti. 

5. Putt : = t + tj. 
6. Update the state x according to the reaction with index j. That is, set x : = x + 

s(j). 
7; Output t and x. 
8. If t < T max return to step 2. 

As stated, this algorithm is clearly less efficient than Gillespie's direct method, but 
with a few clever tricks it can be turned into a very efficient algorithm. An R function 
to implement the first reaction method for a SPN is given in Figure 8.1. 

8.2.2 The Gibson-Bruck algorithm 

The so-called next reaction method (also known as the Gibson-Brock algorithm) i~ a 
modification of the first reaction method which makes it much more efficient. A first 
attempt at presenting the basics of the Gibson-Brock algorithm follows: 

1. Initialise t : = 0, c and x, and additionally calculate all of the initial reaction haz­
ards hi(x, q), i = 1, ... , v. Use these hazards to simulate putative first reaction 
times ti rv Exp(hi(x, Ci)). 
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frm <- function(N, n, ... ) 

tt=O 
x=N$M 
S=t(N$Post-N$Pre) 
u=nrow(S) 
v=ncol(S) 
tvec=vector ("numeric", n) 
xmat=matrix(O,ncol=u,nrow=n+l) 
xmat[l,]=x 
for (i in l:n) { 

h=N$h(x, ... ) 
pu=rexp(v,h) 
j=which.min(pu) 
X=X+S (, j] 
tt=tt+pu [j] 
tvec[i]=tt 
xmat[i+l,]=x 

return(list(t=tvec,x=xmat)) 
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Figure 8.1 An R function to implement the first reaction method for a stochastic Petri net 
representation of a coupled chemical reaction system. It is to be used in the same way as the 
gillespiefunctionfrom Figure 6.5. 

2. Let j be the index of the smallest ti. 

3. Sett: = t1. 

4. Update x according to reaction with index j. 

5. Update hJ(x, cJ) according to the new state x and simulate a new putative time 
tJ : = t + Exp(h1(x, c1)). 

6. For each reaction i( "1- j) whose hazard is changed by reaction j: 

(a) Update h~ = hi(x, ci) (but temporarily keep the old hi). 

(b) Set ti : = t + (h;jh~)(ti- t). 

(c) Forget the old hi. 

7. If t < T max return to step 2. 

There are several things to note about this algorithm. The first is that it has moved 
from working with "relative" times (times from now until the next event) to "ab­
solute" times (the time of the next event). The reason for doing this is that it saves 
generating new times for all of the reactions that are not affected by the reaction 
that has just taken place (thanks to the memoryless property, Proposition 3.16, this 
is okay). The second thing to note is that the times that are affected by the most re­
cent reaction are "re-used" by appropriately rescaling the old variable (conditional 

., 
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on it being greater than t). Again, a combination of the memory less property and the 
rescaling property (Proposition 3.20) ensures that this is okay. 

The next thing worth noting is that it is assumed that the algorithm "knows" which 
hazards are affected by each reaction. Gibson & Bruck (2000) suggest that this is 
done by creating a "dependency graph" for the system. The dependency graph has 
nodes corresponding to each reaction in the system. A directed arc joins node i to 
node j if a reaction event of type i induces a change of state that affects the hazard 
for the reaction of type j. These can be determined (automatically) from the forms 
of the associated reactions. Using this graph, if a reaction of type i occurs, the set of 
all children of node i in the graph gives the set of hazards that needs to be updated. 

An interesting alternative to the dependency graph is to work directly on the Petri 
net representation of the system. Then, for a given reaction node, the set-of all "neigh­
bours" (species nodes connected to that reaction node), X is the set of all species that 
can be altered. Then the set of all reaction nodes that are "children" of a node in X 
is the set of all reaction nodes whose hazards may need updating. This approach is 
slightly conservative in that the resulting set of reaction nodes is a superset of the set 
which absolutely must be updated, but nevertheless represents a satisfactory alterna­
tive. 

This algorithm is now "local" in the sense that all computations (bar one) involve 
only adjacent nodes on the associated Petri net representation of the problem. The 
only remaining "global" computation is the location of the index of the smallest re­
action time. Gibson and Bruck's clever solution to this problem is to keep all reaction 
times (and their associated indices) in an "indexed priority queue." This is another 
graph, allowing searches and changes to be made using only fast and local operations; 
see the original paper for further details of exactly how this is done. The advantage 
of having local operations on the associated Petri net is that the algorithm becomes 
straightforward to implement in an event-driven object-oriented programming style, 
consistent with the ethos behind the Petri net approach. Further, such an implementa­
tion could be multi-threaded on an SMP or hyper-threading machine, and would also 
lend itself to a full message-passing implementation on a parallel computing cluster. 
For further information on parallel stochastic simulation, see Wilkinson (2005). 

This algorithm is more efficient than Gillespie's direct method in the sense that 
only one new random number needs to be simulated for each reaction event which 
takes place, as opposed to the two that are required for the Gillespie algorithm. Note 
however, that selective recalculation of the hazards, hi(X, Ci) (and the cumulative 
hazard ho(x, c)), is also possible (and highly desirable) for the Gillespie algorithm, 
and could speed up that algorithm enormously for large systems. Given that the Gille­
spie algorithm otherwise requires fewer operations than the next reaction method, 
and does not rely on the ability to efficiently store putative reaction times in an in­
dexed priority queue, the relative efficiency of a cleverly implemented direct method 
and the next reaction method is likely to depend on the precise structure of the model 
and the speed of the random number generator used. 
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8.2.3 Time-varying volume 

A problem that has so far been overlooked is that of reaction hazards that vary contin­
uously over time. The most common context for this to arise in a practical modelling 
situation is when a growing cell (or cellular compartment) has its volume modelled 
as a continuous deterministic function of time. For example, let us suppose that the 
container volume at timet, V(t), is modelled as 

V(t) = v0 +at, t 2: 0, (8.1) 

for some constant a > 0. If the model contains any second-order reactions, the 
hazards of these should be inversely proportional to V(t) (Section 6.2). The haz­
ards of first-order reactions are independent of volume and hence unaffected. What 
to do about any zero-order reactions is somewhat unclear. As zero-order reactions 
are typically used to model "production" or "influx" in a simple-minded way, it is 
conceivable that at least some zero-order reactions should have volume dependence. 
Certain production rates might reasonably be considered to be directly proportional 
to V(t), while influx equations might have hazards proportional to V(t) 213 (as sur­
face area increases more slowly than volume). In general, zero-order reactions should 
be considered on a case-by-case basis. 

In order to keep the presentation as straightforward as possible, we will just con­
sider modifying the (inefficient) first reaction method to take account of time-varying 
reaction hazards.* It should be reasonably clear that since the only steps involving the 
hazards are steps 2 and 3 that only steps 2 and 3 need modification. Since the hazard 
is time varying, we should now write it hi(x, ci, t), i = 1, 2, ... , u. Now we could 
simply run the algorithm using these time-depended hazards but otherwise unmodi­
fied. Unfortunately this will lead to an algorithm that is only approximately correct, 
as we would be essentially assuming that the hazards remain constant between each 
reaction event, which is not actually true. At this point it is helpful to recall the in­
homogeneous Poisson process (Section 5.4.4), as this is exactly what is needed for 
dealing with non-constant hazards. Proposition 5.4 and the subsequent discussion tell 
us exactly how to simulate the time of the next event of an inhomogeneous Poisson 
process, but note that the lower limit of the integral defining the cumulative hazard 
must be the current simulation time, and not zero. 

For concreteness consider a reaction with hazard h(t) = a/V(t), where a will be 
a function of x and Ci, but constant with respect tot. Suppose further that V(t) is 
given by (8.1), the current simulation time is t0 , and we wish to simulate the timet' 
of the next reaction event. We begin by computing the cumulative hazard 

H(t) =it h(t)dt =it___!!:!!!:___ =!:log ( vo +at ) , t 2: t0 , 
to to Vo + at a Vo + ato 

and then compute the cumulative distribution function (CDF) of the time of the next 

* The next reaction method (Gibson-Bruck algorithm) is also quite straightforward to modify. The direct 
method (Gillespie algorithm) is actually a bit awkward to modify, and so the desire to work with time­
varying hazards is one reason why some people prefer to use an algorithm in the Gibson and Bruck 
style. These issues are discussed in some detail in Gibson & Bruck (2000). 
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event as 

F(t) = 1- exp{-H(t)} = 1- ( Vo +at )-a/a, 
vo + ato 

t ~to. 

Once we have the CDF we can simulate u"' U(O, 1) and solve u = F(t') fort', the 
time of the next event, to obtain 

t' = ~ [(vo + ato)u-afa- vo]. 

Returning to the problem of modifying the first reaction method, one simply sim­
ulates putative times to the next event using the above strategy for any reactions with 
time varying rates, and the rest of the algorithm remains untouched. 

This provides an example of coupling a discrete stochastic process with a variable . 
that changes continuously in time. Essentially the same strategy is used in several 
of the hybrid algorithms to be considered in Section 8.4, where some variables are 
treated as discrete and others as varying continuously in time. A good understanding 
of the above technique is a necessary pre-requisite for understanding hybrid simula­
tion algorithms. 

8.3 Approximate simulation strategies 

8.3.1 TJme discretisation 

Gibson and Bruck's next reaction method is regarded by many to be the best avail­
able method for exact simulation of a stochastic kinetic model. However, if one is 
prepared to sacrifice the exactness of the simulation procedure, there is a potential 
for huge speed-up at the expense of a little accuracy. These fast approximate methods 
are all based on a time discretisation of the Markov process. 

The essential idea is that the time axis is divided into (small) discrete chunks, and 
the underlying kinetics are approximated so that advancement of the state from the 
start of one chunk to another can be made in one go. Most of the methods work on 
the assumption that the time intervals have been chosen to be sufficiently small that 
the reaction hazards can be assumed constant over the interval. We know that a point 
process with constant hazard is a (homogeneous) Poisson process (Section 3.6.5). 
Based on the definition of the Poisson process, we assume that the number of reac­
tions (of a given type) occurring in a short time interval has a Poisson distribution 
(independently of other reaction types). We can then simulate Poisson numbers of 
reaction events and update the system accordingly. 

For a fixed (small) time step D.t, we can present an approximate simulation algo­
rithm as follows (we use the matrix notation from Section 2.3.2): 

1. Initialise the problem with timet : = 0, rate constants c, state x, and stoichiometry 
matrix S. 

2. Calculate /4(x, ct), fori = 1, ... , v, and simulate the u-dimensional reaction 
vectorr, with ith entry a Po(hi(x, ct)D.t) random quantity. 

3. Update the state according to x: = x +Sr. 
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pts <- function(N, T=lOO, dt=l, ... ) 
{ 

tt=O 
n=T%/%dt 
X=N$M 
S=t(N$Post - N$Pre) 
u=nrow(S) 
v=ncol(S) 
xmat=matrix(O, ncol=u, nrow=n) 
for (i in l:n) { 

h=N$h(x, ... ) 
r=rpois(v, h*dt) 
X = X + (8 %*% r) 
xmat[i,)=x 

ts(xmat,start=O,deltat=dt) 
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Figure 8.2 An Rfunction to implement the Poisson timestep method for a stochastic Petri net 
representation of a coupled chemical reaction system. It is to be used in the same way as the 
gillespied function from Figure 6.11. 

4. Update t : = t + !:::.t. 
5. Output t and x. 

6. If t < T max return to step 2. 

We could call this the Poisson timestep method. Note that step 3 should (ideally) be 
accomplished with a sparse matrix update. An R function to implement the Poisson 
timestep method is given in Figure 8.2. The problem with the above method is that 
of choosing an appropriate timestep !:::.t so that the method is fast but reasonably 
accurate. Clearly the smaller !:::.t, the more accurate, and the larger !:::.t, the faster. 
Another problem is that although one particular !:::.t may be good enough for one 
part of a simulation, it may not be appropriate for another. This motivates .the idea 
of stepping ahead a variable amount of timeT, based on the rate constants, c and the 
current state of the system, x. This is the idea behind Gillespie's T-leap algorithm. 

8.3.2 Gillespie's T-leap method 

The T-leap method (Gillespie 2001) is an adaptation of the Poisson timestep method 
to allow stepping ahead in time by a variable amount T, where at each timestep Tis 
chosen in an appropriate way in order to ensure a sensible trade-off between accuracy 
and speed. This is achieved by making T as large (and hence fast) as possible while 
still satisfying some constraint designed to ensure accuracy. In this context, the accu­
racy is determined by the extent to which the assumption of constant hazard over the 
interval is appropriate. Clearly whenever any reaction occurs some of the reaction 
hazards change, and so an assessment needs to be made of the magnitude of change 
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of the hazards hi(x, Ci)· Esserttially, the idea is to chooser so that the (proportional) 
change in all of the hi(x, ci) is small. 

The simplest way to check that a chosen r is satisfactory is to apply a post-leap 
check. That is, after a leap of r, check that lhi(x', Ci)- hi(x, Ci) I is sufficiently small 
for each i (where x and x' represent the state of the system before and after the leap). 
If any of the differences are too large, try again with a smaller value of r. One of the 
problems with this method is that it biases the system away from large yet legitimate 
state changes. 

A pre-leap check seems more promising. Here we can calculate the expected new 
state as E (x') = x + E (r) A, where the ith element of E (r) is just hi(x, ci)r. 
We can then calculate the change in hazard at this "expected" new state and see if 
this is acceptably small (it should be noted that this is not necessarily the expected 
change in hazard, due to the potential non-linearity of hi(x, ci)). It is suggested that 
the magnitude of acceptable change should be a fraction of the cumulative hazard 
ho(x, c), i.e., 

lhi(x',ci)- hi(x,ci)l:::; cho(x,c), Vi. 

Gillespie provides an approximate method for calculating the largest r satisfying this 
property (Gillespie 2001). Note that if the resulting r is as small (or almost as small) 
as the expected time leap associated with an exact single reaction update, then it is 
preferable to do just that. Since the time to the first event is Exp(h0 (x, c)); which has 
expectation 1/ho(x, c), one should always prefer an exact update if the suggested r 
is less than (say) 2/ho(x,c). 

Gillespie & Petzold (2003) consider refinements of this basic r selection algorithm 
that improve its behaviour somewhat. However, in my opinion, the "pure" r-leap 
method is always likely to be somewhat unsatisfactory in the context of biochemical 
networks with very small numbers of molecules of some species (say, zero or one 
copy of an activated gene). On the other hand, a hybrid algorithm known as the max­
imal timestep method uses the r-leap method for some variables and not others. This 
algorithm, which seems quite promising, will be briefly described in Section 8.4.2. 

8.3.3 Diffusion approximation (chemical Langevin equation) 

Another way of speeding up simulation is to simulate from the'diffusion approxi­
mation to the true process (Section 5.5). A formal discussion of this procedure is 
beyond the scope of this book. However, we shall here content ourselves with deriv­
ing the form of the diffusion approximation using an intuitive procedure (which can 
be formalised with a little effort; see, for example Gillespie (2000)). 

It is clear from the discussion of the Poisson timestep method that the change 
in state of the process, ·dXt in an infinitesimally small time interval dt is S dRt, 
where dRt is au-vector whose ith element is a Po(hi(Xt, ci)dt) random quantity. 
Matching the mean and variance, we put 

dRt ~ h(x, c)dt + diag { y'h(x, c)} dWt, 

where h(x, c) = (h1 (x, c1), ... , hv(x, cv))', dWt is the increment of a v-d Wiener 
process, and for a p-d vector v, diag { v} denotes the p x p matrix with the elements 
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of v along the leading diagonal and zeros elsewhere. We now have the diffusion 
approximation 

dXt = SdRt 

= S ( h(Xt, c)dt + diag { yfh(Xt, c)} dWt) 

=> dXt = Sh(Xt, c)dt + S diag { yfh(Xt, c)} dWt. (8.2) 

Equation (8.2) is one way of writing the chemical Langevin equation (CLE) for a 
stochastic kinetic model. t One slightly inconvenient feature of this form of the equa­
tion is that the dimension of Xt (u) is different from the dimension of the driving 
process Wt (v). Since we will typically have v > u, there will be unnecessary 
redundancy in the formulation associated with this representation. However, using 
some straightforward multi-variate statistics (not covered in Chapter 3), it is easy 
to see that the variance-covariance matrix for dXt is S diag {h(Xt, c)} S' dt (or 
A' diag {h(Xt, c)} Adt). So, (8.2) can be rewritten 

dXt = Sh(Xt, c)dt + yfSdiag{h(Xt, c)} S'dWt, (8.3) 

where dWt now denotes the increment of a u-d Wiener process, and we use a com­
mon convention in statistics for the square root of a matrix.+ In some ways (8.3) 
represents a more efficient description of the CLE. However, there can be compu­
tational issues associated with calculating the square root of the diffusion matrix, 
particularly when S is rank degenerate (as is typically the case, due to conservation 
laws in the system}, so both (8.2) and (8.3) turn out to be useful representations of 
the CLE, depending on the precise context of the problem, and both provide the basis 
for approximate simulation algorithms. An R function to integrate the CLE using the 
Euler method is given in Figure 8.3. Again, this method can work extremely well 
if there are more than (say) ten molecules of each reacting species throughout the 
course of the simulation. However, if the model contains species with a very small 
number of molecules, simulation based on a pure Langevin approximation is likely 
to be unsatisfactory. Again, however, a hybrid algorithm can be constructed that uses 
discrete updating for the low copy-number species and a Langevin approximation for 
the rest; such an algorithm will be discussed in Section 8.4.3. 

Having used a relatively informal method to derive the CLE, it is worth taking 
time to understand more precisely its relationship with the true discrete stochastic 
kinetic model (represented by a Markov jump process). In Section 6. 7 we derived the 
chemical Master equation as Kolmogorov's forward equation for the Markov jump 
process. It is possible to develop a corresponding forward-equation for the chemical 
Langevin equation (8.3). For a general k-dimensional Langevin equation 

dXt = J.L(Xt)dt + j3112 (Xt)dWt. 

t Note that setting the tenn in dWi to zero gives the ODE system corresponding to the continuous 
detenninistic approximation. 

+ Here, for a p x p matrix M (typically symmetric), .,fM (or M 112) denotes any p x p matrix N 
satisfying N N' = M. Common choices for N include the symmetric square root matrix and the 
Cholesky factor; see Golub & Van Loan (1996) for computational details. 

) 
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cle <- function(N, T=lOO, dt=O.l, ... ) 

r 

sdt=sqrt(dt) 
tt=O 
n=T%/%dt 
X=N$M 
S=t(N$Post-N$Pre) 
u=nrow(S) 
v=ncol(S) 
xmat=matrix(O,ncol=u,nrow=nl 
for (i in l:n) { 

h=N$h(x, ... ) 
dw=rnorm(v,O,sdt) 
dx=(S%*%h)*dt + S %*% (sqrt(h)*dw) 
X=X+dx 
xmat[i,]=x 

ts(xmat,start=O,deltat=dt) 

Figure 8.3 An R function to integrate the Cl.E using an Euler method for a stochastic Petri 
net representation of a coupled chemical reaction system. It is to be used in the same way as 
the ptsfunctionfrom Figure 8.2. 

this takes the form 

f) kf} lkk fj2 

fJtp(x, t) =-L ~{P,i(x)p(x, t)} + 2 L L ~{(Jij(x)p(x, t)}, 
i=l X, i=l j=l X, XJ 

and is known as the Fokker-Planck equation corresponding to the Langevin. Here 
p(x, t) represents (as a function of x) the (marginal) probability density function for 
Xt. Now substituting in p,(x) = Sh(x,c) and (J(x) = Sdiag{h(x,c)}S' gives 
the Fokker-Planck equation for the CLE, and this can be shown to correspond to a 
second-order approximation to the chemical master equation. Thus the CLE in some 
sense represents the "best" SDE approximation to the true stochastic kinetic model. 
See Gillespie (2000) for further details. 

8.4 Hybrid simulation strategies 

Hybrid algorithms aim to bridge the gap between the exact algorithms considered 
in Section 8.2 and the approximate algorithms considered in Section 8.3. The essen­
tial idea is to partition model species into two (or possibly more) groups that can 
be treated in a similar way. The algorithms considered recently in the literature all 
partition the species into two groups; a group of low-copy number species that need 
to be treated as discrete and updated with an "exact" method, and a group of species 
that can be treated with an approximate algorithm of some description. We will de­
note these two groups Xv and XA. It then turns out that it is necessary to partition 
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7. If a discrete reaction has occurred, find the time, t1 and type of the (first) reaction. 
Then putt : = t 1, update the continuous values to those appropriate for time t 1, 

and update the discrete variables according the reaction type that has occurred. 

8. H t < Tmax• return to step 2. 

The algorithm has been presented assuming that Gillespie's direct method will 
be used for the discrete updating, but is easily adapted to other discrete updating 
schemes, such as the next reaction method. There are a number of techniques that 
could be used for determining an appropriate value of .D.t. In Kiehl et al. (2004) 
it is assumed that an appropriate timestep for the ODE solver can be determined 
a priori as Jt. Then an appropriate "discrete step size" or can be chosen, possibly 
as the expected time until the first discrete reaction, giving Jt = 1/ho(x, c). Then 
.D.t =min{ ot, or}. In my opinion, it is likely to be beneficial to make or a bit smaller 
than the expected time until the first discrete reaction, in order to reduce the number 
of time intervals containing a discrete event. 

This algorithm is fairly straightforward to understand and implement and has a 
similar structure to the other hybrid algorithms· we will consider. It therefore pro­
vides a useful starting point for thinking about hybrid sin:mlation strategies. The main 
problem with the algorithm is that the ODE approximation is too crude in the context 
of stochastic modelling of genetic and biochemical networks. As Kiehl et al. (2004) 
fully acknowledge, the algorithm has the effect of suppressing the intrinsic variation 
of variables assigned to the continuous regime, and this can have important conse­
quences when the study of stochastic dynamics is of direct interest. This therefore 
motivates the study of hybrid algorithms that better preserve the stochastic variation 
of the system dynamics. 

8.4.2 Maximal timestep algorithm 

The maximal timestep method is a hybrid algorithm proposed by Puchalka & Kierzek 
(2004) that combines an exact updating procedure for the low concentration species 
with a r-leaping approximate updating algorithm for the other species. Puchalka 
& Kierzek (2004) chose to use the next reaction method for the exact updating, 
but it would be straightforward to reformulate the algorithm using Gillespie's di­
rect method. A greatly simplified version of the full algorithm could be described as 
follows: 

1. Initialise the system and set t : = 0. 

2. Calculate the fast reaction hazards and use tilese to select an appropriate r (for tile 
r-leap updating scheme). 

3. Assuming a constant hazard for the slow reactions, decide if a slow reaction has 
taken place in [t, t + r]. 

4. If no slow reaction has taken place, perform a r-leap update on the fast reactions 
tot:= t + r. 

5. If a slow reaction has taken place, identify tile time, t1, and type of tile (first) 
reaction. Then putt:= t 1 , perform a r-leap update of the fast reactions to t 1 , and 
update the slow variables according to the slow reaction that has occurred. 
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2. Calculate the hazards for the fast reactions. 

3. Numerically integrate the CLE for the fast reactions from t to t + t::.t to obtain a 
"sample path" for the continuous variables over the interval (t, t + ~t].§ 

4. Using the time-dependent hazards for the slow reactions, decide whether or not a 
slow reaction has happened in (t, t + ~t]. 

5. If no slow reaction has occurred, set t : = t + ~t and update the continuous 
variables to their proposed values at this time. 

6. If one slow reaction has occurred, identify the time, t1 and type, set t : = h, and 
update the system to t 1 (using the type of the discrete reaction and the appropriate 
continuous state). 

7. If more than one slow reaction has occurred, reduce l::.t and return to step 3. 

8. If t < Trnax• return to step 2. 

Here, steps 6 and 7 could (in principle) be replaced with 6 and 7. Identify the time 
and type of the first reaction and 'update accordingly. 

The reason the algorithm is presented this way is that it is slow and difficult to 
identify the times of slow reactions using numerical integration and solution meth­
ods, because the reaction hazards correspond to sample paths of unknown stochastic 
processes. For this reason, Salis & Kaznessis (2005a) use approximate numerical 
techniques to estimate the reaction times that are more accurate if the time is first 
narrowed down to a small interval where it is known that only this one reaction 
occurs. Salis & Kaznessis (2005a) also present another algorithm (the ANRH algo­
rithm), which is faster but less accurate than the NRH, as it allows multiple slow 
reactions to fire without affecting the fast reactions; again, see the paper for further 
details. 

The NRH and related algorithms that couple a Markov jump process with a Lange­
vin approximation are (in principle) very attractive as they are more accurate than the 
ODE hybrid algorithms and are likely to scale-up to very large models much better 
than the maximal timestep algorithm. 

8.4.4 Discussion 

There is a clear and pressing need for accurate stochastic simulation algorithms that 
are much faster than the exact algorithms. Although the "pure" approximate algo­
rithms are elegant and appealing, they fail to adequately cope with the common 
problem of multiple reactions happening on differing time scales. This then moti­
vates the development of hybrid algorithms that can address exactly fuis issue using 
a combination of exact and approximate techniques. Unfortunately, all three of the 
hybrid algorithms presented (and there are other, related algorithms that have not 
been explicitly covered here) are somewhat "crude" in terms of fueir statistical so­
phistication. The ODE model is unsatisfactory as the jump in scale from discrete 

§ Of course the true sample path is a diffusion process, which cannot be obtained in its entirity, and this 
is the main complication for algorithms of this type; see the text immediately following the algorithm 
for further details. 
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single software object can be attractive in the context of modelling complex chemical 
species where the potential number of distinct molecular sp~cies is vast, yet only a 
small number are expected to be present during the course of a given simulation run. 

8.5 Exercises 

1. Read the original source papers for the various different algorithms discussed in 
this chapter, and work through some simple examples by hand on paper to see 
how they really work. 

2. Code up some of the algorithms and compare them for accuracy on some of the 
example models from Chapter 7. This can be done by comparing sample means, 
standard deviations, and full empirical probability distributions at a collection of 
time points, using data from many independent simulation runs; see Salis & Kaz­
nessis (2005a) for further details. 

3. After tuning the different algorithms so that they have reasonable accuracy, com­
pare them for speed. Note that the algorithms discussed in this chapter are de­
signed to be efficient for large models with large numbers of species, reactions, 
and molecules, so it should not be too surprising if the algorithms tum out to be 
slower than Gillespie's direct method on small models. 

4. Download some software packages that implement stochastic simulation using 
algorithms other than the direct method, and compare them in terms of flexibility, 
accuracy, and performance. Links to some appropriate software are given on this 
book's website. 

8.6 Further reading 

The main source papers for this chapter are Gibson & Bruck (2000), Gillespie (200 1 ), 
Gillespie & Petzold (2003), Gillespie (2000), Kiehl et al. (2004), Puchalka & Kierzek 
(2004), Rao & Arkin (2003), Haseltine & Rawlings (2002), and Salis & Kaznessis 
(2005a). All are required reading for a complete understanding of how the various 
algorithms work. Also see Wilkinson (2006) for a discussion of the issues involved 
in coupling Markov jump and Langevin processes. 
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Note that the probabilities P (X= x!Hi) are known as likelihoods, and are often 
written L(Hi; x ), as they tend to be regarded as a function of the Hi for given fixed 
outcome x. Note, however, that the likelihood function does not represent a PMF for 
the Hi; in particular, there is no reason to suppose.that it will sum to 1. 

This is how it all works for purely discrete problems, but some adaptation is re­
quired before it can be used with continuous or mixed problems. Let us first stay 
with discrete outcome X and consider a continuum of hypotheses represented by 
a continuous parameter 8. Our prior beliefs must now be represented by a density 
function, traditionally written, 1r(8). Taking the continuous limit in the usual way, 
Bayes Theorem becomes 

1r(BIX = x) = 1r(8) P (X= x!B) . 

fe P (X= xl8') 1r(B')d8' 

In this case the likelihood function is L(B; x) = P (X = x!B), regarded as a function 
of 8 for given fixed X. Again, note that the likelihood function is not a density fore, 
as it does not integrate to 1. Using this notation we can rewrite Bayes Theorem as 

7r(BIX = x) = 7r(8)L(8; x) ' 

fe 1r(8')L(8';x)d8' 

and this is the way it is usually written in the context of Bayesian statistics, though the 
likelihood function L( 8; x) means slightly different things depending on the context. 
Note that the integral on the bottom line of Bayes Theorem is not a function of 8, 
and so simply represents a constant of proportionality. Thus, we can rewrite Bayes 
Theorem in the simpler form 

1r(BIX = x) ex: 1r(8)L(B;x), (9.1) 

giving rise to the Bayesian mantra "the posterior is proportional to the prior times 
the likelihood." 

Example 

Suppose that for a particular gene in a particular cell, transcription events occur ac­
cording to a Poisson process with rate 8 per minute. Prior to carrying out an exper­
iment, a biological expert specifies his opinion regarding () in the fonn of a r( a, b) 
distribution (Section 3.11). Suppose that for our expert, a = 2, b = 1. Counts of the 
n1.1mber of transcript events are gathered from n separate one-minute intervals to get 
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Figure 9.1 Plot showing the prior and posterior for the Poisson rate example. Note how the 
prior is modified to give a posterior more consistent with the data (which has a sample mean 
of3). 

If the support is infinite in extent, and/or multi-dimensional, then this is a highly 
non-trivial numerical problem. 

Even if we have the constant of integration, if the parameter space is multi -dimen­
sional, we will want to know what the marginal distribution of each component looks 
like. For each component, we have a very difficult ~umerical integration problem. 

Example 

Consider the case where we have a collection of observations, Xi, which we be­
lieve to be independent identically distributed (iid) normal with unknpwn mean and 
precision (the reciprocal of variance). We write 

The likelihood for a single observation is 
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The posterior density for JL and 7 certainly will not factorise (JL and 7 are not in­
dependent a posteriori), and will not even separate into the form of the conditional 
normal-gamma conjugate form mentioned earlier. 

So, we have the kernel of the posterior for f.L and T, but it is not in a standard form. 
We can gain some idea of the likely values of (JL, 7) by plotting the bivariate surface 
(the integration constant is not necessary for that), but we cannot work out the pos­
terior mean or variance, or the forms of the marginal posterior distributions for JL or 
7, since we cannot integrate out the other variable. We need a way of understand­
ing posterior densities which does not rely on being able to analytically integrate the 
posterior density. 

In fact, there is nothing particularly special about the fact that the density repre­
sents a Bayesian posterior. Given any complex non-standard multi-variate probability 
distribution, we need ways to understand it, to calculate its moments, and to compute 
its conditional and marginal distributions and their moments. Markov chain Monte 
Carlo (MCMC) algorithms such as the Gibbs sampler and the Metropolis-Hastings 
method provide a possible solution. 

9.2 The Gibbs sampler 

9.2.1 Introduction 

The Gibbs sampler is a way of simulating from multi-variate distributions based only 
on the ability to simulate from conditional distributions. In particular, it is appropriate 
when sampling from marginal distributions is not convenient or possible. 

Example 

Reconsider the problem of Bayesian inference for the mean and variance of a nor­
mally distributed random sample. In particular, consider the non-conjugate approach 
based on independent prior distributions for the mean and variance. The posterior 
took the form 

7r(JL, 7Jx) <X 7a+.J}-l exp { -~ [(n- l)s2 + n(x- JL)2] - ~ (JL- c)2 - b7}. 

As explained previously, this distribution is not in a standard form. However, while 
clearly not conjugate, this problem is often referred to as semi-conjugate, because the 
two full conditional distributions 7r(JLJT, x) and 1r( 7Jf.L, x) are of standard form, and 
further, are of the same form as the independent prior specifications. That is, 7JJL, xis 
gamma distributed and f-LIT, xis normally distributed. In fact, by picking out terms in 
the variable of interest and regarding everything else as a constant of proportionality, 
we get 
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3. Change counter j to j + 1, and return to step 2. 

This clearly defines a homogeneous Markov chain, as each simulated value depends 
only on the previous simulated value, and not on any other previous values or the 
iteration counter j. However, we need to show that 1r(B) is a stationary distribution 
of this chain. The transition kernel of the chain is 

d 

p(B,¢) =II 7r(¢ij¢1, ... ,¢i-l,Bi+l,•··,Bd)· 
i=l 

Therefore, we just need to check that 1r( B) is the stationary distribution of the chain 
with this transition kernel. Unfortunately, the traditional fixed-sweep Gibbs sampler 
just described is not reversible, and so we cannot check stationarity by checking 
for detailed balance (as detailed balance fails). We need to do a direct check of the· 
stationarity of 1r( B), that is, we need to check that 

1r(¢) =is p(B, ¢)1r(B) dB. 

See Section 5.3 for a recap of the relevant concepts. For the bivariate case, we have 

isp(B,¢)1r(B)dB =is 7r(¢1JBz)7r(¢zJ¢1)7r(B1,Bz)dB1dB2 

=7r(¢zJ¢1) { { 7r(¢1JBz)1r(B1,Bz)dB1dBz 
Js1 ls2 

= 7r(¢zJ¢1) { 1r(¢1JBz)dBz { 1r(B1,Bz)dB1 
Js2 Jsl 

= 1r(¢zJ¢1) { 1r(¢1JBz)1r(Bz) dBz 
ls2 

= 1r( ¢zJ¢1 )1r( ¢1) 
= 1r(¢1,¢2) 
= 7r(¢). 

The general case is similar. So, 1r( B) is a stationary distribution of this chain. Discus­
sions of uniqueness and convergence are beyond the scope of this book. In particular, 
these issues are complicated somewhat by the fact that the sampler described is not 
reversible. 

9.2.4 Reversible Gibbs samplers 

While the fixed-sweep Gibbs sampler itself is not reversible, each component update 
is, and hence there are many variations on the fixed-sweep Gibbs sampler which 
are reversible and do satisfy detailed balance. Let us start by looking at why each 
component update is reversible. 

Suppose we wish to update component i, that is, we update B by replacing Bi 
with ¢i drawn from 7r(¢iJB-i)· All other components will remain unchanged. The 





206 BAYESIAN INFERENCE AND MCMC 

and integrating out the auxiliary variable gives 

p(B,¢) = j 7r(B~IB2)7r(¢2IBD1r(¢1l¢2)dB~ 
= 1r(¢1l1>2) j 1r(B~IB2)7r(¢2IB~) dB~. 

We can now check for detailed balance: 

7r( B)p( (}' 1>) = 7r( 0)7r( ¢11¢2) J 7r( (}~ IB2 )7r( ¢2IBD d(}~ 

= 7r(B2)7r(BIIB2)7r(¢II¢2) j 1r(B~IB2)7r(¢2IBD dB~ 
= 1r( B1IB2)1r( 1>1l1>2) j 1r(B2)1r(B~ 1Bz)7r( 1>2IBD dB~ 

= 1r(BIIB2)7r(¢1l¢2) j 1r(B~,;2)1r(¢2IB~) dB~ 
= 1r(BIIB2)1r(¢II1>2) j 7r(B~)7r(02IBD7r(¢2IBDdB~, 

and, as this is symmetric in B and ¢, we must have 

1r(B)p(B, 1>) = 1r(¢)p(¢, B). 

This chain is therefore reversible with stationary distribution 1r( ·). 
We have seen that there are ways of adapting the standard fixed-sweep Gibbs sam­

pler in ways which ensure reversibility. However, reversibility is not a requirement 
of a useful algorithm - it simply makes it easier to determine the properties of 
the chain. In practice, the fixed-sweep Gibbs sampler often has as good as or better 
convergence properties than its reversible cousins. Given that it is slightly easier to 
implement and debug, it is often simpler to stick with the fixed-sweep scheme than 
to implement a more exotic version of the sampler. 

9.2.5 Simulation and analysis 

Suppose that we are interested in a multivariate distribution 1r(O) (which may be 
a Bayesian posterior distribution), and that we are able to simulate from the full 
conditional distributions of 1r( B). Simulation from 1r( B) is possible by first initialising 
the sampler somewhere in the support of (}, and then running the Gibbs sampler. The 
resulting chain should be monitored for convergence, and the "burn-in" period should 
be discarded for analysis. After convergence, the simulated values are all from 1r( 0). 
In particular, the values for a particular component will be simulated values from the 
marginal distribution of that component. A histogram of these values will give an 
idea of the "shape" of the marginal distribution, and summary statistics such as the 
mean and variance will be approximations to the mean and variance ofthe marginal 
distribution. The accuracy of the estimates can be gauged using the techniques from 
tile end of Chapter 3. 
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postmat=normgibbs(N=ll000,n=15,a=3,b=ll,cc=l0,d=l/lOO,xbar=25, 
ssquared=20) 

postmat=postmat[lOOl:llOOO,] 
op=par(mfrow=c(3,3)) 
plot(postmat,col=l:lOOOO) 
plot(postmat,type="l") 
plot .new () 
plot(ts(postmat[,l])) 
plot(ts(postmat[,2])) 
plot(ts(sqrt(l/postmat[,2]))) 
hist(postmat[,l] ,40) 
hist(postmat[,2] ,40) 
hist(sqrt(l/postmat[,2]),40)\ 
par(op) 

Figure 9.3 Example R code illustrating the use of the function normgibbsfrom Figure 9.2. 
The plots generated by running this code are shown in Figure 9.4. In this example the prior 
took the form J.t rv N(10, 100), T rv r(3, 11), and the sufficient statistics for the data were 
n = 15, x = 25, s 2 = 20. The sampler was run for 11,000 iterations with the first 1,000 
discarded as bum-in, and the remaining 10,000 iterations used for the main monitoring run. 

number of dimensions and relatively simple structure. Before leaving the topic of 
Gibbs sampling, a slightly more substantial example will be examined. 

Example 

This example will be motivated by considering a biological experiment to estimate 
(the logarithm of) a biochemical reaction rate constant. The details of the experiment 
will not concern us here; we will assume simply that the experiment results in the 
generation of a single number, representing a (sensible) estimate of the rate constant. 
Several labs will conduct this experiment, and each lab will replicate the experiment 
several times. Thus, in totality, we will have a collection of estimates from a collec­
tion of labs. We will consider the problem of inference for the true rate constant on 
the basis of prior knowledge and all available data. 

Consider the following simple hierarchical (or one-way random effects) model, 

Yij IBi, T"' N(Bi, 1/r), independently, i = 1, ... , m, j = 1, ... , ni 

Bdp,, v"' N(p,, 1/v), i = 1, ... , m. 

Here there are m labs, and the ith lab replicates the experiment ni times. Yij is the 
measurement made on the jth experiment by lab i. We assume that the measurements 
from lab i have mean ei and that the measurements are normally distributed. We 
also assume that the ei are themselves normally distributed around the true rate p,. 
Essentially, the model has the effect of inducing a correlation between replicates 
from a particular lab, due to the fact that we expect replicates from one lab to be 
more similar than replicates from different labs (due to hidden factors that are not 
being properly controlled and accounted for). Note that this generic scenario can be 





210 BAYESIAN INFERENCE AND MCMC 

is 

L(O· r y· ·)· - {T exp {-:_(y· ·- 0·)2 } 
" , t] - v 2:;:;: 2 tJ t 

and so the full likelihood is 
m ni 

L(e, T; y) =II II L(ei, T; YiJ) 

where 

i=l j=l 

( T ) N /2 { T ~ 2 2 } = - exp -2 L_- [(ni -l)si + ni(Yi·- 8i) ] 
27[ i=l 

m 

N= l:ni, 
i=l 

1 n, 
Yi· = - "'YiJ, n·L­

'j=l 

The prior takes the form 

7r(J.-£, T, V, ()) = 7r(J.-£)7r(7)7r(v)7r(8lp,, v) 

where 

1r(p,) oc exp { -~(p,- a)2 } 

1r(T) oc Te-l exp{ -dT} 

1r(v) oc ve-l exp{- fv} 

7r(BiiJ.-£, v) = ~ exp { -~(ei- J.-£?} 

=> 1r(8lp,, v) oc vm/2 exp { -~ ~(ei- p,)2 } 

and therefore, 

7r(J.-£, T, V, ()) OC Ve+m/ 2-lTc-l exp { -~ [ 2dT + 2fv + b(p,- a)2 + V ~(()i - J.-£) 2]} 

· Now we have the likelihood and the prior, and we can write down the posterior 
distribution, 

7r(p,, T, v, Bly) ()( 

Tc+N/2-lve+m/2-1 exp { - ~ [ 2dT + 2fv + b(p,- a)2 

+ ~ (v(ei- p,) 2 + T(ni- l)sr + mi(Yi·- ei) 2 ) J }· 
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the prior parameters a, b, c, d, e, f and compute the data summaries m, ni, N, Yi·, si, 
i = 1, ... , m. Then we initialise the sampler by simulating from the prior, or by 
starting off each component at its prior mean. The sampler is then run to convergence, 
and samples from the stationary distribution are used to understand the marginals 
of the posterior distribution. This model is of sufficient complexity that assessing 
convergence of the sampler to its stationary distribution is a non-trivial task. At the 
very least, multiple large simulation runs are required, with different starting points, 
and the first portion (say, a third) of any run should be discarded as "bum-in." As 
the complexity of the model increases, problems with assessment of the convergence 
of the sampler also increase. There are many software tools available for MCMC 
convergence diagnostics. R-CODA is an excellent package for R which carries out a 
range of output analysis and diagnostic tasks, but its use is beyond the scope of this 
book. 

It is clear that in principle at least, it ought to be possible to automate the con­
struction of a Gibbs sampler from a specification containing the.model, the prior, 
and the data. There are several freely available software packages that are able to 
do this for relatively simple models. Examples include, WinBUGS, OpenBugs, and 
JAGS; see this book's website for links. Unfortunately, it turns out to be difficult to 
use these software packages for the stochastic kinetic models that will be considered 
in Chapter 10. 

Of course, the Gibbs sampler tacitly assumes that we have some reasonably ef­
ficient mechanism for simulating from the full conditional distributions, and yet 
this is not always the case. Fortunately, the Gibbs sampler can be combined with 
Metropolis-Hastings algorithms when the full conditionals are difficult to simulate 
from. 

9.3 The Metropolis-Hastings algorithm 

Suppose that 1r( B) is the density of interest. Suppose further that we have some (arbi­
trary) transition kernel q(B, ¢) (known as the proposal distribution) which is easy to 
simulate from, but does not (necessarily) have 1r( B) as its stationary density. Consider 
the following algorithm: 

1. Initialise the iteration counter to j = 1, and initialise the chain to B(o). 

2. Generate a proposed value¢ using the kernel q(BU-1), ¢). 

3. Evaluate the acceptance probability a( BU:-1), ¢) of the proposed move, where 

. { 7r(¢)q(¢,B)} 
a(B, ¢) = mm 1, 1r(B)q(B, ¢) . 

4. Put B(j) =¢with probability a(BU-1), ¢),and put B(j) = BU-1) otherwise. 

5. Change the counter from j to j + 1 and return to step 2. 

In other words, at each stage, a new value is generated from the proposal distribution. 
This is either accepted, in which case the chain moves, or rejected, in which case the 
chain stays where it is. Whether or not the move is accepted or rejected depends on an 
acceptance probability which itself depends on the relationship between the density 
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9.3.1 Symmetric chains (Metropolis method) 

The simplest case is the Metropolis sampler, which is based on the use of a symmetric 
proposal with q( 8, ¢>) = q( ¢>, 8), VB, ¢>. We see then that the acceptance probability 
simplifies to 

. { 7r(</>)} a.(8, ¢>) = mm 1, 1r(B) , 

and hence does not involve the proposal density at all. Consequently proposed moves 
which will take the chain to a region of higher density are always accepted, while 
moves which take the chain to a region oflower density are accepted with probability 
proportional to the ratio of the two densities -moves which will take the chain to a 
region of very low density will be accepted with very low probability. Note that any 
proposal of the form q(8, ¢>) = f(l8 - ¢1) is symmetric, where f(-) is an arbitrary 
density. In this case, the proposal will represent a symmetric displacement from the 
current value. This also motivates random walk chains. 

9.3.2 Random walk chains 

In this case, the proposed value ¢> at stage j is ¢> = 8U- 1l + Wj where the Wj are 
iid random variables (completely independent of the state of the chain). Suppose 
that the Wj have density f(·), which is easy to simulate from. We can then simulate 
an innovation, Wj, and set the candidate point to¢> = 8(j-1) + Wj· The transition 
kernel is then q(8, ¢>) = f(¢>- 8), and this can be used to compute the acceptance 
probability. Of course, iff(-) is symmetric about zero, then we have a symmetric 
cbain, and the acceptance probability does not depend on f ( ·) at all. 

So, suppose that it is decided to use a symmetric random walk chain with proposed 
mean zero innovations. There is still the question of how they should be distributed, 
and what variance they should have. A simple, easy to simulate from distribution is 
always a good idea, such as uniform or normal (normal is generally better, but is a 
bit more expensive to simulate). The choice of variance will affect the acceptance 
probability, and hence the overall proportion of accepted moves. If the variance of 
the innovation is too low, then most proposed values will be accepted, but the chain 
will move very slowly around the space - the chain is said to be too "cold." On the 
other hand, if the variance of the innovation is too large, very few proposed values 
will be accepted, but when they are, they will often correspond to quite large moves 
- the chain is said to be too "hot." Experience suggests that an overall acceptance 
rate of around 30% is desirable, and so it is possible to "tune" the variance of the 
innovation distribution to get an acceptance rate of around this level. This should be 
done using a few trial short runs, and then a single fixed value should be adopted for 
the main monitoring run. t 

An R function implementing a simple Metropolis random walk sampler is given 

t Although it sounds appealing to adaptively change the tuning parameter during the main monitoring 
run, this usually affects the stationary distribution of the chain, and hence should be avoided (unless 
you really know what you are doing). 
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-straightforward to calculate. Unfortunately this method tends to result in a badly mix­
" ·· ing chain if the problem is high dimensional and the data are not in strong accordance 

with the prior. 

9.4 Hybrid MCMC schemes 

We have seen how we can use the Gibbs sampler to sample from multi-variate distri­
butions provided that we can simulate from the full conditionals. We have also seen 
how we can use Metropolis-Hastings methods to sample from awkward distributions 
(perhaps full conditionals). If we wish, we can combine these in order to form hybrid 
Markov chains whose stationary distribution is a distribution of interest. 

Componentwise transition: Given a multivariate distribution with full conditionals 
that are awkward to sample from directly, we can define a Metropolis-Hastings 
scheme for each full conditional and apply them to each component in tum for 
each iteration. This is like the Gibbs sampler, but each component update is a 
Metropolis-Hastings update, rather than a direct simulation from the full condi­
tional. This is in fact the original form of the Metropolis algorithm. 

Metropolis within Gibbs: Given a multivariate distribution with full conditionals, 
some of which may be simulated from directly, and others which have Metropolis­
Hastings updating schemes, the Metropolis within Gibbs algorithm goes through 
each in turn, and simulates directly from the full conditional, or carries out a 
Metropolis-Hastings update as necessary. 

Blocking: The components of a Gibbs sampler, and those of Metropolis-Hastings 
chains, can be vectors (or matrices) as well as scalars. For many high-dimensional 
problems, it can be helpful to group related parameters into blocks and use multi­
variate simulation techniques to update those together if possible. This can greatly 
improve the mixing of the chain, at the expense of increasing the computational 
cost of each iteration. 

Some of the methods discussed in this section will be illustrated in practice in Chap­
ter 10. 

9.5 Exercises 

1. Modify the simple Metropolis code given in Figure 9.5 in order to compute the 
overall acceptance rate of the chain. Write another R function which uses this 
modified function in order to automatically find a tuning parameter giving an 
overall acceptance rate of around 30%. 

2. Rewrite the Gibbs sampling code from Figure 9.2 in a faster language such as C, 
Fortan, or Java. Real MCMC algorithms run too slowly in R, so it is necessary to 
build up an MCMC code base in a more efficient language. 

3. Install the R-CODA package for MCMC output analysis and diagnostics and learn 
how it works. Try it out on the examples you have been studying. 

4. Download some automatic MCMC software (linked from this book's website). 
Learn how these packages work and try them out on some simple models. 
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literature in this area more accessible. Appropriate further reading will be highlighted 
where relevant. 

10.2 Inference given complete data 

It turns out to be helpful to consider first the problem of inference given perfect data 
on the state of the model over a finite time interval [0, T]. That is, we will assume 
that the entire sample path of each species in the model is known over the time period 
[0, T]. This is equivalent to assuming that we have been given discrete-event output 
from a Gillespie sirimlator, and are then required to figure out the rate constants that 
were used on the basis of the output. Although it is completely unrealistic to assume 
that experimental data of this quality will be available in practice, understanding this 
problem is central .to understanding the more general inference problem. In any case, 
it is clear that if we cannot solve even this problem, then inference from data sources 
of lower quality will be beyond our reach. 

It will be helpful to assume the model notation from Chapter 6, with species 
x1 , ... , x,., reactions R1 , ... , Rv. rate constants c = (c1 , ... , ev)', reaction hazards 
h1(x, c1), ... , hv(x, Cv), and combined hazard 

v 

ho(x, c) = L ~(x, Ci)· 
i=l 

It is now necessary to explicitly consider the state of the system at a given time, and 
this will be denoted x(t) = (x1(t), ... , x,.(t))'. Our observed sample path will be 
written 

:z: = {x(t) : t E [0, T]}. 
As we have complete information on the sample path, we also know the time and 
type of each reaction event (in fact, this is what we really mean by complete data). 
It is helpful to use the notation Tj for the number of reaction events of type Rj that 
occurred in the sample path :z:, j = 1, ... , v, and to define n = '2:j=1 ri to be the 
total number of reaction events occurring in the interval [0, T]. We will now consider 
the time and type of each reaction event, (ti, vi). i = 1, ... , n, where the ti are 
assumed to be in increasing order and lli E {1, ... , v }. It is notationally convenient 
to make the additional definitions to= 0 and tn+l = T. 

In order to carry out model-based inference for the process, we need the likelihood 
function. A formal approach to the development of a rigorous theory of likelihood for 
continuous sample paths is beyond the scope of a text such as this, but it is straight­
forward to compute the likelihood in an informal way by considermg the terms in 
the likelihood that arise from constructing the sample path according to Gillespie's 
direct method. Here, the term in the likelihood corresponding to the ith event is just 
the joint density of the time and type of that event. That is, · 

( ( ) ) { ( ( ) )[ ]} hv;(x(ti-t),Ci) 
ho x ti-l , c exp -ho x ti-l , c ti -ti-l x h ( ( ) ) 

0 X ti-l ,Ci 

= exp{ -ho(x(ti-1), c)[ti- ti-l]}hv, (x(ti-d, Ci). 
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Substituting into (10.2) and simplifying then gives 

L(c; x) = {fi Cv,9v, (x(ti-1))} exp {-iTt Cj9j(x(t)) dt} 
t=l 0 J=l 

~ {Q cj'} exp {-t, [ c;g;(x(t)) dt} 
=IT c? exp {-cj iT gj(x(t)) dt} 

J=l 0 
v 

=IT L·(c··x) J J, ) 

j=l 

where the component likelihoods are defined by 

(10.3) 

This factorisation of the complete-data likelihood has numerous important conse­
quences for inference. It means that in the complete data scenario, information re­
garding each rate constant is independent of the information regarding the other rate 
constants. That is, inference may be carried out for each rate constant separately. For 
example, in a maximum likelihood framework (where parameters are chosen to make 
the likelihood as large as possible), the likelihood can be maximised for each param­
eter separately. So, by partially differentiating (10.3) with respect to Cj and equating 
to zero, we obtain the maximum likelihood estimate of Cj as 

~ rj 
Cj = T , j = 1, ... , V. 1 gj(x(t))dt 

(10.4) 

In the context of Bayesian inference, the factorisation means that if independent prior 
distributions are adopted for the rate constants, then this independence will be re­
tained a posteriori. It is also clear from the form of (10.3) that the complete-data 
likelihood is conjugate to an independent ganima prior for the rate constants. Thus, 
adopting priors for the rate constants of the form 

v 

1r(c) =IT 1r(cj), 
j=l 
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space of bridging sample paths that has the same support as the true bridging process. 
Then we can use an appropriate Metropolis-Hastings acceptance probability in order 
to correct for the approximate step. An outline of the proposed MCMC algorithm 
can be stated as follows. 

1. Initialise the algorithm with a valid sample path consistent with the observed data. 

2. Sample rate constants from their full conditionals given the current sample path. 

3. For each of the T intervals, propose a new sample path consistent with its end­
points and accept/reject it with a Metropolis-Hastings step. 

4. Output the current rate constants. 

5. Return to step 2. 

In order to make progress with this problem, some notation is required. To keep 
the notation as simple as possible, we will now redefine some notation for the unit 
interval [0, 1] which previously referred to the entire interval [0, T]. So now 

X= {x(t): t E (0, 1]} 

denotes the "true" sample path that is only observed at times t = 0 and t = 1, and 

X= {X(t) : t E [0, 1]} 

represents the stochastic process that gives rise to x as a single observation. Our prob­
lem is that we would like to sample directly from the distribution (XIx(O), x(1), c), 
but this is difficult, so instead we will content ourselves with constructing a Metropo­
lis-Hastings update that has 7T(xlx(O),x(1), c) as its target distribution. Let us also 
re·define r = ( r 1 , ... , r v )' to be the numbers of reaction events in the interval [ 0, 1], 
and n = I:;=l Tj. It is clear that knowing both x(O) and x(1) places some con­
straints on r, but it will not typically determine it completely. It turns out to be eas­
iest to sample a new interval in two stages: first pick an r consistent with the end 
constraints and then sample a new interval conditional on x(O) and r. So, ignoring 
the problem of sampling r for the time being, we would ideally like to be able to 
sample from 7T(xlx(O), r, c), but this is still quite difficult to do directly. At this point 
it is helpful to think of the u-component sample path X as being a function of the 
v-component point process of reaction events. This point process is hard to simulate 
directly as its hazard function is random, but the hazards are known at the end-points 
x(O) and x(1), and so they can probably be reasonably well approximated by v in­
dependent inhomogeneous Poisson processes whose rates vary linearly between the 
rates at the end points. In order to make this work, we need to be able to sample 
from an inhomogeneous Poisson process conditional on the number of events. This 
requires some Poisson process theory not covered in Chapter 5. 

Lemma 10.1 For given fixed A,p > 0, consider N "'Po(>-.) and XIN"' B(N,p). 
Then marginally we have 

X rv Po(>-.p). 
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Poisson process is as a homogeneous Poisson process with time rescaled in a non­
linear way. 

Proposition 10.2 Let X be a homogeneous Poisson process on the interval [0, 1] 
with rate p, = (ho + h1)j2, and let Y be an inhomogeneous Poisson process on the 
same interval with rate .\(t) = (1- t)ho + th1,for given .fixed ho =I h1, ho, h1 > 0. 
A realisation of the process Y can be obtained from a realisation of the process X 
by applying the time transfonnation 

Jh~ +{hi- hB}t- ho t·- ~~--~~~~----
.- h1- ho 

to the event times of the X process. 

Proof Process X has cumulative hazard M(t) = t(ho + h1)/2, while process Y 
has cumulative hazard 

rt t2 
A(t) = lo [(1- t)ho + th1]dt =hot+ 2"(h1 - ho). 

Note that the cumulative hazards for the two processes match at both t = 0 and 
t = 1, and so one process can be mapped to the other by distorting time to make the 
cumulative hazards match also at intermediate times. Let the local time for the X 
process be sand the local time for theY process bet. Then setting M(s) = A(t) 
gives 

s ~ 
2(ho + h1) =hot+ 2(h1 - ho) 

t2 s 
~ 0 = 2 (h1- ho) +hot- 2(ho + h1) 

-ho + )h6 + (h1 - ho)(ho + h1)s 
~t= h h . 

1- 0 

0 
So, we can sample an inhomogeneous Poisson process conditional on the number 
of events by first sampling a homogeneous Poisson process with the average rate 
conditional on the number of events and then transforming time to get the correct 
inhomogeneity. 

In order to correct for the fact that we are not sampling from the correct bridging 
process, we will need a Metropolis-Hastings acceptance probability that will depend 
both on the likelihood of the sample path under the true model and the likelihood 
of the sample path under the approximate model. We have already calculated the 
likelihood under the true model (the complete-data likelihood). We now need the 
likelihood under the inhomogeneous Poisson process model. 

Proposition 10.3 The complete data likelihood for a sample path x on the interval 
[0, 1] under the approximate inhomogeneous Poisson process model is given by 

LA(c; x) = {il >-v, (ti)} exp { -~[ho(x(O), c)+ h0 (x(1), c)]}, 
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way. The Radon-Nikodym derivative measures the "closeness" of the approximating 
process to the true process, in the sense that the more closely the processes match, 
the closer the derivative will be to 1. 

We are now in a position to state the basic form of the Metropolis-Hastings update 
of the interval [0, 1]. First a proposed new r vector will be sampled from an appropri­
ate proposal distribution with PMF f(r* lr) (we will discuss appropriate ways of con­
structing this later). Then conditional on r*, sample a proposed sample path x* from 
the approximate process and accept the pair (r*,x*) with probability min{l,A} 
where 

A = 1r(x*lx(O), x(l), c) I f(r*lr )1rA (x*lx(O), r*, c) 
1r(xlx(O), x(l ), c) f(rir*)1fA (xix(O), r, c) 

1r(x*lx(O), c) q(r*) 
1fA(x*lx(O),c) f(r*ir) 
-.:.::..;.-..,-'-;--.o,.....c..:.,.....c.. X .:......:....,.....;--'-

1r(xlx(0), c) q(r) 
1fA(xix(O),c) f(rlr*) 
L( c; x*) q(r*) 

LA(c; x*) f(r*ir) 
-';:-;-.:.--..,--"-- X ..:.__.o._..,.....;-.:-

L(c;x) q(r)' 
LA(c; x) f(rir*) 

where q(r) is the PMF of r under the approximate model. That is, 
v 

q(r) =II qj(rj), 
j=l 

where qj(rj) is thePMF of a Poisson with mean [hj(x(O), c)+hj(x(l), c)]/2. Again, 
we could write this more formally as 

dlP' q(r*) 
dQ(x*) ~ 

A= dlP' x q(r). 

dQ(x) f(rir*) 

So now the only key aspect of the MCMC algorithm that has not yet been discussed 
is the choice of the proposal distribution f(r*ir). Again, ideally we would like to 
sample directly from the true distribution of r given x(O) and x(l), but this is not 
straightforward. Instead we simply want to pick a proposal that effectively explores 
the space of rs consistent with the end points. Recalling the discussion of Petri nets 
from Section 2.3, to a first approximation the set of r that we are interested in is the 
set of all non-negative integer solutions in r to 

x(l) = x(O) + Sr 

=?- Sr = x(l)- x(O). (10.6) 

There will be some solutions to this equation that do not correspond to possible 
sample paths, but there will not be many of these. Note that given a valid solution r, 
then r + x is another valid solution, where x is any T -invariant of the Petri net. Thus, 
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10.4 Diffusion approximations for inference 

The discussion in the previous section demonstrates that it is possible to construct 
exact MCMC algorithms for inference in discrete stochastic kinetic models based on 
discrete time observations (and it is possible to extend the techniques to more realis­
tic data scenarios than those directly considered). The discussion gives great insight 
into the nature of the inferential problem and its conceptual solution. However, there 
is a slight problem with the techniques discussed there in the context of the relatively 
large and complex models of genuine interest to systems biologists. It should be clear 
that each iteration of the MCMC algorithm described in the previous section is more 
computationally demanding than simulating the process exactly using Gillespie's di­
rect method (for the sake of argument, let us say that it is one order of magnitude 
more demanding). For satisfactory inference, a large number of MCMC iterations 
will be required. For models of the complexity discussed in the previous section, it 
is not uncommon for 107-108 iterations to be required for satisfactory convergence 
to the true posterior distribution. Using such methods for inference therefore has a 
computational complexity of 108-109 times that required to simulate the process. As 
if this were not bad enough, it turns out that MCMC algorithms are particularly diffi­
cult to parallelise effectively (Wilkinson 2005). One possible approach to improving 
the situation is to approximate the algorithm with a much faster one that is less ac­
curate, as discussed in Boys et al. (2004). Unfortunately even that approach does not 
scale up well to genuinely interesting problems, so a different approach is required. 

A similar problem was considered in Chapter 8, from the viewpoint of simula­
tion rather than inference. We saw there how it was possible to approximate the true 
Markov jump process by the chemical Langevin equation (CLE), which is the dif­
fusion process that behaves most like the true jump process. It was seen there how 
simulation of the CLE can be many orders of magnitude faster than an exact algo­
rithm. This suggests the possibility of using the CLE as an approximate model for 
inferential purposes. It turns out that the CLE provides an excellent model for infer­
ence, even in situations where it does not perform particularly well as a simulation 
model. This observation at first seems a little counter-intuitive, but the reason is that 
in the context of inference, one is conditioning on data from the true model, and this 
helps to calibrate the approximate model and stop MCMC algorithms from wander­
ing off into parts of the space that are plausible in the context of the approximate 
model, but not in the context of the true model. 

What is required is a method for inference for general non-linear multivariate dif­
fusion processes observed partially, discretely and with error. Unfortunately this too 
turns out to be a highly non-trivial problem, and is still the subject of a great deal of 
ongoing research. Such inference problems arise often in financial mathematics and 
econometrics, and so much of the literature relating to this problem can be foundin 
that area; see Durham & Gallant (2002) for an overview. 

The problem with diffusion processes is that any finite sample path contains an in­
finite amount of information, and so the concept of a complete-data likelihood does 
not exist in general. We will illustrate the problem in the context of high-resolution 
time-course data on the CLE. Starting with the CLE in the form of (8.3), define 
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observations as 

L(c;x) = 7r(xJc) 
n-1 

= 7r(xoJc) II 7r(X(i+1)2>tlxi2..t, c) 
i=O 
n-1 

= 7r(xoJc) II (27r.6.t)-uf2J,8(xi2..t, c)J-1/2 
i=O 

x exp { - ~t ( b.~:t - fJ-(Xi2.t, c)) 
1 
,8(xi2.t, c)-1 ( .6.~t 

- fJ-(Xi2,.t,C)) }· 

Now assuming that 1r( x0 I c) is in fact independent of c, we can simplify the likelihood 
as 

L(c; x) ex {}] J,8(xi2..t, c)J-112} x 

{ 1 ~ ( .6.Xi2,.t ) 1 
1 ( .6.Xi2,.t ) exp - 2 2o --s:i - fJ-(Xi2.t, c) ,8(xi2.t, c)- --s:i- fJ-(Xi2..t, c) 

.6.t}. (10.9) 

Equation (10.9) is the closest we can get to a complete-data likelihood for the CLE, 
as it does not have a limit as .6.t tends to zero. t In the case of perfect high-resolution 
observations on the system state, (10.9) represents the likelihood for the problem, 
which could be maximised (numerically) in the context of maximum likelihood esti­
mation or combined with a prior to form the kernel of a posterior distribution for c. In 
this case there is no convenient conjugate analysis, but it is entirely straightforward 
to implement a Metropolis random walk MCMC sampler to explore the posterior 
distribution of c. 

Of course it is unrealistic to assume perfect observation of all states of a model, 
and in the biological context, it is usually unrealistic to assume that the sampling 
frequency will be sufficiently high to make the Euler approximation sufficiently ac­
curate. So, just as for the discrete case, MCMC algorithms can be used in order to 
"fill-in" all of the missing information in the model. 

MCMC algorithms for multivariate diffusions can be considered conceptually in a 
similar way to those discussed in the previous section. Given (perfect) discrete-time 

t If it were the case that {3 ( x, c) was independent of c, then we could drop tenns no longer involving c to 
get an expression that is well behaved as b.t tends to zero. In this case, the complete data likelihood is 
the exponential of the sum of two integrals, one of which is a regular Riemann integral, and the other is 
an Ito stochastic integral. Unfortunately this rather elegant result is of no use to us here, as the diffusion 
matrix of the CLE depends on c in a fundamental way. 
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advantages of using a sequential algorithm is that it is very convenient to use in the 
context of multiple data sets from different cells or experiments, possibly measuring 
different species in each experiment. A discussion of this issue in the context of an 
illustrative example is given in Golightly & Wilkinson (2006). 

Given this discussion, it is clearly possible to develop a generic piece of software 
for inferring the rate parameters of the CLE for realistic experimental data (at the 
single-cell level) using MCMC techniques. At the time of writing, I am currently 
developing such an application (stochinf2), and a link to it will be posted on the 
website for this book when it becomes available. 

10.5 Network inference 

At this point it is worth saying a few words regarding network inference. It is cur­
rently fashionable in some parts of the literature to attempt to deduce the structure of 
biochemical networks ab initio from routinely available experimental data. While it 
is clearly possible to develop computational algorithms to do this, the utility of doing 
so is not at all clear due to the fact that there will typically be a very large number of 
distinct network structures all of which are consistent with the available experimen­
tal data (large numbers of these will be biologically implausible, but a large number 
will also be quite plausible). In this case the "best fitting" network is almost certainly 
incorrect. For the time being it seems more prudent to restrict attention to the less 
ambitious goal of comparing the experimental support for a small number of com­
peting network structures. Typically this will concern a relatively well-characterised 
biochemical network where there is some uncertainty as to whether one or two of 
the potential reaction steps actually take place. In this case, deciding whether or not 
a given reaction is present is a problem of discrimination between two competing 
network structures. There are a number of ways that this problem could be tack­
led. The simplest approach would be to fit all competing models using the MCMC 
techniques outlined in the previous sections and compute the marginal likelihoods 
associated with each (Chib 1995) in order to compute Bayes factors. More sophis­
ticated strategies might adopt reversible jump MCMC techniques (Green 1995) in 
order to simultaneously infer parameters and structure. In principle, the reversible 
jump techniques could also be used for ab initio network inference, but note well 
the previous caveat. In particular, note that inferences are sensitive not only to the 
prior adopted over the set of models to be considered, but also to the prior structure 
adopted for the rate constants conditional on the model. Simultaneous inference for 
parameters and network structure is currently an active research area. 

10.6 Exercises 

1. Pick a simple model (say, from Chapter 7) and simulate some complete data from 
it using the Gillespie algorithm. 

(a) Use these data to form the complete-data likelihood (10.2). 

(b) Maximise the complete data likelihood using (10.4). 
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possible to extend model calibration technology for the fitting of stochastic models, 
it is not straightforward to do so in practice. The development of fast and approx­
imate techniques for calibrating stochastic simulation models is currently an active 
res.earch area. 

In conclusion, this text has covered only the essential concepts required for begin­
ning to think seriously about systems biology from a stochastic viewpoint. The really 
interesting statistical problems concerned with marrying stochastic systems biology 
models to routinely available high-throughput experimental data remain largely un­
solved and the subject of a great deal of ongoing research. 
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</math> 
<listOfParameters> 

<parameter id="kl 11 value=- 11 1'' /> 
</listOfPararneters> 

</kineticLaw> 
</reaction> 

SBMLMODELS 

<reaction id="ReverseRepressionBinding" name="Reverse repression binding" 
reversible= 11 false 11 > 

<listOfReactants> 
<SpeciesReference species="P2Gene"/> 

</listOfReactants> 
<listOfProducts> 

<speciesReference species= 11 Gene 11 /> 
<SpeciesReference species= 11 P2 11 /> 

</listOfProducts> 
<kineticLaw> 

<math xmlns="http://www.w3.org/1998/Math/MathML"> 
<apply> 

<times/> 
<ci> klr </ci> 
<Ci> P2Gene </Ci> 

</apply> 
</math> 
<listOfParameters> 

<parameter id= 11 klr 11 value="10''/> 
</listOfParameters> 

</kineticLaw> 
</reaction> , 
<reaction id="Transcription 11 reversible= 11 false 11 > 

<listOfReactants> 
<SpeciesReference species="Gene"/> 

</listOfReactants> 
<listOfProducts> 

<speciesReference species="Gene"/> 
<SpeciesReference species="Rna"/> 

</listOfProducts> 
<kineticLaw> 

<math xmlns="http://www.w3.org/1998/Math/MathML"> 
<apply> 

<times/> 
<Ci> k2 </Ci> 
<Ci> Gene </Ci> 

</apply> 
</math> 
<listOfParameters> 

<parameter id= 11 k2 11 value= 11 0.01"/> 
</listOfParameters> 

</kineticLaw> 
</reaction> 
<reaction id= 11 Translation" reversible="false"> 

<listOfReactants> 
<speciesReference species="Rna 11 /> 

</listOfReactants> 
<listOfProducts> 

<speciesReference species= 11 Rna"/> 
<speciesReference species="P"/> 

</listOfProducts> 
<kineticLaw> 

<math xmlns="http://www.w3.org/1998/Math/MathML"> 
<apply> 

<times/> 
<Ci> k3 </Ci> 
<Ci> Rna </Ci> 

</apply> 
</math> 
<listOfParameters> 

<parameter id="k3" value=''10'' /> 
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<listOfReactants> 
<SpeciesReference species="P"/> 

</listOfReactants> 
<kineticLaw> 

SBMLMODELS 

reversible="false'' > 

<math xmlns="http://www.w3.org/1998/Math/MathML"> 
<apply> 

<times/> 
<Ci> k6 </Ci> 
<Ci> P </Ci> 

</apply> 
</math> 
<listOfParameters> 

<parameter id="k6" value="O.Ol"/> 
</listOfParameters> 

</kineticLaw> 
</reaction> 

</listOfReactions> 
</model> 

</sbml> 

A.2 Lotka-Volterra reaction system 

The model below is the SBML for the stochastic version of the Lotka-Volterra sys­
tem, discussed in Chapter 6. 
<?xml version=nl.O" encoding= 11 UTF-8"?> 
<Sbml xmlns="http://www.sbml.org/sbml/level2 11 level="2" version="l"> 

<model id="LotkaVolterra 11 > 
<listOfUnitDefinitions> 

<unitDefinition id="substance 11 > 
<listOfUnits> 

<unit kind=nitemn multiplier="l" offset="0 11 /> 
</listOfUnits> 

</unitDefinition> 
</listOfUnitDefinitions> 
<listOfCompartrnents> 

<compartment id="Cell"/> 
</listOfCompartments> 
<listOfSpecies> 

<species id= 11 Prey" compartment="Cell 11 initia1Amount="50 11 

hasOnlySubstanceUnits= 11 true 11 /> 
<species id=''Predator 11 compartment="Cell" initia1Amount= 11 100" 

hasOnlySubstanceUnitS= 11 true"/> 
</listOfSpecies> 
<listOfReactions> 

<reaction id= 11 PreyReproduction" reversible="false"> 
<listOfReactants> 

<speciesReference species="Prey"/> 
</listOfReactants> 
<listOfProducts> 

<speciesReference species= "Preyu stoichiometry="2 ''I> 
</listOfProducts> 
<kineticLaw> 

<math xmlns="http://www.w3.org/1998/Math/MathML"> 
<apply> 

<times/> 
<Ci> Cl </Ci> 
<Ci> Prey </ci> 

</apply> 
</math> 
<listOfParameters> 

<parameter id="cl" value="l"/> 
</listOfParameters> 

</kineticLaw> 
</reaction> 
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<listOfProducts> 
<SpeciesReference species="P2"/> 

</listOfProducts> 
<kineticLaw> 

<math xmlns="http://www.w3.org/1998/Math/MathML"> 
<apply> 

<times/> 
<Ci> Cell </Ci> 
<Ci> kl </Ci> 
<Ci> P </Ci> 

<Ci> P </Ci> 
</apply> 

</math> 
<listOfParameters> 

<parameter id= 11 kl 11 value="500000 11 /> 
</listOfParameters> 

</kineticLaw> 
</reaction> 
<reaction id= 11 Dissociation" reversible="false 11 > 

<listOfReactants> 
<SpeciesReference species="P2 11 /> 

</listOfReactants> 
<listOfProducts> 

<speciesReference species= 11 P" stoichiometry= 11 2 11 /> 
</listOfProducts> 
<kineticLaw> 

<math xmlns="http://www.w3.org/1998/Math/MathML"> 
<apply> 

<times/> 
<Ci> Cell </ci> 
<Ci> k2 </Ci> 
<Ci> P2 </ci> 

</apply> 
</math> 
<listOfParameters> 

<parameter id="k2" value= 11 0.2 11 /> 
</listOfParameters> 

</kineticLaw> 
</reaction> 

</listDfReactions> 
</model> 

</sbml> 

A.3.2 Discrete stochastic version 

SBMLMODELS 

The model below is the SBML for the discrete stochastic version of the dimerisation 
kinetics model, discussed in Section 7 .2. 
<?xml version="l.0 11 encoding="UTF-8 11 ?> 
<sbml xmlns="http: I /www. sbml.org/sbml/level2" level= 11 2 1' version="l"> 

<model id="DimerKineticsStoch" name="Dimerisation Kinetics (stochastic)"> 
<listOfUnitDefinitions> 

<unitDefinition id="substance· 11 > 

<listOfUnits> 
<unit kind="item 11 multiplier="1 11 offset= 11 0 11 /> 

</listOfUnits> 
</unitDefinition> 

</listOfUnitDefinitions> 
<listOfCompartments> 

<Compartment id="Cell 11 size= 11 1e-15"/> 
</listOfCompartments> 
<listOfSpecies> 

<species id="P" compartment= 1'Cell 11 initia1Amount="301" hasOnlySubstanceUnitS= 11 tru 
<species id= 11 P2 11 compartment= 11 Cell" initialAmount=" 0 11 hasOnlySubstanceUnits= 11 true 

</listOfSpecies> 
<listOfReactions> 
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exclusive, 46 
expectation, 58 
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exponential distribution, 77 
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simulation, 94 

first event method, 181 
first reaction method, 182 
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Markov 
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