AMMORTAMENTO A RATE POSTICIPATE CON TASSO FISSO

Sia il tasso di interesse riferito alla periodicità di pagamento delle rate (es. tasso annuo nel caso di rate annue, tasso mensile nel caso di rate mensili, ...)

Negli ammortamenti a tasso fisso l'operazione finanziaria di ammortamento x/t deve soddisfare la condizione di equità

$$W(0, x) = 0 \iff S - \sum_{k=1}^{m} R_k (1+i)^{-k} = 0$$

Rate d'ammortamento $R_k = C_k + I_k$ k = 1, ..., m

$$R_k = C_k + I_k$$

$$k = 1, ..., m$$

le **quote capitali** tali che $\sum_{k=1}^{m} C_k = S$ essendo C_k

$$\sum_{k=1}^{m} C_k = S$$

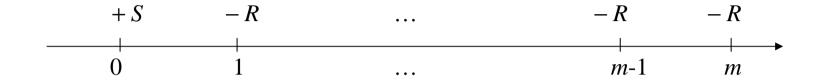
le quote interessi

Ammortamento a rate posticipate con tasso fisso

Si definisce D_k debito residuo in k dopo il pagamento della rata R_k , k = 1, ..., m

$$D_k = S - \sum_{h=1}^k C_h = \sum_{h=k+1}^m C_h$$
 $k = 1, ..., m-1$
$$D_0 = S, \quad D_m = 0$$

La quota interessi I_k matura nell'intervallo [k-1, k] sul debito residuo D_{k-1}


$$I_k = i D_{k-1} \qquad k = 1, \dots, m$$

Ammortamento a quote capitali costanti a tasso fisso

Le quote capitali C_k , k = 1, ..., m, sono tali che

$$C_1 = C_2 \dots = C_m = \frac{S}{m}$$

Ammortamento a rate costanti a tasso fisso

Si determina R tale che

$$W(0, \mathbf{x}) = 0 \quad \Leftrightarrow \quad S - \sum_{k=1}^{m} R(1+i)^{-k} = 0 \quad \Leftrightarrow \quad S - R \ a_{\overline{m}|i} = 0$$

$$con a_{\overline{m}|i} = \sum_{k=1}^{m} (1+i)^{-k} \Rightarrow a_{\overline{m}|i} = \frac{1-(1+i)^{-m}}{i}$$

LE FUNZIONI DI EXCEL PER GLI AMMORTAMENTI

Sono le funzioni: PMT, PPMT e IPMT.

LA FUNZIONE PAYMENT (PMT)

È la funzione già vista per calcolare la rata di una rendita a rata costante di valore attuale o di montante assegnato.

Può essere utilizzata per calcolare la rata di ammortamento costante.

PMT (rate; nper; pv; [fv]; [type])

rate è il tasso di interesse

nper è il numero delle rate di ammortamento

pv è l'ammontare del debito iniziale

fv è l'eventuale saldo dopo avere effettuato il pagamento dell'ultima rata

type 0 oppure omesso, trattandosi di rate di ammortamento posticipate

$$R = \frac{S}{a_{\overline{m}|i}} = \text{PMT } (i; m; -S)$$

LE FUNZIONI PPMT E IPMT

La funzione PPMT calcola una assegnata quota capitale in un ammortamento a rata costante.

La funzione IPMT calcola una assegnata quota interessi in un ammortamento a rata costante.

PPMT (rate; per; nper; pv; [fv]; [type])

IPMT (rate; per; nper; pv; [fv]; [type])

rate è il tasso di interesse

per è il periodo cui si riferisce la quota capitale o la quota interesse e deve essere

compreso tra 1 e nper

nper è il numero delle rate di ammortamento

pv è l'ammontare del debito iniziale

fv è l'eventuale saldo dopo avere effettuato il pagamento dell'ultima rata

type 0 oppure omesso, trattandosi di rate di ammortamento posticipate

Le funzioni di Excel per gli ammortamenti

Esempio di ammortamento con saldo finale

Si determina R tale che

$$W(0, \mathbf{x}) = 0 \iff S - R \ a_{\overline{m|i}} - F(1+i)^{-m} = 0 \iff R = \frac{S - F(1+i)^{-m}}{a_{\overline{m|i}}}$$

Si possono calcolare le rate, le quote capitali e le quote interessi nel seguente modo:

$$R = - PMT (i; m; S; -F)$$
 $C_k = - PPMT (i; k; m; S; -F)$
 $k = 1, ..., m$
 $I_k = - IPPMT (i; k; m; S; -F)$
 $k = 1, ..., m$

AMMORTAMENTO A RATE POSTICIPATE CON TASSO VARIABILE

Rate d'ammortamento $R_k = C_k + I_k$ k = 1, ..., m

$$R_k = C_k + I_k$$

$$k = 1, ..., m$$

essendo C_k le **quote capitali** tali che $\sum_{k=0}^{m} C_k = S_k$

$$\sum_{k=1}^{m} C_k = S$$

 I_k le quote interessi

Sia

j(k, k+1) il tasso di interesse relativo al periodo (k, k+1), k = 0, ..., m-1

la quota interessi I_k matura nell'intervallo $\left[k-1,k\right]$ sul debito residuo D_{k-1}

$$I_k = j(t_{k-1}, t_k)D_{k-1}$$

$$k=1,\ldots,m$$

$$D_{k-1} = S - \sum_{h=1}^{k-1} C_h = \sum_{h=k}^{m} C_h$$

dove $D_{k-1} = S - \sum_{k=1}^{k-1} C_k = \sum_{k=1}^{m} C_k$ è il **debito residuo** in k-1 dopo il pagamento della

rata
$$R_{k-1}$$

Ammortamento a "rate costanti" a tasso variabile (ES. 1)

Sia j(0,1)il tasso di interesse relativo al primo periodo, riferito alla periodicità di pagamento delle rate

Si determina la prima rata di ammortamento R_1 tale che $S - R_1 a_{m|i(0,1)} = 0$

Si ha

$$I_1 = j(0,1) S$$
 $C_1 = R_1 - I_1$

$$C_1 = R_1 - I_1$$

Si calcolano quindi tutte le quote capitali: $C_k = C_1(1+j(0,1))^{k-1}$ k=2,...,me le quote interessi

$$I_k = j(t_{k-1}, t_k)D_{k-1}$$
 $k = 1, ..., m$

essendo
$$D_{k-1} = S - \sum_{h=1}^{k-1} C_h D_k$$

Ammortamento a "rate costanti" a tasso variabile (ES. 2)

Sia j(0,1)il tasso di interesse relativo al primo periodo, riferito alla periodicità di pagamento delle rate

Si determina la prima rata di ammortamento R_1 tale che $S - R_1 a_{m|i(0,1)} = 0$

Si ha

$$I_1 = j(0,1) S$$

$$C_1 = R_1 - I_1$$

$$I_1 = j(0,1) S$$
 $C_1 = R_1 - I_1$ $D_1 = S - C_1$

Si determina la R_2 tale che $D_1 - R_2 a_{\overline{m-1}|j(1,2)} = 0$

$$D_1 - R_2 \ a_{\overline{m-1}|j(1,2)} = 0$$

