RILEVAZIONE DELLA MORTALITÀ IN AMBITO ATTUARIALE

Rilevazioni trasversali (cross-sectional studies)

Si individua il gruppo di studio, cioè un gruppo di individui per i quali interessa studiare la sopravvivenza (tipicamente gli assicurati di una compagnia di assicurazione, gli iscritti ad un fondo pensione, ...).

Si fissa un <u>periodo di osservazione</u> durante il quale viene osservato il gruppo di studio; di solito si osserva la collettività per 3-5 anni.

All'inizio dell'osservazione ci saranno individui già presenti, ai quali se ne aggiungeranno altri durante il periodo di osservazione;

alcuni individui possono uscire per causa diversa dal decesso durante l'osservazione, per esempio perché è scaduto il contratto di assicurazione, oppure perché è stata riscattata la polizza;

ci saranno individui ancora in vita al termine dell'osservazione.

Si può considerare come <u>istante iniziale</u> l'età minima di ingresso in assicurazione, oppure un'età minima a partire dalla quale si dispone di osservazioni.

Generalmente si ha a che fare con dati **incompleti**:

se non è osservato l'istante iniziale, l'<u>osservazione</u> è detta <u>troncata a sinistra</u> se non è osservato il decesso, l'<u>osservazione</u> è detta <u>censurata a destra</u>

Obiettivo: stimare q_x o m_x per $x = a, a + 1, ..., \omega$ essendo a l'età minima.

Osservazione: Nei modelli di sopravvivenza non parametrici la stima del modello avviene separatamente per ciascuna classe di età

Supponiamo di disporre di <u>dati individuali esatti</u>, cioè per ogni individuo osservato *i* sono noti:

- data di nascita
- data di ingresso in osservazione
- data di uscita dall'osservazione
- causa di uscita, che può essere: fine osservazione (survival)

decesso (death)

altra causa (withdrawal)

Per ogni individuo osservato *i* si determina il **vettore delle età**:

$$(y_i, z_i, \theta_i, \phi_i,)$$

essendo

- y_i l'età esatta (anno intero + frazione d'anno) di ingresso in osservazione
- z_i l'età esatta che l'individuo i avrà alla data in cui terminerà la sua osservazione (può essere la data di fine rilevazione della collettività, oppure la data di scadenza della polizza); è detta **età di uscita pianificata**
- θ_i l'età esatta di uscita per morte ($\theta_i = 0$ se l'individuo i non è uscito per morte)
- ϕ_i l'età esatta di uscita per altra causa ($\phi_i = 0$ se l'individuo i non è uscito per altra causa)
- $(y_i, z_i]$ è detto intervallo di osservazione pianificata per l'individuo i

Per ogni individuo osservato si determinano le classi di età]x, x+1] per le quali l'individuo ha contribuito all'osservazione

Con riferimento alla classe di età]x, x+1] ed all'individuo i, caratterizzato dal vettore delle età $(y_i, z_i, \theta_i, \phi_i,)$

l'individuo i non contribuisce alla osservazione per la classe di età]x, x+1] se:

- $y_i \ge x + 1$
- $z_i \leq x$
- $0 < \theta_i \le x$ oppure $0 < \phi_i \le x$

Se l'individuo i contribuisce alla osservazione per la classe di età]x, x+1]

tale osservazione, relativa alla classe di]x, x+1], è riassunta da un vettore detto vettore delle durate

Per ogni classe di età]x,x+1] e per ogni individuo i che contribuisce alla osservazione per tale classe di età si determina il **vettore delle durate**

$$(r_i, s_i, t_i, k_i,)$$

essendo

 $x + r_i$ l'età esatta di ingresso in osservazione nella classe di età]x, x + 1] con $0 \le r_i < 1$ e

$$r_i = \begin{cases} 0 & \text{se } y_i \le x \\ y_i - x & \text{se } x < y_i < x + 1 \end{cases}$$

 $x + s_i$ l'età esatta pianificata di uscita dalla osservazione per la classe di età]x, x + 1] con $0 < s_i \le 1$ e

$$s_i = \begin{cases} 1 & \text{se } z_i \ge x+1 \\ z_i - x & \text{se } x < z_i < x+1 \end{cases}$$

 $x + t_i$ l'età esatta di uscita per morte se $\theta_i = x + t_i$, altrimenti $t_i = 0$

 $x + k_i$ l'età esatta di uscita per altra causa se $\phi_i = x + k_i$, altrimenti $k_i = 0$