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CLUSTER FORMATION

Lynden-Bell (1967). Theory of the “Violent Relaxation”.
The variation of energy of a galaxy depends only on the
variation of the global potential (see Binney & Tremaine text, too).

dE/dt ~dPhi/dt Phi=global cluster potential

— We expect velocity equipartition among galaxies
And Maxwellian distribution of velocities (Gaussian in 1D, i.e. line-of -
sight).

In the case galaxies and gas form the cluster ssmultaneously, we expect
density energy equipartition between galaxies and gas, e.g. Sarazin
(1986).

Bee=0, /(KT pm)=1

Old data — beta spec>1...now ~1



o, and Tx give the measures of the energy per unit mass of
two different cluster components (galaxies and gas)
B_spec=c *o [[kT/(molec-weight* proton-mass)]

Model of gals/I CM specific energy equipartition B_spec=1

Velocity Dispersion and X-ray Temperature
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MG+1996,1998

| extra-heating model for gas e.g. gal. winc

NEED TO BE RE-ANALYZED!

Dynam. friction slows down group gals?
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Clustersfar from dynamical equilibrium deviate from
o -Tx Relation”? NO!

. Using cooling times by
- NO Cooling core clusters { Allen & Fabian 98;Peres et al. 98
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Within hierarchical cosmological scenario, clusters
Are though to form through the merger of smaller systems, likely at the intersection of the large scale
structure (LSS).

Kravtov & Borgani 2012
A&A Annua Review 12

Cluster merger is an ongoing process, with alot of
observational evidence in both local and distant Universe.
A connected feature is the presence of SUBSTRUCTURE.

OPTICAL STUDIES FROM GALAXIES >50%

of clusters show substructure

(small substructure ~10% of the total mass)

Magjor substructure (=major merger) only in 10% of clusters.

Methods of detection:

1D in the velocity space

2D gals density onto the sky

3D correlation between position and velocity

SUBSTRUCTURE MAY BE:

*cluster mergers,

*subsystems with system already relaxed (remnant),
*bound group that will merge,

* unbound group, projected onto the cluster.



Since the violent relaxation theory — Gaussian 1D velocity distribution
1D —tests often based on Gaussian.
Thisisinstead the result for a non-parametric adaptive method of galaxy density
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2D analysis.
Galaxy density isocontours.

Geller 1982.
For alogal, cluster.
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CLASH-VLT dataMACS J0416 at z=0.4 bu/o,

And Abell 209 at z=0.2 e o o
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Cluster mergers can stop or enhance the star formation in galaxies.

Debate in the literature.
Caldwel[+1993 Post Starbust (PSB) galaxies and cluster mergers
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Boschin, MG, Barreng, et al. 2004, AA, 416, 839)
TNG/Dolores +CFHT multiobject spectroscopy
SE-NW cluster and cD _elongation

A2219 z~0.22
Radio halo

~14OO kms—l

Spftn&ssran..o map cold filament where active galSTe. o
" Recent discover of acold front (Million & Allenetal- 09). o




X-ray morphology
Forman 1984
Rosat data.
Surface brightness
contours.
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Temperature
maps overlaid
To brightness

| socontours.
Bourdin and

M azzotta 2008.

A cool core
Isasign
of arelaxed cluster.




Buote 2002. A scenario for cluster evolution.

Major Merger
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Fugure 1.17. A possible description of the evolution of the X-ray tem perature struc-
ture and image morphology during the formation and evolution of a cluster.
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