APPENDIX A

A.1 CIRCLE EQUATIONS:
BILINEAR TRANSFORMATION

The distance between two complex points z and z, is |z — zo|. Therefore, it fol-
lows that the equation of a circle of radius r with center at z, is given by

lz—z|=7r (A1)
Letting z = x + jy and z, = X, + jy,, (A.1) can be expressed in the form
G = x) + oy =yl = r
or
fr = 24y = p = (A2)

which is the well-known Cartesian representation of a circle centered at (X, o)
with radius r.

Another representation of the circle equation is obtained by squaring
(A.1)}—namely,

- of=p
-z z—rF=F
G2 =~
Multiplying the left-hand side gives
P~ 2t~ F g = (A.3)
The terms zz* + z*z, can also be written as 2Re[zz*]. Hence, another form

of (A.3)is

L
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2P — 2Refzz8] + [ f2 = 7*
Several relations in this book involve algebraic manipulations that lead
to circle equations. In fact, several relations are of the form
“lgz +-b
e% +7d

w (ad — be # 0) (A4)

which is recognized as the bilinear transformation. The bilinear transforma-
tion transforms (or maps) circles in the w plane into circles in the z plane, and
vice versa.

For example, consider the transformation of the circle [w| = @ into the z
plane. From (A.4),
az + b
cz +.d

2: az + b\faz + b\*
cz +df\ez+d

alezf? + |d + czd* + c*z*d] = lazf? + b + azb* + a*z*b

W =a= (A.5)

Then

az + b
cz+d

a? =

which can be expanded as

or
|2PllaP — @] — zla’ed® — ab*] = 2*[a2c*d — a*b] + b — ofdP? =0
Finally, we write the preceding expression in the form

Zd*__b* 2% — gth 112 . ~2l a2
\z|2—z[a—c———£—}—z*[a6d : }“b\ ﬂzlldi:[] (A.6)

laP — a?c? a2 = ol laf? — a cf?

Comparing (A.6) with (A.3),it follows that (A.6) is the equation of a cir-
cle centered at

a2c*d — a*b
Lo = \-51'.2 = az'lclz (A7)
and the radius of the circle is obtained from the relation
| b|2 S i'Z
2= - bR gld (A.8)

laf — oicf
Substituting (A.7) into (A.8) gives

a?c*d — a*b|>  |bP — oFdl® _ «?ad — bef
Mz e a?‘lcF la‘z e az\dz = “a‘z v (x2'|c|]212

rz._—

or
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_ dlad — bc| (A.9)

* lal? = a2

Next we consider the transformation of a circle in the w-plane centered
at w, with radius a. That is, for |w — w,| = a we write, from (A.4),

az + b (g = cw )z%dh —dw )
w—w, = —w, =
cz +d cz+d
Defininga’ = a — cw, and b’ = b — dw,, we have
aiz _’_ b!
Wi,
cz +d
Then
aFZ + b!
cz+d

(A.10)

0‘ =5

|W—W

and it follows that the center and radius of the circle in the z plane are given by
(A.7) and (A.9), with a replaced by a’ and b replaced by b'—namely,

i a’ctd — (a')*b'

= Al
<o |a'|2 B a2|c|2 ( )
and
a¥a'd — b'c|
e A2
o~ ] e
A.2 DERIVATION OF THE INPUT AND OUTPUT STABILITY
CIRCLES [EQUATIONS (3.3.5) AND (3.3.6)]
From (3.3.3), the values of I';, that produce \I“;m| =1are
8585, Sy Al
=T | & 221 L | — 11 L A13
‘FIN| B L= SzzI“;, e Szer ( )

which is recognized to be a bilinear transformation. Comparing (A.13) with
(A4) (withT, = zand I'y = w), it follows thata = —A,b = Sy1,¢ = —822, and
d = 1.The transformation (A.13) maps the circle [ = 1 into a circle in the I';
plane whose center and radius are given by (A.7) and (A.9), respectively. From
(A.7), denoting the center by C., we obtain

_c*d — a*b __S,jfz + A8 (S~ AS* "

g i b e )t
LT laP = 1cF T AP = ISP 1S* — |42

and, from (A.9), denoting the radius by 7, we obtain

_ lad — bcf S < 1)
R " S R O T B [ g
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The circle in the 'y plane is given by
IF. - C d=r

which is recognized as (3.3.5). The derivation of (3.3.6) is similar.



APPENDIX B

STABILITY CONDITIONS

The necessary and sufficient conditions for a two-port network to be uncondi-
tionally stable can be derived from (3.3.1) to (3.3.4) (Kurokawa [B.1] and Ha
[B.2]). An alternate derivation of the stability conditions begins with (3.3.11)
and (3.3.12). Both derivations are now presented.

FIRST DERIVATION

The conditions for a two-port network to be unconditionally stable are given
in (3.3.1) to (3.3.4)—namely,

Ir| <1 (B.1)
Ir] <1 (B2)
- Slzszlrl.
Tinl = |S11 N T o6 ST, <1 (B.3)
and
o
Dotn = [8ss + a2l 2]y (B.4
r OUT‘ 22 s S]_leF )

Equations (B.2) and (B.3) state that for all passive load impedances, the real
part of the input impedance must be positive; while (B.1) and (B.4) state that
for all passive source impedances, the real part of the output impedance must
be positive. ¥
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Starting with (B.3), we can write the inequality in the form

S8l | _ |Su — 4T, A — AT S5 + 881,
1-38x 1-8,I Szz(l = 55,1p)

i (B.5)

where
A=58,5, - S1282

Hence, we need to determine the conditions that the S parameters must satisfy
so that (B.5) holds for all values of I';, such that IC2| < 1[ie.,s0 that (B.2) is sat-
isfied]. To this end, we write (B.5) as

lz| <1 (B.6)

where

1 S12521
2=—|4 + —=— (B.7)
Szz( 1= 8pI0

Next, we analyze the bilinear transformation in (B.7) to determine the mapping
of the unit circle |T'z| = 1 on the z plane. The mapping of [Tz| = 1 on the z plane
according to (B.7) can be viewed as a series of successive mappings. That is, let

1
z = =i+ q) (B.S)
S5
where
S12521
— f
4 S 8125,
e e
1 = ngter W
and
w=1-—8,I";

The transformation w = 1 — S»I; is a translation that maps the unit
circle [['z| = 1 onto the w plane as a circle, centered at 1 with radius [Sx| (see
Fig. B.1a). The inverse transformation

e
IR R Y
produces the mapping shown in Fig. B.1b. The center C; is located on the real
axis at the midpoint between 1/(1 — |S»|) and 1/(1 + |S2|). That is,
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Figure B.1 (a) Mapping of [I'z] = 1 on the w plane, where w = 1 — $»I';; (b) map-
ping of [T';| = 1 on the ¢ plane, where ¢ = 1/w; (¢) mapping of the |l",r_| = 1plane on the
q plane, where g = S12521; (d) mapping of the [T';| = 1 plane on the z plane, where
z=18»(4 + g).

oo e lekior gy Bitlow i
1_2 1_‘522‘ i 522‘ _1_ 522‘2

The radius r is given by

P 1 e 1 o 152
. | k= ‘522‘ I |Szz‘ 1o |Sgg|2
Then, the transformation

=8 h"S [ e
q 12221 T Szzrf_.
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produces the mapping shown in Fig. Bilc. That is, the unit circle \I‘L\ = 1 maps
into a circle in the ¢ plane centered at
_ SuSy
QIR
22

with radius

e ‘SlstISzzt
= |522\2

The equation of the circle in the g plane can be expressed in the complex form

r

q=C,+ re’
i S1281 g |5125215222\ oif (B.9)
= ‘Szz| 4 ‘Szz]
where @ varies from 0 to 2.

Finally, from (B.9) and (B.8), we see that the unit circle [z = 1is mapped
into a circle in the z plane, centered at Cs with radius rs, given by

7= Cy+ rye® (B.10)

where
Sa8
Gi= -;—(A ot 5 _”El F)

22 \ 22
and

ik ISuSzll

: s ‘SzzF

The mapping is shown in Fig. B.1d.

From (B.10), we observe that |z| has its largest value when. 0 is equal to the
phase of the C; term. It follows that regardless of the value of 6, the inequality
2| < 1[i.e., (B.6)] is satisfied when

l_l_ (A » S12521 )l+ 11252 <1 (B.11)
S» e 1512\.2 e ls‘mltz :

1 (A 512521 ) Sy - A55,
2

Since

3, iy lSzzF : e ‘52212
we can write (B.11) in the form

Si A AS;'E' ‘512521[

— 4= ISﬂF

1 15aP |

(B.12)
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To further manipulate (B.12), we must square both sides of the inequal-
ity. However, we first observe that the left-hand side of the inequality is posi-
tive. Therefore, the right-hand side must also be positive. That is,

5,08
_ } 12. 21!2 >0
L= ngz]
or
18,84 < 1 — |8,,P (B.13)

Using the property that if a < b with @ >0 and & > 0, then @2 < b2, we can

write, from (B.12),
2 o }512521'2 3
1= |8,

811 — ASHP < (1 — S = [51:84])° (B.14)

The term in the left-hand side of (B.14) can be written in the form (see Prob-
lem 3.20)

Sy — Asng
I'-c"zzl2 |

é

or

11, — 4S5 = 8,5, + (1 — [8,,P)(S,F — |4P) (B.15)
Substituting (B.15) into (B.14) gives
81282l + (1 = [S2P)(83,F = [4P) < (1 = 857 = 2(1 = [8,P)8128l + 181254
Simplifying, we obtain
ISP — 4P < 1 = [8,,f — 2i8,,8,|
which can be expressed in the form
K>1
where K is
15yl - I8,f + 4P
i 2[5 .

Thus far, we have shown that (B.2) and (B.3) are satisfied when the S pa-
rameters satisfy (B.13) and (B.16). Starting with (B.1) and (B.4), the derivation
is similar. In fact, it follows that the conditions for unconditional stability at the
output port are simply obtained by interchanging Si; by $2; and S2; by Sy in
(B.13) and (B.16)—that is, when

Isus;n] L ae |Sn|2 (B-”)

(B.16)

and

K>1
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In conclusion, from (B.13), (B.16), and (B.17), the two-port network is un-
conditionally stable when
B 4 o lSn‘z » L522|2 + \Aiz
3 218,28,
15125111 % |S11F

and

‘512521‘ e Mgy lSzziz

SECOND DERIVATION

The conditions for a two-port network to be unconditionally stable can be ex-
pressed in the form given in (3.3.11) and (3.3.12)—namely,

1§, < 1 (B.1R)
with
ICyl = > 1 (B.19)
or
P 0 B4 (B.20)
and
182 1 (B:21)
with
lc|—r,>1 (B.22)
or
r,—|C|>1 (B.23)

where Cy, r1, C,, and r; are given by (3.3.7) to (3.3.10).

Equation (B.19) states that the output stability circle is completely out-
side the Smith chart (see Fig. B.2a), and (B.20) states that the output stability
circle completely encloses the Smith chart (see Fig. B.2b). Equation (B.18)
makes the inside of the Smith chart the stable region (see Figs. B.2a and B.2b).
Equations (B.21), (B.22), and (B.23) place similar conditions on the input sta-
bility circle.

Substituting (3.3.7) and (3.3.8) into (B.19) gives

522 = AS?.IFI I|S12521|
|522‘2 i I|A|2 !Szzil2 = ]AF

In writing (B.24), we used the fact that when the origin is not enclosed by the
output stability circle, it follows that |Sy,| > || (see Problem 3.11). Therefore,

>1 4 (B.24)
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OQutput
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Figure B.2 (a) A typical output stability circle outside the Smith chart for uncondi-
tional stability; (b) a typical output stability circle enclosing the Smith chart for un-
conditional stability.

the term [S12521/(|S222 — |4?) (which is the expression for rz) is positive. We can
then square both sides of (B.24) to obtain

S5, — ST > (IS5f — 4P + 1S1285])? (B.25)
Using the identity (see Problem 3.20)
855 — ASTHE = |S12521|2 + (1~ |Su(Sxf% = 4P (B.26)

we can write (B.25) in the form
1812521 + (1 = [S1,P)(Sl* = [4P) > (S, — |4[?)?
+ 2085 — [AP)S 28| + [S128F
Simplifying, we obtain
1 = |85;P > |y = JAP + 215,85,

or simply
hiz ]Sn’z i Iszzfz 2] |A'2
- >1 B.27
aSal el
Next, sybstituting (3.3.7) and (3.3.8) into (B.20) gives

522 55 Asﬁ JSIZSZii
< -1 B.28
5P — 1P| S P - 5.7 ()

In writing (B.28), we used the fact that when the origin is enclosed by the output
stability circle, it follows that |$y;| < |4| (see Problem 3.11). Therefore, the term
1S12821//(J4? — |S22P) (which is the expression for r.) is positive. Since the left-
hand side of (B.28) is positive, the right-hand side must also be positive. That is,

L
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LA
—_——wlz ij ig;z = § P4
or
il | (B.29)
181282 |

Using the property thatifa < b witha > Oand b > 0,then a” < b%, we can
square (B.28) to obtain

;522 - 515;1*112 < (2512511! - 'Atz + |S:z!2)2 (B:30)
Substituting (B.26) into (B.30) gives
[81252f + (1 = [SuP)(SnP - A42) < |88,
- 2|Slzszﬂ(ié”2 - iszzﬂz) + (\Ai: - ‘Szzlz)z
Simplifying, we obtain
~1 + |8y, < —=2I8,,8,| + 4P = |SF
or simply
L = !S.J"’ B gS::F + 'AF .

: > 1
|
218128,

K

which is the same condition as (B.27). Thus far, we have shown that atwo-port net-
work is unconditionally stable when the conditions K > 1and (B.29) are satisfied.

Next, we will show that the inequality (B.29) can be expressed as the in-
equality in (B.17). To show this, we write (B.27) in the form

] = |~S11Lz i*f]t: = LSMF

- 11282 ' 18128 ] el
Since from (B.29) the last term in (B.31) is less than 1, we can write
4P — [S,,2
ﬁ =1—-a (B.32)
where a is a positive number smaller than 1. Substituting (B.32) into (B.31) gives
L::-Si =2Kk~-1+a (B.33)
151251
Since K > 1, we conclude from (B.33) that
L= ‘\Sui:
1S128] -~

or

1S.,8,,| <1 — |8,/ (B.34)
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We should also observe that since S5/ is positive, the condition [Sii| < 1 is
implied by (B.34).

Starting with (B.22) and (B.23), the derivation is similar, and we obtain
the conditions

E ]
and
MF 3 [SEI‘Z
1S125,

Following similar steps to those in (B.31) and (B.34), the inequality (B.35) can
be expressed as

<1 (B.35)

19128 <1 = |8, (B.36)

In conclusion, from (B.27), (B.34), and (B.36), the two-port network is un-
conditionally stable when

K> 1
S8yl <1 = |S;,P

and

1282 <1 — |8

v .lER DERIVATIONS

The stability criterion of active two-port networks has also been analyzed by
‘other researchers working in active network theory. Their results are usually
given in terms of z, y, or h parameters. For those who want to delve further
into this topic the papers by Ku [B.3, B.4] and the textbook by Mitra [B.5] are
recommended.
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APPENDIX C

UNCONDITIONAL STABILITY
CONDITIONS: K > 1
AND B, > 0

From (3.3.17), we have
4| = Isnszz = 818 = ISnSzzll + ESuSJ.li

and
AP = .lsni’rz?..iz = 23511522”512321! + 5512521.13
Then
Bir=ilige |S!1F b iszzz 2 |IAI2
[y i e 6% (G
=1+ .'Sn! 3 .|S:2.' = !511522.| 7 2;‘Sr1‘g22|.'512521.| iy !SIZSEI!
Using (3.3.15)—namely,
b iszzlz = iS‘lESZI‘
we can express the inequality in (C.1) as
B, > !511?2 * !SIESZI! T |511522||:3 3 2||~5‘11512|.|S1z-5'211| i lSlZS?,l!:{
B] = 5125‘21':(1 L 21511‘5‘224 = Hslz‘gzlll) + :S'HF(] & %5'32'!2)
"”1 = |I512521.i[1 "3 2|'511~5"23.i T (1 1 !Szz.iz)] g2 iSn!lziS]zSzzi
B.l = ?-9125‘2n|(_2!51m522l + ISzz!z + f-qlt!z)
or
B, > iSuSsz(iS:z.iz ol (C4)

The right-hand side of (C.4) is greater than zero. Hence,
462
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M
gjmilarly, using (3.3.14), it follows that
Bo=1F \.Szellz = lllslilll?' = ILAF >0
shown that if B1>0, then B2 = 0, and vice versa.
(331 3), (3.3.14). and (3.313)

In Problem 313 it is
e unconditional stability conditions in

ressed as K>=>1an

and B2~ 0.

Hence th
dBl}O,orasK>].

can be eXp

LG



APPENDIX D

DERIVATION OF THE
UNILATERAL CONSTANT-GAIN
CIRCLES [EQUATION (3.4.10)]

From (3.4.9),

] o \[‘le le |2
8= |1 —STP (1 = [5:°)

il Tl

Then
ga(l g ‘SrfriF 5 Sr‘frr' i S?ra‘k) =] - “—‘:'|2 o I15‘;':'12 * lr:.\zlSii‘Il

=

Factoring |2, we can write

\Fflz(l 3 ‘Sr‘£|'2 .3 gr"S:’ilz) . gr'Sifrr' = g.S-‘T’-" el il /e ISI2

iy I i

or

88l g5} 1—g —|SP

=i = 11
-5l -g) 1-Srd-g) 1-1850-g)
Comparing (D.1) with the circle equation (A.3), it follows that the center of the
circle, denoted by C,,, is

Irf - (D.1)

C, = 8:Si (D.2)
£ 1-|sf01-g) -
and the radius r,, follows from
g = i Sir'2
7 -lcP= 8~ |84 (D.3)

" i 1571 - g)
Substituting (D.2) into (D.3) and simplifying gives
464
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- V1 _E(l == lSﬁlz)
o 1= |S¢':"2{1 - &)
Hence, the constant-gain circles are given by
L, =C.l=r,




