Economic Applications

- Traveler's dilemma Game
- Beauty Contest
- Cournot Model of Duopoly
- Bertrand Model of Duopoly
- Final Offer Arbitration
- The problem of the Commons

Traveler's Dilemma Game

Game: two players independently and simultaneously choose integer numbers between 180 and 300. Let be n_1 and n_2 the numbers chosen, respectively, by player 1 and player 2

Payoff: both players are paid the lower of the two numbers, and an amount $R > 1$ is transferred from the player with the higher number to the player with the lower number.

```
For instance:
player 1 chooses 210
player 2 chooses 250,
player 1 receives payoffs of 210 + Rplayer 2 receives 210 - R
```
Normal form game representation

Players: Player 1 and Player 2 Strategies: $S_1 = \{180, 181, \ldots, 300\}$ i.e. $S_1 = n_1$ S_2 ={180, 181, …., 300} i.e. $s_2 = n_2$ Payoff:

 $\pi_1 = n_1 + R$ if $n_1 < n_2$ $\pi_1 = n_1$ if $n_1 = n_2$ $\pi_1 = n_2 - R$ if $n_1 > n_2$

 $\pi_2 = n_2 + R$ if $n_2 < n_1$ $\pi_2 = n_2$ if $n_2 = n_1$ $\pi_2 = n_1 - R$ if $n_2 > n_1$

Solution

Best responses of player 1 If $n_1 > n_2$ $\pi_1 = n_2 - R$ If $n_1 = n_2$ $\pi_1 = n_2$ If $n_1 < n_2$ $\pi_1 = n_1 + R$ If $n_1 = n_2 - x$ $\pi_1 = n_2 - x + R$ To play $n_1 = n_2$ is strictly better than $n_1 > n_2$ because $n_2 > n_2 - R$

To play $n_1 < n_2$ is strictly better that $n_1 = n_2$ if $x < R$ because in this case $n_2 - x + R > n_2$

Given that payoff is decreasing in x the best response is

$$
n_1=n_2-1
$$

Repeating this reasoning for player 2 we find that player 2's best response is:

$$
n_2=n_1-1
$$

There is an unique Nash equilibrium:

$$
n_1^* = n_2^* = 180
$$

The payoff is $\pi_1^* = \pi_2^* = 180$

Suppose that a player plays an higher number, his payoff reduces to $180 - R$. Then there are not profitable deviations.

So the strategy profile $n_1^* = n_2^* = 180$ is Nash equilibrium

There are other Nash equilibria?

No because the best response is to pay one unit less than the opponent

Suppose player 1 plays $n_1 = 300$

The best response of player 2 to $n_1 = 300$ is $n_2 = 299$ The best response of player 1 to $n_2 = 299$ is $n_1 = 298$ The best response of player 2 to $n_1 = 298$ is $n_2 = 297$ ……. repeating we get:

The best response of player 2 to $n_1 = 182$ is $n_2 = 181$ The best response of player 1 to $n_2 = 181$ is $n_1 = 180$ The best response of player 2 to $n_1 = 180$ is $n_2 = 180$ The best response of player 1 to $n_2 = 180$ is $n_1 = 180$ Starting with Player 2 we get the same result

Beauty contest

In the *p*-beauty contest game *n* participants are asked to simultaneously submit a number between 0 and 100. The winner of the contest is the person(s) whose number is closest to p times the average of all numbers submitted

.

Normal form game representation

Players: *n* individuals denoted by $i \in \{1, 2, ..., n\}$ Strategies: $s_i \in S_i = \{0, 1, ..., 100\} \forall i \in \{1, 2, ..., n\}$

Payoff:

$$
\pi_i = k > 0
$$
 if s_i is the closest to $p \frac{\sum_i s_i}{n}$ otherwise $\pi_i = 0$.

Solution

Best responses of player i is to submit a number that is equal to p times the average of all submitted numbers, i.e.:

$$
s_i = \frac{\sum_{j=1}^n s_j}{n} p
$$

Then her best response is

$$
s_i = \frac{p \sum_{j \neq i} s_j}{n - p}
$$

best response is $s_i =$ $p\sum_{j\neq i} s_j$ $n-p$

Suppose $p < 1$

The best response is to play a number that is smaller than p times the average of the others' numbers

1. A strategy profile where there are at least two players playing different numbers is not a Nash equilibrium. Indeed the player with the number above p times the average has an incentive to play a smaller number.

2. A strategy profile where all players play the same number s and $s > 0$ is not a NE. Any player has an incentive to play a small number

3. A strategy profile where all players play the same number $s=0$ is the unique NE

Cournot Model of Duopoly

- q_1 and q_2 are the quantities of an homogeneous product produced by firms 1 and 2
- linear inverse demand $P(Q) = a Q$ for $Q < a$ and $P(Q) = 0$ if $Q \ge a$
- total quantity $Q = q_1 + q_2$
- The cost to produce q_i is $C_i(q_i) = c q_i$
- Firms choose their quantities simultaneously.

Normal form game representation

Players: Firm 1 and Firm 2 Strategies: $S_1=[0, \infty)$ i.e. $S_1=q_1$ $S_2=[0, \infty)$ i.e. $s_2 = q_2$

Payoff: $\pi_1 = q_1 P(Q) - C_1(q_1)$ $\pi_2 = q_2 P(Q) - C_2(q_2)$

replacing inverse demand and cost functions, we have:

$$
\pi_1 = q_1(a - q_1 - q_2) - c q_1
$$

$$
\pi_2 = q_2(a - q_1 - q_2) - c q_2
$$

Solution: Nash Equilibrium

- Let be q_1^* and q_2^* the quantities produced in a NE 2 q_1^* and q
- *In a Nash equilibrium each player strategy is a best response to the other players' strategies*
- We look for the best response function of firm 1 to q_2^* that is given by the solution of the following problem: q_2^\ast

$$
\max_{q_1 \ge 0} q_1 \left(a - c - q_1 - q_2^* \right)
$$

The FOC are $q_1 = \frac{a - c - q_2^*}{2}$

• In similar way we find the best response function of firm 2 to q_1^* : q_1^\ast

$$
q_2=\frac{a-c-q_1^*}{2}
$$

• q_1^* and q_2^* are Nash equilibrium if 2 q_1^* and q

$$
\begin{cases} q_1^* = \frac{a - c - q_2^*}{2} \\ q_2^* = \frac{a - c - q_1^*}{2} \end{cases}
$$

• Solving the system we get:

$$
q_1^* = q_2^* = \frac{a - c}{3}
$$

• Alternatively we could consider the best response of firm 1 (firm 2) to an arbitrary strategy of firm 2 (firm 1)

Bertrand Model of Duopoly

- We consider the case of differentiated products
- p_1 and p_2 are the prices of two slight differentiated goods produced respectively by firms 1 and 2 (goods are substitutes)
- Simultaneously each firm chooses a price and satisfies all the demand at that price
- The demands are
	- $-$ for firm 1: $q_1(p_1, p_2) = a p_1 + b p_2$
	- $-$ for firm 2: $q_2(p_1, p_2) = a p_2 + b p_1$
	- b ($<$ 2) reflects the level of substitutability between the two goods
- No fixed cost, constant marginal cost $c \leq a$)

Normal form game representation Players: Firm 1 and Firm 2

Strategies:
$$
S_1 = [0, \infty)
$$
 i.e. $s_1 = p_1$
 $S_2 = [0, \infty)$ i.e. $s_2 = p_2$

Payoff:
$$
\pi_1 = q_1(p_1, p_2) [p_1 - c]
$$

\n $\pi_2 = q_2(p_1, p_2) [p_2 - c]$

replacing demand function, we have:

$$
\pi_1 = (a - p_1 + b p_2) [p_1 - c]
$$

$$
\pi_2 = (a - p_2 + b p_1) [p_2 - c]
$$

Solution: Nash Equilibrium

- Let be p_1^* and p_2^* the prices in a NE 2 p_1^* and p
- *In a Nash equilibrium each player strategy is a best response to the other players' strategies*
- We look for the best response of firm 1 to p_2^* that is given by the solution of the following problem: $p_{\tiny 2}^*$

$$
\max_{p_1 \ge 0} \left(a - p_1 + bp_2^* \right) \cdot \left(p_1 - c \right)
$$

The FOC are $p_1 = \frac{a + c + bp_2^*}{2}$

• In similar way we find the best function of firm 2 to p_1^* : p_1^\ast 2 * 1 2 $a + c + bp$ *p* $+ c +$ $=$

• p_1^* and p_2^* are Nash equilibrium if 2 p_1^* and p

$$
p_1^* = \frac{a + c + bp_2^*}{2}
$$

$$
p_2^* = \frac{a + c + bp_1^*}{2}
$$

• Solving the system we get:

$$
p_1^* = p_2^* = \frac{a+c}{2-b}
$$

Final – Offer Arbitration

- Two types of arbitration: Final Offer and Conventional
	- Final offer: the two sides make offers and then the arbitrator picks one as settlement
	- Conventional : the arbitrator is free to impose any settlement.
- Suppose the following case of final offer arbitration:
	- A firm and a union dispute about wages
	- Firm likes low wages as possible
	- Union likes high wages as possible
	- $-$ Firm and union simultaneously make offers, w_f and w_u .
- Arbitrator has an ideal settlement, denoted by *x,* and she/he chooses the offer that is closer to *x* (as settlement): Arbitrator chooses: min $\{w_f, w_u\}$ if $x < (w_f + w_u) / 2$ $\max\{w_f, w_u\}$ if $x > (w_f + w_u) / 2$
- Arbitrator knows *x*
- Firm and union don't know *x*, they know that *x* is randomly distributed according a cumulative probability distribution *F(x)*.

Normal form game representation Players: Firm and Union

Strategies:
$$
S_f=[0, \infty)
$$
 i.e. $s_f = w_f$
 $S_u=[0, \infty)$ i.e. $s_u = w_u$

Payoff:
$$
\pi_u = w
$$

\n $\pi_f = K - w$ where K is a positive number

Solution: Nash Equilibrium

We look for Firm and Union best responses For the firm all offers $w_f > w_u$ never are a best response

For the union all offers $w_u < w_f$ never are a best response

Proof

Consider the firm and an offer $w_f > w_u$

The expected payoff is - $w_f p - w_u (1 - p)$, where p is some probability depending on the offers and *F(x)*

Note that $-w_f p - w_u (1-p) < -w_u$

Note that $w_f > w_u$ cannot be a best response to w_u because by $w_f < w_u - w_f p' - w_u (1 - p') > -w_u$

For the union the proof follows similar steps. *■*

It follows that:

for the firm, the best response to w_u has to be $w_f \leq w_u$ for the union, the best response to w_f has to be $w_u \geq w_f$ Therefore we concentrate our attention on the case $w_f \leq w_u$ Arbitrator chooses: w_f if *wu* if Then: 2 $w_f + w_u$ *x* ш.
+ \lt 2 w_f ² w_u *x* $\frac{2}{+}$ \geq (w_{ϵ}) $\overline{}$ $\overline{}$ \int $\bigg)$ $\overline{}$ $\overline{}$ \setminus $\left(w_{f}+u\right)$ $\Big\} =$ \int $\bigg)$ \parallel \vert \setminus $\begin{pmatrix} w_f + \end{pmatrix}$ $=$ Pr $\vert x$ < 2 $\left| \begin{array}{c} -1 \\ 2 \end{array} \right|$ 2 $\Pr(w_f) = \Pr\left(x < \frac{w_f + w_u}{2}\right) = F\left(\frac{w_f + w_u}{2}\right)$ $W_f + W_i$ *F* $W_f + W_i$ w_f = Pr x (w_u) $\overline{}$ $\begin{array}{c} \hline \end{array}$ \int $\bigg)$ $\overline{}$ $\overline{}$ \setminus $\left(w_{f}+$ $=1 \int$ $\bigg)$ \parallel \vert \setminus $\begin{pmatrix} w_f + \end{pmatrix}$ $=$ Pr $x>$ 2 1 2 $\Pr(w_u) = \Pr\left(x > \frac{w_f + w_u}{2}\right) = 1 - F\left(\frac{w_f + w_u}{2}\right)$ $W_f + W$ *F* $W_f + W$ w_u) = Pr x

The expected wage settlement is:

ected wage settlement is:

\n
$$
E(w) = w_f \Pr(w_f) + w_u \Pr(w_u)
$$
\n
$$
= w_f F\left(\frac{w_f + w_u}{2}\right) + w_u \left(1 - F\left(\frac{w_f + w_u}{2}\right)\right)
$$

The Firm problem is:

$$
\min_{w_f} w_f F\left(\frac{w_f + w_u}{2}\right) + w_u \left(1 - F\left(\frac{w_f + w_u}{2}\right)\right)
$$

The FOC are

$$
F\left(\frac{w_f + w_u}{2}\right) + w_f f\left(\frac{w_f + w_u}{2}\right) \frac{1}{2} - w_u f\left(\frac{w_f + w_u}{2}\right) \frac{1}{2} = 0
$$

$$
F\left(\frac{w_f + w_u}{2}\right) = \left(w_u - w_f\right) f\left(\frac{w_f + w_u}{2}\right) \frac{1}{2}
$$

The Union problem is:

$$
\max_{w_u} w_f F\left(\frac{w_f + w_u}{2}\right) + w_u \left(1 - F\left(\frac{w_f + w_u}{2}\right)\right)
$$

The FOC are:

$$
w_f f\left(\frac{w_f + w_u}{2}\right) \frac{1}{2} + 1 - F\left(\frac{w_f + w_u}{2}\right) - w_u f\left(\frac{w_f + w_u}{2}\right) \frac{1}{2} =
$$

1 - F\left(\frac{w_f + w_u}{2}\right) = (w_u - w_f) f\left(\frac{w_f + w_u}{2}\right) \frac{1}{2}

Let $\left(w_f^* w_u^*\right)$ be a Nash equilibrium, then both FOCs must be satisfied, then:

$$
F\left(\frac{w_f^* + w_u^*}{2}\right) = \left(w_u^* - w_f^*\right) f\left(\frac{w_f^* + w_u^*}{2}\right) \frac{1}{2}
$$

$$
1 - F\left(\frac{w_f^* + w_u^*}{2}\right) = \left(w_u^* - w_f^*\right) f\left(\frac{w_f^* + w_u^*}{2}\right) \frac{1}{2}
$$

Note, the RHSs are equal, then:

$$
1 - F\left(\frac{w_f^* + w_u^*}{2}\right) = F\left(\frac{w_f^* + w_u^*}{2}\right)
$$

It implies that

$$
F\left(\frac{w_f^* + w_u^*}{2}\right) = 0.5
$$

Replacing in the FOCs we get:

$$
\frac{1}{2} = (w_u^* - w_f^*) f(m) \frac{1}{2}
$$

$$
w_u^* - w_f^* = \frac{1}{f(m)}
$$

Finally all Nash equilibria must satisfy:

$$
\frac{w_f^* + w_u^*}{2} = m \quad w_u^* - w_f^* = \frac{1}{f(m)}
$$

The problem of the Commons

- *n* farmer in a village graze their goats on the village green.
- g_i is the number of goats of the i^{th} farmer

The total number of goats is denote by $G = g_1 + ... + g_n$ *c* is the cost of a goat

Value of a goat is $v(G)$ where $v' < 0$, $v'' < 0$ and

 $\nu(G) > 0$ if $G < G_{\text{max}}$.

During the spring farmers simultaneously choose how many goats to own.

Normal form game representation Players: *n* farmers

Strategies:

 i th player's set of strategy is *S*_i=[0, ∞) i.e. *s*_i = *g*_i

Payoff:

 i ^{*th*} player's payoff is π ^{*i*} = g_i $V(G) - c$ g_i

Solution: Nash Equilibrium

 $(g_1^*,...,g_n^*)$ is a Nash equilibrium if every g_i^* is the solution to the following farmer's problem: $(g_1^*,...,g_n^*)$ is a Nash equilibrium if every g_i^* g $\stackrel{\cdot}{s}$

$$
\max_{\{g_i\}} g_i \cdot v(g_1^* + ... + g_i + ... + g_n^*) - g_i \cdot c
$$

The FOC are:
\n
$$
v(g_1^* + ... + g_i + ... + g_n^*) + g_i \cdot v'(g_1^* + ... + g_i + ... + g_n^*) - c = 0
$$

Then in a Nash equilibrium must be:

$$
v(g_1^* + ... + g_i^* + ... + g_n^*) + g_i \cdot v' (g_1^* + ... + g_i^* + ... + g_n^*) - c = 0
$$

for all *i*.

Denoting by G^* the total number of goats in equilibrium, for every *i* the FOC is written as:

$$
v(G^*)+g_i\cdot v'(G^*)-c=0
$$

Summing up all *n* FOCs we have

$$
n \cdot v(G^*) + G^* \cdot v'(G^*) - n \cdot c = 0
$$

$$
v(G^*) + \frac{G^*}{n} \cdot v'(G^*) - c = 0
$$

The social optimum G^{**} is given by the solution of the following problem:

$$
\max\nolimits_{\left\{ G\right\} }G\!\cdot\!v\!\!\left(G\right)\!-\!G\!\cdot\!c
$$

The FOC is:

$$
v(G^{**})+G\cdot v'(G^{**})-c=0
$$

Then in The Nash equilibrium farmers choose to buy more goats that the social optimum.