Mixed-Strategy Nash Equilibrium

Example: Matching Pennies

- Each player has a penny and must choose whether to display it with Tail or Head.
 - If the two pennies match then player 2 pays a penny to player 1;
 - if the pennies do not match, then player 2 receives a penny from player 1.

		Player	2
		Head	Tail
Player 1	Head	1,-1	-1,1
	Tail	-1,1	1,-1

		Player	2
		Head	Tail
Player 1	Head	1,-1	-1,1
	Tail	-1,1	1,-1

- No Nash equilibrium (in pure strategies) i.e. there is no pair of strategies where players 1 and player 2 do not want to change:
 - If players' strategies match (Head, Head) or (Tail, Tail) then Player 2 prefers to switch (she/he has to pay)
 - If players' strategies do not match (Head, Tail) or (Tail, Head) then Player 1 prefers to switch (she/he has to pay)

- The characteristic of Matching Pennies is that each player wants to outguess the other.
- There are other similar situations where each player wants to outguess the other(s): poker, football, battle,.....
 - Poker: how often to bluff
 - Football: penalty, kick right, center or left
 - Tennis: serve's direction
 - Battle: attackers want to surprise the defenders, defenders want to anticipate the attack.
- In situations where players want outguess the other, there is no Nash equilibrium in pure strategies

Definition of mixed strategy

- A mixed strategy of player i is a probability distribution over the strategies in S_i
- The strategies in S_i are called *pure strategies* Note: in static games of complete information strategies are the actions the player could take.

Definition of mixed strategy

Example 1: Matching Pennies

- $S_i = \{Head, Tail\}$
- (q, 1 q) is a mixed strategy where:
 - q is the probability to play *Head* and
 - 1-q is the probability to play *Tail* where $0 \le q \le 1$
- Note: (0, 1) is the pure strategy *Tail and* (1, 0) is the pure strategy *Head*
- But what means to play a mixed strategy?

Suppose that Player 1 wants to play:

- Head by probability 0.4
- Tail by probability 0.6
- i.e. the mixed strategy $p_1 = (0.4, 0.6)$

The action he will play, it is chosen at random according to the distribution (0.4, 0.6), for example choosing a ball from a box where 4 balls are marked by H (Head) and 6 are marked by T(tail)

		Player 2		
		L	С	R
	Т	2,3	2,2	5,0
Player 1	Y	3,2	5,3	3,1
	Z	4,3	1,1	2,2
	В	1,2	0,1	4,4

•
$$S_2 = \{L, C, R\}$$

- $p_2 = (p_{2L}, p_{2C}, p_{2R})$ is a mixed strategy of Player 2 where:
 - p_{2L} is the probability to play *L*,
 - p_{2C} is the probability to play *C* and
 - p_{2R} is the probability to play R
- $p_2 = (q, r, 1 q r)$
- $0 \le q \le 1; 0 \le r \le 1; 0 \le q + r \le 1$
- Note: (0, 0, 1) is the pure strategy R

		Player 2		
		L	С	R
	Т	2,3	2,2	5,0
Player 1	Y	3,2	5,3	3,1
	Z	4,3	1,1	2,2
	В	1,2	0,1	4,4

•
$$S_1 = \{T, Y, Z, B\}$$

- $p_1 = (p_{1T}, p_{1Y}, p_{1Z}, p_{1B})$ is a mixed strategy of Player 1 where:
 - p_{1T} is the probability to play *T*,
 - p_{1Y} is the probability to play Y
 - p_{1Z} is the probability to play Z
 - p_{1B} is the probability to play B
- $p_1 = (q, r, z, 1 q r z)$
- $0 \leq q, r, z \leq 1; 0 \leq q + r + z \leq 1$
- Note: (0, 0, 1, 0) is the pure strategy Z

Suppose that Player 2 wants to play:

- L by probability 0.2
- C by probability 0.3
- R by probability 0.5

i.e. the mixed strategy $p_2 = (0.2, 0.3, 0.5)$

The action he will play, it is chosen at random according to the distribution(0.2, 0.3, 0.5), for example choosing a ball from a box where 2 balls are marked by L, 3 are marked by C and 5 are marked by R

Mixed strategy for player *i* in the normal form game $G = \{S_1, \dots, S_n; u_1 \dots u_n\}$

- Suppose $S_i = \{s_{i1}, \dots s_{ij}, \dots s_{iK}\}$ (player *i* has *K* strategies)
- A mixed strategy for player *i* is a probability distribution

 $p_i = (p_{i1}, p_{i2}, piK)$ where p_{ij} is the probability that player *i* will play strategy $s_{ij}, j \in \{1, 2, ..., K\}$ *i*. $0 \le p_{ik} \le 1, k \in \{1, 2, ..., K\}$ *ii*. $p_{i1} + p_{i2} + \dots + p_{iK} = 1$

Mixed strategies and dominated strategies

- If a strategy s_i is strictly dominated, then
 - there is no player *i*'s belief such that to play s_i is optimal.
- <u>The converse is true only if we allow for mixed</u> <u>strategies</u>:
 - if there are no beliefs such that for player i is optimal to play s_i then
 - there exists another strategy that strictly dominates s_i .

Consider the following game:

		Player 2	
		L	R
Player 1	Т	3, -	0, -
	М	0, -	3, -
	В	1, -	1, -

Considering only pure strategies:

B is not dominated and never is a best response:

If player 1 believes that player 2 will play L, the best response is T If player 1 believes that player 2 will play R, the best response is M

• Here strategy B is dominated by a mixed strategy

		Player 2	
		L	R
Player 1	Т	3, -	0, -
	М	0, -	3, -
	В	1, -	1, -

Now we allow for mixed strategies;

(q, 1- q) denotes the belief that player 1 holds about the player2's play:

Player 1 believes that Player 2 plays:

- L by probability q and
- R by probability 1 q

Given these beliefs, player 1's expected values are:

 $E_1(T) = 3q; E_1(M) = 3(1-q); E_1(B) = 1$

		Player 2	
		L	R
Player 1	Т	3, -	0, -
	М	0, -	3, -
	В	1, -	1, -

 $E_1(T) = 3q; E_1(M) = 3(1-q); E_1(B) = 1$

for $q \ge 0.5$ the player 1's best response is T

$$E_1(T) = 3q \ge 1.5; E_1(M) = 3(1-q) \le 1.5; E_1(B) = 1$$

for $q \le 0.5$ the player 1's best response is M

$$E_1(T) = 3q \le 1.5; E_1(M) = 3(1-q) \ge 1.5; E_1(B) = 1$$

Yet B is not strictly dominated by T or M

The key is that strategy B is dominated by a mixed strategy:

$$p_1 = (p_{1T}, p_{1M}, p_{1B}) = (0.5, 0.5, 0)$$
$$E_1(p_1) = 0.5 \cdot 3 \cdot q + 0.5 \cdot 3 \cdot (1 - q) = 1.5 > 1$$

The following game show that a pure strategy can be a best response to a mixed strategy even if the pure strategy is not a best response to a pure strategy

		Player 2	
		L	R
Player 1	Т	3, -	0, -
	М	0, -	3, -
	В	2, -	2, -

B is never a best response to a **pure strategy** of player 2. But is a best response to a player 2's mixed strategy $p_2 = (p_{2L}, p_{2R}) = (q, 1 - q)$ where $1/3 \le q \le 2/3$

But is a best response to a player 2's mixed strategy
$$p_2 = (p_{2L}, p_{2R}) = (q, 1 - q)$$
 where $1/3 \le q \le 2/3$

Given p_2 , player 1's expected values are: $E_1(B) = 2$ $E_1(T) = 3 \cdot q E_1(M) = 3 \cdot (1 - q)$ *B* is a best response if $E_1(B) \ge E_1(T)$ i.e. $2 \ge 3 \cdot q \rightarrow q \le \frac{2}{3}$ and

$$E_1(B) \ge E_1(M)$$
 i.e. $2 \ge 3 \cdot (1-q) \rightarrow q \ge \frac{1}{3}$

Matching Pennies

		<u> </u>	
		Player	2
		Head	Tail
Player 1	Head	1,-1	-1,1
	Tail	-1,1	1,-1

 $p_1 = (r, 1 - r)$ where r is the probability that player 1 chooses Head,

 $p_2 = (q, 1 - q)$ where q is the probability that player 2 chooses Head

Player 1's expected payoff is:

$$E_1(r, 1-r) =$$

$$= rq - r(1 - q) - (1 - r)q + (1 - r)(1 - q) =$$
$$= r(4q - 2) + 1 - 2q$$

Player 1's expected payoff is: $E_1(r, 1-r) = r(4q-2) + 1 - 2q$

It is increasing in r if (4 q - 2) > 0 i.e. q > 0.5

- In this case the best response of player 1 is $p_1 = (1,0)$ It is decreasing in r if (4 q - 2) < 0 i.e. q < 0.5

- In this case the best response of player 1 is $p_1 = (0,1)$ It is equal 0 and constant for q = 0.5

- In this case the best response of player 1 is

$$p_1 = (r, 1 - r) \forall r[0, 1]$$

		Player	2
		Head	Tail
Player 1	Head	1,-1	-1,1
	Tail	-1,1	1,-1

- *r*: Probability that 1 chooses Head
- *q*: Probability that 2 chooses Head r(q) = 1 if q > 1/2; 0 if q < 1/2; [0,1] if q = 1/2 q(r) = 0 if r > 1/2; 1 if r < 1/2

[0,1] if r = 1/2

Note that player 1's strategy (0.5, 0.5) is a best response to the player 2' strategy (0.5, 0.5) and

player 2's strategy (0.5, 0.5) is a best response to the player 1's strategy (0.5, 0.5)

Then player 1 plays (0.5, 0.5) and player 2 plays (0.5, 0.5) is a Nash equilibrium in mixed strategies

Definition:

In a normal form game $G = (S_1, ..., S_n; u_1, ..., u_n)$ the mixed strategies $(p_1^*, ..., p_n^*)$ are a Nash equilibrium if each player's mixed strategy is a best response to the other players' strategies.

Battle of the Sexes

		Player	2
		Ball	Theatre
Player 1	Ball	2,1	0,0
	Theatre	0,0	1,2

 $p_1 = (r, 1 - r)$ where r is the probability that player 1 chooses Ball $p_2 = (q, 1 - q)$ where q is the probability that player 2 chooses Ball *Player 1's expected payoff is:* $E_1(r, 1-r) = 2 r q + (1-r)(1-q) = r (3q-1)+1-q$ It is increasing in r if (3 q - 1) > 0 i.e. $q > 1/3 \rightarrow BR_1$ is (1, 0)It is decreasing in r if (3 q - 2) < 0 i.e. $q < 1/3 \rightarrow BR_1$ is (0, 1)It is equal 0 and constant for $q = 1/3 \rightarrow BR_1$ is $(r, 1 - r) \forall r \in [0, 1]$

		Player	2
		Ball	Theatre
Player 1	Ball	2,1	0,0
	Theatre	0,0	1,2

Consider player 2

 $E_2(q, 1-q) = q (3r-2) + 2 - 2r$ It is increasing in q if (3r-2) > 0 *i.e.* $r > 2/3 \rightarrow BR_2$ *is* (1, 0)It is decreasing in q if (3r-2) < 0 *i.e.* $r < 2/3 \rightarrow BR_2$ *is* (0, 1)It is equal 0 and constant for $r=2/3 \rightarrow BR_2$ *is* $(q, 1-q) \forall q \in [0,1]$

$$\begin{array}{rcrcr} r(q) = & 1 & \text{if } q > 1/3; & q(r) = & 1 & \text{if } r > 2/3; \\ 0 & \text{if } q < 1/3; & 0 & \text{if } r < 2/3; \\ [0,1] & \text{if } q = 1/3 & [0,1] & \text{if } r = 2/3 \end{array}$$

Characterization of mixed-strategy Nash equilibria

Proposition: (p_1^*, \dots, p_n^*) is a mixed-strategy Nash equilibrium. If and only if the following conditions are satisfied:

- 1) each action s_i that is played by *i* with strictly positive probability according to p_i^* yields **the same expected payoff** to *i* as strategy p_i^*
- 2) every action s_i' that is played by *i* with probability 0 according to p_i^* yields **at most the same expected payoff** to *i* as strategy p_i^*

assuming, in both cases, that other players play as predicted in the Nash equilibrium (p_1^*, \dots, p_n^*)

Useful tips for finding mixed-strategy Nash equilibria

- 1) Consider a player *i*, take a subsets S'_i of its strategies and assume that only these strategies are played by a strictly positive probability
- 2) Look for the other players' strategies that allow to satisfy conditions 1) and 2), i.e.
 - a) The expected payoffs to play each one of the strategies in S'_i are equal to each other:

$$E_i(s_j) = E_i(s_w) \,\forall s_j, s_w \in S'_i$$

b) The expected payoffs to play each one of the strategies that are not in S'_i are not greater than the expected payoff of the strategies in S'_i :

$$E_i(s_j) \le E_i(s_w) \ \forall s_j \in S_i/S_i', s_w \in S_i'$$

- 3) Repeat this procedure for all possible strategies' subsets of player i
- 4) Repeat for all players

		Player	2
		L	R
Player 1	Т	2,3	5,0
	М	3,2	1,4
	В	1,5	4,1

No equilibrium in pure strategies.

There is no equilibrium where player 1 chooses B with strictly positive probability. T strictly dominates B, so whatever player 2 does, player 1 can increase its expected payoff by playing T instead of B. Then $p_{1B} = 0$.

That leaves player 1 choosing among T and M.

		Player	2
		L	R
Player 1	Т	2,3	5,0
	М	3,2	1,4
	В	1,5	4,1

That leaves player 1 choosing among T and M.

Let be
$$p_{1T} = t$$
 and $p_{2L} = l$

To play T and M, both with strictly positive probability requires: $E_1(T) = E_1(M) \rightarrow 2l + 5(1-l) = 3l + 1(1-l) \rightarrow l = 4/5$

To play L and R, both with strictly positive probability requires:

 $E_2(L) = E_2(R) \rightarrow 3t + 2(1-t) = 4(1-t), \rightarrow t = 2/5$

Nash Equilibrium:

 $((p_{1T}, p_{1M}, p_{1B}), (p_{2L}, p_{2R})) = ((2/5, 3/5, 0), (4/5, 1/5))$

Existence of Nash equilibrium in a 2 x 2game

Consider a generic 2 x 2 game

If there is a dominant strategy then an equilibrium always exists

Consider a game with no strictly dominant strategy and no equilibria in pure strategies

		Player 2	
		Left	Right
Player 1	Up	Х, -	Y, -
	Down	Z, -	W, -

Let be $X \ge Z$ and $W \ge Y$ with at least one strict inequality

Let q be the probability player 1 plays Up and p be the probability player 2 plays Left

$$E_1(q, 1-q) = p q X+p (1-q) Z+(1-p) q Y+(1-p) (1-q) W$$
$$= q (p(X-Z)+(1-p)(Y-W))+pZ+(1-p) W$$

 $E_{1}(q, 1-q) = q (p(X-Z)+(1-p)(Y-W)) + pZ+(1-p)W$ It is constant in q if p(X-Z) + (1-p)(Y-W) = 0

i.e. for $p = \frac{W-Y}{X-Z+W-Y}$

The assumption " $X \ge Z$ and $W \ge Y$ with at least one strict inequality" ensures the existence of p

In such a case the best response of player 1 is to play any mixed strategy, i.e.

→ q(p) \square [0, 1]

Repeating the same reasoning for player 2 we find that exists a value of q such that $p(q) \square [0, 1]$

Then it is straightforward that an equilibrium exists.

This result is generalized for all finite game by the following theorem

Nash's Existence Theorem

In the n - player normal form game if n is finite and every player has a finite number of strategies then there exist at least one Nash equilibrium.

(proof in the book)