Solutions

1) Find all mixed strategy Nash equilibrium of the following game (you have to use the property of the Nash equilibrium in mixed strategies)

		Player 2		
		L	М	R
Player 1	Т	2, 2	0, 3	1, 3
	В	3, 2	1, 1	0, 2

Notation

t is the probability to play T *l* is the probability to play L *m* is the probability to play M Player 1's strategy (*t*, 1-*t*) Player 2's strategy (*l*, *m*, 1 - l - m) E(X) expected value from playing the pure strategy X

We start considering all possible cases for player 1: (1, 0), (0, 1), (t, 1-t) for 0 < t < 1For each one we explore if it can be played in a NE

Case (1, 0)

In this case for player1 must be: $E(T) \ge E(B)$ Now we look at the expected payoff of player 2 when player 1's strategy is (1, 0)

E(M) = E(R) = 3 > E(L) = 2Then a mixed strategy for player 2 must be of the type (0, m, 1 – m) Given this possible player 2's strategy we compute the expected payoff of player 1 E(T) = 1 - m, E(B) = mGiven that in equilibrium $E(T) \ge E(B)$ must be satisfied this is true only if m ≤ 0.5

Therefore all strategy profiles (1, 0) (0, m, 1 – m) with $m \le 0.5$ are Nash equilibria

Note there are infinite equilibria and, among them, the NE in pure strategy $\{(1, 0) (0, 0, 1)\}$ (Player 1 plays T and Player 2 plays R)

Case (0, 1)

In this case for player1 must be: $E(B) \ge E(T)$ Now we look at the expected payoff of player 2 when player 1's strategy is (0, 1)

E(L) = E(R) = 23 > E(M) = 1Then a mixed strategy for player 2 must be of the type (I, 0, 1 – I) Given this possible player 2's strategy we compute the expected payoff of player 1 E(T) = 1 + I, E(B) = 3IGiven that in equilibrium $E(B) \ge E(L)$ must be satisfied this is true only if $I \ge 0.5$

Therefore all strategy profiles (0, 1) (l, 0, 1 - l) with $l \ge 0.5$ are Nash equilibria

Note there are infinite equilibria and, among them, the NE in pure strategy $\{(0, 1) (1, 0, 0)\}$ (Player 1 plays T and Player 2 plays R)

Case (t, 1-t) for $t \in (0, 1)$

In this case for player1 must be: E(B) = E(T)Now we look at the expected payoff of player 2 when player 1's strategy is (t, 1 - t) for $t \in (0, 1)$

E(L) = 2 E(M) = 3 t + (1 - t) = 1 + 2tE(R) = 3t + 2(1 - t) = 2 + t

We have to explore all the possible classes of player 2's strategy, i.e. for each case we have to verify the equilibrium conditions given that player 1 strategy is of the type (t, 1-t) for $t \in (0, 1)$.

- All cases are:
- 1) (1, 0, 0)
- 2) (0, 1, 0)
- 3) (0, 0, 1)
- 4) (l, 1−l, 0)
- 5) (l, 0, 1 l)
- 6) (0, m, 1 m)
- 7) (l, m 1 l m)

Note that we can reduce the number of cases. Indeed for every $t \in (0, 1)$ strategy L is dominated by R (2 + t > 2 for t > 0) and strategy M is dominated by R (2 + t > 1 + 2 for t < 1) Then we can eliminate all cases where either L or M or both are played by strictly positive probability.

Then it remains to explore only strategy (0, 0, 1). In this case the player 1's expected payoffs are E(T) = 1 > E(B) = 0Then condition E(T) = E(B) does not hold.

Final results:

There are two sets of Nash equilibria:

- 1) (1, 0) (0, m, 1 m) with $m \le 0.5$
- 2) (0, 1) (I, 0, 1 I) with $I \ge 0.5$

Each set contains an equilibrium in pure strategies, respectively, (1, 0) (0, 0, 1) and (0, 1) (1, 0, 0).

2) Consider the following game

		Player 2	
		L	R
Player 1	Т	1, 2	1, 3
	М	4, 1	0, 1
	В	0, 3	3, 2

Find all mixed strategies that dominate strategy T

Notation

l is the probability that Player 2 plays L

t, m, 1 - t - m are, respectively, the probabilities that player 1 plays actions T,M, B.

 σ 1 = (t, m, 1 - t - m) denotes a player 1's mixed strategy; when the strategy is a pure strategy we call it with the name of the action, i.e. σ 1 = (1, 0, 0) = T.

 σ^2 = (I, 1 – I) denotes a player 2's mixed strategy; when the strategy is a pure strategy we call it with the name of the action, i.e. σ^2 = (1, 0) = L.

 $E(\sigma 1 | \sigma 2)$ is the expected payoff from strategy $\sigma 1$ given that player 2's strategy $\sigma 2$.

Note, strategy T is dominated by a strategy $\sigma 1$ only if $E(\sigma 1) > E(T)$ for all $I \in [0, 1]$ Expected payoffs are: $E(T|\sigma 2) = 1$

 $E(\sigma 1 | \sigma 2) = t + 4 m | + 3 (1 - t - m) (1 - l)$

$$\frac{d\mathrm{E}(\sigma 1)}{dl} = 4\ m - 3(1 - t - m)$$

 $E(\sigma 1 | \sigma 2)$ is increasing if I if

$$4m - 3(1 - t - m) > 0$$
$$m > \frac{3(1 - t)}{7}$$

It is decreasing in l if:

$$m < \frac{3(1-t)}{7}$$

It is constant and equal to $\frac{1}{7}(12-5t)$ if:

$$m = \frac{3(1-t)}{7}$$

By this last point we see that $\frac{1}{7}(12-5t) > 1$ for all t < 1. Then for every value of t' < 1 it exists a value of m' such that strategy $\sigma 1 = (t', m', 1 - t' - m')$ dominates T. But these are not the only mixed strategies dominating T.

When $m > \frac{3(1-t)}{7} E(\sigma 1 | \sigma 2)$ is increasing in I, then its minimum value is at I = 0, i.e $E(\sigma 1 | R) = t + 3(1 - t - m)$ In order to dominate T we need $E(\sigma 1 | R) = t + 3(1 - t - m) > 1$ That is satisfied when $m < \frac{2(1-t)}{3}$

When $<\frac{3(1-t)}{7}$, E(σ 1| σ 2) is decreasing in I, then its minimum value is at I = 1, i.e E(σ 1|L) = t + 4 m In order to dominate T we need E(σ 1|L) = t + 4 m > 1 That is satisfied when $m > \frac{(1-t)}{4}$

Then all mixed strategies $\sigma 1 = (t, m, 1-t-m)$ with t <1 and $\frac{(1-t)}{4} < m < \frac{2(1-t)}{3}$ are dominating strategy T.

3) Is the following statement true?

"A mixed strategy that assigns positive probability to a strictly dominated action is strictly dominated"

It is true.

Notation

By $s_{\text{-}i}$ we denote the strategies of the opponent and by $S_{\text{-}i}$ the set of all possible combination of the opponents' strategies

Suppose that action X is dominated by strategy σ 1, it means that:

 $E(\sigma 1 | s_{-i}) > E(X | s_{-i})$ for all $s_{-i} \in S_{-i}$

Now suppose a strategy σ^2 that prescribes to play by probability p (> 0) action X and by probability 1 – p (> 0) a strategy σ^3 .

Replacing X with strategy σ 1 we produce a mixed strategy, σ 4, that dominates σ 2.

Proof

 σ 2: X by probability p and σ 3 by probability 1 - p σ4: σ1 by probability p and σ 3 by probability 1 - p

 $E(\sigma 2 | s_{-i}) = p E(X | s_{-i}) + (1-p) E(\sigma 3 | s_{-i})$ $E(\sigma 4 | s_{-i}) = p E(\sigma 1 | s_{-i}) + (1-p) E(\sigma 3 | s_{-i})$

 σ 4 dominates σ 2 if:

 $E(\sigma_2 | s_{-i}) < E(\sigma_4 | s_{-i})$ for all $s_{-i} \in S_{-i}$

Replacing the expected values we have:

 $p E(X|s_{-i}) + (1-p) E(\sigma 3|s_{-i}) for all <math>s_{-i} \in S_{-i}$

that is:

$$E(X|s_{-i}) < E(\sigma 1|s_{-i})$$
 for all $s_{-i} \in S_{-i}$

That is true by assumption.

4) Each of two firms has a job opening. The firms offer different wages: firm *i* offers wage w_i where $0.5 \cdot w_1 < w_2 < 2 \cdot w_1$.

There are two workers that want to apply for a job. Each of whom can apply to only one firm. The workers simultaneously decide whether apply to firm 1 or to firm 2.

If only one worker applies to a given firm, that worker gets the job. If both workers apply to one firm, the firm hires one worker at random and the other worker remains unemployed.

- a) Rapresent this game using the normal form
- b) Solve for the Nash equilibria (pure a mixed strategies)

		Worker 2		
		Firm 1	Firm 2	
Worker 1	Firm 1	$\frac{w1}{2}, \frac{w1}{2}$	w1, w2	
	Firm 2	w2,w1	$\frac{w^2}{2}, \frac{w^2}{2}$	

b) Notation

p is the probability that Player 1 play Firm 1 q is the probability that Player 2 play Firm 1 the player 1's mixed strategy is $\sigma 1 = (p, 1 - p)$ the player 2's mixed strategy is $\sigma 2 = (q, 1 - q)$

We compute the expected values for each single action given a strategy of the opponent

Player 1

$$E_1(Firm1|\sigma^2) = q\frac{w1}{2} + (1-q)w1 = w1(1-\frac{q}{2})$$
$$E_1(Firm2|\sigma^2) = qw2 + (1-q)\frac{w^2}{2} = w2(\frac{1+q}{2})$$

Player 2

$$E_2(Firm1|\sigma 1) = p\frac{w1}{2} + (1-p)w1 = w1(1-\frac{p}{2})$$
$$E_2(Firm2|\sigma 1) = pw2 + (1-p)\frac{w2}{2} = w2(\frac{1+p}{2})$$

Suppose $\sigma 1 = (1, 0)$

Player 2' s expected profits are:

$$\begin{split} E_2(Firm1|\sigma 1) &= \frac{w1}{2} \\ E_2(Firm2|\sigma 1) &= w2 \\ \text{Given that } w2 > \frac{w1}{2} \text{ the best response for player 2 is } \sigma 2 = (0, 1) \\ \text{Given } \sigma 2 = (0, 1) \text{ the expected payoff of player 1 are:} \\ E_1(Firm1|\sigma 2) &= w1 \end{split}$$

a)

$$E_1(Firm2|\sigma^2) = \frac{w^2}{2}$$

Given that $w1 > \frac{w2}{2}$ the best response for player 1 is $\sigma 1 = (1, 0)$ Then $\sigma 1 = (1, 0) \sigma 2 = (0, 1)$ is a Nash equilibrium

Suppose $\sigma 1 = (0, 1)$ Player 2' s expected profits are:

$$E_1(Firm1|\sigma^2) = w1$$
$$E_1(Firm2|\sigma^2) = \frac{w^2}{2}$$

Given that $w1 > \frac{w2}{2}$ the best response for player 2 is $\sigma 2 = (1, 0)$ Given $\sigma 2 = (0, 1)$ the expected payoff of player 1 are:

$$E_1(Firm1|\sigma 1) = \frac{w1}{2}$$
$$E_1(Firm2|\sigma 1) = w2$$

Given that $w^2 > \frac{w^1}{2}$ the best response for player 1 is $\sigma 1 = (0, 1)$ Then $\sigma 1 = (0, 1) \sigma^2 = (1, 0)$ is a Nash equilibrium

 $\begin{array}{l} \underline{\text{Suppose } \sigma 1 = (p, 1-p) \text{ for } p \in (0, 1)} \\ \text{In this case must be that } E_1(Firm1|\sigma 2) = E_1(Firm2|\sigma 2) \text{ i.e.} \\ w1\left(1-\frac{q}{2}\right) = w2\left(\frac{1+q}{2}\right) \\ \text{This is true only if } = \frac{2w1-w2}{w1+w2}, \text{ i.e. } \sigma_2 = \left(\frac{2w1-w2}{w1+w2}, \frac{2w2-w1}{w1+w2}\right) \\ \text{But for player 2, in order to play such a strategy, the condition} \\ E_2(Firm1|\sigma 1) = E_2(Firm2|\sigma 1) \\ \text{must be satisfied, i.e.:} \end{array}$

$$w1\left(1-\frac{p}{2}\right) = w2\left(\frac{1+p}{2}\right)$$

This is true only if $=\frac{2w1-w2}{w1+w2}$, i.e. $\sigma_1 = (\frac{2w1-w2}{w1+w2}, \frac{2w2-w1}{w1+w2})$

Then the strategy profile $\sigma_1 = (\frac{2w1-w2}{w1+w2}, \frac{2w2-w1}{w1+w2}) \sigma_2 = (\frac{2w1-w2}{w1+w2}, \frac{2w2-w1}{w1+w2})$ is a Nah equilibrium.

Final results:

There are 3 Nash equilibria:

1) $\sigma 1 = (1, 0) \sigma 2 = (0, 1)$ 2) $\sigma 1 = (0, 1) \sigma 2 = (1, 0)$ 3) $\sigma_1 = (\frac{2w1 - w2}{w1 + w2}, \frac{2w2 - w1}{w1 + w2}) \sigma_2 = (\frac{2w1 - w2}{w1 + w2}, \frac{2w2 - w1}{w1 + w2})$