Matrix Appendix, a.a. 2010-11

prof. Gaetano Carmeci ${ }^{1}$
${ }^{1}$ DEAMS, Faculty of Economics, University of Trieste, Italy

Financial Econometrics course
Trieste, February 14th 2011

Outline of the talk

(1) Matrices
(2) Matrix types
(3) Operations with matrices
(4) Matrix Rank
(5) Inverse Matrix
G. Carmeci (DEAMS)

Outline of the talk

(1) Matrices
(2) Matrix types
(3) Operations with matrices
(4) Matrix Rank
(5) Inverse Matrix

Matrices, vectors and scalars-1

A matrix is a collection or array of numbers

$$
\left(\begin{array}{ccc}
1 & -2 & 4 \\
1.2 & 3 & 5
\end{array}\right)
$$

2 Rows by 3 Columns (2x3)
size of the matrix

Matrices, vectors and scalars-1

A matrix is a collection or array of numbers

$$
\left(\begin{array}{ccc}
1 & -2 & 4 \\
1.2 & 3 & 5
\end{array}\right)
$$

2 Rows by 3 Columns (2×3) : size of the matrix

A square matrix: number of Rows $=$ number of Columns $=$ dimension

Matrices, vectors and scalars-1

A matrix is a collection or array of numbers

$$
\left(\begin{array}{ccc}
1 & -2 & 4 \\
1.2 & 3 & 5
\end{array}\right)
$$

2 Rows by 3 Columns (2×3) : size of the matrix
-This is a rectangular matrix

A square matrix: number of Rows $=$ number of Columns $=$ dimension

Matrices, vectors and scalars-1

A matrix is a collection or array of numbers
$\left(\begin{array}{ccc}1 & -2 & 4 \\ 1.2 & 3 & 5\end{array}\right)$
2 Rows by 3 Columns (2×3) : size of the matrix
-This is a rectangular matrix
A square matrix: number of Rows $=$ number of Columns $=$ dimension
$\underset{(2 \times 2)}{A}=\left(\begin{array}{cc}1 & 2 \\ 3 & -1\end{array}\right)$

Matrices, vectors and scalars-2

$$
\underset{(2 \times 3)}{A}=\left(\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23}
\end{array}\right)
$$

Element (i, j) of matrix $\mathrm{A}: \mathrm{a}_{i j}$

Matrices, vectors and scalars-2

$\underset{(2 \times 3)}{A}=\left(\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23}\end{array}\right)$
Element (i, j) of matrix $\mathrm{A}: \mathrm{a}_{\mathrm{ij}}$
$i=1,2$ (row index); $j=1, . ., 3$ (column index).

Matrices, vectors and scalars-3

Column vector

$$
\underset{(2 \times 1)}{a}=\binom{a_{11}}{a_{21}}
$$

Matrices, vectors and scalars-3

Column vector

$$
\underset{(2 \times 1)}{a}=\binom{a_{11}}{a_{21}}
$$

or more simply
$\underset{(2 \times 1)}{a}=\binom{a_{1}}{a_{2}}$

Matrices, vectors and scalars-3

Column vector

$$
\begin{aligned}
& \underset{(2 \times 1)}{a}=\binom{a_{11}}{a_{21}} \\
& \text { or more simply } \\
& \underset{(2 \times 1)}{a}=\binom{a_{1}}{a_{2}} \\
& \text { Row vector } \underset{(1 \times 3)}{a}=\left(\begin{array}{lll}
a_{11} & a_{12} & a_{13}
\end{array}\right)
\end{aligned}
$$

Matrices, vectors and scalars-3

Column vector

$$
\begin{aligned}
& \underset{(2 \times 1)}{a}=\binom{a_{11}}{a_{21}} \\
& \text { or more simply } \\
& \underset{(2 \times 1)}{a}=\binom{a_{1}}{a_{2}} \\
& \text { Row vector } \underset{(1 \times 3)}{a}=\left(\begin{array}{lll}
a_{11} & a_{12} & a_{13}
\end{array}\right)
\end{aligned}
$$

or more simply
$\underset{(1 \times 3)}{a}=\left(\begin{array}{lll}a_{1} & a_{2} & a_{3}\end{array}\right)$

Matrices, vectors and scalars-3

Column vector
$\underset{(2 \times 1)}{a}=\binom{a_{11}}{a_{21}}$
or more simply
$\underset{(2 \times 1)}{a}=\binom{a_{1}}{a_{2}}$
Row vector $\underset{(1 \times 3)}{a}=\left(\begin{array}{lll}a_{11} & a_{12} & a_{13}\end{array}\right)$
or more simply
$\underset{(1 \times 3)}{a}=\left(\begin{array}{lll}a_{1} & a_{2} & a_{3}\end{array}\right)$
A Scalar: $\quad c \in R$ (1×1)

Outline of the talk

(1) Matrices

(2) Matrix types
(3) Operations with matrices
(4) Matrix Rank
(5) Inverse Matrix

Zero, Symmetric, Diagonal Matrices

A zero matrix
$\left(\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$

A symmetric (square) matrix: $a_{i j}=a_{j i}$

Zero, Symmetric, Diagonal Matrices

A zero matrix
$\left(\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$
A symmetric (square) matrix: $a_{i j}=a_{j i}$
$\left(\begin{array}{ccc}1 & 3 & -1 \\ 3 & 0 & 5 \\ -1 & 5 & -2\end{array}\right)$
A diagonal (square) matrix: $a_{i j}=0$ for $i \neq j$

Zero, Symmetric, Diagonal Matrices

A zero matrix

$$
\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

A symmetric (square) matrix: $a_{i j}=a_{j i}$

$$
\left(\begin{array}{ccc}
1 & 3 & -1 \\
3 & 0 & 5 \\
-1 & 5 & -2
\end{array}\right)
$$

A diagonal (square) matrix: $a_{i j}=0$ for $i \neq j$

$$
\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & -2
\end{array}\right)
$$

Scalar and Identity Matrix

A scalar matrix: a diagonal matrix with $a_{i i}=c \forall i$
e.g. $\left(\begin{array}{lll}2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2\end{array}\right)$

The identity matrix: a scalar matrix with $a_{i j}=1 \forall$

Scalar and Identity Matrix

A scalar matrix: a diagonal matrix with $a_{i i}=c \forall i$

$$
\text { e.g. }\left(\begin{array}{lll}
2 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 2
\end{array}\right)
$$

The identity matrix: a scalar matrix with $a_{i j}=1 \forall i$

$$
I=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

Scalar and Identity Matrix

A scalar matrix: a diagonal matrix with $a_{i i}=c \forall i$
e.g. $\left(\begin{array}{lll}2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2\end{array}\right)$

The identity matrix: a scalar matrix with $a_{i j}=1 \forall i$
$I=\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)$
It is the matrix equivalent of the number one!

Outline of the talk

(1) Matrices

(2) Matrix types
(3) Operations with matrices
(4) Matrix Rank
(5) Inverse Matrix

Addition and Subtraction of Matrices-1

In order to perform operations with matrices, matrices must be conformable!
Specifically, for Addition and Subtraction matrices must have the same size or dimension. Then the operation is performed element by element.
\square
size $(R \times C)$, where the element

Addition and Subtraction of Matrices-1

In order to perform operations with matrices, matrices must be conformable!
Specifically, for Addition and Subtraction matrices must have the same size or dimension. Then the operation is performed element by element.

Therefore, given matrices A and B, both of size (RxC), $A+B=D$ means that the sum of A and B is equal to the matrix D of size (RxC), where the element
$d_{i j}=a_{i j}+b_{i j} \forall i j$
size $(R \times C)$, where the element

Addition and Subtraction of Matrices-1

In order to perform operations with matrices, matrices must be conformable!
Specifically, for Addition and Subtraction matrices must have the same size or dimension. Then the operation is performed element by element.

Therefore, given matrices A and B, both of size (RxC), $A+B=D$ means that the sum of A and B is equal to the matrix D of size (RxC), where the element
$d_{i j}=a_{i j}+b_{i j} \forall i j$
$A-B=D$
means that the difference between A and B is equal to the matrix D of size $(R x C)$, where the element
$d_{i j}=a_{i j}-b_{i j} \forall i j$

Addition and Subtraction of Matrices-2

$$
\text { If } A=\left(\begin{array}{cc}
0.3 & 0.6 \\
-0.1 & 0.7
\end{array}\right)
$$

$$
\text { and } B=\left(\begin{array}{cc}
0.2 & -0.1 \\
0 & 0.3
\end{array}\right) \text { then: }
$$

Addition and Subtraction of Matrices-2

$$
\text { If } A=\left(\begin{array}{cc}
0.3 & 0.6 \\
-0.1 & 0.7
\end{array}\right)
$$

$$
\text { and } B=\left(\begin{array}{cc}
0.2 & -0.1 \\
0 & 0.3
\end{array}\right) \text { then: }
$$

$$
A+B=\left(\begin{array}{cc}
0.5 & 0.5 \\
-0.1 & 1.0
\end{array}\right)
$$

$$
\text { and } A-B=\left(\begin{array}{cc}
0.1 & 0.7 \\
-0.1 & 0.4
\end{array}\right)
$$

Multiplication of a matrix by a scalar-1

Given a scalar c and a Matrix A, multiplying A by c means
$c A=D$
where
$d_{i j}=c a_{i j} \forall i j$
$2\left(\begin{array}{cc}0.5 & 0.5 \\ -0.1 & 1.0\end{array}\right)=\left(\begin{array}{cc}1 & 1 \\ -0.2 & 2\end{array}\right)$

Properties-1

$A+B=B+A$
$c A=A c$
$c(A+B)=c A+c B$

Multiplying two matrices together-1

Matrices A and B must be conformable:
$\underset{(m \times n)(n \times p)}{A}=\underset{(m \times p)}{D}$
i.e. the number of columns of the first matrix must be equal to the number of rows of the second matrix
-The resulting matrix has size given by the number of rows of the first matrix and number of columns of the second matrix

Multiplying two matrices together-2

Notice that in general
$A B \neq B A$
so the order of the factors is important!!

Multiplying two matrices together-3

The product of matrices is also called " row by column" product. Why?
Assume for the moment that the two matrices A and B are two vectors s.t.
$\underset{(1 \times n)(n \times 1)}{a} \underset{(1 \times 1)}{b}$
so that d is a scalar.
The product $a b$ is obtained by computing the "row by column" product as follows:
$\left.\left(\begin{array}{llll}a_{11} & a_{12} & . & a_{1 n}\end{array}\right)\left(\begin{array}{c}b_{11} \\ b_{21} \\ \cdot \\ \cdot \\ b_{n 1}\end{array}\right)=\underset{(n \times 1)}{\left(\sum_{k=1}^{n} a_{1 k} b_{k 1}\right.}\right)=\underset{(1 \times 1)}{\left(d_{11}\right)}=d$

Multiplying two matrices together-4

For the general case
$\underset{(m \times n)(n \times p)}{A}=\underset{(m \times p)}{D}$
Each element $d_{i j}$ of D is obtained by considering the $i-t h$ row of A and the j-th column of B and computing the "row by column" product as follows:
$\left.d_{i j}=\left(\begin{array}{ccc}a_{i 1} & a_{i 2} & \cdot \\ (1 \times n)\end{array}\right] \quad a_{i n}\right)\left(\begin{array}{c}b_{1 j} \\ b_{2 j} \\ \cdot \\ \cdot \\ b_{n j}\end{array}\right)=\sum_{k=1}^{n} a_{i k} b_{k j}$

Multiplying two matrices together-5

For example

$$
\left(\begin{array}{ll}
2 & 3 \\
1 & 4 \\
3 & 1
\end{array}\right)\left(\begin{array}{ll}
1 & 2 \\
5 & 3
\end{array}\right)=\left(\begin{array}{ll}
(2 \times 1+3 \times 5) & (2 \times 2+3 \times 3) \\
(1 \times 1+4 \times 5) & (1 \times 2+4 \times 3) \\
(3 \times 1+1 \times 5) & (3 \times 2+1 \times 3)
\end{array}\right)
$$

Transpose of a matrix-1

```
Given
\(\underset{(n \times m)}{A}=\left(\begin{array}{cccccc}a_{11} & a_{12} & a_{13} & \cdot & \cdot & a_{1 m} \\ a_{21} & a_{22} & a_{23} & \cdot & \cdot & a_{2 m} \\ \cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\ a_{n 1} & a_{n 2} & a_{n 3} & \cdot & \cdot & a_{n m}\end{array}\right)\)
```

the transpose of matrix A, written A^{\prime} or A^{T}

Transpose of a matrix-1

Given
$\underset{(n \times m)}{A}=\left(\begin{array}{cccccc}a_{11} & a_{12} & a_{13} & \cdot & \cdot & a_{1 m} \\ a_{21} & a_{22} & a_{23} & \cdot & \cdot & a_{2 m} \\ \cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\ a_{n 1} & a_{n 2} & a_{n 3} & \cdot & \cdot & a_{n m}\end{array}\right)$
the transpose of matrix A, written A^{\prime} or A^{T} :
$\underset{(m \times n)}{A^{\prime}}=\left(\begin{array}{cccccc}a_{11} & a_{21} & a_{31} & \cdot & \cdot & a_{n 1} \\ a_{12} & a_{22} & a_{32} & \cdot & \cdot & a_{n 2} \\ \cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\ a_{1 m} & a_{2 m} & a_{3 m} & \cdot & \cdot & a_{n m}\end{array}\right)$

Transpose of a matrix-2

$A=\left(\begin{array}{ll}2 & 3 \\ 1 & 4 \\ 3 & 1\end{array}\right)$
$\underset{(2 \times 3)}{A^{\prime}}=\left(\begin{array}{lll}2 & 1 & 3 \\ 3 & 4 & 1\end{array}\right)$

Properties of the transpose

$\left(A^{\prime}\right)^{\prime}=A$
$(A+B)^{\prime}=A^{\prime}+B^{\prime}$
$(A B)^{\prime}=B^{\prime} A^{\prime}$
Notice that the order is reversed!

Linear combination of vectors-1

Given m column vectors of dimension $(n \times 1), a_{1}, a_{2}, \ldots, a_{m}$, and scalars $\alpha_{j} \in R$, for $j=1, \ldots, m$,
the linear combination of the m column vectors with weights α_{j} is the following:
$\alpha_{1} a_{1}+\alpha_{2} a_{2}+\ldots+\alpha_{m} a_{m}=\underset{(n \times 1)}{C}$

Linearly independent vectors-1

The m vectors are linearly independent if and only if the only way to obtain that
$\alpha_{1} a_{1}+\alpha_{2} a_{2}+\ldots+\alpha_{m} a_{m}=\underset{(n \times 1)}{c}=\left(\begin{array}{l}0 \\ 0 \\ . \\ . \\ 0\end{array}\right)$
is by setting all the weights equal to zero $\left(\alpha_{j}=0\right.$, for $\left.j=1, \ldots, m\right)$.

Linearly independent vectors-2

Notice that:
-if one of the vectors a_{j} is a zero vector then the m vectors, $a_{1}, a_{2}, \ldots, a_{m}$, are not linearly independent (they are linearly dependent);
-if two vectors are equal or proportional to each other then the two vectors are linearly dependent (and so are all the m vectors).

Linearly dependent vectors-1

If the m vectors, $a_{1}, a_{2}, \ldots, a_{m}$, are linearly dependent then
at least one of them can be written as a linear combination of the remaining ones.

In fact, assume that
$\alpha_{1} a_{1}+\alpha_{2} a_{2}+\ldots+\alpha_{m} a_{m}=\left(\begin{array}{l}0 \\ 0 \\ . \\ 0\end{array}\right)$
with e.g. $\alpha_{1} \neq 0$ then
$a_{1}=-\left(\alpha_{2} / \alpha_{1}\right) a_{2}-\ldots-\left(\alpha_{m} / \alpha_{1}\right) a_{m}$

Linear combination and independency-3

It worth noticing that we might have considered row vectors instead of column ones. In fact, the concepts of linear combination and linear dependency/independency of a set of vectors will apply to row vectors exactly in the same way.

Outline of the talk

(1) Matrices

(2) Matrix types
(3) Operations with matrices
(4) Matrix Rank
(5) Inverse Matrix

Rank of a Matrix-1

Given a rectangular ($n \times m$) matrix A, we could ask ourselves what is the maximum number of the row vectors of the matrix that are linearly independent? This number is known as the row rank of the matrix, and it is at most equal to n.
\qquad

Rank of a Matrix-1

Given a rectangular ($n \times m$) matrix A, we could ask ourselves what is the maximum number of the row vectors of the matrix that are linearly independent? This number is known as the row rank of the matrix, and it is at most equal to n.

The maximum number of column vectors of the matrix A that are linearly independent is called the column rank of the matrix.
\square
\square vectors of the matrix that are linnarly indenendent

Rank of a Matrix-1

Given a rectangular ($n \times m$) matrix A, we could ask ourselves what is the maximum number of the row vectors of the matrix that are linearly independent? This number is known as the row rank of the matrix, and it is at most equal to n.

The maximum number of column vectors of the matrix A that are linearly independent is called the column rank of the matrix.

There is an important theorem that states that the row rank and the column rank of a matrix are equal.

> From the definition it follows that

Rank of a Matrix-1

Given a rectangular ($n \times m$) matrix A, we could ask ourselves what is the maximum number of the row vectors of the matrix that are linearly independent? This number is known as the row rank of the matrix, and it is at most equal to n.

The maximum number of column vectors of the matrix A that are linearly independent is called the column rank of the matrix.

There is an important theorem that states that the row rank and the column rank of a matrix are equal.

So, it's defined rank of a matrix the maximum number of column (row) vectors of the matrix that are linearly independent.

From the definition it follows that
$\operatorname{rank}(A)<=\min (n, m)$

Rank of a Matrix-2

If the rank is equal to $\min (n, m)$ then the matrix is said to be of full rank, otherwise it is said to be singular (or of not full rank).
all its row vectors are linearly independent

Some properties of the rank:

Rank of a Matrix-2

If the rank is equal to $\min (n, m)$ then the matrix is said to be of full rank, otherwise it is said to be singular (or of not full rank).

A $n x n$ square matrix is of full rank if and only if all its column vectors and all its row vectors are linearly independent.

Some properties of the rank:

Rank of a Matrix-2

If the rank is equal to $\min (n, m)$ then the matrix is said to be of full rank, otherwise it is said to be singular (or of not full rank).

A $n x n$ square matrix is of full rank if and only if all its column vectors and all its row vectors are linearly independent.

Some properties of the rank:

- $\operatorname{rank}(A)=\operatorname{rank}\left(A^{\prime}\right)$
\square
- $\operatorname{rank}\left(A^{\prime} A\right)=\operatorname{rank}\left(A A^{\prime}\right)=\operatorname{rank}(A)$

Rank of a Matrix-2

If the rank is equal to $\min (n, m)$ then the matrix is said to be of full rank, otherwise it is said to be singular (or of not full rank).

A $n x n$ square matrix is of full rank if and only if all its column vectors and all its row vectors are linearly independent.

Some properties of the rank:

- $\operatorname{rank}(A)=\operatorname{rank}\left(A^{\prime}\right)$
- $\operatorname{rank}(A B)<=\min (\operatorname{rank}(A), \operatorname{rank}(B))$
- $\operatorname{rank}\left(A^{\prime} A\right)=\operatorname{rank}\left(A A^{\prime}\right)=\operatorname{rank}(A)$

Rank of a Matrix-2

If the rank is equal to $\min (n, m)$ then the matrix is said to be of full rank, otherwise it is said to be singular (or of not full rank).

A $n x n$ square matrix is of full rank if and only if all its column vectors and all its row vectors are linearly independent.

Some properties of the rank:

- $\operatorname{rank}(A)=\operatorname{rank}\left(A^{\prime}\right)$
- $\operatorname{rank}(A B)<=\min (\operatorname{rank}(A), \operatorname{rank}(B))$
- $\operatorname{rank}\left(A^{\prime} A\right)=\operatorname{rank}\left(A A^{\prime}\right)=\operatorname{rank}(A)$

Rank of a Matrix-3

- By convention the rank of a zero matrix is equal to zero.
- A vector with at least one element different from zero has rank equal to one

Rank of a Matrix-3

- By convention the rank of a zero matrix is equal to zero.
- A vector with at least one element different from zero has rank equal to one.

Rank of a Matrix-3

- By convention the rank of a zero matrix is equal to zero.
- A vector with at least one element different from zero has rank equal to one.
- $\operatorname{rank}\left(\begin{array}{ll}2 & 3 \\ 1 & 4\end{array}\right)=2$

Rank of a Matrix-3

- By convention the rank of a zero matrix is equal to zero.
- A vector with at least one element different from zero has rank equal to one.
- $\operatorname{rank}\left(\begin{array}{ll}2 & 3 \\ 1 & 4\end{array}\right)=2$
- $\operatorname{rank}\left(\begin{array}{ll}1 & 3 \\ 2 & 6\end{array}\right)=1$

Outline of the talk

（1）Matrices

（2）Matrix types
（3）Operations with matrices
（4）Matrix Rank
（5）Inverse Matrix

かっと

Inverse of a matrix-1

The inverse of a matrix A, denoted A^{-1}, where defined, is that matrix which, when pre-multiplied or post-multiplied by A, will result in the identity matrix I, i.e.
$A A^{-1}=A^{-1} A=I$

Inverse of a matrix-1

The inverse of a matrix A, denoted A^{-1}, where defined, is that matrix which, when pre-multiplied or post-multiplied by A, will result in the identity matrix I, i.e.
$A A^{-1}=A^{-1} A=I$
The inverse of a matrix exists if and only if the matrix is square and it is non-singular (i.e. it is of full rank). If the two conditions are satisfied, the matrix is said to be invertible.

The inverse of a 2×2 non-singular matrix A whose elements are

Inverse of a matrix-1

The inverse of a matrix A, denoted A^{-1}, where defined, is that matrix which, when pre-multiplied or post-multiplied by A, will result in the identity matrix I, i.e.
$A A^{-1}=A^{-1} A=I$
The inverse of a matrix exists if and only if the matrix is square and it is non-singular (i.e. it is of full rank). If the two conditions are satisfied, the matrix is said to be invertible.

The inverse of a 2×2 non-singular matrix A whose elements are
$\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$
will be given by $A^{-1}=\frac{1}{a d-b c}\left(\begin{array}{cc}d & -b \\ -c & a\end{array}\right)$

Inverse of a matrix-2

The calculation of the inverse of a $n x n$ matrix for $n>2$ is more complex and beyond the scope of the text.

Properties of the inverse of a matrix include:

Inverse of a matrix-2

The calculation of the inverse of a $n x n$ matrix for $n>2$ is more complex and beyond the scope of the text.

Properties of the inverse of a matrix include:

- $I^{-1}=I$

Inverse of a matrix-2

The calculation of the inverse of a $n x n$ matrix for $n>2$ is more complex and beyond the scope of the text.

Properties of the inverse of a matrix include:

- $I^{-1}=I$
- $\left(A^{-1}\right)^{-1}=A$

Inverse of a matrix-2

The calculation of the inverse of a $n x n$ matrix for $n>2$ is more complex and beyond the scope of the text.

Properties of the inverse of a matrix include:

- $I^{-1}=I$
- $\left(A^{-1}\right)^{-1}=A$
- $\left(A^{\prime}\right)^{-1}=\left(A^{-1}\right)^{\prime}$

Inverse of a matrix-2

The calculation of the inverse of a $n x n$ matrix for $n>2$ is more complex and beyond the scope of the text.

Properties of the inverse of a matrix include:

- $I^{-1}=I$
- $\left(A^{-1}\right)^{-1}=A$
- $\left(A^{\prime}\right)^{-1}=\left(A^{-1}\right)^{\prime}$
- $(A B)^{-1}=B^{-1} A^{-1}$ if both A and B are invertible.

