Esame di Metodi Probabilistici e Statistici e Processi Stocastici Anno Accademico 2014/2015, 2^a sessione, 1^o appello (04/06/2015) Corso di laurea triennale in Ingegneria dell'Informazione Dipartimento di Ingegneria e Architettura Università degli Studi di Trieste

1) Siano X ed Y variabili aleatorie indipendenti e con legge di Bernoulli di parametro $\frac{2}{3}$, sia la variabile aleatoria Z = X + Y e sia la catena di Markov $\{X_n\}_{n \in \mathbb{N}}$ a valori in $\{0, 1, 2\}$, avente come legge iniziale la legge di Z e come matrice di transizione la matrice

$$\begin{pmatrix} 0 & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & 0 & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & 0 \end{pmatrix}.$$

- a) Calcolare E[ZX] e Var[Z-2Y].
- b) Determinare le densità discrete delle variabili aleatorie X_0, X_1, X_2 .
- c) Calcolare $E[X_2]$ e $Var[X_1]$.
- d) Stabilire se esista una misura di probabilità invariante per la catena di Markov ed in caso affermativo determinarla.
- 2) Sia (X, Y) un vettore aleatorio continuo con densità uniforme sul triangolo determinato dai punti (0,0), (0,2) e (4,0).
- a) Determinare le densità delle variabili aleatorie X ed Y e stabilire se X ed Y siano indipendenti.
 - b) Calcolare E[X] e E[Y].
 - c) Calcolare $P\left(Y > \frac{X}{2}\right)$.
- 3) Sia $(X_1,...,X_n)$ un campione casuale estratto da una legge uniforme sull'intervallo $(\alpha \beta, \alpha + \beta)$, dove $\alpha \in \mathbf{R}, \beta \in \mathbf{R}^+$.
- a) Verificare che $E[X_1]$ dipende solo da α , mentre $Var[X_1]$ dipende solo da β .
- b) Determinare con il metodo dei momenti gli stimatori \widehat{T}_1 e \widehat{T}_2 di $E[X_1](\alpha)$ e $Var[X_1](\beta)$ rispettivamente.
 - c) Calcolare la distorsione dello stimatore \widehat{T}_2 .