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STIMA DI MODELLI DI SOPRAVVIVENZA NON PARAMETRICI 

 

• Rilevazione della mortalità in ambito attuariale 

• Esposizione attuariale e frequenze di decesso 

• Riferimento: anno di vita, anno di polizza e anno di calendario 

• Frequenze di decesso per tavole selezionate 

• Stima di modelli di sopravvivenza non parametrici – uscite soltanto per morte 

• Modello di sopravvivenza con più cause di eliminazione 

• Stima di modelli di sopravvivenza non parametrici – uscite per morte e altra causa 

• Stimatore della funzione di sopravvivenza e sue proprietà 

• Confronto della tavola di sopravvivenza stimata con una tavola standard 

• Perequazione mediante tavole standard 

• Perequazione con leggi di sopravvivenza 

• Altre formule di perequazione utilizzate in ambito attuariale 

• Stima dei parametri di una formula di perequazione 

• Perequazione mediante modelli lineari generalizzati 
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Rilevazione della mortalità in ambito attuariale 
 

RILEVAZIONE DELLA MORTALITÀ IN AMBITO ATTUARIALE 

Rilevazioni trasversali (cross-sectional studies) 

Si individua il gruppo di studio, cioè un gruppo di individui per i quali interessa studiare la 
sopravvivenza (tipicamente gli assicurati di una compagnia di assicurazione, gli iscritti ad 
un fondo pensione, …). 

Si fissa un periodo di osservazione durante il quale viene osservato il gruppo di studio; di 
solito si osserva la collettività per 3-5 anni. 

All’inizio dell’osservazione ci saranno individui già presenti, ai quali se ne aggiungeranno 
altri durante il periodo di osservazione; 

alcuni individui possono uscire per causa diversa dal decesso durante l’osservazione, per 
esempio perché è scaduto il contratto di assicurazione, oppure perché è stata riscattata 
la polizza; 

ci saranno individui ancora in vita al termine dell’osservazione. 

Si può considerare come istante iniziale l’età minima di ingresso in assicurazione, oppure 
un’età minima a partire dalla quale si dispone di osservazioni. 
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Rilevazione della mortalità in ambito attuariale 
 

Generalmente si ha a che fare con dati incompleti : 

se non è osservato l’istante iniziale, l’osservazione è detta troncata a sinistra 

se non è osservato il decesso, l’osservazione è detta censurata a destra 

Obiettivo: stimare xq  o xm  per ω,,1, K+= aax  essendo a  l’età minima. 

Osservazione: Nei modelli di sopravvivenza non parametrici la stima del modello 
avviene separatamente per ciascuna classe di età 

Supponiamo di disporre di dati individuali esatti, cioè per ogni individuo osservato i  sono 
noti: 

• data di nascita 

• data di ingresso in osservazione 

• data di uscita dall’osservazione 

• causa di uscita, che può essere: fine osservazione (survival) 
         decesso (death) 
         altra causa (withdrawal) 
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Rilevazione della mortalità in ambito attuariale 
 

Per ogni individuo osservato i  si determina il vettore delle età : 

  ( ),,,, iiii zy φθ  

essendo 

iy  l’età esatta (anno intero + frazione d’anno) di ingresso in osservazione 

iz  l’età esatta che l’individuo i  avrà alla data in cui terminerà la sua osservazione (può 

essere la data di fine rilevazione della collettività, oppure la data di scadenza della 
polizza); è detta età di uscita pianificata  

iθ  l’età esatta di uscita per morte ( 0=iθ  se l’individuo i  non è uscito per morte) 

iφ  l’età esatta di uscita per altra causa ( 0=iφ  se l’individuo i  non è uscito per altra 

causa) 

( ]ii zy ,  è detto intervallo di osservazione pianificata  per l’individuo i  
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Rilevazione della mortalità in ambito attuariale 
 

Per ogni individuo osservato si determinano le classi di età ] ]1, +xx  per le quali l’individuo 
ha contribuito all’osservazione 

Con riferimento alla classe di età ] ]1, +xx  ed all’individuo i , caratterizzato dal vettore delle 
età ( ),,,, iiii zy φθ  

l’individuo i  non contribuisce alla osservazione per la classe di età ] ]1, +xx  se: 

• 1+≥ xyi  

• xzi ≤  

• xi ≤< θ0  oppure xi ≤< φ0  

 

Se l’individuo i  contribuisce alla osservazione per la classe di età ] ]1, +xx  

tale osservazione, relativa alla classe di ] ]1, +xx , è riassunta da un vettore detto vettore 
delle durate 
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Rilevazione della mortalità in ambito attuariale 
 

Per ogni classe di età ] ]1, +xx  e per ogni individuo i  che contribuisce alla osservazione 
per tale classe di età si determina il vettore delle durate  

  ( ),,,, iiii ktsr  

essendo 

irx +  l’età esatta di ingresso in osservazione nella classe di età ] ]1, +xx  con 10 <≤ ir  e 
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isx +  l’età esatta pianificata di uscita dalla osservazione per la classe di età ] ]1, +xx  

con 10 ≤< is  e 
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itx +  l’età esatta di uscita per morte se ii tx +=θ , altrimenti 0=it  

ikx +  l’età esatta di uscita per altra causa se ii kx +=φ , altrimenti 0=ik  
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Esposizione attuariale e frequenze di decesso 
 

ESPOSIZIONE ATTUARIALE E FREQUENZE DI DECESSO 

Per stimare xq  ovvero xm , per ω,,1, K+= aax ,sono state introdotte, in ambito attuariale, 

le stime ottenute rapportando il numero di decessi osservati ad una qualche misura di 
esposizione. 

Con riferimento alla classe di età ] ]1, +xx  e con riferimento agli individui i  che 
contribuiscono alla osservazione per tale classe di età si definiscono 

{ }isxiiS +=  etàall' in vita è  individuol'     survival 

{ }itxiiD +=  etàall' morteper  esce  individuol'    death 

{ }ikxiiW +=  etàall' causa altraper  esce  individuol'   withdrawal 

Sia 

 Dx #=θ   il numero di individui che decedono nella classe di età ] ]1, +xx  
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Esposizione attuariale e frequenze di decesso 
 

Stime per  
x

x
x l

d
q =    per ω,,1, K+= aax  

Def.  Frequenza (grezza) di decesso  

   
x

x
x

o

E
q

θ=  

essendo xE  l’esposizione  attuariale o numero iniziale di esposti al rischio  

   ( ) ( ) ( )∑ −−∑ −−∑ −=
∈∈∪∪∈ Wi

i
Si

i
WDSi

ix ksrE 111  

Stime per  
x

x
x L

d
m =    per ω,,1, K+= aax  

Def.  Frequenza (grezza) centrale di decesso  

   
C
x

x
x

o

E
m

θ=  

essendo C
xE  il numero centrale di esposti al rischio  

   ( ) ( ) ( ) ( )∑ −−∑ −−∑ −−∑ −=
∈∈∈∪∪∈ Di

i
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i
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i
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i
C
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Esposizione attuariale e frequenze di decesso 
 
Osservazione 

Ricordando la relazione )1( xxxx tdlL −−=  si nota che si ha 

( )∑ −−=
∈Di

ix
C
x tEE 1  

Giustificazione di Cantelli 

Sia xD  il n.a. dei decessi nella classe di età ] ]1, +xx ; si stima xq  con il metodo dei 

momenti, ponendo 

      ( ) xxDE θ=  

Poiché 

    ( ) ∑−∑−∑=
∈

+−
∈

+−
∪∪∈

+−
Wi

kxk
Si

sxs
WDSi

rxrx iiiiii
qqqDE 111  

nell’ipotesi di interpolazione iperbolica si ha xrxr qrq )1(1 −=+− , quindi 

 ( ) xx
Wi

i
Si

i
WDSi

ixx EqksrqDE =







∑ −−∑ −−∑ −=
∈∈∪∪∈

)1()1()1(  

Da cui si ottiene la stima con il metodo dei momenti:   
x

x
x

o

E
q

θ=  
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Esposizione attuariale e frequenze di decesso 
 
Osservazioni 

• Nella valutazione si ipotizza uguale mortalità per i soggetti che rimangono nella 
collettività, per i nuovi ingressi e per coloro che escono per altra causa 

• La giustificazione di Cantelli è errata in quanto le valutazioni relative ad uno stesso 
individuo sono fatte in stati di informazione diversi 

• xθ  è il numero di decessi osservati con età esatta nella classe di età ] ]1, +xx . 

Poiché si contano i decessi nell’anno che inizia con l’età esatta x  e termina con l’età 
esatta 1+x  si dice che si prende come riferimento l’anno di vita  compreso tra due 
compleanni. 

Per coerenza, anche nella valutazione dell’esposizione si prende come riferimento 
l’anno di vita. Infatti, disponendo di dati individuali esatti si determina per ciascun 
individuo la sua esposizione nell’anno di vita, infatti si ha 

    ( ) ( ) ( )∑ −+∑ −+∑ −=
∈∈∈ Di

i
Wi

ii
Si

iix rrkrsE 1  

 Nota: per gli individui che decedono il contributo all’esposizione è ( )∑ −
∈Di

ir1  
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Riferimento: anno di vita, anno di polizza e anno di calendario 
 

RIFERIMENTO: ANNO DI VITA, ANNO DI POLIZZA E ANNO D I CALENDARIO 

Talvolta non è disponibile l’informazione sulla data di nascita dell’individuo osservato e 
non si è allora in grado di calcolare l’età esatta in cui si verifica un determinato evento 
(per esempio la morte o l’uscita per altra causa). 

Le valutazioni non possono allora essere fatte prendendo come riferimento l’anno di vita. 

Ciò tipicamente avviene quando alla stipulazione della polizza si attribuisce all’assicurato 
una età arrotondata (intera); in tal caso si dirà che si prende come riferimento l’anno di 
polizza. 

Un’altra eventualità si ha nel caso in cui agli individui sia attribuita un’età arrotondata ad 
una certa data (per esempio all’1/1), come avviene spesso per i fondi pensione; in tal 
caso si dirà che si prende come riferimento l’anno di calendario. 

Definizione 

Diremo che un individuo ha età arrotondata  (intera) x  ad una certa data (per es. un 
anniversario di polizza oppure all’1 gennaio) se in quella data ha età esatta nell’intervallo 






 +−
2
1

,
2
1

xx  
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Riferimento: anno di vita, anno di polizza e anno di calendario 
 

Conteggio dei decessi prendendo come riferimento l’anno di polizza 

 

Alla stipulazione della polizza si attribuisce all’assicurato l’età arrotondata (intera). 

 

Si definisce data di nascita di valutazione , la data in cui giorno e mese coincidono con 
il giorno ed il mese di stipulazione della polizza, l’anno è dato da 

 anno di stipulazione della polizza - età arrotondata alla stipulazione della polizza 

 

Utilizzando tale data di nascita di valutazione al posto della data di nascita e conoscendo 

  la data di ingresso in osservazione, 

  la data di uscita dall’osservazione e la causa di uscita 

si è in grado di determinare il vettore delle età ( ),,,, iiii zy φθ  
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Riferimento: anno di vita, anno di polizza e anno di calendario 
 

Con riferimento alla classe di età ] ]1, +xx  si è in grado di determinare il vettore delle 
durate ( ),,,, iiii ktsr  

essendo 

ir  la durata di tempo dall’anniversario di polizza precedente all’ingresso in 

osservazione nella classe di età ] ]1, +xx  con 10 <≤ ir  e 
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osservazione per la classe di età ] ]1, +xx  con 10 ≤< is  e 
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Riferimento: anno di vita, anno di polizza e anno di calendario 
 

Poiché, nei casi di uscita per morte e, rispettivamente, per altra causa 

itx +  non è più l’età esatta di uscita per morte, ma it  è la durata di tempo 

dall’anniversario di polizza precedente all’uscita per morte 

ikx +  non è più l’età esatta di uscita per altra causa, ma ik  è la durata di tempo 

dall’anniversario di polizza precedente all’uscita per altra causa 

si dice che si prende come riferimento l’anno di polizza  in quanto si considerano gli 
eventi che avvengono nell’anno di polizza. 

Si ha allora che 

xθ  è il numero di decessi osservati per gli assicurati nell’anno di polizza ] ]1, +xx  

Anche nella valutazione dell’esposizione si prende come riferimento l’anno di polizza, 
conteggiando le esposizioni tra due anniversari di polizza. 

    ( ) ( ) ( )∑ −+∑ −+∑ −=
∈∈∈ Di

i
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15 
 

Riferimento: anno di vita, anno di polizza e anno di calendario 
 
Le stime 

   
x

x
x

o

E
q

θ=    
C
x

x
x

o

E
m

θ=   per ω,,1, K+= aax  

forniscono delle stime per, rispettivamente, 

   fxq +    fxm +  

Essendo 

2
1

2
1 <≤− f   

Nel caso di distribuzione uniforme delle stipulazioni delle polizze rispetto agli anni di vita, 
ovvero di distribuzione uniforme dei compleanni rispetto all’anno di polizza, si può 
assumere 

0=f   

e quindi x

o
q  e x

o
m   forniscono delle stime per, rispettivamente, xq  e xm  
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Riferimento: anno di vita, anno di polizza e anno di calendario 
 

Conteggio dei decessi prendendo come riferimento l’anno di calendario 

Nelle assicurazioni collettive o nei fondi pensione, c’è una data prefissata, per esempio 
l’1/1, chiamata data di valutazione del fondo ed agli assicurati viene attribuita l’età 
arrotondata (intera) in tale data. 

Si dice allora che si prende come riferimento l’anno di calendario  dall’1/1 al 31/12. 

È come se tutte le polizze fossero stipulate nella stessa data ed a tutti gli assicurati si 
attribuisse l’età arrotondata in tale data. 

Analogamente a quanto visto nel caso in cui si prenda come riferimento l’anno di polizza, 
si definisce per ogni individuo osservato, la data di nascita di valutazione, il vettore delle 
età ( ),,,, iiii zy φθ  e, con riferimento alla classe di età ] ]1, +xx  il vettore delle durate 

( ),,,, iiii ktsr  

Poiché generalmente l’intervallo di osservazione inizia all’1/1 di un certo anno e termina 
al 31/12 di qualche anno dopo, per ogni individuo osservato si ha 0=ir  e 1=is  . 
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Riferimento: anno di vita, anno di polizza e anno di calendario 
 

Poiché, nei casi di uscita per morte e, rispettivamente, per altra causa 

itx +  non è più l’età esatta di uscita per morte, ma it  è la durata di tempo dalla data di 

valutazione del fondo precedente all’uscita per morte 

ikx +  non è più l’età esatta di uscita per altra causa, ma ik  è la durata di tempo dalla 

data di valutazione del fondo precedente all’uscita per altra causa 

si dice che si prende come riferimento l’anno di calendario  in quanto si considerano gli 
eventi che avvengono nell’anno di calendario. 

Si ha allora che 

xθ  è il numero di decessi osservati per gli assicurati nell’anno di calendario ] ]1, +xx  

Anche nella valutazione dell’esposizione si prende come riferimento l’anno di calendario, 
conteggiando le esposizioni tra due date di valutazione del fondo. 
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Riferimento: anno di vita, anno di polizza e anno di calendario 
 
Le stime 

   
x
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θ=    
C
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x
x

o

E
m

θ=   per ω,,1, K+= aax  

forniscono delle stime per, rispettivamente, 

   fxq +    fxm +  

Essendo 

2
1

2
1 <≤− f   

Nel caso di distribuzione uniforme dei compleanni nell’anno di calendario, si può 
assumere 

0=f   

e quindi x

o
q  e x

o
m  forniscono delle stime per, rispettivamente, xq  e xm  

Talvolta si attribuisce come età arrotondata intera ad una data di valutazione del fondo, 
l’età raggiunta all’ultimo compleanno. 
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Riferimento: anno di vita, anno di polizza e anno di calendario 
 

Definizione 

Diremo che un individuo ha età troncata  (intera) x  all’1/1 di un certo anno se in quella 
data ha età esatta nell’intervallo [ [1, +xx  

xθ  è il numero di decessi osservati con età troncata x  all’1/1 precedente al decesso 

Le stime    
x

x
x

o

E
q

θ=    
C
x

x
x

o

E
m

θ=   per ω,,1, K+= aax  

forniscono delle stime per, rispettivamente,   fxq +    fxm +  

essendo 
10 <≤ f   

Nel caso di distribuzione uniforme dei compleanni nell’anno di calendario, si può 
assumere 

2
1=f   

e quindi x

o
q  e x

o
m  forniscono delle stime per, rispettivamente, 21+xq  e 21+xm  
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Frequenze di decesso per tavole selezionate 
 

FREQUENZE DI DECESSO PER TAVOLE SELEZIONATE 

Un modello di sopravvivenza selezionato è definito mediante una famiglia di funzioni di 
sopravvivenza 

    ( )xtS ;    0≥t   K,1, += aax  
dove 
 x   è l’età (intera) di ingresso in assicurazione 

 t   è l’antidurata dell’assicurazione 

Una tavola di mortalità selezionata è definita da un insieme di sequenze del tipo 

 [ ]al  [ ] 1+al  [ ] 2+al  … 

 [ ]1+al  [ ] 11 ++al  [ ] 21 ++al  …   dove 

 …           [ ] [ ] ( )xtSll xtx ;⋅=+  

 [ ]xl  [ ] 1+xl  [ ] 2+xl  …     K,1, += aax   K,1,0=t  

 …           
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Frequenze di decesso per tavole selezionate 
 

Per stimare un modello di sopravvivenza selezionato si determinano le frequenze di 
decesso per le diverse età di ingresso in assicurazione e antidurate. 

Poiché l’età (intera) di ingresso in assicurazione è l’età arrotondata all’emissione della 
polizza e l’antidurata è il numero di anni in cui l’individuo è presente in assicurazione, si 
prende come riferimento l’anno di polizza. 

Con riferimento all’età arrotondata x  di ingresso in assicurazione ed all’intervallo di 
antidurate ] ]1, +tt ,il vettore delle durate ( ),,,, iiii ktsr  dell’individuo i  che contribuisce alla 

osservazione per l’intervallo di antidurate ] ]1, +tt  è così definito 

ir  con 10 <≤ ir  tale che irt +  è l’antidurata esatta all’ingresso in osservazione 

nell’intervallo di antidurate ] ]1, +tt  

is  con 10 ≤< is  tale che ist +  è l’antidurata esatta di uscita dall’osservazione 

dell’intervallo di antidurate ] ]1, +tt  

it  con 10 ≤< it  tale che itt +  è l’antidurata esatta di uscita per morte 

ik  con 10 ≤< ik  tale che ikt +  è l’antidurata esatta di uscita per altra causa 
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Frequenze di decesso per tavole selezionate 
 

Si definisce 

[ ] tx +θ  il numero di decessi osservati per gli assicurati entrati in assicurazione all’età 

arrotondata x  e con antidurata esatta in ] ]1, +tt   

[ ] txE +  il numero iniziale di esposti al rischio nell’anno di polizza ] ]1, +tt , per gli assicurati 

entrati in assicurazione all’età arrotondata x  

   [ ] ( ) ( ) ( )∑ −−∑ −−∑ −=
∈∈∪∪∈

+
Wi

i
Si

i
WDSi

itx ksrE 111  

Si definisce la frequenza di decesso  

   [ ]
[ ]
[ ] tx

tx
tx

o

E
q

+

+
+ =

θ
 

che fornisce una stima di [ ] tfxq ++  con 
2
1

2
1 <≤− f  

Nel caso di distribuzione uniforme dei compleanni nell’anno di polizza si può assumere 

0=f  e quindi [ ] tx

o
q +  fornisce una stima di [ ] txq +   
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Frequenze di decesso per tavole selezionate 
 

Indicato con 

[ ]
C

txE +  il numero centrale di esposti al rischio nell’anno di polizza ] ]1, +tt , per gli assicurati 

entrati in assicurazione all’età arrotondata x  

   [ ] ( ) ( ) ( ) ( )∑ −−∑ −−∑ −−∑ −=
∈∈∈∪∪∈

+
Di

i
Wi

i
Si

i
WDSi

i
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tx tksrE 1111  

si definisce la frequenza centrale di decesso  

   [ ] [ ]
[ ]
C

tx

tx
tx

o

E
m

+

+
+ =

θ
 

che fornisce una stima di [ ] tfxm ++  
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Frequenze di decesso per tavole selezionate 
 

Poiché l’effetto della selezione si esaurisce entro un certo numero t′  di anni  

 [ ] [ ] [ ] [ ] [ ] [ ] [ ] axattxttxttxxxx qqqqqqq −++′+−′−+′+−′−′+′−+−+− ====<<<< KK 22112211  

si definiscono le tavole selezionate ridotte 

 [ ]al  [ ] 1+al  [ ] 2+al  …  [ ] 1−′+tal   ( )tal ′+  

 [ ]1+al  [ ] 11 ++al  [ ] 21 ++al  …  [ ] 11 −′++ tal   ( )1+′+tal  

   M              M 

 [ ]xl  [ ] 1+xl  [ ] 2+xl  …  [ ] 1−′+txl   ( )txl ′+  

   M              M 

dove [ ]al  è la radice della tavola e [ ]xl  è tale che  

  [ ] ( ) ( )txx lxtSl ′+=′⋅ ;    K,2,1 ++= aax  

Indichiamo con 

 ( ) [ ] [ ] [ ] axattxttxx qqqq −++′+−′−′+′− ==== K11   con tax +=     e     K,1, +′′= ttt  
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Frequenze di decesso per tavole selezionate 
 
Per stimare 

 ( ) [ ] [ ] [ ] axattxttxx qqqq −++′+−′−′+′− ==== K11   con tax +=     e     K,1, +′′= ttt  

si continua a prendere come riferimento l’anno di polizza e si considerano le frequenze di 
decesso 

   ( )
( )
( )x

x
x

o

E
q

θ
=  

essendo 

   ( ) [ ] [ ] [ ] axattxttxx −++′+−′−′+′− +++= θθθθ K11  

   ( ) [ ] [ ] [ ] axattxttxx EEEE −++′+−′−′+′− +++= K11  

oppure le frequenze centrali di decesso 

   ( ) ( )

( )
C
x

x
x

o

E
m

θ
=  

essendo 

   ( ) [ ] [ ] [ ]
C

axa
C

ttx
C

ttx
C
x EEEE −++′+−′−′+′− +++= K11  
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Stima di modelli di sopravvivenza non parametrici – uscite soltanto per morte 
 

STIMA DI MODELLI DI SOPRAVVIVENZA NON PARAMETRICI 

USCITE SOLTANTO PER MORTE 

Con riferimento alla classe di età ] ]1, +xx  supponiamo di avere osservato xn  individui e di 

disporre di dati individuali esatti riassunti, per ogni individuo i  che contribuisce alla 
osservazione per tale classe di età, dal vettore delle durate 

  ( )iii tsr ,,    xni ,,1 K=  

essendo 

irx +  l’età di ingresso in osservazione nella classe di età ] ]1, +xx  con 10 <≤ ir   

isx +  l’età di uscita pianificata dalla osservazione per la classe di età ] ]1, +xx  con 

10 ≤< is   

itx +  l’età di uscita per morte se ii tx +=θ , altrimenti 0=it  

Nota: se il riferimento è l’anno di vita, irx + , isx +  e itx +  sono età esatte, se il riferimento 

è l’anno di polizza (o l’anno di calendario), x  è l’età arrotondata all’anniversario di polizza 
ed ir , is  e it  sono durate riferire all’anno di polizza (o all’anno di calendario). 
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Stima di modelli di sopravvivenza non parametrici – uscite soltanto per morte 
 
Stima con il metodo dei momenti 
 
Si definiscono i n.a. 

 


=

altrimenti0

 età di classe nella decede  individuol' se1 xi
Di    xni ,,1 K=  

Si definisce il n.a. xD  dei decessi nella classe di età ] ]1, +xx  

 ∑=
=

xn

i
ix DD

1
 

Nell’ipotesi che il modello di descrizione della sopravvivenza sia lo stesso per ogni i  si ha 

 ( ) ∑=∑=
=

+−
=

x

iii

x n

i
rxrs

n

i
ix qDEDE

11
)(  

Sia xd  il numero dei decessi osservati nella classe di età ] ]1, +xx ; 

si può scrivere quindi l’equazione dei momenti 

   ( ) xx dDE =   ⇔   x

n

i
rxrs dq

x

iii
=∑

=
+−

1
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Stima di modelli di sopravvivenza non parametrici – uscite soltanto per morte 
 

A) Nell’ipotesi 0=ir  e 1=is  per ogni i  si ha 

   x

n

i
rxrs dq

x

iii
=∑

=
+−

1
 ⇔  xxx dnq =  

    ⇒  
x

x
x n

d
q =ˆ  

La stima ottenuta coincide con la stima di massima verosimiglianza di xq  in ipotesi di 

distribuzione Binomiale( xn , xq ) per il n.a. xD   

B) Nell’ipotesi di interpolazione lineare con 0=ir  per ogni i  si ha 

   x

n

i
rxrs dq

x

iii
=∑

=
+−

1
 ⇔  x

n

i
xs dq

x

i
=∑

=1
 ⇔  x

n

i
xi dqs

x
=∑

=1
 

    ⇒  

∑

=

=

xn

i
i

x
x

s

d
q

1

ˆ  

essendo in tale ipotesi xxs qsq =  
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Stima di modelli di sopravvivenza non parametrici – uscite soltanto per morte 
 

C) Nell’ipotesi di interpolazione esponenziale 

   ( ) rs
xrxrs qq −

+− −−= 11  

che richiede di risolvere l’equazione dei momenti numericamente 

D) Nell’ipotesi di interpolazione iperbolica con 1=is  per ogni i  si ha 

   x

n

i
rxrs dq

x

iii
=∑

=
+−

1
 ⇔  x

n

i
rxr dq

x

ii
=∑

=
+−

1
1  ⇔  x

n

i
xi dqr

x
=∑ −

=1
)1(  

    ⇒  

∑ −
=

=

xn

i
i

x
x

r

d
q

1
)1(

ˆ  

essendo in tale ipotesi xrxr qrq )1(1 −=+−  

Per risolvere l’equazione dei momenti in forma chiusa  

     x

n

i
rxrs dq

x

iii
=∑

=
+−

1
 

si formula, in generale, la seguente ipotesi:   xrxrs qrsq )( −=+−  
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Stima di modelli di sopravvivenza non parametrici – uscite soltanto per morte 
 

Si ha allora 

   x

n

i
rxrs dq

x

iii
=∑

=
+−

1
 ⇔   x

n

i
xii dqrs

x
=∑ −

=1
)(  

    ⇒  

∑ −
=

=

xn

i
ii

x
x

rs

d
q

1
)(

ˆ  

dove ∑ −
=

xn

i
ii rs

1
)(  è detta esposizione totale pianificata  nella classe di età ] ]1, +xx   

Sia  

   

∑ −
=

=

xn

i
ii

x
x

rs

D
q

1
)(

~  

lo stimatore del quale la stima xq̂  è il valore osservato 

Sotto l’ipotesi 

  xrxrs qrsq )( −=+−   

xq~  è non distorto, infatti ( ) xx qqE =~  
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Stima di modelli di sopravvivenza non parametrici – uscite soltanto per morte 
 
Inoltre, in ipotesi di indipendenza stocastica dei n.a. iD , xni ,,1 K= , si ha 

( )
( ) ( )

2

1

1

2

1

2

2

1

1
2

1

1

)(

)()(

)(

)(1)(

)(

1
~









∑ −

∑ −∑ −−
=









∑ −

∑ −−−
=









∑ −

∑ −
=

=

==

=

=

=

=
+−+−

x

xx

x

x

x

x

iiiiii

n

i
ii

n

i
ii

n

i
xiix

n

i
ii

n

i
xiixii

n

i
ii

n

i
rxrsrxrs

x

rs

rsqrsq

rs

qrsqrs

rs

qq
qVar  

Sostituendo al posto di xq  il valore stimato xq̂  si ottiene una stima di ( )xqVar ~ . 

Se si considera invece l’ipotesi cosiddetta “binomiale”, cioè 

  ( ) xx qqE =~   ( ) ( )

∑ −

−=

=

xn

i
ii

xx
x

rs

qq
qVar

1
)(

1~  

si ottiene la seguente stima della ( )xqVar ~  

    ( ) ( )

∑ −

−=

=

xn

i
ii

xx
x

rs

qq
qraV

1
)(

ˆ1ˆ~ˆ  
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Stima di modelli di sopravvivenza non parametrici – uscite soltanto per morte 
 
Stima con il metodo della massima verosimiglianza 
 

Con riferimento alla classe di età ] ]1, +xx  per scrivere la verosimiglianza delle 
osservazioni 

    ( )iii tsr ,,    xni ,,1 K=  

definiamo, per ogni xni ,,2,1 K= , i n.a. 

)(iT  durata aleatoria di vita dell’individuo i  nell’intervallo di età ] ]1, +xx   

Nota: )(iT  ha determinazioni ] ]ii sr ,   

Indicato con )(i
rx i

T +  la durata aleatoria di vita dell’i -esimo individuo in vita all’età irx +  si ha 

     ( )ii
i

rx
i srTT

i
,min )()( += +  
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Stima di modelli di sopravvivenza non parametrici – uscite soltanto per morte 
 

Nell’ipotesi che per ogni individuo i  la durata aleatoria di vita sia descritta dallo stesso 
modello di sopravvivenza, dotato di funzione di densità, si ha 

( )








≥
<<−

≤
=≤ +

i

iiirx

i
i

st

strrtF

rt

tTP
i

1

0

)( )(  

ed è inoltre ( )
iiiiiii rxrsrxrsiirxi

i pqrsFsTP +−+−+ =−=−−== 11)( )(  

Quindi se l’individuo i  decede con età esatta itx +  la verosimiglianza di tale osservazione 

è 
  ( ) ( )irxrtiirx txprtf

iiii
+=− +−+ µ  

Se invece l’individuo i  raggiunge in vita l’età di uscita pianificata isx + , la verosimiglianza 

di tale osservazione è 

  
iii rxrs p +−  
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Stima di modelli di sopravvivenza non parametrici – uscite soltanto per morte 
 

Si definiscono 

{ }isxiiS +=  etàall' in vita è  individuol'     survival 

{ }itxiiD +=  etàall' morteper  esce  individuol'    death 

In ipotesi di indipendenza stocastica dei n.a. )(iT  la verosimiglianza delle osservazioni è 

  ( ) ( )∏ +⋅∏=∏ −⋅∏=
∈

+−
∈

+−
∈

+
∈

+−
Di

irxrt
Si

rxrs
Di

iirx
Si

rxrs txpprtfpL
iiiiiiiiii

µ  

A) Nell’ipotesi di interpolazione esponenziale ( ) xtx µµ =+  , 10 ≤< t  

   )( iix
iii

rs
rxrs ep −−

+− = µ  

la verosimiglianza è 

  ( ) ( ) xiixiix d
x

Di
ii

Si
iix

Di
x

rt

Si

rs rtrseeL µµµµµ ⋅















∑ −+∑ −−∏ =⋅∏=
∈∈∈

−−

∈

−− )()(exp)()(  

dove Ddx #=   
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Stima di modelli di sopravvivenza non parametrici – uscite soltanto per morte 
 

La log-verosimiglianza è allora 

  ( )xx
Di

ii
Si

iix drtrsLl µµ log)()(log +















∑ −+∑ −−==
∈∈

 

Risolvendo l’equazione di verosimiglianza si trova 

∑ −+∑ −
=

∈∈ Di
ii

Si
ii

x
x rtrs

d

)()(
µ̂  

dove ∑ −+∑ −
∈∈ Di

ii
Si

ii rtrs )()(  è detta esposizione esatta  

Se poniamo 

    ∑ −+∑ −=
∈∈ Di

ii
Si

ii
C
x rtrsE )()(  

si ha 

( ) x
C
xx d

x
EeL µµ ⋅= −  
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Stima di modelli di sopravvivenza non parametrici – uscite soltanto per morte 
 
Osservazione 

Sia xD  il n.a. dei decessi nella classe di età ] ]1, +xx , in ipotesi di distribuzione di Poisson 

di parametro C
xxEµ  si ha 

   
( ) ( )

Le
d

E
e

d

E
dDP x

C
xx

x
C
xx

x
d

x
E

x

dC
xE

x

dC
xx

xx ∝=== −− µµ µµ
!!

)(  

Pertanto ai fini della stima di massima verosimiglianza dell’intensità istantanea di 
mortalità sono equivalenti le ipotesi esponenziale e di distribuzione di Poisson per il n.a. 

dei decessi xD  con C
xxx EDE µ=)(   

B) Nell’ipotesi di interpolazione lineare 

xi

xi
rxrs qr

qs
p

iii −
−=+− 1

1
  ( )

xi

x
i qt

q
tx

−
=+

1
µ  

indicato con Ddx #= , la verosimiglianza è 

  ( ) ( )∏ ∏ −−∏ =








−
⋅

−
−⋅∏

−
−=

∪∈ ∈

−

∈∈ DSi

d
x

Si
xixi

Di xi

x

xi

xi

Si xi

xi xqqsqr
qt

q

qr

qt

qr

qs
L 11

11
1

1
1 1  
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Stima di modelli di sopravvivenza non parametrici – uscite soltanto per morte 
 

Dalla log-verosimiglianza 

  ( ) ( ) ( )xx
Si

xi
DSi

xi qdqsqrLl log1log1loglog +∑ −+∑ −−==
∈∪∈

 

si ottiene l’equazione di log-verosimiglianza che può essere risolta per via numerica 

 0
11

=+∑
−

∑ −
− ∈∪∈ x

x

Si xi

i

DSi xi

i

q

d

qs

s

qr

r
 

 
Osservazione 

Soluzioni in forma chiusa possono essere ottenute per dati particolari (p. es. se 0=ir  e 

1=is  per ogni i ) e nel caso di particolari dati raggruppati (per es. se nel caso 1=is  per 

ogni i , si considera una comune età media di ingresso r  con 10 << r  per ogni i , oppure 
nel caso 0=ir  per ogni i , se si considera una comune età media di uscita pianificata s  

con 10 << s  per ogni i ) 

Vedi London, cap. 7
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Modello di sopravvivenza con più cause di eliminazione 
 

MODELLO DI SOPRAVVIVENZA CON PIÙ CAUSE DI ELIMINAZI ONE 

 
Sia una collettività di individui soggetta a m  cause di eliminazione mαα ,,1 K  

Si definiscono i n.a. 

xT  durata di permanenza nella collettività per un individuo presente nella collettività 

all’età x  

 C  con determinazioni m,,1K , tale che ( )jC =  ⇔  “l’individuo esce per la causa jα “ 

Si introduce un modello probabilistico per la coppia di n.a. ( )CTx ,  

Sia 

( )jCtTPq xxt
j =≤= ,
)(α

 probabilità che l’individuo presente nella collettività all’età x  

esca dalla collettività per la causa jα  entro l’età tx +   

( )tTPq xxt ≤=)(τ  probabilità che l’individuo presente nella collettività all’età x  

esca dalla collettività entro l’età tx +  per una qualsiasi causa 
)()( 1 ττ

xtxt qp −=  probabilità che l’individuo presente nella collettività all’età x  

sia presente all’età tx +  
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Modello di sopravvivenza con più cause di eliminazione 
 

Si ha 

( ) ( ) ∑=∑ =≤=≤=
==

m

j
xt

m

j
xxxt

jqjCtTPtTPq
1

)(

1

)( ,
ατ  

Si definisce intensità di eliminazione per una qualunque causa  

      ( ) ( )
t

tTttTP
tx xx

t ∆
>∆+≤

=+
→∆ 0

)( limτµ  

Si ha 

     ( ) 







∫ +−=
t

xt duuxp
0

)()( exp ττ µ  

Si definisce intensità di eliminazione per la causa jα  

      ( ) ( )
t

tTjCttTP
txa xx

t

j

∆
>=∆+≤

=+
→∆

,
lim

0

)(αµ  

Si ha 

( ) ( )∑ +=+
=

m

j
txatx j

1

)()( ατ µµ  
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Modello di sopravvivenza con più cause di eliminazione 

Poiché 

   ( ) ( )
)(

)()(

00

)( 1
lim

,
lim τ

αα
αµ

xt

xtxtt

t

xx

t pt

qq

t

tTjCttTP
txa

jj
j

∆
−=

∆
>=∆+≤

=+ ∆+
→∆→∆

 

se esiste finito 

    
t

qq jj
xtxtt

t ∆
−∆+

→∆

)()(

0
lim

αα
 

e poniamo 

     ( )
t

qq
jtf

jj
xtxtt

t
CT ∆

−= ∆+
→∆

)()(

0
, lim,

αα
 

la distribuzione congiunta della coppia di n.a. ( )CTx , , si ha 

   ( ) ( )
)(

,)( ,
τ

αµ
xt

CT

p

jtf
txa j =+    ( ) ( )txapjtf j

xtCT +⋅= )()(
, ,

ατ µ  

e quindi per la probabilità di eliminazione per la causa jα   

   ( ) ( ) ( )∫ +⋅=∫==≤=
t

xu

t

CTxxt duuxapdujufjCtTPq jj

0

)()(

0
,

)(
,,

ατα µ  mj ,,1K=  
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Modello di sopravvivenza con più cause di eliminazione 

Osservazione 

Disponendo di osservazioni sulla coppia di n.a. ( )CTx ,  si possono stimare le intensità di 

eliminazione per le varie cause ( )ta j )(αµ , 0≥t , mj ,,1K= , e quindi la distribuzione 

congiunta ( )jtf CT ,,  0≥t , mj ,,1K=  

Se si è invece interessati a stimare un modello di sopravvivenza in relazione alla 
mortalità nella collettività osservata, tenendo conto che sono presenti anche altre cause 
di uscita, occorre introdurre ulteriori ipotesi. 

Siano i n.a. 

)( j
xT  durata di permanenza nella collettività per un individuo di età x  fino al verificarsi 

dell’uscita per la causa jα   

Si ha 

  ( ))()1( ,,min m
xxx TTT K=   e  ( )jC =  ⇔  ( ))( j

xx TT =  
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Modello di sopravvivenza con più cause di eliminazione 

In relazione alle distribuzioni marginali dei n.a. )( j
xT , mj ,,1K=  si definisce 

Def.: intensità marginale di eliminazione per la causa jα  

     ( )
( )

t

tTttTP
tx

j
x

j
x

t

j

∆

>∆+≤
=+

→∆

)()(

0

)(
lim

αµ  

Def.: probabilità assoluta di sopravvivenza e, rispettivamente, di eliminazione  

   ( ) 







∫ +−=′
t

xt duuxp jj

0

)()(
exp

αα µ    
)()(

1 jj
xtxt pq

αα ′−=′  

Osservazione 

Sono dette probabilità relative di eliminazione per le diverse cause 

  ( ) ( ) 







∫ +−−=−==≤=
t

xtxxt duuxapjCtTPq jjj

0

)()()(
exp11,

ααα µ  mj ,,1K=  

 



43 
 

Modello di sopravvivenza con più cause di eliminazione 

 

In generale si ha 

      ( ) ( )tat jj )()( αα µµ ≠  mj ,,1K=  0≥t  

Nell’ipotesi 

   ( ) ( )tat jj )()( αα µµ =  mj ,,1K=  0≥t  

sussiste la seguente relazione di Karup  

  ∏ ′=
=

m

j
xtxt

jpp
1

)()( ατ  

e si ha allora 

   ( ) ( ) ( )txptxapjtf jjj
m

j
xtxtCT +










∏ ′=+⋅=
=

)(

1

)()()(
, ,

ααατ µµ  

Si dimostra che se i n.a. )()1( ,, m
xx TT K  sono stocasticamente indipendenti allora 

   ( ) ( )tat jj
xx

)()( αα µµ =   0≥t  
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Modello di sopravvivenza con più cause di eliminazione 

 

Nella realtà i n.a. )()1( ,, m
xx TT K  presentano delle relazioni di dipendenza. 

 

Si può allora porre il problema se a partire dai dati osservati, che consentono di stimare 
la distribuzione congiunta di ( )CTx , , si è in grado di stimare pure la distribuzione 

congiunta di ( ))()1( ,, m
xx TT K   

 

Senza introdurre ipotesi aggiuntive sui legami di dipendenza tra tali n.a., la risposta è 
negativa. 

 

Sussiste infatti il problema della non identificabilità: 

 

Esistono diverse distribuzioni congiunte di ( ))()1( ,, m
xx TT K  che danno 

luogo alla stessa distribuzione congiunta della coppia di n.a. ( )CTx ,  
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Stima di modelli di sopravvivenza non parametrici – uscite per morte e per altra causa 
 

STIMA DI MODELLI DI SOPRAVVIVENZA NON PARAMETRICI 

USCITE PER MORTE E PER ALTRA CAUSA 

Con riferimento alla classe di età ] ]1, +xx  supponiamo di avere osservato xn  individui e di 

disporre di dati individuali esatti riassunti, per ogni individuo i  che contribuisce alla 
osservazione per tale classe di età, dal vettore delle durate 

  ( ),,,, iiii ktsr    xni ,,1 K=  

essendo 

irx +  l’età di ingresso in osservazione nella classe di età ] ]1, +xx  con 10 <≤ ir   

isx +  l’età di uscita pianificata dalla osservazione per la classe di età ] ]1, +xx  con 

10 ≤< is   

itx +  l’età di uscita per morte se ii tx +=θ , altrimenti 0=it  

ikx +  l’età esatta di uscita per altra causa se ii kx +=φ , altrimenti 0=ik  

Nota: il riferimento può essere sia l’anno di vita, sia l’anno di polizza (o l’anno di 
calendario). 
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Stima di modelli di sopravvivenza non parametrici – uscite per morte e per altra causa 
 
Modello di sopravvivenza a due cause di eliminazion e: morte ed altra causa 
 
Sia una collettività di individui soggetta a due cause di eliminazione: 

 d  morte 

 w altra causa 

Sia  

xT  durata di permanenza nella collettività per un individuo presente nella collettività 

all’età x  

 ( ))()( ,min w
x

d
xx TTT =    

essendo  

)(d
xT  durata di permanenza nella collettività finché non si ha l’uscita per morte, per un 

individuo presente nella collettività all’età x  

)(w
xT  durata di permanenza nella collettività finché non si ha l’uscita per altra causa, 

per un individuo presente nella collettività all’età x  
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Stima di modelli di sopravvivenza non parametrici – uscite per morte e per altra causa 
 
Ipotesi: uscite non informative  

   ( ) ( )tat dd )()( µµ =   0≥t  

   ( ) ( )tat ww )()( µµ =   0≥t  

essendo 

    ( )
( )

t

tTttTP
tx

d
x

d
x

t

d

∆

>∆+≤
=+

→∆

)()(

0

)( limµ  

    ( )
( )

t

tTttTP
tx

w
x

w
x

t

w

∆

>∆+≤
=+

→∆

)()(

0

)( limµ  

le intensità marginali di eliminazione e 

    ( ) ( )
t

tTCttTP
txa xx

t

d

∆
>=∆+≤

=+
→∆

1,
lim

0

)(µ  

    ( ) ( )
t

tTCttTP
txa xx

t

w

∆
>=∆+≤

=+
→∆

2,
lim

0

)(µ  

le intensità di uscita per le varie cause, dove 1=C  denota l’evento “uscita per morte” e 
2=C  denota l’evento uscita per altra causa 
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Stima di modelli di sopravvivenza non parametrici – uscite per morte e per altra causa 
 

In ipotesi di uscite non informative sussiste inoltre la relazione di Karup  

 

  )()()( w
xt

d
xtxt ppp ′′=τ  

 

essendo 
 

  ( ) 







∫ +−=′
t

dd
xt duuxp

0

)()( exp µ   ( ) 







∫ +−=′
t

ww
xt duuxp

0

)()( exp µ  

 

)()( 1 ττ
xtxt qp −=  probabilità che l’individuo presente nella collettività all’età x  

sia presente all’età tx +  

( )tTPq xxt ≤=)(τ  probabilità che l’individuo presente nella collettività all’età x  

esca dalla collettività entro l’età tx +  per una qualsiasi causa 
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Stima di modelli di sopravvivenza non parametrici – uscite per morte e per altra causa 
 

Si ottengono allora le seguenti espressioni per le probabilità di uscita per morte e, 
rispettivamente, per altra causa 

 ( ) ( ) ( )∫ +⋅=∫ −==−≤= +−++−
s

r

d
rxru

s

r
CTrx

d
rxrs duuxapdurufCrsTPq )()(

,
)( 1,1, µτ  

( )∫ +⋅′⋅′= +−+−
s

r

dw
rxru

d
rxru duuxpp )()()( µ  

 

 ( ) ( ) ( )∫ +⋅=∫ −==−≤= +−++−
s

r

w
rxru

s

r
CTrx

w
rxrs duuxapdurufCrsTPq )()(

,
)( 2,2, µτ  

( )∫ +⋅′⋅′= +−+−
s

r

ww
rxru

d
rxru duuxpp )()()( µ  

 
Ed è inoltre 
 

)()()( w
rxrs

d
rxrsrxrs qqq +−+−+− +=τ  
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Stima di modelli di sopravvivenza non parametrici – uscite per morte e per altra causa 

 
Stima con il metodo dei momenti 
 

xn  individui osservati in relazione alla classe di età ] ]1, +xx   

  ( ),,,, iiii ktsr    xni ,,1 K=  

Si definiscono i n.a. 

xD  n.a. dei decessi nella classe di età ] ]1, +xx  

xW  n.a. delle uscite per altra causa nella classe di età ] ]1, +xx  

Siano 

xd  il numero dei decessi osservati nella classe di età ] ]1, +xx ; 

xw  il numero di uscite per altra causa osservate nella classe di età ] ]1, +xx ; 

Si ha 

   ( ) ∑=
=

+−
x

iii

n

i

d
rxrsx qDE

1

)(    ( ) ∑=
=

+−
x

iii

n

i

w
rxrsx qWE

1

)(  

dove )(d
rxrs
iii

q +−  e )(w
rxrs
iii

q +−  sono le probabilità di uscita per morte e per altra causa 
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Stima di modelli di sopravvivenza non parametrici – uscite per morte e per altra causa 

 
Le equazioni dei momenti sono allora 

   
( )
( )




=
=

xx

xx

wWE

dDE
  ⇔   




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
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d
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Nelle ipotesi 

   )()( )( d
x

d
rxrs qrsq −=+−   )()( )( w

x
w

rxrs qrsq −=+−  

si ottengono le seguenti stime: 

   

∑ −
=

=

xn

i
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xd
x
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d
q

1

)(

)(

ˆ    

∑ −
=

=

xn

i
ii

xw
x

rs

w
q

1

)(

)(

ˆ  

delle probabilità di uscita, rispettivamente, per morte e per altra causa 

Se però l’obiettivo è stimare una tavola di mortalità, tenendo conto che sulla collettività 
agiscono due cause di uscita, si devono stimare le probabilità assolute 

  ( ) 







∫ +−=′
t
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xt duuxp

0

)()( exp µ   ( ) 

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t
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0
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Stima di modelli di sopravvivenza non parametrici – uscite per morte e per altra causa 

 
Nell’ipotesi di uscite non informative le equazioni dei momenti sono 
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i
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A) Nell’ipotesi di distribuzione uniforme per le probabilità assolute di uscita per 

morte e, rispettivamente, per altra causa si ha 
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Stima di modelli di sopravvivenza non parametrici – uscite per morte e per altra causa 

 
Le equazioni dei momenti diventano 

( ) ( )

( )( )
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Il sistema può essere risolto per via numerica ottenendo le stime 

   )(ˆ d
xq′   )(ˆ w

xq′  
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Stima di modelli di sopravvivenza non parametrici – uscite per morte e per altra causa 

 

Nel caso particolare 0=ir  e 1=is  per ogni i  , le equazioni dei momenti diventano 










=



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x
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x
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x
d
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2
1

1

2
1

1
 

Il sistema può essere risolto in forma chiusa ottenendo le stime 

  
x

xxd
x n

dnbb
q

2
ˆ

2
)( −−

=′    con  
22
xx

x
wd

nb −+=  

  
x

xxw
x n

wnbb
q

2
ˆ

2
)( −−

=′   con  
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x
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nb +−=  
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Stima di modelli di sopravvivenza non parametrici – uscite per morte e per altra causa 

 

B) Nell’ipotesi di intensità di uscita per morte e per altra causa costanti si ha 

( ) )()( d
x

d ux µµ =+    ( )[ ]i
d

x
d
rxru rup
ii

−−=′ +−
)()( exp µ  

( ) )()( w
x

w ux µµ =+    ( )[ ]i
w

x
w
rxru rup
ii

−−=′ +−
)()( exp µ    

Le equazioni dei momenti diventano 
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Il sistema può essere risolto per via numerica ottenendo le stime 

   )(ˆ d
xµ   )(ˆ w

xµ  
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Stima di modelli di sopravvivenza non parametrici – uscite per morte e per altra causa 

 

Nel caso particolare 0=ir  e 1=is  per ogni i  , le equazioni dei momenti diventano 

( )[ ]( )
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Il sistema può essere risolto in forma chiusa ottenendo le stime 

 xx

x

wd

d

x

xxxd
x n

wdn +






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Da queste si ottengono le stime 
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d
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Stima con il metodo della massima verosimiglianza 
 

Con riferimento alla classe di età ] ]1, +xx  per scrivere la verosimiglianza delle 
osservazioni 

    ( ),,,, iiii ktsr    xni ,,1 K=  

definiamo, per ogni xni ,,2,1 K= , i n.a. 

)(iT  durata aleatoria di permanenza dell’individuo i  nella collettività tra le età ] ]1, +xx   

Nota: )(iT  ha determinazioni ] ]ii sr ,   

Indicato con )(i
rx i

T +  la durata di permanenza nella collettività per l’i -esimo individuo 

presente all’età irx +  si ha 

     ( )ii
i

rx
i srTT

i
,min )()( += +  
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Stima di modelli di sopravvivenza non parametrici – uscite per morte e per altra causa 

 

Se l’individuo i  è presente nella collettività all’età di uscita pianificata: 

 i
i sT =)(   )()()()( )( w

rxrs
d
rxrsrxrsi

i
iiiiiiiii

pppsTP +−+−+− ′⋅′=== τ  

Se l’individuo i  esce per morte all’età esatta itx + : 

 i
i tT =)(   ( ) ( ) ( )i

dw
rxrt

d
rxrti

d
rxrtiiCT txpptxprtf

iiiiiiiii
+⋅′⋅′=+⋅=− +−+−+−

)()()()()(
, 1, µµτ  

Se l’individuo i  esce per altra causa all’età esatta ikx + : 

 i
i kT =)(   ( ) ( ) ( )i

ww
rxrk

d
rxrki

w
rxrkiiCT kxppkxprkf

iiiiiiiii
+⋅′⋅′=+⋅=− +−+−+−

)()()()()(
, 2, µµτ  

Si definiscono 

{ }isxiiS +=  etàall' in vita è  individuol'      survival 

{ }itxiiD +=  etàall' morteper  esce  individuol'     death 

{ }ikxiiW +=  etàall' causa altraper  esce  individuol'    withdrawal 
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Stima di modelli di sopravvivenza non parametrici – uscite per morte e per altra causa 

 

In ipotesi di indipendenza stocastica dei n.a. )(iT  la verosimiglianza delle osservazioni è 
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Quindi 

      )()( wd LLL ⋅=  

con 
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Quindi per stimare le probabilità assolute )(d
xp′  si porrà 

      )(max dL  

mentre per stimare le probabilità assolute )(w
xp′  si porrà 

      )(max wL  
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Stima di massima verosimiglianza delle probabilità assolute )(d
xp′   
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Si nota che le informazioni sulle uscite per altra causa sono trattate come le informazioni 
sulla sopravvivenza all’età di uscita pianificata 

A) Nell’ipotesi di interpolazione esponenziale ( ) )()( d
x

d tx µµ =+  , 10 ≤< t  
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d
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rsd
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la verosimiglianza è 
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dove Ddx #=   
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Stima di modelli di sopravvivenza non parametrici – uscite per morte e per altra causa 

La log-verosimiglianza è allora 

  ( ))()()( log)()()(log d
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Risolvendo l’equazione di verosimiglianza si trova 
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ii rkrtrs )()()(  è detta esposizione totale esatta  

Osservazione: l’esposizione totale esatta coincide con il numero centrale degli esposti al 
rischio secondo l’impostazione attuariale 
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C
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x
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o

E
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coincide con la stima di massima verosimiglianza  )(ˆ d
xµ  
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Osservazione 

Sia xD  il n.a. dei decessi nella classe di età ] ]1, +xx , in ipotesi di distribuzione di Poisson 

di parametro C
x

d
x E)(µ  si ha 
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Pertanto ai fini della stima di massima verosimiglianza dell’intensità istantanea di 

mortalità sono equivalenti le ipotesi esponenziale e di distribuzione di Poisson per il n.a. 

dei decessi xD  con C
xxx EDE µ=)(   
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B) Nell’ipotesi di interpolazione lineare 
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indicato con Ddx #= , la verosimiglianza è 
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Dalla log-verosimiglianza 
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si ottiene l’equazione di log-verosimiglianza che può essere risolta per via numerica 
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Stime di massima verosimiglianza per dati raggruppa ti 
 

Con riferimento alla classe di età ] ]1, +xx  nel caso di dati raggruppati, i dati sono: 

xn   numero di individui osservati 

xd   numero di decessi osservati 

xw   numero di individui usciti per altra causa 

Con riferimento all’i -esimo, xni ,,1 K= , si definisce il seguente n.a. 
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In ipotesi di indipendenza stocastica dei n.a. )(iC  la verosimiglianza delle osservazioni è 
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Stima di modelli di sopravvivenza non parametrici – uscite per morte e per altra causa 

 

Dalla log-verosimiglianza 

 ( ) ( ) ( ) ( ))()()()( 1loglogloglog w
x

d
xxxx

w
xx

d
xx qqwdnqwqdL −−−−++=  

si ottiene il sistema di equazioni di verosimiglianza che fornisce le stime delle probabilità 

di eliminazione per causa di morte e, rispettivamente, per altra causa. 
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Le stime coincidono con quelle ottenute con il metodo dei momenti nel caso particolare 

0=ir  e 1=is  per ogni xni ,,2,1 K=   

Se si vogliono stimare le probabilità assolute, si devono formulare le opportune ipotesi. 
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Stima di modelli di sopravvivenza non parametrici – uscite per morte e per altra causa 

 
In ipotesi di uscite non informative si ha 
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A) Nell’ipotesi di distribuzione uniforme per le probabilità assolute di uscita per 

morte e, rispettivamente, per altra causa si ha 
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d
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e quindi 








 ′−′= )()()(

2
1

1 w
x

d
x

d
x qqq    







 ′−′= )()()(

2
1

1 d
x

w
x

w
x qqq  



68 
 

Stima di modelli di sopravvivenza non parametrici – uscite per morte e per altra causa 

 

La log-verosimiglianza diventa allora 

 ( ) ( ) ( ) ( ))()()()( 1loglogloglog w
x

d
xxxx

w
xx

d
xx qqwdnqwqdL −−−−++=  

  ( ) ( ) +
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Risolvendo il sistema di equazioni di verosimiglianza si ottengono le stesse stime 
ottenute con il metodo dei momenti nel caso particolare 0=ir  e 1=is  per ogni 

xni ,,2,1 K= . 
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Stima di modelli di sopravvivenza non parametrici – uscite per morte e per altra causa 

 
A) Nell’ipotesi di intensità di uscita per morte e per altra causa costanti si ha 

( ) )()( d
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d ux µµ =+    [ ]up d
x

d
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)()( exp µ−=′  

( ) )()( w
x
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Sostituendo nella log-verosimiglianza 

( ) ( ) ( ) ( ))()()()( 1loglogloglog w
x

d
xxxx

w
xx

d
xx qqwdnqwqdL −−−−++=  

e derivando, si ottiene il sistema di equazioni di verosimiglianza le cui soluzioni 
coincidono con le stime ottenute con il metodo dei momenti nel caso particolare 0=ir  e 

1=is  per ogni xni ,,2,1 K= . 
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Stimatore della funzione di sopravvivenza e sue proprietà 
 

STIMATORE DELLA FUNZIONE DI SOPRAVVIVENZA E SUE PRO PRIETÀ 

Per stimare la funzione di sopravvivenza ( )xS , ω,,1, K+= aax , di un modello di 

sopravvivenza non parametrico, si esprime la funzione di sopravvivenza come prodotto di 
probabilità condizionate di sopravvivenza 

   ( ) ∏==
−
−

−
=

<
−−

xj
jxx pppp

S

S

xS
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xS

xS
xS 021)0(
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−>
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Siano 
 xx qp ˆ1ˆ −=   la stima di xp  

 xn′     l’esposizione nella classe di età ] ]1, +xx  

con 1,,1, −+= ωKaax  

Si ottiene la seguente stima della funzione di sopravvivenza ( )xS , ω,,1, K+= aax  

   ( ) 021 ˆˆˆˆ pppxS xx L−−=  
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Stimatore della funzione di sopravvivenza e sue proprietà 
 
Sia 
 xp~   lo stimatore di xp  del quale xp̂  è la stima, 1,,1, −+= ωKaax  

Indichiamo con  

    ( ) ∏=
< xj

jpxS ~~
 ,  ω,,1, K+= aax  

lo stimatore del quale ( )xŜ  è la stima. 

Per valutare speranza matematica e varianza dello stimatore ( )xS
~

 occorre formulare 

delle ipotesi sui n.a. jp~ , 1,,1, −+= ωKaaj  

Siano { }11 ,,,, −+ ′′′= ωnnn aa KI  le esposizioni nelle diverse classi di età. 

Si formulano le seguenti ipotesi sui n.a. xp~  

Condizionatamente a { }11 ,,,, −+ ′′′= ωnnn aa KI  , i n.a.  

  xp~ ,   1,,1, −+= ωKaax   siano stocasticamente indipendenti 

e siano 

  ( ) xx ppE =I~    ( )
x

xx
x n

pp
pVar

′
−= )1(~ I   1,,1, −+= ωKaax  



72 
 

Stimatore della funzione di sopravvivenza e sue proprietà 
 
Risulta allora che ( ) ∏=

< xj
jpxS ~~
 è uno stimatore non distorto, infatti 
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La varianza dello stimatore ( )xS
~

 è 
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e può essere approssimata da 

    ( )( ) ( )[ ] ∑ ′
≅

<xj jj

j
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q
xSxSVar 2~

I  

dalla quale si ottiene la formula di Greenwood , che fornisce una stima della varianza 

dello stimatore ( )xS
~
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Confronto della tavola di sopravvivenza stimata con una tavola standard 
 

CONFRONTO DELLA TAVOLA DI SOPRAVVIVENZA STIMATA 

CON UNA TAVOLA STANDARD 

Siano 

  xq̂ ,   1,,1, −+= ωKaax  

le stime delle probabilità di morte xq , 1,,1, −+= ωKaax , di un modello di sopravvivenza 

non parametrico. 

Ci si pone il problema se il fenomeno della mortalità osservata nella collettività possa 
essere descritto da una tavola di mortalità proveniente da altre esperienze statistiche. 
Tale tavola viene allora detta tavola “standard”  e la indichiamo con 

  xq′ ,   1,,1, −+= ωKaax  

Per verificare se la tavola standard accosta bene le osservazioni si sottopone a verifica 
d’ipotesi la seguente ipotesi nulla: 

H0 :  xx qq ′=    1,,1, −+= ωKaax  
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Confronto della tavola di sopravvivenza stimata con una tavola standard 
 

Con riferimento alla classe di età ] ]1, +xx  siano 

xD   n.a. di decessi 

xd   numero di decessi osservati 

xE   il numero di esposti al rischio 

Per costruire la funzione test formuliamo le seguenti ipotesi 

  ( ) xxx qEDE =    ( ) ( )xxxx qqEDVar −= 1  

Sotto l’ipotesi nulla i n.a. 

   
)1( xxx

xxx
x qqE

qED
Z

′−′
′−=   1,,1, −+= ωKaax  

hanno distribuzione approssimata ( )1,0N . In ipotesi di indipendenza stocastica dei n.a. 

xZ  , 1,,1, −+= ωKaax , sia ha che il n.a. 

   ( )∑
−

=

1 2ω

ax
xZ  

ha distribuzione approssimata chi-quadrato con n  gradi di libertà, essendo n  il numero di 
classi di età. 
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Confronto della tavola di sopravvivenza stimata con una tavola standard 
 

Fissato un livello di significatività α  si determina 2
1, αχ −n  tale che αχ αχ −=







−> 12
1,

2
nnP  si 

rifiuta l’ipotesi nulla se 

( ) 2
1,

1 2
α

ω
χ −

−

=
>∑ n

ax
xz  

essendo ( )∑
−

=

1 2ω

ax
xz  la determinazione osservata del n.a. ( )∑

−

=

1 2ω

ax
xZ   

Tale test potrebbe non rilevare un buon accostamento della tavola standard a i dati 
osservati, e quindi non fare rifiutare l’ipotesi nulla, nelle seguenti situazioni: 

− esistenza di scostamenti eccessivamente elevati per alcune età, controbilanciati da 
scostamenti molto ridotti per altre età; 

− numero eccessivo di scostamenti tutti dello stesso segno (conseguenza di una 
mortalità rilevata “uniformemente” maggiore o minore di quella attesa in base alla 
tavola standard); 

− gruppi eccessivamente numerosi di età consecutive con scostamenti tutti dello 
stesso segno. 
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Confronto della tavola di sopravvivenza stimata con una tavola standard 
 

Per evidenziare tali problematiche si utilizzano altri test, quale per esempio il test delle 
deviazioni cumulate. 

Sotto l’ipotesi nulla 

H0 :  xx qq ′=    1,,1, −+= ωKaax  

si ha 

  ( ) 0=′− xxx qEDE   per ogni 1,,1, −+= ωKaax  

Consideriamo le deviazioni cumulate nell’intervallo di età da 1x  a 2x   
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In ipotesi di indipendenza stocastica dei n.a. xD  si ha 
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Confronto della tavola di sopravvivenza stimata con una tavola standard 
 

La distribuzione della deviazione cumulata standardizzata 
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qqE
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può essere approssimata mediante una ( )1,0N  e quindi, fissato un livello di significatività 

α  si determina il quantile 21 α−z  della distribuzione normale standard e si rifiuta l’ipotesi 

nulla se 

( )
21

2

1

2

1

)1(
α−

=

= >
∑ ′−′

∑ ′−
z

qqE

qEd

x

xx
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Tale analisi va ripetuta su diversi intervalli di età che evidenziano criticità 
nell’accostamento della tavola standard ai dati osservati. 
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Perequazione mediante tavole standard 
 

PEREQUAZIONE MEDIANTE TAVOLE STANDARD 

Se è stata rifiutata l’ipotesi nulla sulla bontà di accostamento della tavola standard ai dati, 
si può decidere di “adattare” la tavola standard ai dati osservati. 

Si ipotizza quindi un legame funzionale tra le probabilità di morte della collettività in 
esame 

xq , 1,,1, −+= ωKaax ,  

e le probabilità di morte riportate nella tavola standard 

xq′ , 1,,1, −+= ωKaax    

Si assume che tale funzione 

    ( )xx qxfq ′= ,  

dipenda da alcuni parametri che devono essere stimati, per esempio con il metodo dei 
minimi quadrati pesati. 
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Perequazione mediante tavole standard 
 

Siano 

  xq̂ ,   1,,1, −+= ωKaax  

le stime delle probabilità di morte xq , 1,,1, −+= ωKaax , di un modello di sopravvivenza 

non parametrico. 

Dall’analisi grafica dei rapporti   
x

x

q

q
′

ˆ
,   1,,1, −+= ωKaax  

si individua un possibile legame funzionale   ( )xx qxfq ′= , . 

Per esempio, nel caso di andamento approssimativamente lineare si può ipotizzare 

    ( )xbaqq xx +′=  

oppure 

    bqaq xx +′=  

Più in generale si può ipotizzare anche un legame con due tavole standard { }xq′  e { }xq ′′  

    xxx qaqaq ′′′′+′′=  
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Perequazione mediante tavole standard 
 

In alternativa, Lidstone ha proposto di considerare per l’analisi grafica la seguente 
trasformazione 

  






 ′

x

x

p

p

ˆ
log ,   1,,1, −+= ωKaax  

con 

 xx qp ′−=′ 1   xx qp ˆ1ˆ −=  

in quanto i 
x

x

p

p

ˆ

′
 presentano un andamento più regolare rispetto ai 

x

x

q

q
′

ˆ
 

Se evidenziano un andamento approssimativamente costante si può ipotizzare 

  c
p

p

x

x =






 ′
log  ⇒  

c
x

x
e

p
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Perequazione mediante tavole standard 
 

Dopo avere individuato la funzione ( )K,,; baxf  che esprime il legame tra xq  e xq′ , per la 

stima dei parametri della funzione si può utilizzare, per esempio, il metodo dei minimi 
quadrati. 

   ( )K
K

,,min
,,

baF
ba

  con ( ) ( )[ ]∑ −=
−

=

1 2,,;ˆ,,
ω

ax
xx baxfqwbaF KK  

essendo 

1=xw  nel caso di minimi quadrati non pesati 

x

x
x q

n
w

ˆ

′
=  nel caso di minimi quadrati pesati 

Si noti che nell’ipotesi ( ) ( )xxxx qqnDVar −′= 1  si ha 
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quindi il peso 
x

x
x q

n
w

ˆ

′
=  è approssimativamente pari al reciproco della varianza dello 

stimatore di xq  
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Perequazione mediante tavole standard 
 

Se la funzione ( )K,,; baxf  è lineare, le stime dei minimi quadrati dei parametri si 

ottengono agevolmente risolvendo un sistema lineare. 

Sia xu  tale che il legame funzionale tra xq  e xq′  sia espresso mediante la funzione lineare 

  ( ) xbabaxf +=,;  

Per esempio  
x

x
x q

q
u

′
=    nel caso in cui sia ( )xbaqq xx +′=  

Si ha allora 
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=
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q
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Perequazione con leggi di sopravvivenza 
 

PEREQUAZIONE CON LEGGI DI SOPRAVVIVENZA 

Siano 

  xq̂ ,   1,,1, −+= ωKaax  

le stime delle probabilità di morte xq , 1,,1, −+= ωKaax , di un modello di sopravvivenza 

non parametrico ottenute secondo un approccio di stima di tipo non parametrico. 

Tali stime presentano usualmente delle irregolarità spesso imputabili alla limitata 
numerosità della popolazione, in particolare in alcune classi di età. 

Tali irregolarità possono essere rimosse mediante opportune procedure di perequazione. 

Due obiettivi sono alla base della scelta di una procedura di perequazione: 

• la regolarità (o smoothness) delle stime perequate al variare dell’età; 

• l’accostamento (o goodness of fit) delle stime perequate alle stime originali. 
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Perequazione con leggi di sopravvivenza 
 

La perequazione con leggi di sopravvivenza o perequazione analitica consiste nel 
sostituire alle stime iniziali le stime ottenute mediante un modello analitico di mortalità 
(per es. il modello di Gompertz).  

Il procedimento di perequazione analitica si articola in due fasi: 

1. verifica (mediante analisi grafica) della possibilità di accostamento fornita dalla 
legge di sopravvivenza considerata 

2. stima dei parametri della legge di sopravvivenza scelta 

 
Analisi grafica di modelli di sopravvivenza 
 
Si devono individuare dei legami di tipo lineare, per esplorare mediante grafici le 
possibilità di accostamento del modello ai dati. 
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Perequazione con leggi di sopravvivenza 
 

Modello di Gompertz 

   ( ) xex αβµ =     0>α  0>β   0>x  

Si ha 

   ( ) xx αβµ += loglog    

Si considera allora il grafico dei punti 

  ( )xmx ˆlog,   1,,1, −+= ωKaax  

essendo xm̂  le stime delle intensità istantanee di mortalità ottenute in un approccio non 

parametrico; 

se il grafico dei punti presenta un andamento approssimativamente lineare, il modello di 
Gompertz si presta a descrivere la mortalità nella collettività in esame. 

Il coefficiente angolare e l’intercetta della retta interpolante forniscono delle stima 
preliminari per i parametri 0>α  e 0>β   
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Perequazione con leggi di sopravvivenza 
 

Un altro legame lineare può essere ottenuto considerando le probabilità di sopravvivenza 

xp   

Dalla 

 ( ) ( )






 −= xexS α
α
β

1exp   0≥x ,  si ha 
( )

( ) ( ) 






 −=+= x
x ee

xS

xS
p αα

α
β

1exp
1

 

e quindi 

  ( ) ( ) xepx α
α
β α +







 −=− 1logloglog  

Si considera allora il grafico dei punti 

  ( )( )xpx ˆloglog, −   1,,1, −+= ωKaax  

Il coefficiente angolare e l’intercetta della retta interpolante forniscono delle stima 
preliminari per i parametri 0>α  e 0>β   
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Perequazione con leggi di sopravvivenza 
 

Un altro grafico che può indicare se il modello di Gompertz si presta a descrivere la 
mortalità nella collettività in esame è il seguente 

  






 +

x

x

p

p
x

ˆlog

ˆlog
, 1   2,,1, −+= ωKaax  

infatti 

  αe
p

p

x

x =+
log

log 1  

quindi se i punti del grafico hanno un andamento approssimativamente costante, il 
modello di Gompertz potrebbe essere adatto. 
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Perequazione con leggi di sopravvivenza 
 

Modello di Makeham 

   ( ) xex αβδµ +=    0>α  0>β  0>δ   0>x  

Si ha 

   ( ) ( )( ) ( )( ) xexx αβµµ α +−=−+ 1log1log    

Se il grafico dei punti 

  ( )( )xx mmx ˆˆlog, 1 −+   1,,1, −+= ωKaax  

presenta un andamento approssimativamente lineare, il modello di Makeham si presta a 
descrivere la mortalità nella collettività in esame. 

Il coefficiente angolare e l’intercetta della retta interpolante forniscono delle stima 
preliminari α̂  e β̂  per i parametri α  e β ,rispettivamente. 

Per una stima preliminare di δ  si può considerare una media delle quantità 

  x
x em αβ ˆˆˆ −   1,,1, −+= ωKaax  
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Perequazione con leggi di sopravvivenza 
 

Un altro legame lineare può essere ottenuto considerando le probabilità di sopravvivenza 

xp   

Dalla 

   ( ) ( ) 






 −−= xexS x δ
α
β α1exp   0≥x ,  

si ha 
( )

( ) ( ) 






 −−=+= δ
α
β αα x

x ee
xS

xS
p 1exp

1
 

Indicato con  xxx ppp logloglog 1 −=∆ +   si ha 

  αe
p

p

x

x =
∆

∆ +
log

log 1  

Se il grafico dei punti  








∆
∆ +

x

x

p

p
x

ˆlog

ˆlog
, 1   2,,1, −+= ωKaax  

presenta un andamento approssimativamente costante, il modello di Makehanm si presta 
a descrivere la mortalità nella collettività in esame. 
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Perequazione con leggi di sopravvivenza 
 

Come stima preliminare di α  si può considerare il logaritmo della media di valori 

  
x

x

p

p

ˆlog

ˆlog 1

∆
∆ +   2,,1, −+= ωKaax  

Dalla  ( ) x
xxx eeppp αα

α
β 2

1 1logloglog −−=−=∆ +   

si individua come stima preliminare di β  la media dei seguenti valori 

   
( ) x

x

ee

p

αα

α
ˆ2ˆ1

ˆˆlog

−

⋅∆−   1,,1, −+= ωKaax  

Infine, dalla  

( ) δ
α
β αα −−= x

x eep 1log  

Si ottiene come stima preliminare di δ  la media dei seguenti valori 

( ) x
x pee ˆlog1

ˆ

ˆ ˆˆ −− αα
α
β

  1,,1, −+= ωKaax  
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Altre formule di perequazione utilizzate in ambito attuariale 
 

ALTRE FORMULE DI PEREQUAZIONE UTILIZZATE IN AMBITO ATTUARIALE 

Formula di Barnett 

    x

x

x cBxHA
q

q ++=
−1

   0,,, >cBHA  

Le quantità 

     
x

x

q

q

−1
 

sono dette odds. 

Formula di Wilkie 

    ( ))(exp
1

xpol
q

q

x

x =
−

 

dove )(xpol  è un polinomio in x , spesso lineare o di grado 2 
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Altre formule di perequazione utilizzate in ambito attuariale 
 

Tali espressioni, che esprimono legami funzionali tra gli odds e le età, possono essere 
viste come formule perequative che costituiscono casi particolari della seguente 
espressione più generale: 

Formula Gompertz-Makeham di tipo ( )sr,   

    ( ) 







∑+∑=
+

+=

−−

=

− sr

ri

ri
i

r

i

i
i

sr xxxGM
1

1

1

1, exp αααααα  

dove    r  e s  sono interi positivi 

    ( )srrr ++= ααααα ,,,,,, 121 KKαααα  è un vettore di coefficienti 

Se 0=r  si ha solamente il termine esponenziale 

   ( ) 







∑=
=

−s

i

i
i

s xxGM
1

1,0 exp ααααα   

Se 0=s  si ha solamente il termine polinomiale 

   ( ) ∑=
=

−r

i

i
i

r xxGM
1

10, ααααα  
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Altre formule di perequazione utilizzate in ambito attuariale 
 

Se ( ) ( )2,0, =sr  si ha   ( ) ( )xxGM 21
2,0 exp αα +=αααα  

e si trova quindi una formula di tipo Gompertz 

  ( ) ( ) xx eeexxGM ααα βαα ==+= 21
21

2,0 expαααα  

Se ( ) ( )2,1, =sr  si ha   ( ) ( )xxGM 321
2,1 exp ααα ++=αααα  

e si trova quindi una formula di tipo Makeham 

  ( ) ( ) xx eeexxGM ααα βδαααα +=+=++= 32
1321

2,1 expαααα  

Se ( ) ( )2,2, =sr  si ha   ( ) ( )xxxGM 4321
2,2 exp αααα +++=αααα  

e si trova quindi una formula di tipo Barnett 

  ( ) ( ) xx CBxHAeexxxxGM ++=++=+++= 43
214321

2,2 exp αααααααααααα  

Se ( ) ( )nsr ,0, =  si ha   ( ) 







∑=
=

−n

i

i
i

n xxGM
1

1,0 exp ααααα  

e si trova quindi la formula di Wilkie. 
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Stima dei parametri di una formula di perequazione 
 

STIMA DEI PARAMETRI DI UNA FORMULA DI PEREQUAZIONE 

Dopo avere individuato una legge di sopravvivenza adatta a descrivere la mortalità nella 
collettività, oppure una formula adatta per perequare le stime iniziali 

  xq̂   oppure  xm̂   1,,1, −+= ωKaax  

si devono stimare i parametri. 

Metodo dei minimi quadrati 

   ( )K
K

,,min
,,

βα
βα

F   con ( ) ( )[ ]∑ −=
−

=

1 2,,;ˆ,,
ω

βαβα
ax

xx xfuwF KK  

essendo 

x

x
x q

n
w

ˆ

′
=  nel caso di minimi quadrati pesati, con xn′  esposizione nella classe di età x  

xû  una opportuna trasformazione dei xq̂  oppure degli xm̂  tale che la funzione f  sia 

lineare nei parametri del modello; infatti se f  è lineare, le stime dei minimi 
quadrati dei parametri si ottengono agevolmente risolvendo un sistema lineare. 
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Stima dei parametri di una formula di perequazione 

 

Per esempio, nel caso del modello di Gompertz si ha 

   ( ) xx αβµ += loglog  

Quindi si può considerare il seguente problema 

   ∑ 














 +−−
−

=

1 2

, 2
1

logˆlogmin
ω

βα
αβ

ax
xx xmw  

Si noti che, poiché xm̂  ha il significato di stima dell’intensità istantanea di mortalità 

costante nella classe di età ] ]1, +xx , dovendo “attribuirla” ad una precisa età nella classe 

] ]1, +xx  si considera l’età 
2
1+x   

Metodo della massima verosimiglianza 

Tratteremo la stima dei parametri mediante il metodo della massima verosimiglianza 
nell’ambito dei GLM. 
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Perequazione mediante modelli lineari generalizzati 
 

PEREQUAZIONE MEDIANTE MODELLI LINEARI GENERALIZZATI  

Siano  

 xq̂   oppure  xm̂   1,,1, −+= ωKaax  

le stime iniziali di una tavola di sopravvivenza ottenute in un approccio di tipo non 
parametrico 

 xn′   l’esposizione (es. il numero iniziale di esposti al rischio) nella classe di età x  

Definiamo dei GLM per perequare le stime iniziali. 

Un GLM è definito dalle seguenti ipotesi: 

• ipotesi probabilistiche : distribuzioni delle variabili risposta appartenenti alla 
famiglia esponenziale lineare 

• ipotesi strutturali : struttura di regressione e funzione di collegamento 

Illustriamo alcuni modelli probabilistici e le conseguenti ipotesi strutturali adatte per la 
perequazione delle stime iniziali. 
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Perequazione mediante modelli lineari generalizzati 
 

Modelli con distribuzione binomiale scalata 

La distribuzione Binomiale scalata è una distribuzione della famiglia esponenziale lineare. 
Infatti, se 

  ( )pnBX ,≈   ⇒   ( ) ( ) xnx pp
x

n
xXP −−







== 1    con nx ,,1,0 K=  

si ha che il n.a. 
n

X
Y =  ha distribuzione Binomiale scalata: ( ) npnBY /,≈  

  ( ) ( ) nynyn pp
yn

n
yYP −−







== 1   con 1,,
1

,0 K
n

y =  

Poiché 

 ( ) ( ) ( )
















−+









−







=−








−







== p
p

p
yn

yn

n
p

p

p

yn

n
yYP n

yn

1log
1

logexp1
1

 

è una distribuzione della famiglia esponenziale lineare con 

parametro canonico 








−
=

p

p

1
logθ    funzione comulante ( ) ( )ϑθ eb += 1log  

peso  n=ω        parametro di dispersione  1=φ  
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Perequazione mediante modelli lineari generalizzati 
 

Consideriamo le osservazioni 

  xx qy ˆ=    

ed i pesi 

   xx n′=ω  dati dalle esposizioni troncate 

con 1,,1, −+= ωKaax . 

Siano 

  xY   i n.a. variabili risposta, 1,,1, −+= ωKaax  

• ipotesi probabilistiche : xY  stoc. indip. con distribuzione Binomiale scalata con 

pesi  xω         parametro di dispersione  1=φ  

parametro canonico 








−
=

x

x

q

q

1
logθ   funzione comulante ( ) ( )ϑθ eb += 1log  

Si ha allora:  

   ( ) ( ) xx q
e

e
bYE =

+
=′= ϑ

ϑ
θ

1
  ( ) ( ) ( )xx

xx
x qqbYVar −=′′= 1

11
ω

θ
ω
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Perequazione mediante modelli lineari generalizzati 
 

• ipotesi strutturali  

Funzione di collegamento  ( ) xxqg η=  con g  funzione monotona, derivabile e 

xη  previsore lineare 

Funzione di collegamento canonica o logit o log-odds 

   ( ) 








−
=

x

x
x q

q
qg

1
log  

Funzione log-log complementare 

   ( ) ( )( )xx qqg −−= 1loglog  

Funzione Probit 

 ( ) ( )xx qqg 1−Φ=  essendo Φ  la funzione di ripartizione della distribuzione 

normale standard 

Previsore lineare ββββxx z′=η  con xz   vettore delle determinazioni delle variabili 

esplicative relative alla classe di età x   

Se si tiene conto soltanto dell’età, si ha usualmente: m
mx xxx ββββη ++++= K

2
210  
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Perequazione mediante modelli lineari generalizzati 
 

Esempio: il modello di Gompertz 

Abbiamo visto che per il modello di Gompertz si ha 

  ( ) ( ) xepx α
α
β α +







 −=− 1logloglog  

Si può stimare tale modello con un GLM per le osservazioni xx qy ˆ= , 1,,1, −+= ωKaax  

Variabili risposta:  xY  con distribuzione Binomiale scalata con 

( ) xx qYE =   e pesi  xx n′=ω  dati dalle esposizioni troncate 

Funzione di collegamento: log-log complementare ( ) ( )( )xx qqg −−= 1loglog  

Previsore lineare:  xx 10 ββη +=    essendo 

    
( )








=








 −=

αβ
α
ββ α

1

0 1log e
  

Il modello può essere esteso considerando m
mx xxx ββββη ++++= K

2
210   

cioè una formula di perequazione del tipo:   ( ) ∑=
=

−r

i

i
i

r xxGM
1

10, ααααα  
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Perequazione mediante modelli lineari generalizzati 
 

Esempio: il modello di Wilkie 

In tale modello si ipotizza   ( ))(exp
1

xpol
q

q

x

x =
−

 

dove )(xpol  è un polinomio in x , spesso lineare o di grado 2 

Si può stimare tale modello con un GLM per le osservazioni xx qy ˆ= , 1,,1, −+= ωKaax  

Variabili risposta:  xY  con distribuzione Binomiale scalata con 

( ) xx qYE =   e pesi  xx n′=ω  dati dalle esposizioni troncate 

Funzione di collegamento:  logit  ( ) 








−
=

x

x
x q

q
qg

1
log  

Previsore lineare:  m
mx xxx ββββη ++++= K

2
210   

Poiché 

( ) ( )m
m

x

xm
m

x

x
xx xx

q

q
xx

q

q
qg ββββββη +++=

−
⇔+++=









−
⇔= KK 1010 exp

11
log  

Si ha una formula di perequazione del tipo:   ( ) 







∑=
=

−s

i

i
i

s xxGM
1

1,0 exp ααααα  
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Perequazione mediante modelli lineari generalizzati 
 

Modelli con distribuzione di Poisson 

Sia 

  ( )µPoiY ≈   ⇒   ( ) µµ −== e
y

yYP
y

!
   con K,1,0=y  

È una distribuzione della famiglia esponenziale lineare, infatti  

 ( ) ( ){ }µµµ µ −=== − logexp
!

1
!

y
y

e
y

yYP
y

 

parametro canonico ( )µθ log=    funzione comulante ( ) ϑθ eb =  

peso  1=ω       parametro di dispersione  1=φ  

Abbiamo visto che se xD  è n.a. dei decessi nella classe di età ] ]1, +xx , in ipotesi di 

distribuzione di Poisson di parametro C
x

d
x E)(µ  

  
( ) ( ) ( ) )()(

)( )()(

!!
)( ddd

x
E

x

dC
xE

x

dC
x

d
x

xx Le
d

E
e

d

E
dDP

xC
x

d
x

x
C
x

d
x

x

∝=== −− µµ µµ  

essendo )(dL  la funzione di verosimiglianza, con parametro l’intensità istantanea di 
mortalità e C

xE  il numero centrale di esposti al rischio. 
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Perequazione mediante modelli lineari generalizzati 
 

Con riferimento alla classe di età ] ]1, +xx  siano 

 ∑ −+∑ −+∑ −=
∈∈∈ Wi

ii
Di

ii
Si

ii
C
x rkrtrsE )()()(  

il numero centrale di esposti al rischio 

 xD   il n.a. dei decessi con distribuzione di Poisson di parametro C
xx Eµ  

Si ha 

  
( ) ( ){ }C

xx
C
xxx

x

E

x

dC
xx

xx EEd
d

e
d

E
dDP

C
xx

x

µµµ µ −=== − logexp
!

1
!

)(  

    
( ) ( ){ } ( ) ( )





















−=−= xxC

x

xC
x

x

dC
xC

xxxx
x

dC
x

E

d
E

d

E
Ed

d

E
xx

µµµµ logexp
!

logexp
!

 

cioè una distribuzione della famiglia esponenziale lineare con 

parametro canonico ( )xx µθ log=    funzione comulante ( ) ϑθ eb =  

peso  C
xE=ω        parametro di dispersione  1=φ  

e con variabili risposta 
C
x

x

E

d
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Perequazione mediante modelli lineari generalizzati 
 

Consideriamo le osservazioni 

  
C
x

x
xx

E

d
my == ˆ    

ed i pesi 

  C
xx E=ω   numeri centrali di esposti al rischio 

con 1,,1, −+= ωKaax . 

Siano 

  xY   i n.a. variabili risposta, 1,,1, −+= ωKaax  

• ipotesi probabilistiche : xY  stoc. indip. con distribuzione di Poisson con 

pesi  C
xx E=ω       parametro di dispersione  1=φ  

parametro canonico ( )xx µθ log=   funzione comulante ( ) ϑθ eb =  

Si ha allora:  

   ( ) ( ) xxx
xebYE µθ ϑ ==′=   ( ) ( )

C
x

x
C
x

xC
x

x
E

e
E

b
E

YVar x
µθ ϑ ==′′= 11
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Perequazione mediante modelli lineari generalizzati 
 

• ipotesi strutturali  

Funzione di collegamento  ( ) xxg ηµ =  con g  funzione monotona, derivabile e 

xη  previsore lineare 

Funzione di collegamento canonica logaritmo 

   ( ) ( )xxg µµ log=  

Previsore lineare ββββxx z′=η  con xz   vettore delle determinazioni delle variabili 

esplicative relative alla classe di età x   

Se si tiene conto soltanto dell’età, si ha usualmente: m
mx xxx ββββη ++++= K

2
210  
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Perequazione mediante modelli lineari generalizzati 
 

Esempio: il modello di Gompertz 

Abbiamo visto che per il modello di Gompertz si ha  ( ) xx αβµ += loglog  

Si può stimare tale modello con un GLM per le osservazioni 

C
x

x
xx

E

d
my == ˆ ,   1,,1, −+= ωKaax  

Variabili risposta:  xY  con distribuzione di Poisson con 

( ) xxYE µ=   e pesi C
xx E=ω  i numeri centrali di esposti al rischio 

Funzione di collegamento: logaritmo  ( ) ( )xxg µµ log=  

Previsore lineare:  xx 10 ββη +=    essendo 

    
( )





=
=

αβ
ββ

1

0 log
  

Il modello può essere esteso considerando m
mx xxx ββββη ++++= K

2
210   

cioè una formula di perequazione del tipo:   ( ) ∑=
=

−r

i

i
i

r xxGM
1

10, ααααα  
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