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Rilevazione della mortalita in ambito attuariale

RILEVAZIONE DELLA MORTALITA IN AMBITO ATTUARIALE

Rilevazioni trasversali (cross-sectional studies)

Si individua il gruppo di studio, cioe un gruppo di individui per i quali interessa studiare la
sopravvivenza (tipicamente gli assicurati di una compagnia di assicurazione, gli iscritti ad
un fondo pensione, ...).

Si fissa un periodo di osservazione durante il quale viene osservato il gruppo di studio; di
solito si osserva la collettivita per 3-5 anni.

All'inizio dell’'osservazione ci saranno individui gia presenti, ai quali se ne aggiungeranno
altri durante il periodo di osservazione;

alcuni individui possono uscire per causa diversa dal decesso durante I'osservazione, per
esempio perché e scaduto il contratto di assicurazione, oppure perché e stata riscattata
la polizza,

ci saranno individui ancora in vita al termine dell'osservazione.

Si puo considerare come istante iniziale I'eta minima di ingresso in assicurazione, oppure
un’eta minima a partire dalla quale si dispone di osservazioni.




Rilevazione della mortalita in ambito attuariale

Generalmente si ha a che fare con dati incompleti

se non é osservato l'istante iniziale, 'osservazione e detta troncata a sinistra

se non € osservato il decesso, I'osservazione e detta censurata a destra

Obiettivo:  stimare g, o m, per x=a,a+1...,a essendo a I'eta minima.

Osservazione: Nei modelli di sopravvivenza non parametrici la stima del modello
avviene separatamente per ciascuna classe di eta

Supponiamo di disporre di dati individuali esatti, cioe per ogni individuo osservato i sono
noti:

e data di nascita
« data di ingresso in osservazione
e data di uscita dall’osservazione

« causa di uscita, che puo essere: fine osservazione(survival)
decesso (death)
altra causa (withdrawal)



Rilevazione della mortalita in ambito attuariale

Per ogni individuo osservato i si determina il vettore delle eta :

(vi.z.68.4.)
essendo

y; l'eta esatta (anno intero + frazione d’anno) di ingresso in osservazione

z. l'eta esatta che l'individuo i avra alla data in cui terminera la sua osservazione (puo

essere la data di fine rilevazione della collettivita, oppure la data di scadenza della
polizza); e detta eta di uscita pianificata

8 I'eta esatta di uscita per morte (8 =0 se l'individuo i non e uscito per morte)

¢ l'eta esatta di uscita per altra causa (¢ =0 se l'individuo i non e uscito per altra
causa)

(yi,z| e dettointervallo di osservazione pianificata  per I'individuo i



Rilevazione della mortalita in ambito attuariale

Per ogni individuo osservato si determinano le classi di eta |x,x+1| per le quali I'individuo
ha contribuito all'osservazione

Con riferimento alla classe di eta |x,x +1| ed all'individuo i, caratterizzato dal vettore delle
eta (v.%.64.4,)

lindividuo i non contribuisce alla osservazione per la classe di eta |x,x+1] se:

e yi=2x+1
e Z <X

« 0<8 <x oppure 0<¢ <X

Se lindividuo i contribuisce alla osservazione per la classe di eta |x,x +1]

tale osservazione, relativa alla classe di |x,x+1], & riassunta da un vettore detto vettore
delle durate



Rilevazione della mortalita in ambito attuariale

Per ogni classe di eta |x,x+1| e per ogni individuo i che contribuisce alla osservazione
per tale classe di eta si determina il vettore delle durate

(r.s.t.k.)
essendo

X+ I'eta esatta di ingresso in osservazione nella classe di eta |x,x+1] con 0<r; <le

. 0 ey <X
"y -x sex<y <x+1

x+g l'eta esatta pianificata di uscita dalla osservazione per la classe di eta |x,x+1]
con 0<sg<le

|1 sez =2x+1
17 Z —X sex<z<x+1

X+t I'eta esatta di uscita per morte se 8 = x+t;, altrimenti t; =0

X+k  l'eta esatta di uscita per altra causa se ¢ = x+k;, altrimenti k =0



Esposizione attuariale e frequenze di decesso

ESPOSIZIONE ATTUARIALE E FREQUENZE DI DECESSO

Per stimare g, ovvero my, per x=a,a+1,..., «,sono state introdotte, in ambito attuariale,

le stime ottenute rapportando il numero di decessi osservati ad una qualche misura di
esposizione.

Con riferimento alla classe di eta [x,x +1] e con riferimento agli individui i che
contribuiscono alla osservazione per tale classe di eta si definiscono

S={i| l'individuoi &in vitaall'etax + s} survival
D ={i | I'individuoi escepermorteall'etax +1;} death
W ={i | l'individuoi esceperaltracausaall'etax +k;} withdrawal

Sia

6, =#D il numero di individui che decedono nella classe di eta |x,x +1]



Esposizione attuariale e frequenze di decesso

d

Stime per qX:I—X per x=a,a+1...,&
X
Def. Frequenza (grezza) di decesso
0 :&
X EX

essendo E, I'esposizione attuariale o numero iniziale di esposti al rischio

Ex= X(-r)-X@-5)- Z@-k)

i0sSODOwW i0S iow
: _dy _
Stime per mX—L— per x=a,a+l,...,a
X
Def. Frequenza (grezza) centrale di decesso
0] _ QX
Mx =—¢&
EX

essendo EE Il numero centrale di esposti al rischio

Ex= X@-r)-X@-5)- 2@-k)- Z@-t)

iostbOw idS iow ibD



Esposizione attuariale e frequenze di decesso

Osservazione

Ricordando la relazione L, =1, —d, (1-t,) si nota che si ha

E)E: = Ex - Z(l_ti)
D

Giustificazione di Cantelli

Sia D, il n.a. dei decessi nella classe di eta |x,x +1]; si stima g, con il metodo dei
momenti, ponendo

Poiché

E(Dx):_ 2 1-r, Ox+r, __Z 1-5 Ox+s __Z 1~k Gx+k.
isStbUwW IS 1w

nell'ipotesi di interpolazione iperbolica si ha 1_, gy, = @) gy, quindi

E(Dx):q{ X@-n)- 20-s)- 20 k.)}

USUDUOW 10S

Da cui si ottiene la stima con il metodo dei momenti: q, =



Esposizione attuariale e frequenze di decesso

Osservazioni

* Nella valutazione si ipotizza uguale mortalita per i soggetti che rimangono nella
collettivita, per i nuovi ingressi e per coloro che escono per altra causa

» La giustificazione di Cantelli € errata in quanto le valutazioni relative ad uno stesso
individuo sono fatte in stati di informazione diversi

* 6, & il numero di decessi osservati con eta esatta nella classe di eta |x,x +1].

Poiché si contano i decessi nell'anno che inizia con I'eta esatta x e termina con l'eta
esatta x+1 si dice che si prende come riferimento 'anno di vita compreso tra due
compleanni.

Per coerenza, anche nella valutazione dell’esposizione si prende come riferimento
I'anno di vita. Infatti, disponendo di dati individuali esatti si determina per ciascun
individuo la sua esposizione nell’anno di vita, infatti si ha

Ex=X(s-15)+ X(k —r)+ 2{-r)
10S IOW iLID
Nota: per gli individui che decedono il contributo all’esposizione & ¥ (1-r,)
i0D
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Riferimento: anno di vita, anno di polizza e anno di calendario

RIFERIMENTO: ANNO DI VITA, ANNO DI POLIZZA E ANNO D | CALENDARIO

Talvolta non e disponibile I'informazione sulla data di nascita dell'individuo osservato e
non si e allora in grado di calcolare I'eta esatta in cui si verifica un determinato evento
(per esempio la morte o 'uscita per altra causa).

Le valutazioni non possono allora essere fatte prendendo come riferimento I'anno di vita.

Cio tipicamente avviene quando alla stipulazione della polizza si attribuisce all'assicurato
una eta arrotondata (intera); in tal caso si dira che si prende come riferimento I'anno di

polizza.

Un’altra eventualita si ha nel caso in cui agli individui sia attribuita un’eta arrotondata ad
una certa data (per esempio all’l/1), come avviene spesso per i fondi pensione; in tal
caso si dira che si prende come riferimento I'anno di calendario.

Definizione

Diremo che un individuo ha eta arrotondata (intera) x ad una certa data (per es. un
anniversario di polizza oppure all'l gennaio) se in quella data ha eta esatta nell'intervallo

2
X—=, X+=
2 2

11



Riferimento: anno di vita, anno di polizza e anno di calendario

Conteqqio dei decessi prendendo come riferimento I'anno di polizza

Alla stipulazione della polizza si attribuisce all’assicurato I'eta arrotondata (intera).

Si definisce data di nascita di valutazione , la data in cui giorno e mese coincidono con
il giorno ed il mese di stipulazione della polizza, 'anno e dato da

anno di stipulazione della polizza -  eta arrotondata alla stipulazione della polizza

Utilizzando tale data di nascita di valutazione al posto della data di nascita e conoscendo
la data di ingresso in osservazione,
la data di uscita dall'osservazione e la causa di uscita

si e in grado di determinare il vettore delle eta (yi, z,8,¢ )

12



Riferimento: anno di vita, anno di polizza e anno di calendario

Con riferimento alla classe di eta |x,x +1] si & in grado di determinare il vettore delle
durate (r;, 5,1, ki,)

essendo

r la durata di tempo dall’anniversario di polizza precedente all’ingresso in
osservazione nella classe di eta |x,x+1] con 0<r, <le

{O ey < X

=
" lyi—x sex<y <x+1

s la durata di tempo dallanniversario di polizza precedente all'uscita dalla
osservazione per la classe di eta [x,x+1] con 0<s <le

|1 sez =2x+1
17 Z —X sex<z<x+1
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Riferimento: anno di vita, anno di polizza e anno di calendario

Poiché, nei casi di uscita per morte e, rispettivamente, per altra causa

X +t; non e piu leta esatta di uscita per morte, ma t e la durata di tempo
dall’anniversario di polizza precedente all’'uscita per morte

X+k  non e piu l'eta esatta di uscita per altra causa, ma k e la durata di tempo
dall’anniversario di polizza precedente all’'uscita per altra causa

si dice che si prende come riferimento I'anno di polizza in quanto si considerano gli
eventi che avvengono nell’anno di polizza.

Si ha allora che

8, & il numero di decessi osservati per gli assicurati nell’anno di polizza |x,x +1]

Anche nella valutazione dell’esposizione si prende come riferimento I'anno di polizza,
conteggiando le esposizioni tra due anniversari di polizza.

Ex= X(s ‘ri)+|2(ki -)+ X(1-x)

1S IOwW i0D

14



Riferimento: anno di vita, anno di polizza e anno di calendario

Le stime

(0] 6 0]
=X My

—_ X —_
=2 erx=a,a+l...,a
X p ’ y
E, E>(<:

forniscono delle stime per, rispettivamente,

Ox+ f My + f
Essendo
1 1
——Sf<—
2 2

Nel caso di distribuzione uniforme delle stipulazioni delle polizze rispetto agli anni di vita,
ovvero di distribuzione uniforme dei compleanni rispetto all’anno di polizza, si puo

assumere
f=0

0] 0]
e quindi g, e my forniscono delle stime per, rispettivamente, g, e m,

15



Riferimento: anno di vita, anno di polizza e anno di calendario

Conteggio dei decessi prendendo come riferimento I'anno di calendario

Nelle assicurazioni collettive o nei fondi pensione, c’e una data prefissata, per esempio
I'1/1, chiamata data di valutazione del fondo ed agli assicurati viene attribuita I'eta
arrotondata (intera) in tale data.

Si dice allora che si prende come riferimento I'anno di calendario  dall’l/1 al 31/12.

E come se tutte le polizze fossero stipulate nella stessa data ed a tutti gli assicurati si
attribuisse I'eta arrotondata in tale data.

Analogamente a quanto visto nel caso in cui si prenda come riferimento I'anno di polizza,
si definisce per ogni individuo osservato, la data di nascita di valutazione, il vettore delle
eta (vi,z,8,¢,) e, con riferimento alla classe di eta |x,x +1| il vettore delle durate

(r. st k)

Poiché generalmente l'intervallo di osservazione inizia all’1/1 di un certo anno e termina
al 31/12 di qualche anno dopo, per ogni individuo osservato sihar,=0e 5 =1.

16



Riferimento: anno di vita, anno di polizza e anno di calendario

Poiché, nei casi di uscita per morte e, rispettivamente, per altra causa

X +t; non e piu I'eta esatta di uscita per morte, ma t; e la durata di tempo dalla data di
valutazione del fondo precedente all’'uscita per morte

X+k  non é piu I'eta esatta di uscita per altra causa, ma k; e la durata di tempo dalla
data di valutazione del fondo precedente all’'uscita per altra causa

si dice che si prende come riferimento I'anno di calendario  in quanto si considerano gli
eventi che avvengono nell’anno di calendario.

Si ha allora che

8, & il numero di decessi osservati per gli assicurati nell'anno di calendario |x,x +1]

Anche nella valutazione dell’esposizione si prende come riferimento I'anno di calendario,
conteggiando le esposizioni tra due date di valutazione del fondo.

17



Riferimento: anno di vita, anno di polizza e anno di calendario

Le stime
(0] @ (0] e L
= = X er x=a,a+l...,a
X E, § Eff P

forniscono delle stime per, rispettivamente,

Ox+ f My + f
Essendo
1 1
——Sf<—
2 2

Nel caso di distribuzione uniforme dei compleanni nell’anno di calendario, si puo

assumere
f=0

0] 0]
e quindi g, e myx forniscono delle stime per, rispettivamente, g, e m,

Talvolta si attribuisce come eta arrotondata intera ad una data di valutazione del fondo,
I'eta raggiunta all’'ultimo compleanno.

18



Riferimento: anno di vita, anno di polizza e anno di calendario

Definizione

Diremo che un individuo ha eta troncata (intera) x all’l/1 di un certo anno se in quella
data ha eta esatta nell'intervallo [x, x +1|

6, e il numero di decessi osservati con eta troncata x all'l/1 precedente al decesso

0) QX 0)

Le stime q, == my = —% per x=a,a+l,...,a
X EX E)(<:
forniscono delle stime per, rispettivamente, Oyt My 4 f
essendo
O<f <1

Nel caso di distribuzione uniforme dei compleanni nell’anno di calendario, si puo
assumere

f=l
2
(0] 0]
e quindi g, e mx forniscono delle stime per, rispettivamente, Oy.y2 € My

19



Frequenze di decesso per tavole selezionate

FREQUENZE DI DECESSO PER TAVOLE SELEZIONATE

Un modello di sopravvivenza selezionato e definito mediante una famiglia di funzioni di
sopravvivenza

S(t; x) t=0 x=a,a+1l,...
dove
x e l'eta (intera) di ingresso in assicurazione

t e l'antidurata dell'assicurazione
Una tavola di mortalita selezionata e definita da un insieme di sequenze del tipo
la] oo a2
[a+v)] Na+gsr  lavgs2 - dove
I+t =1[x] [S(t; x)
I[x] I[x]+1 I[x]+2 X=a,a+l,... t=01...

20



Frequenze di decesso per tavole selezionate

Per stimare un modello di sopravvivenza selezionato si determinano le frequenze di
decesso per le diverse eta di ingresso in assicurazione e antidurate.

Poiché I'eta (intera) di ingresso in assicurazione e I'eta arrotondata all’emissione della
polizza e I'antidurata e il numero di anni in cui I'individuo e presente in assicurazione, Si
prende come riferimento I'anno di polizza.

Con riferimento all’eta arrotondata x di ingresso in assicurazione ed all'intervallo di
antidurate |t,t +1],il vettore delle durate (r;, 5, t;, k;,) dell'individuo i che contribuisce alla

osservazione per l'intervallo di antidurate |t,t +1| & cosi definito
r con 0<r,<l1 tale che t+r, e lantidurata esatta all’ingresso in osservazione
nellintervallo di antidurate |t,t +1]

§ con 0O<s<1 tale che t+s e lantidurata esatta di uscita dall'osservazione
dell'intervallo di antidurate [t,t +1]

t. con O<t; <1tale che t+t; e l'antidurata esatta di uscita per morte

ki con O<k; <1tale che t+k; él'antidurata esatta di uscita per altra causa

21



Frequenze di decesso per tavole selezionate

Si definisce

Hx++ Il numero di decessi osservati per gli assicurati entrati in assicurazione all'eta
arrotondata x e con antidurata esatta in |t,t +1]

B+t il numero iniziale di esposti al rischio nell'anno di polizza [t,t +1], per gli assicurati
entrati in assicurazione all’'eta arrotondata x

Egee = 2(-n)-2(-5)- XQ-k)

iosSOobOw I0S iowW

Si definisce la frequenza di decesso

che fornisce una stima di Oy ]+ CON —%s f <1

2

Nel caso di distribuzione uniforme dei compleanni nell’anno di polizza si puo assumere
(0]

f =0 e quindi [y fornisce una stima di gy

22



Frequenze di decesso per tavole selezionate

Indicato con

E[():(]+t il numero centrale di esposti al rischio nell'anno di polizza |t,t +1|, per gli assicurati

entrati in assicurazione all’eta arrotondata x

B = 2(-1)- £0-5)- (1-k)- 2(1-t)

ioSubow i0S IOW i0D

si definisce la frequenza centrale di decesso

O L _ Gx
Mix|+t =
b E[(>:<]+t

che fornisce una stima di My, £ ]+

23



Frequenze di decesso per tavole selezionate

Poiché I'effetto della selezione si esaurisce entro un certo numero t' di anni
x| < Ax-1]+1 < Ax-2]+2 <+ < Ox-t]+t" = Ax-t'-]+t'+1 = Yx-t'-2]+t'+2 = --- = Qa]+x-a

si definiscono le tavole selezionate ridotte

o el a2 ajet-1 @+t
[av)] o+ Nasg]s2 - [a+1]+t'—1 l(a+t'+2)
Iy Ixer ez - I[x]+t-1 |(x+t')

dove  I; elaradice dellatavola e If,] e tale che
I [S(Es %) = ket x=a+la+2,...
Indichiamo con
O(x) = Ax—t]+t' = Ox—t'<]+t'+1 = --- = Oa]+x-a con x=a+t e t=t,t'+1..

24



Frequenze di decesso per tavole selezionate

Per stimare

Ux) = Ax—-t']+t" = Ax-t'-1]+t'+1 = --- = Ya]+x-a con x=a+t e t=t,t'+1,...

si continua a prendere come riferimento I'anno di polizza e si considerano le frequenze di

decesso

essendo
Ax) = Hx-t]+t + Gx—t—gJ+t+1 .- + Gal+x-a
E(x) = Ex-t]+t * Ejx-t—gJ+t+1 +--- + HaJ+x-a

oppure le frequenze centrali di decesso

0 6
m() = 2

A

—_=C C C
Efx) = Bt} + Efxct—tlorsa + -+ EfzJx-a

essendo

25



Stima di modelli di sopravvivenza non parametrici — uscite soltanto per morte

STIMA DI MODELLI DI SOPRAVVIVENZA NON PARAMETRICI
USCITE SOLTANTO PER MORTE

Con riferimento alla classe di eta |x,x+1] supponiamo di avere osservato n, individui e di

disporre di dati individuali esatti riassunti, per ogni individuo i che contribuisce alla
osservazione per tale classe di eta, dal vettore delle durate

(r,s.t) i=1...,n,

essendo

X+, I'eta di ingresso in osservazione nella classe di eta [x,x+1] con 0<r; <1

x+s leta di uscita pianificata dalla osservazione per la classe di eta |x,x+1] con
O<s<1

X+t I'eta di uscita per morte se 8 = x+t;, altrimenti t; =0

Nota: se il riferimento é I'anno di vita, x+r;, Xx+S e X+t sono eta esatte, se il riferimento

e I'anno di polizza (o I'anno di calendario), x e I'eta arrotondata all’anniversario di polizza
ed r,, 5 e t; sono durate riferire all’anno di polizza (o all’anno di calendario).

26



Stima di modelli di sopravvivenza non parametrici — uscite soltanto per morte
Stima con il metodo dei momenti

Si definiscono i n.a.

{1 sel'individuoi decedaellaclassali etax
i

0 altrimenti

Si definisce il n.a. D, dei decessi nella classe di eta |x,x +1]
nX
Dy = 2D
i=1
Nell'ipotesi che il modello di descrizione della sopravvivenza sia lo stesso per ogni i si ha

nX nX
E(Dx) = _zlE(Di) = _zls —r, Ox+r.
i= i=

Sia d, il numero dei decessi osservati nella classe di eta |x,x +1];
Si puo scrivere quindi I'equazione dei momenti

nX
E(Dy)=dy e _2151 —r. Ox+r, = dy
=

27



Stima di modelli di sopravvivenza non parametrici — uscite soltanto per morte

A) Nell'ipotesi;, =0 e 5 =1 perogni i si ha

nX
_2151 - qx+ri - dx = Oy Ny = dX
i=

La stima ottenuta coincide con la stima di massima verosimiglianza di g, in ipotesi di
distribuzione Binomiale(ny,q,) per il n.a. D,

B) Nell’ipotesi di interpolazione lineare con r; =0 per ogni i si ha

nX nX nX
_Zs,—riqx+ri:dx < _Zs,qx:dx = _Zsiqx:dx
=1 1=1 1=1
A d
— qX:nXX
2§
i=1

essendo in tale ipotesi (g, = SQy

28



Stima di modelli di sopravvivenza non parametrici — uscite soltanto per morte

C) Nell'ipotesi di interpolazione esponenziale

—_ S—r
s—r Oyx+r =1 (1_ CIx)
che richiede di risolvere I'equazione dei momenti numericamente

D) Nell'ipotesi di interpolazione iperbolica con 5 =1 per ogni i si ha

nX nX nX
Z ST qx+ri = dx < Z -, qx+ri = dx < Z (1_ ri) Ox = dX
1=1 =1 =1
n d
= G, = Ir]X—x
2 @d-1)
i=1
essendo in tale ipotesi 1_, gy, = (@—T1) qy

Per risolvere I'equazione dei momenti in forma chiusa
nX
.lei -1 Oxtr, = Ay
| =

si formula, in generale, la seguente ipotesi: o Oysr =(S—T) 0Oy
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Stima di modelli di sopravvivenza non parametrici — uscite soltanto per morte

Si ha allora
nX nX
Z ST c|x+ri = dx < Z (3 - ri) Ox = dX
1=1 i=1
A d
= Ox = n, :
2(s—r)
1=1
nX
dove Y (s -r) & detta esposizione totale pianificata  nella classe di eta |x,x +1]
i=1
Sia
. D
O =1,
2 (1)
=1

lo stimatore del quale la stima §, € il valore osservato
Sotto 'ipotesi
s—r Oxar =(S—T1) Oy

g, € non distorto, infatti  E(q, ) =g,
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Stima di modelli di sopravvivenza non parametrici — uscite soltanto per morte

Inoltre, in ipotesi di indipendenza stocastica dei n.a. D;, i =1,..., n,, si ha

nX nX nX 2 nX 2
2 s -t Ox+r, (1_3 —r, Ux+r. ) Z Ch ri)Qx(l_ (s -1 )QX) QX_Z (s -n)- le_gl(ﬁ =)

Var (g, ) =" = i=l _ =l

ny 2 ny 2 Ny 2
{Z (S _ri)} {Z (S _ri)} {Z (S _ri)}
=1 =1 =1

Sostituendo al posto di g, il valore stimato @, si ottiene una stima di Var (g, ).

Se si considera invece l'ipotesi cosiddetta “binomiale”, cioe

E(qx ): Ox Var (qx ): g:((l_ qX)
_;1(51 — 1)

Si ottiene la seguente stima della Var (qx )

VAr (q‘x ) — nQX(l_ CIX)

ZX‘, (s —1)
=1
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Stima di modelli di sopravvivenza non parametrici — uscite soltanto per morte

Stima con il metodo della massima verosimiglianza

Con riferimento alla classe di eta |x,x+1] per scrivere la verosimiglianza delle
osservazioni

(ri,s,ti) i:l,...,nx

definiamo, per ogni i =1, 2,...,ny, i n.a.

T® durata aleatoria di vita dell'individuo i nellintervallo di eta |x,x +1]
Nota: T") ha determinazioni |r;, 5]
Indicato con TV la durata aleatoria di vita dell’i -esimo individuo in vita all'eta x + I Si ha

X+,

T = min(T(i) +1;, 54)

X+,
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Stima di modelli di sopravvivenza non parametrici — uscite soltanto per morte

Nell'ipotesi che per ogni individuo i la durata aleatoria di vita sia descritta dallo stesso
modello di sopravvivenza, dotato di funzione di densita, si ha

0 tSri
INEDHE Fear (t=1) 1 <t<s
1 t=s

ed e inoltre P(T(i) =§) =1-Fur (s 1) =15 -1 Ox+r, =s -1, Px+r.

Quindi se I'individuo i decede con eta esatta x+t; la verosimiglianza di tale osservazione
e
1Ex+ri (t —r)= t -1, Px+r, p(x+1)

Se invece lindividuo i raggiunge in vita I'eta di uscita pianificata x + 5, la verosimiglianza
di tale osservazione e

51 Pxtr
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Stima di modelli di sopravvivenza non parametrici — uscite soltanto per morte

Si definiscono
S={i| l'individuoi &in vitaall'etax + s} survival
D ={i | I'individuoi escepermorteall'etax +1;} death
In ipotesi di indipendenza stocastica dei n.a. T |a verosimiglianza delle osservazioni €

L:_|_| s -1 Px+r [_|_| 1:x+ri (ti —ri):_|‘| s -1, Px+r [_|_| t. -1, Px+r ,u(x+ti)
1S 1D 1S i0D

A)  Nell'ipotesi di interpolazione esponenziale u(x+t)=pu, , 0<t<1

s -t px+ri —_ e_)ux(si _ri)

la verosimiglianza e

L=T] e Hx(S 1) Ny (e'”x(ti ~h) ,ux):exr{—,ux( (s )+ X —r )H [G,Ux)dx
i0S

i0S iCD iOD
dove d, =#D
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Stima di modelli di sopravvivenza non parametrici — uscite soltanto per morte

La log-verosimiglianza e allora

| =logL {-ux(Z(s —h)+ 2 -n)ﬂ+dxlog(#x)

1I0S i0D

Risolvendo I'equazione di verosimiglianza si trova

N dy
Hx =
2(g-n)+ 2@t -r)
1S 1D
dove Y(s-r)+ X(t—-r) e detta esposizione esatta
i0S i0D
Se poniamo

Ex = X(s—1)+ Xt —n)
1S 11D
si ha

B C
L =e S )
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Stima di modelli di sopravvivenza non parametrici — uscite soltanto per morte

Osservazione

Sia D, il n.a. dei decessi nella classe di eta |x,x +1], in ipotesi di distribuzione di Poisson

di parametro ,UXE)S: si ha

S P e _(Ex o EC  d
P(DX :dx) — de| e HyEx — g ' e HyEy qu x 1L
X" X"

Pertanto ai fini della stima di massima verosimiglianza dell'intensita istantanea di
mortalita sono equivalenti le ipotesi esponenziale e di distribuzione di Poisson per il n.a.

dei decessi D, con E(Dy) :,ufof

B) Nell'ipotesi di interpolazione lineare

1_
ot P =23 %

U(x+t )=
1-1; gy bert) 1-t; gy

indicato con d, =#D, la verosimiglianza e

_ 1504 [1_ti Ox Ox j_ -1 d
L= D E - 1-r g 1- q Oy *
i||j_|sl_ri qX iDl_lD 1—ri qx 1_ti qx iDgDD( I X) illj_ls( 3 X) X
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Stima di modelli di sopravvivenza non parametrici — uscite soltanto per morte

Dalla log-verosimiglianza
| =logL =~ Ylog{l-r gy)+ Tlog(l-s qy)+ dylog(ay)
i0SOD i0S
si ottiene I'equazione di log-verosimiglianza che puo essere risolta per via numerica

¥ f -y S + dX -0
iosopl—-ri Oy iosl—§ 0y O

Osservazione

Soluzioni in forma chiusa possono essere ottenute per dati particolari (p. es.ser;, =0 e
5 =1 per ogni i) e nel caso di particolari dati raggruppati (per es. se nel caso 5 =1 per

ogni i, si considera una comune eta media di ingresso r con 0<r <1 per ogni i, oppure
nel caso r; =0 per ogni i, se si considera una comune eta media di uscita pianificata s

con 0<s<1perognii)

Vedi London, cap. 7
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Modello di sopravvivenza con piu cause di eliminazione

MODELLO DI SOPRAVVIVENZA CON PIU CAUSE DI ELIMINAZI ONE

Sia una collettivita di individui soggetta a m cause di eliminazione ay,..., 0y,

Si definiscono i n.a.

T, durata di permanenza nella collettivita per un individuo presente nella collettivita
all’'eta x

C con determinazioni 1,...,m, tale che (C=j) = “lindividuo esce per la causa aj;

Si introduce un modello probabilistico per la coppia di n.a. (T, C)
Sia
%) =p(T, <t,Cc =) probabilita che I'ndividuo presente nella collettivita alleta x
esca dalla collettivita per la causa a; entro I'eta x +t

i) =P(T, <t) probabilita che I'individuo presente nella collettivita all’'eta x
esca dalla collettivita entro I'eta x +t per una qualsiasi causa
i) =1- g0 probabilita che l'individuo presente nella collettivita all'eta x

sia presente all’eta x+t
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Modello di sopravvivenza con piu cause di eliminazione

Si ha

m (aj)

m
tQ>(<T) = P(TxSt): ZP(TXSLCZ J): _ltCIx

=1 j
Si definisce intensita di eliminazione per una qualunque causa

SO (1) = lim P(T, <t +AfT, >t)
At -0 At

Si ha
t
o
0

Si definisce intensita di eliminazione per la causa  a;

a,U(aj)(x+t): lim PTy<t+A,C = [T, >1)
At -0 At
Si ha

1O (x+1) = s au(9) (x+1)
j=1



Modello di sopravvivenza con piu cause di eliminazione

Poiché

| . P(T,<t+At,C=T, >t (a;) _
a,u(al)(x+t): lim (x J‘ X )_ lim t+atOx
At -0 At At -0 At

se esiste finito

t+At OI>(<a ) tCI>(<a )

lim
At -0 At
e poniamo
t+Atq(a ) tq(a )
frelt,j)= lim X £
T C( j)= A At
la distribuzione congiunta della coppia di n.a. (T,,C), si ha
_ fr clt, ] .
ay' ) (x+t) = 1 ;f,) ) frelt, )=l g™ (x +1)
t

e quindi per la probabilita di eliminazione per la causa a;

AV =P(T <t,C=j)= Ich(u j)du = Jup(”@ﬂ(”")(XW)dU j



Modello di sopravvivenza con piu cause di eliminazione

Osservazione

Disponendo di osservazioni sulla coppia di n.a. (T,,C) si possono stimare le intensita di

eliminazione per le varie cause a,u(aj)(t), t=0, ) =1,...,m, e quindi la distribuzione
congiunta fr ¢(t,j) t=0, j=1...,m

Se si e invece interessati a stimare un modello di sopravvivenza in relazione alla
mortalita nella collettivita osservata, tenendo conto che sono presenti anche altre cause
di uscita, occorre introdurre ulteriori ipotesi.

Siano | n.a.

TX(J) durata di permanenza nella collettivita per un individuo di eta x fino al verificarsi
dell'uscita per la causa a;

Si ha
Tx:min(Tx(l),...,Tx(m)) e (C=j) = (1'X:Tx(j))
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Modello di sopravvivenza con piu cause di eliminazione

In relazione alle distribuzioni marginali dei n.a. Tx(j), ] =1,..., m si definisce

Def.: intensita marginale di eliminazione per la causa aj
(1) (1)
u(aj)(X+t): lim P(-I-X St'l'At‘TX >t)
At -0 At

Def.: probabilita assoluta di sopravvivenza e, rispettivamente, di eliminazione

t

\a; a; \a; \a;
tpx( ) :exl{‘fﬂ( J)(x+u)duj th( ) :1_tpx( )
0

Osservazione

Sono dette probabilita relative di eliminazione per le diverse cause

t
tCI>(<aj) =P(Ty<t,C= j)zl_tp>(<aj) :1—exp(—ja,u(aj)(x+u)duj J=1...,m
0
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Modello di sopravvivenza con piu cause di eliminazione

In generale si ha
A0 2a () j=1...m 20
Nell'ipotesi
A0 =a"0)  j=1...m t20
sussiste la seguente relazione di Karup

m |
(oY) = [t pi 1
j=1
e si ha allora
_ . m |
fret )= 2 (x+1) :(ﬂlt px(aJ)J 19 (x+1)
J:

Si dimostra che se i n.a. Tx(l), Tx(m) sono stocasticamente indipendenti allora

()= t) t20



Modello di sopravvivenza con piu cause di eliminazione

Nella realta i n.a. Tx(l), ...,Tx(m) presentano delle relazioni di dipendenza.

Si puo allora porre il problema se a partire dai dati osservati, che consentono di stimare
la distribuzione congiunta di (T,,C), si & in grado di stimare pure la distribuzione

congiunta di ('I')fl), ...,Tx(m))

Senza introdurre ipotesi aggiuntive sui legami di dipendenza tra tali n.a., la risposta e
negativa.

Sussiste infatti il problema della non identificabilita:

Esistono diverse distribuzioni congiunte di ('I')fl), ...,Tx(m)) che danno

luogo alla stessa distribuzione congiunta della coppia di n.a. (T,,C)
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Stima di modelli di sopravvivenza non parametrici — uscite per morte e per altra causa

STIMA DI MODELLI DI SOPRAVVIVENZA NON PARAMETRICI
USCITE PER MORTE E PER ALTRA CAUSA

Con riferimento alla classe di eta |x,x+1] supponiamo di avere osservato n, individui e di

disporre di dati individuali esatti riassunti, per ogni individuo i che contribuisce alla
osservazione per tale classe di eta, dal vettore delle durate

(r,s,t, k) i=1..,n,

essendo

X+, I'eta di ingresso in osservazione nella classe di eta [x,x+1] con 0<r; <1

x+s leta di uscita pianificata dalla osservazione per la classe di eta |x,x+1] con
O<s<1

X+t I'eta di uscita per morte se 8 = x+t;, altrimenti t; =0

x+k  l'eta esatta di uscita per altra causa se ¢ = x+k;, altrimenti k =0

Nota: il riferimento puo essere sia I'anno di vita, sia I'anno di polizza (o I'anno di

calendario).
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Stima di modelli di sopravvivenza non parametrici — uscite per morte e per altra causa
Modello di sopravvivenza a due cause di eliminazion  e: morte ed altra causa

Sia una collettivita di individui soggetta a due cause di eliminazione:
d morte

w altra causa

T, durata di permanenza nella collettivita per un individuo presente nella collettivita
all’'eta x

T, = min(T)Sd),T)SW))
essendo

Tx(d) durata di permanenza nella collettivita finché non si ha l'uscita per morte, per un
individuo presente nella collettivita all’'eta x

TX(W) durata di permanenza nella collettivita finché non si ha l'uscita per altra causa,
per un individuo presente nella collettivita all’eta x
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Stima di modelli di sopravvivenza non parametrici — uscite per morte e per altra causa
Ipotesi: uscite non informative

pOt)=a4)  tz0

) =aut)  t=zo0

essendo

PIT{® <t +AtT{ >t
1D (x+t)= lim (X ‘ ’ )
At -0 At

PT" <t +AtTW >t
1M (x+t)= lim (X ‘ X )
At -0 At

le intensita marginali di eliminazione e
P(T, <t +At,C=1T, >t)

au'D(x+t)= lim

At -0 At
au™ (x+t)= lim PTy<t+At,C = 2T, >t)
At -0 At

le intensita di uscita per le varie cause, dove C =1 denota I'evento “uscita per morte” e
C =2 denota I'evento uscita per altra causa
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Stima di modelli di sopravvivenza non parametrici — uscite per morte e per altra causa

In ipotesi di uscite non informative sussiste inoltre la relazione di Karup

(7) =, p'(d) p'(W)

X

essendo
(@) _exp( @ (x4 ) j o) _exp( £ (+ u)d j
@ =1-,q{" probabilita che 'individuo presente nella collettivita all'eta x
sia presente all'eta x+t
(o =P(T, <t) probabilita che l'individuo presente nella collettivita all'eta x

esca dalla collettivita entro I'eta x+t per una qualsiasi causa
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Stima di modelli di sopravvivenza non parametrici — uscite per morte e per altra causa

Si ottengono allora le seguenti espressioni per le probabilita di uscita per morte e,
rispettivamente, per altra causa

S s
S—r q)((gl_)r = (Tx+r <s-r,C :1) = I 1ET,C(U —r ’l)du = j u-r p>(<Qr W(d)(x"' u)du
r

r

S
= [ uer PXR 0 p D (x + u)du
r

s
s— rcb((VJ\r/)r = (Tx+r SS_r’CZZ):jfT,C( u-=r Z)du ju rpx+)r @,u(w)(x+u)du

r
S
= [ uer PO B ™) (x+ u)du
r

Ed e inoltre

s—r Q>(<Qr = s-r q)(gl_)r t oo rQ>(<V-I\-,)r
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Stima di modelli di sopravvivenza non parametrici — uscite per morte e per altra causa

Stima con il metodo dei momenti

n, individui osservati in relazione alla classe di eta |x,x +1]
(ri,si,ti,ki,) i:l,...,nx

Si definiscono i n.a.
D, n.a. dei decessi nella classe di eta |x,x+1]

W, n.a. delle uscite per altra causa nella classe di eta |x,x +1]

Siano
d, il numero dei decessi osservati nella classe di eta |x,x +1];

w, il numero di uscite per altra causa osservate nella classe di eta |x,x +1|;
Si ha

E(D)= 3 s -, q@ EW)= Y . qW
X/ i Qs X/~ et O+,

dove s, q)(gr%_ € 5t q)(("l? sono le probabilita di uscita per morte e per altra causa
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Stima di modelli di sopravvivenza non parametrici — uscite per morte e per altra causa

Le equazioni dei momenti sono allora

{E( x) =

E(W, ) =w,

Nelle ipotesi
sr O =(s=1) o)

Si ottengono le seguenti stime:

o d

Q>(<d) = n, ”
2(s—r)
=1

d) _
iz‘si‘ri q)(<+)ri dy
Ji=
nX
Ligﬁ i qivl?i —

r O = (s—r) g{™

nX
2(s—r)
=1

delle probabilita di uscita, rispettivamente, per morte e per altra causa

Se pero 'obiettivo € stimare una tavola di mortalita, tenendo conto che sulla collettivita
agiscono due cause di uscita, si devono stimare le probabilita assolute

pi{d) —exp( [ D( x+u)duj

t
P = exx{- [t (x+ U)dUJ
0
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Stima di modelli di sopravvivenza non parametrici — uscite per morte e per altra causa

Nell'ipotesi di uscite non informative le equazioni dei momenti sono

F

z Si =T q)((+)r

=1

A)

_dX

Zsi—r q)(("ﬁ = Wy

=1

n, S
2 [u-r
I=1r

1(d
X(+I’) @—r p

morte e, rispettivamente, per altra causa si ha

p,(d) _1- Uq(d)
u ri x+ri 1_ri q,x(d)
. pW 1-u gy
U= Fx+r, 1-r q;((W)

pD(x+u)= s

u" (x+u)=

(n, s
X r(d '
z .[U = p)((+r)I @‘I’i pX(-:'AI?
I

r(w)

X+,

D (x +u)du = d,

™) (x +u)du = w,

Nell'ipotesi di distribuzione uniforme per le probabilita assolute di uscita per
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Stima di modelli di sopravvivenza non parametrici — uscite per morte e per altra causa

Le equazioni dei momenti diventano

( ( 2 _ _2)
qr(d)|:(S _r_)_ S rI qI(W):|

Ny 2
El (1 7 q’(d)X1 r ’(W))

3 2_.
w{(s,—r-)—uﬁ i qﬂ
= W.

2
El (1 ’(d))(1 rq’(W)) X

Il sistema puo essere risolto per via numerica ottenendo le stime

~(d) ~r(W)
X X
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Stima di modelli di sopravvivenza non parametrici — uscite per morte e per altra causa

Nel caso particolare r, =0 e 5 =1 per ogni i , le equazioni dei momenti diventano

( I i 1 1 |
Ny x(d) l_ECIx(W) :dx
X = =

I 1 I |
Ny CIX(W) 1_5 x(d) = Wy

§ L -

Il sistema puo essere risolto in forma chiusa ottenendo le stime

2
~b?-2
gl = b Jb My con b=n, 4 O Wk
Ny 2 2
2
A,X(W):b—Jb - 2n,w, con  ben, -t
Ny 2 2
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Stima di modelli di sopravvivenza non parametrici — uscite per morte e per altra causa

B) Nell'ipotesi di intensita di uscita per morte e per altra causa costanti si ha

HO )= 4 P = e 4O
)= = exd )

Le equazioni dei momenti diventano

& ) 4 )2
e ZXLW')Lé ) a(l eXP[ ) (F * W)) dx
. A V2 | =

Il sistema puo essere risolto per via numerica ottenendo le stime

r(d) 7y (W)
X X
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Stima di modelli di sopravvivenza non parametrici — uscite per morte e per altra causa

Nel caso particolare r, =0 e 5 =1 per ogni i , le equazioni dei momenti diventano

e (d)< )(1 exp[ (/f(d)+ﬂ(w)). )nx = dy

Ly )(iwil( w) (1 ex;{ ('U(d) +IU(W)). )nx = Wy
X

Il sistema puo essere risolto in forma chiusa ottenendo le stime

d, W,
A)((d) = —|Og( nX — dX B ijdX-HNX ")((W) — _|Og( nx - dx - ijdx+Wx
Ny Ny
Da queste si ottengono le stime
d, Wy
(@) =1 () :1_(”x —dy -ijdﬁwx AW 21— W =1 (nx ~dy - jd +w
Ny Ny
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Stima di modelli di sopravvivenza non parametrici — uscite per morte e per altra causa

Stima con il metodo della massima verosimiglianza

Con riferimento alla classe di eta |[x,x+1] per scrivere la verosimiglianza delle
osservazioni

(ri,si,ti,ki,) i:l,...,nx

definiamo, per ognii =1 2,...,n,, i n.a.

T® durata aleatoria di permanenza dellindividuo i nella collettivita tra le eta |, x+1]
Nota: T") ha determinazioni |r., s]

Indicato con T)g)r la durata di permanenza nella collettivita per I'i -esimo individuo

presente all’'eta x+r; si ha

T = min(T(i) +1i, 54)

X+,
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Stima di modelli di sopravvivenza non parametrici — uscite per morte e per altra causa

Se l'individuo i e presente nella collettivita all’eta di uscita pianificata:

7O =g PTY =8) = g P, = 5 Pier B, Prar
Se lindividuo i esce per morte all’'eta esatta x+t;:

TO =t frelti—nd)= - p)((?ri O (x+t)= p'x(fr)i e, p)fﬁ? 2D (x+1;)
Se lindividuo i esce per altra causa all’'eta esatta x +k;:

TO=k frelho=n2)= Py M (xr k) = 1o P 0o Pty T (x4 k)

Si definiscono

S={i| l'individuoi &in vitaall'etax + s} survival
D ={i | I'individuoi escepermorteall'etax +1;} death
W ={i | I'individuoi esceperaltracausaall'etax + k;} withdrawal
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Stima di modelli di sopravvivenza non parametrici — uscite per morte e per altra causa

In ipotesi di indipendenza stocastica dei n.a. TO 1a verosimiglianza delle osservazioni e
L=nPTV=5)00 frcl -n.000 frelk-1.2)
1S 1D 1w
_ d
= M s P O o P2 D)0 i, B, M (x4 k)
1S 1D Iw
— r(d) r(w)
B iEls Sl px+ri Q ~i px+ri -
(d ' d
D_Dl_lD -t |Ox(+r)i le—r DX(X? @ (x+1)0
|

r(d !
Dgl/\/ ki =i p)((+r)| @i i px(‘i\f\g D’,[(W) (X K )
I

_ (d (d d (d
_.l_l S i px(+r)| Dl_l t—r p)((+r)| D',I( )(X+ti)|].|_| ki —r; px(+r)| :
i0S i0D ILW

] 5 P00 g B O 1o P (x4 K)
1LJS 1D 1w
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Stima di modelli di sopravvivenza non parametrici — uscite per morte e per altra causa

Quindi
L= 1@ gw
con
d) _ r(d r(d d /(d
L( ) __l_l S T px(+r)| Dn L= px(+r)| ul( )(X+ti)|].|_| St px("'r)|
i0S i0D 1w
e

L) :.rl S p;((rg DH G =T p;g\g Dl_l ki —1; p;((J\rAQ HI(W)(X-'_ki)
IS 1D 1w

Quindi per stimare le probabilita assolute p;(d) Si porra

maxL(d)

mentre per stimare le probabilita assolute p;fw) Si porra

maxL(W
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Stima di modelli di sopravvivenza non parametrici — uscite per morte e per altra causa

Stima di massima verosimiglianza delle probabilita assolute p'(d)

_ (d (d r(d
LD = ¢ D O g P D ()0 - PO
1as 1D IW

Si nota che le informazioni sulle uscite per altra causa sono trattate come le informazioni
sulla sopravvivenza all’eta di uscita pianificata

A)  Nellipotesi di interpolazione esponenziale 9 (x+t)= 4 , 0<t<1

(d) — o~ (5-1)
S i pX+r —-€

la verosimiglianza e

(D) = M e‘ﬂ>(<d)(3i —1) my ( 1 (1) ,U(d)) 0 e_,U)((d)(ki —1)
IS 0D iow

=eXF{- >(<d)(2(51 —h)+ 24 -h)+ Z(ku ‘r)ﬂi“(d))

i0D
dove d, =#D
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Stima di modelli di sopravvivenza non parametrici — uscite per morte e per altra causa

La log-verosimiglianza e allora

IogL(d):{— )((d)(Z(Sq —n)+ X (4 —f|)+ Z(K ‘ﬁ)ﬂﬂj |09(/J(d))

s iD

Risolvendo I'equazione di verosimiglianza si trova

~(d) _ dy
§ z@—m+za—w+zm—w

s D

dove Y(s-r)+ Xt —-n)+ Z(k| —r) € detta esposizione totale esatta
1as i0D

Osservazione: |'esposizione totale esatta coincide con il numero centrale degli esposti al
rischio secondo I'impostazione attuariale

Ex= X@-r)->2(-5)- T@-k)- 2(- )2(s—r)+2(t—r)+2(lq—r)

iOSODOW i0S iow i0D i0S i0D
- . 0 6
Quindi la frequenza (grezza) centrale di decesso My = —é
EX

coincide con la stima di massima verosimiglianza A)(<d)
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Stima di modelli di sopravvivenza non parametrici — uscite per morte e per altra causa

Osservazione

Sia D, il n.a. dei decessi nella classe di eta |x,x +1], in ipotesi di distribuzione di Poisson

di parametro ,u)(<d)E§: si ha

P(D, =d,) = ('U(d)EC) ‘#(d)EC Eﬁ (d)EC(/J(d)) 0 ()

d/ d/

Pertanto ai fini della stima di massima verosimiglianza dell'intensita istantanea di

mortalita sono equivalenti le ipotesi esponenziale e di distribuzione di Poisson per il n.a.

dei decessi D, con E(Dy) :,uxExC
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Stima di modelli di sopravvivenza non parametrici — uscite per morte e per altra causa

B) Nell'ipotesi di interpolazione lineare

(d
(d) —1~§ Oy (d) _ O
r = U7X+ )=
T g g bers) 1-t g
indicato con d, =#D, la verosimiglianza e

(d) (d) '(d) (d)
Um_ﬂlsqd[] 1tqd[] _|o 1qu
i0S1—r, () ioD\ 1-r, () q'() iowW 1—r; '()

- 0@ nfi-s ) ghiok ) o
iosoDOw iOwW
Dalla log-verosimiglianza
logL(® = - Zlog(l 7 q'(d))+ Zlog(l— '(d))+ Zlog( - k; q'(d))+d Iog( (d))
iISODOW i0S
si ottiene I'equazione di log-verosimiglianza che puo essere risolta per via numerica
I S;

k: d
Z Z I Z 1 + X _O
osopowl-r g @ ifsi-s q@ idwi-k q@ @




Stima di modelli di sopravvivenza non parametrici — uscite per morte e per altra causa

Stime di massima verosimiglianza per dati raggruppa i

Con riferimento alla classe di eta [x,x +1] nel caso di dati raggruppati, i dati sono:

Ny numero di individui osservati
dy numero di decessi osservati
W, numero di individui usciti per altra causa

Con riferimento all’i-esimo, i =1,..., n,, si definisce il seguente n.a.

1 sel'individuoi escepermorte pc) =1)=q@
c) =12 sel'individuoi esceperaltracausa p(c) =2)=qW
0 altrimenti Pc®) =0)=1-g{@ -

In ipotesi di indipendenza stocastica dei n.a. c®a verosimiglianza delle osservazioni €

| | | d 0~
L = |_| P(C(I) :1) Dl_l P(C(I) — 2)|:I—| P(C(|) = O) :( )((d)) X ( )((W) )Wx (1— )((d) — )((W) )nx x Wy
100D iowW IS



Stima di modelli di sopravvivenza non parametrici — uscite per morte e per altra causa

Dalla log-verosimiglianza

logL =d Iog( (d))+w Iog( (W)) +(n, —d, —w. )Iog(

si ottiene il sistema di equazioni di verosimiglianza che fornisce le stime delle probabilita

(d) (W) )

di eliminazione per causa di morte e, rispettivamente, per altra causa.

(dx _ ny—demw (o) = 9x
(@ 1@ _g(w Xy
. = 3
Wy Ny —d, _Wx -0 ~(w) _ Wx
g 1-g{® -gM™ *n,

Le stime coincidono con quelle ottenute con il metodo dei momenti nel caso particolare
n=0esg=1perognii=12...,n

Se si vogliono stimare le probabilita assolute, si devono formulare le opportune ipotesi
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Stima di modelli di sopravvivenza non parametrici — uscite per morte e per altra causa

In ipotesi di uscite non informative si ha

© = OB 3O uh

(= BOGR 3 r

A) Nell'ipotesi di distribuzione uniforme per le probabilita assolute di uscita per

morte e, rispettivamente, per altra causa si ha

r(d)
X

BV =1-ug{® p D (xru)=

(P =1-ug®™ W (o u) =

e quindi
I 1 I [ 1 I
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Stima di modelli di sopravvivenza non parametrici — uscite per morte e per altra causa

La log-verosimiglianza diventa allora
ogL =, gl g )+~ i ogh-eP -

=d Iog( (d))+dxlog(1—% ;((w)j+wx|og( (W))+wxlog(1—% ;((cl))+

: 1, : 1,
+(nx_dx_ )Iog(l q(d)( ZqX(W)j_ x(W)(l_E x(d)jj

Risolvendo il sistema di equazioni di verosimiglianza si ottengono le stesse stime

ottenute con il metodo dei momenti nel caso particolare r; =0 e 5 =1 per ogni
1=12...,ny

2
- /b%? -2
Q'X(d):b Jb My con b:nX+$—&
Ny 2 2
2
A;((W):b_Jb ~ 2 con b:nx—%+M
Ny 2 2
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Stima di modelli di sopravvivenza non parametrici — uscite per morte e per altra causa

A) Nell'ipotesi di intensita di uscita per morte e per altra causa costanti si ha

1D (x+u)= 14D S ) = exp{ ,u)((d)u:
1Y (x+u) = W) o P = exp{— ,u)((W)u:
e quindi
< :Md)i;z& )(1 exP[ Wd)’fﬂ(w))]) = §d)i L( )(1 eXP[ (/J(d“#(w))])

Sostituendo nella log-verosimiglianza
gL = logla® - 0g(a? )+ (-~ oot~

e derivando, si ottiene il sistema di equazioni di verosimiglianza le cui soluzioni
coincidono con le stime ottenute con il metodo dei momenti nel caso particolare r; =0 e

§ =lperognii=12...,n,

- n, —d, —w, |d,+w,
)((d):_|og( x ~ dx xj

- n, —d, —w, |d,+w,
)((w) :—Iog( X X XJ
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Stimatore della funzione di sopravvivenza e sue proprieta

STIMATORE DELLA FUNZIONE DI SOPRAVVIVENZA E SUE PRO PRIETA

Per stimare la funzione di soprawvivenza S(x), x=a,a+1...,«, di un modello di

sopravvivenza non parametrico, si esprime la funzione di sopravvivenza come prodotto di
probabilita condizionate di sopravvivenza

S(X)_ =(x)_S(x-) o =) = Px-1Px-2"""Po = [T P

S(x-)S(x-2) S(O) j<x
infatti
S(j) _ P(p>]) _P(Mg>]To>]-1) _ P(To> iy > |~ = pi4
S(j-) P(Mo>j-1)  P(o>j-D ’
Siano
Py =1-Qy la stima di p,
n, I'esposizione nella classe di eta |x,x +1]

con x=a,a+l...,a-1

Si ottiene la seguente stima della funzione di sopravvivenza S(x), x=a,a+1,..., @

~

S(x) = Py-1Px-2+ Po
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Stimatore della funzione di sopravvivenza e sue proprieta
Sia
Py lo stimatore di p, del quale p, e lastima, x=a,a+1,...,a-1

Indichiamo con

S(x) = R x=a,a+l..,a
<
lo stimatore del quale S(x) & la stima.

Per valutare speranza matematica e varianza dello stimatore S(x) occorre formulare
delle ipotesi suin.a. p;, j=a,a+L...,a-1

Siano I ={n}, nG41,,..., N, _1} le esposizioni nelle diverse classi di eta.
Si formulano le seguenti ipotesi sui n.a. p,
Condizionatamente a I ={nj, Ny41,,..., N, 4} , i n.a.
Py » Xx=a,a+l,...,a-1 siano stocasticamente indipendenti
e siano
E(p,|T)= py Var (pyT) = P (= Py x=aa+l.., a-1

Ny
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Stimatore della funzione di sopravvivenza e sue proprieta

Risulta allora che S(x)= ] P; & uno stimatore non distorto, infatti
j<x

E(§(x)\])=E(|‘| 'ﬁj\IJz_ﬂij = S(x) x=a,a+l...,a

J< X <

La varianza dello stimatore S(x) &

Var(3(x)7)= [S(x)]z{ _ﬂx[1+ pCjI Jn J J —1}

J<

e puo essere approssimata da

Var (S(x)7) O[s(x)]? Ex IO(? JnJ

dalla quale si ottiene la formula di Greenwood |, che fornisce una stima della varianza
dello stimatore S(x)

var (S(x)1)=[S(x)] Ex pjn;
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Confronto della tavola di sopravvivenza stimata con una tavola standard

CONFRONTO DELLA TAVOLA DI SOPRAVVIVENZA STIMATA
CON UNA TAVOLA STANDARD

Siano
Oy » Xx=a,a+l...,a-1

le stime delle probabilita di morte q,, x=a,a+1,...,a -1, di un modello di sopravvivenza
non parametrico.

Ci si pone il problema se il fenomeno della mortalita osservata nella collettivita possa
essere descritto da una tavola di mortalita proveniente da altre esperienze statistiche.
Tale tavola viene allora detta tavola “standard” e la indichiamo con

Oy x=a,a+l...,a-1

Per verificare se la tavola standard accosta bene le osservazioni si sottopone a verifica
d’ipotesi la seguente ipotesi nulla:

Ho : Oy =y x=aa+l...,a-1
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Confronto della tavola di sopravvivenza stimata con una tavola standard

Con riferimento alla classe di eta |x,x +1| siano

D, n.a. di decessi
d, numero di decessi osservati
E, Il numero di esposti al rischio

Per costruire la funzione test formuliamo le seguenti ipotesi

E(Dx) = Ey qy Var(Dx) = Ey Oy (1_QX)
Sotto l'ipotesi nulla i n.a.
Z, Dy~ Ex O x=a,a+l...,a-1

VEx g @-d})
hanno distribuzione approssimata N(0,1). In ipotesi di indipendenza stocastica dei n.a.
Z,,X=a,a+l...,a-1, sia hache il n.a.

T (2,

X=a
ha distribuzione approssimata chi-quadrato con n gradi di liberta, essendo n il numero di
classi di eta.
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Confronto della tavola di sopravvivenza stimata con una tavola standard

Fissato un livello di significativita a si determina )(ﬁ,l_a tale che P()(r‘?' >)(§,1_aj =1-a si

rifiuta l'ipotesi nulla se

a-1

2 2
> (Zx) >)(n,1—a
X=a
a-1l 2 _ _ a-1 2
essendo Y (z,)° la determinazione osservata del n.a. Y (Z,)
X=a X=a

Tale test potrebbe non rilevare un buon accostamento della tavola standard a i dati
osservati, e quindi non fare rifiutare I'ipotesi nulla, nelle seguenti situazioni:

— esistenza di scostamenti eccessivamente elevati per alcune eta, controbilanciati da
scostamenti molto ridotti per altre eta;

— numero eccessivo di scostamenti tutti dello stesso segno (conseguenza di una
mortalita rilevata “uniformemente” maggiore o minore di quella attesa in base alla
tavola standard);

— gruppi eccessivamente numerosi di eta consecutive con scostamenti tutti dello
stesso segno.
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Confronto della tavola di sopravvivenza stimata con una tavola standard

Per evidenziare tali problematiche si utilizzano altri test, quale per esempio il test delle
deviazioni cumulate.

Sotto l'ipotesi nulla
Ho : Oy = 0y x=aa+l...,a-1
si ha
E(D,-E, g,)=0  perogni x=a,a+1,...,a-1
Consideriamo le deviazioni cumulate nell’intervallo di eta da x; a x5

X5

Z(Dx — Eyx CI;<)

X=X

In ipotesi di indipendenza stocastica dei n.a. Dy si ha

E{ ¥ (D - E, q;)}

X=X

Xp X2 X2
0 Va{ > (Dy — Ey Q’x)}= >Var(Dy)= X E, gy @—0dy)

X=X X=X X=X
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Confronto della tavola di sopravvivenza stimata con una tavola standard

La distribuzione della deviazione cumulata standardizzata

Xy '
> (Dx - Ex CIx)
X=X
X2 I I
2 Ex Ox (1_ QX)
X=X

puo essere approssimata mediante una N(0,1) e quindi,

fissato un livello di significativita

a si determina il quantile z_,, della distribuzione normale standard e si rifiuta I'ipotesi

nulla se
X2 ’
Z(dx - Ex CIx)
X=%;
% | | > Z_g/2
z Ex Oy (1_ CIx)
X=X

Tale analisi va ripetuta su diversi intervalli di
nell’accostamento della tavola standard ai dati osservati.

eta che evidenziano criticita
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Perequazione mediante tavole standard

PEREQUAZIONE MEDIANTE TAVOLE STANDARD

Se e stata rifiutata I'ipotesi nulla sulla bonta di accostamento della tavola standard ai dati,
si puo decidere di “adattare” la tavola standard ai dati osservati.

Si ipotizza quindi un legame funzionale tra le probabilita di morte della collettivita in
esame

Oy, X=a,a+1...,a—-1,
e le probabilita di morte riportate nella tavola standard
Oy, X=a,a+1...,a-1
Si assume che tale funzione
ax = f(x.d)

dipenda da alcuni parametri che devono essere stimati, per esempio con il metodo dei
minimi quadrati pesati.
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Perequazione mediante tavole standard

Siano
Oy » Xx=a,a+l...,a-1

le stime delle probabilita di morte q,, x=a,a+1,...,a -1, di un modello di sopravvivenza
non parametrico.

Dall’analisi grafica dei rapporti gx : x=a,a+l...,a-1
X
si individua un possibile legame funzionale Oy = (X 05).

Per esempio, nel caso di andamento approssimativamente lineare si puo ipotizzare
dx = dy(a+bx)

oppure
Ox =ady +b

Piu in generale si puo ipotizzare anche un legame con due tavole standard {q;} e {d}

n n

Oy =a Qy +a’ oy
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Perequazione mediante tavole standard

In alternativa, Lidstone ha proposto di considerare per l'analisi grafica la seguente
trasformazione

Iog(pxj X=a,a+l..,a-1
Px
con
px =1-0qy Px =1-0y
in quanto i Px presentano un andamento piti regolare rispetto ai 9
Py Oy

Se evidenziano un andamento approssimativamente costante si puo ipotizzare

Px _q_ Px
log cC = (q,=1-—"F-
(pxj ” e
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Perequazione mediante tavole standard

Dopo avere individuato la funzione f(x; a,b,...) che esprime il legame tra q, e g, per la

stima dei parametri della funzione si puo utilizzare, per esempio, il metodo dei minimi
guadrati.
a-1
min F(a,b,...) con F(a,b,...)= ¥ w/[d, - f(x ab,...)]°
a,b,... X=a
essendo

w, =1 nel caso di minimi quadrati non pesati

w, =—% nel caso di minimi quadrati pesati
Ox

Si noti che nell'ipotesi Var (D, ) =n g, (1-q,) si ha
Val‘(DX) — Ox (1_ qx) [ q),(

Ny Ny Ny

I

quindi il peso w, =-* & approssimativamente pari al reciproco della varianza dello
X

stimatore di g,
81



Perequazione mediante tavole standard

Se la funzione f(x;a,b,...) & lineare, le stime dei minimi quadrati dei parametri si
ottengono agevolmente risolvendo un sistema lineare.

Sia u, tale che il legame funzionale tra g, e g, Sia espresso mediante la funzione lineare
f(x; a,b)=a+bx

Per esempio u, = qf‘ nel casoincuisia g, =0, (a+bx)
Ox
Si ha allora
a-1

minF(a,b) con F(a,b)= ¥ w,[d, —(a+bx)]°

a,b X=a
essendo U, = qf‘

Ox
Si ottiene:

( [ w-1
F _g > w0, -(a+bx)]=0

X=a

w-1
—=0 | Yw[G,-(a+bx)]x=0
Lob [x=a
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Perequazione con leggi di sopravvivenza

PEREQUAZIONE CON LEGGI DI SOPRAVVIVENZA

Siano
Oy » X=a,a+l...,a-1

le stime delle probabilita di morte q,, x=4a,a+1,...,a -1, di un modello di sopravvivenza
non parametrico ottenute secondo un approccio di stima di tipo non parametrico.

Tali stime presentano usualmente delle irregolarita spesso imputabili alla limitata
numerosita della popolazione, in particolare in alcune classi di eta.

Tali irregolarita possono essere rimosse mediante opportune procedure di perequazione.

Due obiettivi sono alla base della scelta di una procedura di perequazione:

» la reqgolarita (o0 smoothness) delle stime perequate al variare dell’eta;

» |'accostamento (0o goodness of fit) delle stime perequate alle stime originali.
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Perequazione con leggi di sopravvivenza

La perequazione con leggi di sopravvivenza 0 perequazione analitica consiste nel
sostituire alle stime iniziali le stime ottenute mediante un modello analitico di mortalita
(per es. il modello di Gompertz).

Il procedimento di perequazione analitica si articola in due fasi:

1. verifica (mediante analisi grafica) della possibilita di accostamento fornita dalla
legge di sopravvivenza considerata

2. stima dei parametri della legge di sopravvivenza scelta

Analisi grafica di modelli di sopravvivenza

Si devono individuare dei legami di tipo lineare, per esplorare mediante grafici le
possibilita di accostamento del modello ai dati.
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Perequazione con leggi di sopravvivenza

Modello di Gompertz

u(x)= g e** a>0 fB>0 x>0
Si ha
log u(x) =log B +a x
Si considera allora il grafico dei punti
(x, logrh,) x=a,a+l...,a-1

essendo m, le stime delle intensita istantanee di mortalita ottenute in un approccio non
parametrico;

se il grafico dei punti presenta un andamento approssimativamente lineare, il modello di
Gompertz si presta a descrivere la mortalita nella collettivita in esame.

Il coefficiente angolare e lintercetta della retta interpolante forniscono delle stima
preliminari per i parametri a >0e >0
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Perequazione con leggi di sopravvivenza

Un altro legame lineare puo essere ottenuto considerando le probabilita di sopravvivenza
Px

Dalla
S(x) = exl{g (1— eax)j x>0, si ha Py = Sg((:)l) = exy{g (1— e")e"xj
e quindi

log(-log py ) = Iog(g (e" —1) j +a X

Si considera allora il grafico dei punti
(x, log(-log py)) x=a,a+l,...,a-1

Il coefficiente angolare e lintercetta della retta interpolante forniscono delle stima
preliminari per i parametri a >0e >0

86



Perequazione con leggi di sopravvivenza

Un altro grafico che puo indicare se il modello di Gompertz si presta a descrivere la
mortalita nella collettivita in esame e il seguente

[x,%j Xx=a,a+l..,a-2

log Py
infatti
log Px+1 =7
log py

quindi se i punti del grafico hanno un andamento approssimativamente costante, il
modello di Gompertz potrebbe essere adatto.
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Perequazione con leggi di sopravvivenza

Modello di Makeham

U(x)=0+pe?* a>0 (>0 0>0 x>0
Si ha
log((x +1) - u(x)) = Iog(,B(ea —1)) +a x
Se il grafico dei punti
(x, log(y; — M) x=a,a+l...,a-1

presenta un andamento approssimativamente lineare, il modello di Makeham si presta a
descrivere la mortalita nella collettivita in esame.

Il coefficiente angolare e lintercetta della retta interpolante forniscono delle stima
preliminari @ e ,[3’ per i parametri a e [, rispettivamente.

Per una stima preliminare di d si puo considerare una media delle quantita
Xx=aa+l...,a-1
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Perequazione con leggi di sopravvivenza

Un altro legame lineare puo essere ottenuto considerando le probabilita di sopravvivenza
Px

Dalla
S(x):ex;{g(l—eax)—a'xj x>0,
sl ha
S(X"'l) F('B al.ax j
= —exp —\l-e" e -0
Px =7 5(x) a( |
Indicato con Alog py =log py4q1 —log py si ha
Alog Px+1 — ea
Alog p,
Se il grafico dei punti X, Alog pj"'l x=a,a+l..,a-2
Alog Py

presenta un andamento approssimativamente costante, il modello di Makehanm si presta
a descrivere la mortalita nella collettivita in esame.
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Perequazione con leggi di sopravvivenza

Come stima preliminare di a si puo considerare il logaritmo della media di valori

Alog P, '
IB a 2 (2,4
Dalla Alog py =log p,,; —log pX:—;(l—e ) e

si individua come stima preliminare di £ la media dei seguenti valori

_ Alogpy [a

~\2 -
h-e? P o

log p, :g(l—ea)eax )

Xx=a,a+l...,a-1

Infine, dalla

Si ottiene come stima preliminare di 0 la media dei seguenti valori

(1—e5’)e‘?x—logf>x x=aa+l..,a-1

SR
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Altre formule di perequazione utilizzate in ambito attuariale
ALTRE FORMULE DI PEREQUAZIONE UTILIZZATE IN AMBITO ATTUARIALE

Formula di Barnett

I -~ A+H x+BCc A H.B c>0
1_CIx

Le quantita

sono dette odds.

Formula di Wilkie

Ox _
I—q, = exp( pol (x))

dove pol(x) e un polinomio in x, spesso lineare o di grado 2
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Altre formule di perequazione utilizzate in ambito attuariale

Tali espressioni, che esprimono legami funzionali tra gli odds e le eta, possono essere
viste come formule perequative che costituiscono casi particolari della seguente
espressione piu generale:

Formula Gompertz-Makeham di tipo (r, s)

r . r+s .
GM!S(X)=Ya X t+exg Y a X" 1)
i=1 i=r+1

dove I € S sono interi positivi
a=(ay,a,,....0,,041,...,0r+s) € un vettore di coefficienti
Se r =0 si ha solamente il termine esponenziale

S .
GM 25(x)=exgd T a; X '1j
i=1
Se s =0 si ha solamente il termine polinomiale

GM5O(x)= X X7
=1
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Altre formule di perequazione utilizzate in ambito attuariale

Se (r,s)=(0,2) si ha GM 2?(x) = explay + a5 X)
e si trova quindi una formula di tipo Gompertz
GM 22(x) = explay + a, x) = eM1e72% = B>
Se (r,s)=(12) si ha GM 22(x) = oy + expla, + a3 X)

e si trova quindi una formula di tipo Makeham

GM 12(x) = g+ expla, + a3 X) = ag + €7267* = 5 + e

Se (r,s)=(2,2) siha GM 22(x) = aq + ap x + explas + a4 X)

e si trova quindi una formula di tipo Barnett

GMaZ’Z(X) = al+ 0’2X+eXF(a3+a4 X) = al+ azx+eagea4x

Se (r,s)=(0,n) siha GM2"(x)=e ;{Za, j

=1
e si trova quindi la formula di Wilkie.

= A+H x+BC”*
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Stima dei parametri di una formula di perequazione

STIMA DEI PARAMETRI DI UNA FORMULA DI PEREQUAZIONE

Dopo avere individuato una legge di sopravvivenza adatta a descrivere la mortalita nella
collettivita, oppure una formula adatta per perequare le stime iniziali

4y oppure m, Xx=a,a+l .., a-1

si devono stimare i parametri.

Metodo dei minimi quadrati

min F(a,p,...) con F(a,,B,...)=aZ_1WX[0X— f(xaB.. )

0',,8,... X=a

essendo

w, =-* nel caso di minimi quadrati pesati, con ny esposizione nella classe di eta x
Ox

d, una opportuna trasformazione dei g, oppure degli m, tale che la funzione f sia
lineare nei parametri del modello; infatti se f e lineare, le stime dei minimi
guadrati dei parametri si ottengono agevolmente risolvendo un sistema lineare.
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Stima dei parametri di una formula di perequazione

Per esempio, nel caso del modello di Gompertz si ha
log u(x)=log B +a x

Quindi si puo considerare il seguente problema

@l ) 1\1°
min Y’ WX[Iong —Iogﬂ—a(x+§ﬂ

a,B x=a

Si noti che, poiché m, ha il significato di stima dell’intensita istantanea di mortalita
costante nella classe di eta |x,x +1], dovendo “attribuirla” ad una precisa eta nella classe

|x,x +1] si considera I'eta x+%

Metodo della massima verosimiglianza

Tratteremo la stima dei parametri mediante il metodo della massima verosimiglianza
nell’ambito dei GLM.
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Perequazione mediante modelli lineari generalizzati
PEREQUAZIONE MEDIANTE MODELLI LINEARI GENERALIZZATI

Siano
4y oppure m, x=aa+l.., a-1

le stime iniziali di una tavola di sopravvivenza ottenute in un approccio di tipo non
parametrico

I

Ny I'esposizione (es. il numero iniziale di esposti al rischio) nella classe di eta x
Definiamo dei GLM per perequare le stime iniziali.

Un GLM e definito dalle seguenti ipotesi:

 ipotesi probabilistiche : distribuzioni delle variabili risposta appartenenti alla
famiglia esponenziale lineare

 ipotesi strutturali :  struttura di regressione e funzione di collegamento

lllustriamo alcuni modelli probabilistici e le conseguenti ipotesi strutturali adatte per la
perequazione delle stime iniziali.
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Perequazione mediante modelli lineari generalizzati

Modelli con distribuzione binomiale scalata

La distribuzione Binomiale scalata € una distribuzione della famiglia esponenziale lineare.

Infatti, se

X = B(n, p) = P(X =x) =(X

sihacheilna.yY =X ha distribuzione Binomiale scalata: Y = B(n, p)/n
n

P(Y = y):(nnyj p"Y (- p)"Y con y = O,%, o1

Poiché

o [nnyj (ﬁjny(l_ o) = [nnyj exp{n{ylog[ﬁj +log(1- p)}}

e una distribuzione della famiglia esponenziale lineare con

P

parametro canonico 8 = Iog[—j funzione comulante b(@) = Iog(1+ e’9)

1-p
peso a=n parametro di dispersione ¢ =1

nj p*(1- p)" con x=0,1,...,n
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Perequazione mediante modelli lineari generalizzati

Consideriamo le osservazioni

~

Yx = Ox
ed i pesi
a, =|n, |  dati dalle esposizioni troncate

con x=a,a+1l...,a-1.

Siano
Yy | n.a. variabili risposta, x=a,a+1...,a -1
* ipotesi probabilistiche : Y, stoc. indip. con distribuzione Binomiale scalata con
pesi Cy parametro di dispersione ¢ =1
parametro canonico 8 = Iog(%j funzione comulante b(<9) = Iog(1+ eﬂ)
— Ux
Si ha allora:
Ev)=b6)=- y=a,  valy)= 1(0)= Lo g,
X 1+e19 X X W, @, X X
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Perequazione mediante modelli lineari generalizzati

* Ipotesi strutturali

Funzione di collegamento g(as)=n7x con g funzione monotona, derivabile e

Ny previsore lineare
Funzione di collegamento canonica o logit o log-odds
_ Ox
=lo
g(ay) g(l_qXJ
Funzione log-log complementare

g(ox) = log(~log(1-ay))
Funzione Probit

g(qx):CD_l(qX) essendo @ la funzione di ripartizione della distribuzione
normale standard

Previsore lineare ny=z,8 con 2z, vettore delle determinazioni delle variabili
esplicative relative alla classe di eta x

Se si tiene conto soltanto dell’eta, si ha usualmente: 7, = 5y + G x+ [ X2+ + By X
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Perequazione mediante modelli lineari generalizzati

Esempio: il modello di Gompertz

Abbiamo visto che per il modello di Gompertz si ha

log(-log py ) = Iog(g (ea —1) j +a X

Si puo stimare tale modello con un GLM per le osservazioni y, =@y, X=a,a+1...,a -1

Variabili risposta: Y, con distribuzione Binomiale scalata con
E(Y,)=a, epesi «,=|n|datidalle esposizionitroncate

Funzione di collegamento: log-log complementare  g(q,) = log(-log(1—qy))

Previsore lineare: Ny = Bo + P X essendo

Bo = Iog(g (e” - )j
Bi=a

Il modello puo essere esteso considerando 7, = 5y + By X+ 5 X2+ ...+ Gy X

r .
cioe una formula di perequazione del tipo: GMCr,’O(x) =Ya; X 1
i=1
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Perequazione mediante modelli lineari generalizzati

Esempio: il modello di Wilkie

In tale modello si ipotizza ; q’; = exp( pol (x))
— M

dove pol(x) e un polinomio in x, spesso lineare o di grado 2

Si puo stimare tale modello con un GLM per le osservazioni y, =@y, Xx=a,a+1,...,a -1

Variabili risposta: Y, con distribuzione Binomiale scalata con
E(Y,)=a, epesi «,=|n]datidalle esposizionitroncate

Funzione di collegamento: logit g(qx):log( " j

1-0x
Previsore lineare: Ny =B+ L x+ 5o X2+ .. + B, X"
Poiche
glay)=ny < Iog(lgzxj:ﬁo+ﬁ[x+...+ﬁmxm - 1?’;)( :exp(,BO+,G_Lx+...+,3mxm)

S )
Si ha una formula di perequazione del tipo: GMg°(x)=exg >a; X '1j
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Perequazione mediante modelli lineari generalizzati

Modelli con distribuzione di Poisson
Sia

y
Y = Poi(u) = P(Y=y)= 'L;I con y=0,1,...

E una distribuzione della famiglia esponenziale lineare, infatti

y
Py =y)=£e# ‘—exp{ylog( ) - 1}
y: y!
parametro canonico & = log(u) funzione comulante b(8) = e’
peso a=1 parametro di dispersione ¢ =1

Abbiamo visto che se D, & n.a. dei decessi nella classe di eta |x,x+1], in ipotesi di
distribuzione di Poisson di parametro ,u(d)EC
(d) =C c 19
P(D, = d,) = (/4 dEI) o HVES :(Eg )I o VS @&d))dx L@
!

essendo LY |a funzione di verosimiglianza, con parametro l'intensita istantanea di
mortalita e Eff il numero centrale di esposti al rischio.
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Perequazione mediante modelli lineari generalizzati

Con riferimento alla classe di eta |x,x +1| siano

=2(s -+ X -n)+ Z(k.‘f)

1S i0D
il numero centrale di esposti al rlschlo
D, il n.a. dei decessi con distribuzione di Poisson di parametro z EXC

Si ha

P(Dy =dy) = b E)((': I = %exp{dx ol EF ) 1 E

(—Lexp{d log(zz, ) ,uXEC (—Ctexp{EC{ log ﬂx)_ﬂx}}

cioe una distribuzione deIIa famiglia esponenziale lineare con

parametro canonico 8, =log(u, ) funzione comulante b(8) = e’

peso W= Eff parametro di dispersione ¢ =1
e con variabili risposta —% EC
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Perequazione mediante modelli lineari generalizzati

Consideriamo le osservazioni
Yx =My = d—é
EX
ed i pesi
Wy = ES numeri centrali di esposti al rischio
con x=a,a+1...,a-1.
Siano
Y, | n.a. variabili risposta, x=a,a+1...,a -1
* ipotesi probabilistiche : Y, stoc. indip. con distribuzione di Poisson con

pesi Wy = Eff parametro di dispersione ¢ =1
parametro canonico 8, =log(x, ) funzione comulante b(8)= e’
Si ha allora:

E(YX):b,(ex):eﬂX = Hy Val'(YX):—b"(HX):_e x = X
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Perequazione mediante modelli lineari generalizzati

* Ipotesi strutturali

Funzione di collegamento g(u)=n, con g funzione monotona, derivabile e

Ny previsore lineare
Funzione di collegamento canonica logaritmo
gl44x) = log(ss)

Previsore lineare ny=z,8 con 2z, vettore delle determinazioni delle variabili
esplicative relative alla classe di eta x

Se si tiene conto soltanto dell’eta, si ha usualmente: 7, = 5y + B X+ 55 X2+ ..+ B X
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Perequazione mediante modelli lineari generalizzati

Esempio: il modello di Gompertz

Abbiamo visto che per il modello di Gompertz si ha log u(x)=log B +a x

Si puo stimare tale modello con un GLM per le osservazioni

yx:r?&=d—’c‘;, x=a,a+l...,a-1

EX

Variabili risposta: Y, con distribuzione di Poisson con
E(Y,)=u, epesi @ =ES inumericentralidiespostial rischio

Funzione di collegamento: logaritmo () = log(uy)
Previsore lineare: Ny = Bo + B X essendo

o =log(B )

p=a

Il modello puo essere esteso considerando 77, = 5y + B X+ 55 X2+ ...+ By X
r i

cioé una formula di perequazione del tipo: GM[2(x)= Ta, ¥t
)
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