Consider the lottery q = (25, p; 16, q; 9, w), p+q+w=1. Assuming that the utility function is u(x) = √x and the weighting function is π(p) = p².
Using the Machina triangle (p on the vertical axis, w on the horizontal one) represent the following prospects: q = (25, ¹/₂; 9, ¹/₂), r = (25, ⁸/₁₀; 16, ¹/₁₀; 9, ¹/₁₀).
Check the sign of the slope of the indifference curves passing for q

iii. Check the sign of the slope of the indifference curves passing for \boldsymbol{r}

- 2. An individual prefers high outcomes respect to small ones.
 - a. Suppose that lottery r stochastically dominates lottery q. Which is the preferred lottery?
 - b. Check for stochastic dominance of the two following lotteries.

q = (210, 0.30; 500, 0.2; 760, 0.5)r = (200, 0.30; 500, 0.15; 760, 0.55)

3. All Prospect theory's assumptions are satisfied. Assume that $v(x) = \begin{cases} \sqrt{x} & \text{if } x \ge 0 \\ -\frac{4}{5} & \sqrt{-x} & \text{if } x < 0 \end{cases}$ and

 $\pi(p) = p^2$. Evaluate the following prospects and for each one compute the certainty equivalent (reference point 0):

- a. (625, 0.60; -225, 0.40)
- b. (154, 0.15; 46, 0.55; 10, 0.30)
- 4. Consider the following prospects q = (9, 0.12) and r = (27, 0.04). Assume that v(x) = x and $\pi(\frac{1}{3} \cdot 0.12) > \frac{1}{3} \cdot \pi(0.12)$. State the preferred prospect.
- 5. Consider the following prospects $\mathbf{r} = (x)$, $\mathbf{q} = (y, 0.10; x, 0.89)$ $\mathbf{r}' = (x, 0.11)$ and $\mathbf{q}' = (y, 0.10)$, x, y > 0. Assume that \mathbf{q}' is indifferent to \mathbf{r}' and that $\pi(0.11) + \pi(0.89) < 1$. Which is the preferred lottery between \mathbf{r} and \mathbf{q} ? Prove your answer assuming a generic subjective value function v(x).
- 6. All Prospect theory's assumptions are satisfied. Consider the following prospects: q = (x, 2p), r = (2x, p) where x < 0 and p < 0.5. Show that q > r implies subadditivity.
- 7. Consider the following prospects $\mathbf{r} = (20, p)$, $\mathbf{q} = \left(24, \frac{2}{3}p\right)\mathbf{r}' = (\mathbf{r}, 0.5)$ and $\mathbf{q}' = (\mathbf{q}, 0.5)$. Assume subcertainty and that \mathbf{q}' is indifferent to \mathbf{r}' . Which is the preferred lottery between \mathbf{r} and \mathbf{q} ? Prove your answer assuming a generic subjective value function v(x).
- 8. Assume $\pi(x) = x$ and that all other Prospect theory's assumptions are satisfied. Suppose the following two prospects: q = (-9, 0.12) and r = (-27, 0.04). Which is the preferred prospect when the reference point is 0? Which is the preferred prospect when the reference point is -27?
- 9. Check if $\pi(x) = x^2$ satisfies subadditivity, subproportionality and subcertainty.