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1 GENERAL RELATIVITY

1 General Relativity

1.1 Introduction

The Newtonian theory of gravity (NG), which allowed us to send probes up to, and beyond, the outskirts of the
Solar System, to land on planets and satellites, to rendez-vous with comets and asteroids, is no more adequate
when dealing with the structure and evolution of our Universe: as we shall see, Newtonian gravity leads to
contradictions. Moreover, NG is not consistent with Special Relativity (SR): when two masses are at rest,
Newton's law of gravitation gives the force between them; but, when the masses start moving, their distance,
in Newton's law, is the instantaneous distance, so the information on the positions is transmitted with in�nite
velocity. We know that SR tells us that no information can travel faster than the speed of light c. So, when
studying Cosmology, we have to resort to the best theory of gravity on the market today, i.e. General Relativity
(GR). Lukily, in order to understand the basic equations governing the cosmic dynamics, we will not need all
the technical machinery usually associated to GR. In the following we will just go through the essential concepts
needed to understand the meaning of Einstein equations, by making a brief introduction to the basics of this
theory.

But, why is GR more complicated than Newtonian gravity? Newtonian gravity is based on the gravitational
potential Φ(x) at the position x, which can be derived, given a distribution of mass %(x), by solving Poisson
equation

∇2Φ = 4πG%, (1)

where G is the Newtonian gravitational constant. When we know Φ(x) we can derive the acceleration felt by
a body at x: g(x) = −∇Φ(x) and then integrate to �nd its motion. Eq. (1) is linear in the source term %(x),
so contributions from di�erent bodies simply add together. The gravitational �eld, as any other �eld, has some
energy associated with it, and SR tells us that energy is equivalent to mass, which in turn produces gravity. So
a gravitational �eld acts in turn as a source of gravitational �eld and the equations of GR are non linear (while
in electromagnetism charges and currents are sources, but not the �eld itself).

Another di�erence with electromagnetism is that in this case the acceleration of a body depends on its mass
and charge, while in a gravitational �eld all bodies feel the same acceleration. Einstein thus conceived gravity
not as a force like electromagnetism, but as a curvature, a deformation of the geometry of spacetime. So, to
understand GR, we must view �rst some concepts of di�erential geometry. We start with two-dimensional (2D)
surfaces in Euclidean 3D space.

1.2 Surface elements

To be more speci�c, rather than about surfaces, we will talk about surface elements, as we are interested in
their local properties.

We resort to a parametric representation: we consider a bijective function x : D ⊆ R2 → R3 (remember that
we work in a three-dimensional Euclidean space E3).

P’

u
0

v
0
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1 GENERAL RELATIVITY 1.3 The �rst fundamental form

We de�ne x(u, v) ≡
(
x1(u, v), x2(u, v), x3(u, v)

)
. If the surface is expressed in the way z = f(x, y) its paramete-

rization becomes x(u, v) =
(
u, v, f(u, v)

)
.

A surface is said to be a regular (smooth) surface if, having de�ned the vectors

xu(u, v) = ∂x
∂u

=
(
∂x1
∂u

,∂x2
∂u

,∂x3
∂u

)
xv(u, v) = ∂x

∂v
=
(
∂x1
∂v

,∂x2
∂v

,∂x3
∂v

) (2)

everywhere (within the domain) xu × xv 6= 0 (cross product).

While keeping �xed v = v0 and by varying u in the neighborhood of a point P ′ (→ P on the surface element
M) I get a curve on M , whose tangent vector is xu. In a similar way, also xv is tangent to a curve on M .
These two vectors de�ne the tangent plane to M at the point P .

We can now de�ne a versor N̂ perpendicular (normal) to the surface

N̂ =
xu × xv
|xu × xv|

and N̂ , xu, xv form a trihedron.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Example: sphere (in geographic coordinates)

One can describe the surface of the sphere, using the variable u for the longitude (−π ≤ u ≤ π) and the
variable v for the latitude (−π2 ≤ v ≤ π

2 ), in the following way (most commonly using the colatitude, π2 − v):
x(u, v) =

(
R cosu cosv,R sinu cosv,R sinv

)
.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Since in a neighborhood of a point P on M (and of a corresponding point P ′ ∈ D) the correspondence is
bijective, we can think that u and v form, in a neighborhood of P , a system of curvilinear coordinates (like
parallels and meridians on a sphere).

If u = u(t), v = v(t) is a curve in D through P ′(u0, v0), then r(t) = x
(
u(t), v(t)

)
is a curve on M through

x(u0, v0). The �velocity� vector ṙ = dr
dt will be

dr

dt
= ṙ =

∂x

∂u

du

dt
+
∂x

∂v

dv

dt
→ ṙ = xu

du

dt
+ xv

dv

dt
(3)

P’

u
0

v
0

The vector ṙ is also tangent to M and is therefore contained in the tangent plane. Any vector belonging to
the tangent plane at P is a linear combination of xu e xv (in x(u0, v0)); conversely, any linear combination
v = axu(u0, v0) + bxv(u0, v0) ) is the "velocity" vector of a curve on M . The vectors xu e xv form a basis in
the tangent plane at the point P .

1.3 The �rst fundamental form

If r(t) = x
(
u(t), v(t)

)
, with a ≤ t ≤ b, is a curve on a surface, and if s = s(t) is the arc length (curvilinear

abscissa) along r, from r(a) to r(b), then the total length L of this curve is obtained by integrating ds
dt =

∣∣dr
dt

∣∣
on the interval [a, b]:

L ≡ s(b) =

∫ b

a

∣∣dr
dt

∣∣dt
5



1.3 The �rst fundamental form 1 GENERAL RELATIVITY

but, since ṙ = xu · u̇+ xv · v̇ (with u̇ = du
dt e v̇ = dv

dt )(
ds

dt

)2

=

∣∣∣∣drdt
∣∣∣∣2 = ṙ · ṙ = (xuu̇+ xv v̇) · (xuu̇+ xv v̇) = u̇2(xu · xu) + 2u̇v̇(xu · xv) + v̇2(xv · xv)

Now let E ≡ xu · xu, F ≡ xu · xv, G ≡ xv · xv; (E = E(u, v, )...); we obtain:(
ds

dt

)2

= Eu̇2 + 2Fu̇v̇ +Gv̇2

L =

∫ b

a

[
E

(
du

dt

)2

+ 2F
du

dt

dv

dt
+G

(
dv

dt

)2] 1
2

dt

which is shortened writing (it's understood that what matters is the curve, not the parameters used to describe
it)

L =

∫
r

ds =

∫
r

[
Edu2 + 2Fdudv +Gdv2

] 1
2

or, in di�erential form,
ds2 = Edu2 + 2Fdudv +Gdv2 (4)

This is the so called �rst fundamental form or metric form of a surface.

As we shall see, the metric form determines completely the intrinsic geometry of the surface, including its
curvature. When we speak of intrinsic geometry we refer to the geometric properties that can be assessed
through measures (e.g. distances, but not only) conducted by remaining within the surface, without "going
out" from it (that is, without looking at the two-dimensional surface from an Euclidean three-dimensional
space). The possibility to de�ne intrinsic properties is essential because, if going from 2 to 3 dimensions, we
want to understand the geometry of space that characterizes our universe, we cannot observe it from "outside"!

Notice: Due to the bijective correspondence between the domain D ∈ R2 and the surface elementM , the curves
u = const e v = const form a grid on the surface, and one can think at E, F , e G as functions de�ned on the
surface (and then intrinsic). We may think that the inhabitants of the two-dimensional surface make various
measurements of distances between points of the surface to discover the form of the three functions E, F e G,
expressed as a function of the curvilinear coordinate grid, perhaps by making assumptions about their possible
shape and looking for the best solution.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Example: the sphere in geographical coordinates:

x(u, v) = (R cosu cosv,R sinu cosv,R sinv)

xu = (−R sinu cosv,R cosu cosv, 0)

xv = (−R cosu sinv,−R sinu sinv,R cosv)

E = xu · xu = R2 cos2v sin2u+R2 cos2v cos2u = R2 cos2v

G = xv · xv = R2 sin2v cos2u+R2 sin2v sin2u+R2 cos2v = R2

F = xu · xv = R2 cosv cosu sinv sinu−R2 cosu cosv sinu sinv = 0

ds2 = R
2

cos2vdu2 +R2dv2

If we remember that, for a ≤ t ≤ b, L =
∫

ds =
∫ b
a

√
(ds

dt )
2dt, we can write

L =

∫ b

a

√
R2 cos2 v(

du

dt
)2 +R2(

dv

dt
)2dt = R

∫ b

a

√
cos2 v(

du

dt
)2 + (

dv

dt
)2dt

and, given the paths u = u(t) and v = v(t) in the domain, we can compute the length L.
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1 GENERAL RELATIVITY 1.3 The �rst fundamental form

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

If v = axu + bxv, w = cxu + dxv, with a, b, c, d ∈ R, are two vectors tangent to the surface M , then v · w =
(axu + bxv) · (cxu + dxv) = acE + adF + bcF + bdG which can be written in the matrix form

(a, b)
(
E F
F G

)(
c
d

)
where

(
E F
F G

)
is the matrix of the �rst fundamental form

So, if we know the �rst fundamental form, we are able to compute scalar (dot) products onM : not only lenghts,
but also angles!

We remind that being xu × xv normal to the plane tangent to the surface, the versor N̂ = xu×xv
|xu×xv| is normal to

the surface.

Lagrange identity (important): |xu × xv|2 = (xu · xu)(xv · xv)− (xu · xv)2 = EG− F 2 = det

(
E F
F G

)
Proof: remember that

|xu × xv| = |xu||xv| sinθ
xu · xv = |xu||xv| cosθ

so ( if we remember that sin2 θ = 1−cos2 θ) |xu×xv|2 = |xu|2|xv|2 sin2θ = (xu ·xu)(xv ·xv)−(xu ·xv)2 Q.E.D.

The requirement that the surface is smooth implies that EG− F 2 6= 0

At this point we make a change in the symbology used; as we shall see this will lead to a considerable
simpli�cation of formulas.

Let's call g11 ≡ E g12 = g21 ≡ F g22 ≡ G x1 ≡ xu x2 ≡ xv
and let's write u1 ≡ u u2 ≡ v (where the superscripts 1 and 2 are upper indices and not exponents).

Then we will have gij = xi · xj (i, j = 1, 2) and the matrix of the metric form will be:(
g11 g12

g21 g22

)
=

(
E F
F G

)

Remember that gij = gij(u, v) = gij(u
1, u2).

By de�ning g ≡ det(gij) = EG− F 2, from Lagrange identuty |x1 × x2|2 = g.

In the new notation, the �rst fundamental form can then be written:

ds2 = g11(du1)2 + 2g12du
1du2 + g22(du2)2 =

∑
i,j

gijdu
iduj (5)

We used 2g12 = g12 + g21 since g12 = g21; moreover, we will soon understand the reason for we write ui instead
of ui.

A vector, tangent in P to M , v = ax1 + bx2 can be written as v = v1x1 + v2x2 =
∑
i v
ixi (notice that i is a

�dummy� variable, and any other letter can be used instead of it.)

If v =
∑
i v
ixi and w =

∑
j w

jxj are two vectors tangent to M at the same point P , then

v · w =
∑
i,j

(vixi) · (wjxj) =
∑
i,j

viwjxi · xj =
∑
i,j

gijv
iwj

The vectors v and w are orthogonal if and only if
∑
i,j gijv

iwj = 0.

We de�ne as gij the elements of the inverse matrix of (gij), such that(
g11 g12

g21 g22

)(
g11 g12

g21 g22

)
=

(
1 0
0 1

)

7



1.3 The �rst fundamental form 1 GENERAL RELATIVITY

which, in a more compact way, can be written ∑
j

gijg
jk = δki (6)

where δki (Kronecker δ ) is de�ned in the following way

δki =

{
1 i = k
0 i 6= k

(7)

Remembering that the elements of the inverse of a matrix are given by the algebraic complements divided by
the determinant of the original matrix, we get:

g11 =
g22

g
g12 = g21 = −g21

g
g22 =

g11

g

We will now see that the �rst fundamental form not only allows you to measure distances and angles, but also
areas.

Let be x : D → E3 a surface in E3 and let be Ω ∈ D a region of the domain where x is bijective. To �nd the
area of x(Ω), we subdivide Ω into rectangular elements by means of lines parallel to the axes u1 e u2.

To a small area belonging to Ω, having as sides ∆u1 and ∆u2 corresponds approximately a piece of surface
parallelogram-shaped, with sides parallel to the vectors x1 e x2. These sides have lengths given by ∆l1 ' |x1|∆u1

and ∆l2 ' |x2|∆u2 (Remember that x1 = ∂x
∂u1 , and then ∆x1 = ∂x

∂u1 ∆u1)

The measure of the small area is given by:

∆A = |x1|∆u1 · |x2|∆u2sinθ = |x1 × x2|∆u1∆u2 =
√
g∆u1∆u2

where θ is the angle between x1 and x2, and g = det(gij) as seen above.

Adding all these area elements covering Ω and going to the limit ∆ui → 0 we obtain the area of x(Ω):

A =

∫∫
Ω

√
g du1du2 (8)

We observe that, working in two dimensions, the measure of a set is precisely its area; if we work in three
dimensions, the measure will be a volume, and an n-dimensional volume in n dimensions. In all cases, even
if we don't prove it here, the measure is obtained by integrating

√
g, where g is the determinant of the n-

dimensional metric. This applies in the so-called Riemannian spaces (manifolds), in which the ds2 > 0. In the
pseudo-Riemannian spaces, where ds2 can be positive, negative or equal to zero (such as Minkowski space-time
of Special Relativity), some elements of the metric tensor can be negative; since in this case it can be that (as
for space-time) g < 0, we will use in general the absolute value of g, and we will write

√
|g| (or, when we know

that g < 0,
√
−g).

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Example: area of the torus:

x(u, v) =
[

(R+ r cosu) cosv, (R+ r cosu) sinv, r sinu
] √

g = r (R+ r cosu)

8



1 GENERAL RELATIVITY 1.4 Tensors

0 ≤ v ≤ 2π 0 ≤ u ≤ 2π 0 < r < R

S =

∫ 2π

0

[∫ 2π

0

r (R+ r cosu)du

]
dv = 2πr

[∫ 2π

0

R du+

∫ 2π

0

r cosu du

]
=

= 2πr

[
2πR+ r

∫ 2π

0

cosu du

]
= 4π2Rr

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1.4 Tensors

Why did we write things like gij and dui and duj? Because we are dealing with tensor quantities, quantities
whose properties are related to the way they transform when changing the reference system.

If we switch from the (generally curvilinear) coordinate system ui (i = 1, 2, ...) → u′j(j = 1, 2, ...) we will get
(by means of ... we begin to see how things can be generalized to more than two dimensions)

du′j =
∑
i

∂u′j

∂ui
dui (i, j = 1, 2, ...) (9)

Every quantity V j which transforms according to the rule

V ′j =
∑
i

∂u′j

∂ui
V i (10)

is a contravariant tensor (or, to be more precise, its components transform as a contravariant tensor); so, also
dui, or ui, are contravariant tensors. A vector is a tensor or rank one. A scalar quantity, the value of which
does not change at a given point if we change the coordinate system, is a tensor of rank zero.

We consider now the gradient of a scalar �eldΦ(ui) = Φ(u′j). We have:

∂Φ

∂u′j
=
∑
i

∂Φ

∂ui
· ∂u

i

∂u′j
=
∑
i

∂ui

∂u′j
· ∂Φ

∂ui
(11)

We see that the gradient of Φ changes di�erently from dui! We say that ∂Φ
∂ui is a covariant vector, and often

we simply write ∂iΦ instead of ∂Φ
∂ui , with a lower index. When the same index appears both as an upper and a

lower index, the sum on that index is implied (Einstein convenction), and we simply write:

V ′j =
∂u′j

∂ui
V i and

∂Φ

∂u′j
=

∂ui

∂u′j
∂Φ

∂ui

The quantity ds2 = gijdu
iduj (implying the summation on i and j) is the length, squared, of a segment, and

is therefore independent on the reference frame used (it is a scalar). In two di�erent reference frames we will
then have

ds2 = g′kldu
′kdu′l = gijdu

iduj = gij
∂ui

∂u′k
∂uj

∂u′l
du′kdu′l (12)

9



1.4 Tensors 1 GENERAL RELATIVITY

since dui =
∂ui

∂u′k
du′k and duj =

∂uj

∂u′l
du′l

we have g′kl =
∂ui

∂u′k
∂uj

∂u′l
gij

i.e., the metric tensor is a covariant tensor of rank two.

On the contrary, the gij tensor is contravariant tensor (of rank two).
We have also seen that the inner product v · w can be expressed as v · w = gijv

iwj .

If we multiply two tensors we also get a tensor:Aij · Ck = Dk
ij .

If we contract a tensor we still have a tensor, but with its rank reduced by two: T jkmj = Bkm. In fact, e.g.,

A′ki =
∂u′k

∂uj
· ∂u

l

∂u′i
·Ajl =⇒ A′kk =

∂u′k

∂uj
· ∂u

l

∂u′k
·Ajl =

∂ul

∂uj
·Ajl = δlj ·A

j
l = Ajj = A (a scalar).

If Di and D
j are the covariant and contravariant components of the same vector (tensor) and we consider a

generic vector Cj such that

Di = gijC
j / ·Di → DiD

i = gijC
jDi,

by performing this inner product we obtain, on the left, a scalar that depends on the vectorD, while the right
side depends on both C and D; since these two quantities are equal, necessarily C ≡ D, i.e. Di = gijD

j . We
can get this result also in another way. We have seen that a vector v can be written as v = vixi, by using its
contravariant components; we now de�ne its covariat components vk in the following way:

vk ≡ v · xk = vixi · xk = vigik = gikv
i = gkiv

i (13)

In a similar way we have Dj = gijDi. We see that the metric tensor can be used to transform
contravariant components into covariant componenets (and vice versa).

If gij lowers an upper index, we can use it also to lower an upper index of gjk, obtaining

gijg
jk = g ki ≡ δki (14)

on the basis of what has been said above: the metric tensor in the mixed form (i.e. with an upper index and a
lower one) is equal to the Kronecker delta.

It is not easy to represent the covariant and contravariant components of a vector in general, but one can give a
graphic description in some particular case, for example in the case of rectilinear coordinates. Consider, in the
plane, a rectilinear non-orthogonal coordinate system Oxy. Let x̄i be the basis vectors. If we write the vector Ā
as A = Aix̄i, I realize that A

i are the ususal components of a vector, such that the component vectors, having
magnitude Ai and direction and versus given by x̄i, add according to the parallelogram rule to give the vector
Ā. The contravariant components correspond to the parallel projections on the axes.

A
2 2
x

A

componenti
covarianti

A

A
1 1
x

x

y

componenti
controvarianti

y

x

A
1

1
x

A
2

2
x
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1 GENERAL RELATIVITY 1.5 Curvature of a plane curve and of a surface

Conversely, if I write, as done above, the covariant components as Ai = Ā · x̄i, I realize that they are the
projections of di Ā along the x̄i direction; they correspond to the normal projections on the axes.

It follows that, if the reference frame is rectilinear and orthogonal, parallel and perpendicular projections are
the same thing, and covariant and contravariant components are equal. It's no more necessary to distinguish
between upper and lower indices.

Notice that a vector (or more generally a tensor), per se, is neither covariant nor contravariant, but its compo-
nents are covariant or contravariant.

But every quantity with indices is not necessarily a tensor. For instance, as we shall see, the a�ne connections
Γijk do not represent a tensor, since they do not transform like a tensor.

We can draw an important conclusion: each equation is invariant under a general coordinate tran-
sformation if it is expressed as the equality between two tensors with the same upper and lower
indexes :

Aαβγ = Bαβγ → A
′α
βγ = B

′α
βγ if Aαβγ and Bαβγ are tensors.

Since also the zero is a tensor of whatever rank (just think that it transforms always into a zero), a relation like
Aαβγ = 0 will be satis�ed in any reference frame.

On the contrary, an equality between quantities that are not tensors with the same upper and lower indices
(e.g. Tµν = 5; V i = Bi) can be true in some reference frame, but not in all of them.

1.5 Curvature of a plane curve and of a surface

Let see �rst how we can de�ne, in a quantitative way, the curvature of a curve in the plane. A plane curve can
be parametrized in the following way: x(t) =

(
x1(t), x2(t)

)
where t is a parameter, not necessarily the time; the

tangent vector (velocity) is dx
dt . The curvilinear abscissa s (arc-length) is de�ned as

O ≡ x(t = 0) P ≡ x(t) ds = |dx| =
∣∣∣∣dxdt

∣∣∣∣dt → s =

∫ t

0

∣∣∣∣dxdt
∣∣∣∣dt = s(t)

O

S

C
1

C
2 n

t

t

n

R
1

R
2

x
1

x
2

P
1

P
2

If we switch parameter from t to s, we notice that dx
ds = ẋ(s) has magnitude 1: it's the tangent versor t̂(s).

We also de�ne a versor n̂ (normal) obtained from a rotation of t̂ by 90◦ in a positive direction (consistent with
O, x1, x2). At each point P on the curve we can �nd the osculating circle (the circle which best approximate
the curve in an in�nitesimal neighbourhood of P ) and its radius R; the curvature k of the curve in P is just
k = ±1/R, positive if the center C and the versor n̂ are on the same side of the curve with respect to P , negative
in the opposite case.

11



1.5 Curvature of a plane curve and of a surface 1 GENERAL RELATIVITY

Let's see now how one can extend the notion of curvature to a surface. Let us then consider a point P on a
surface, and let n̂ be the unit vector normal to the surface in P . If v is a vector tangent to the surface at the
point P ,v and n̂ de�ne a plane that cuts the surface along a curve which will have, in P , a certain radius of
curvature. The curvature in P is given by k = ± 1

R , where the sign is taken positive or negative depending on
whether the center of curvature C is, with respect to P, on the same side of n̂ or on the opposite side (you can
also take the opposite choice but, as we will see, things do not change). Let's see, as examples of surfaces, the
plane, the sphere and the right cylinder.

R= k=0¥

k= R-1/
k =1/R     k =0

1 2

R

In the case of the cylinder, it can be seen that there are two directions perpendicular to each other and
corresponding to the vectors v1 and v2 which, in turn, correspond to the maximum and the minimum value (k1

and k2) of k, the so-called principal curvatures. This applies in general, for all smooth surfaces.

The Gauss curvature K is de�ned as the product k1 · k2. From this we see that K does not depend on the
convention adopted for signs of k.

For the plane K = 0, for the sphere K = 1/R2, for the cylinder K = 0, as for the plane! Although this may
appear strange at �rst sight, actually it re�ects the fact that by cutting a right cylinder along a segment parallel
to its axis, it can lie on a plane without deforming and without changing lengths and angles of �gures drawn on
it . The geometry of a cylinder cannot be locally distinguished from that of a plane when we measure angles,
lengths, areas, i.e. all those properties that can be measured by moving only along its surface. However, an
overall view allows to distinguish a plane from a cylinder: an insect that moves along a circular cross-section
(perpendicular to the axis of the cylinder) without turning neither to the right nor to the left, will eventually
retrace his steps, but this does not happen on the plane. Also a right circular cone has K = 0.

An example of a surface with K < 0 is given by a hyperbolic paraboloid (a surface shaped like a saddle)
z = x2 − y2: the two centers of curvature are located on opposite sides with respect to P and then we have
K < 0.

12



1 GENERAL RELATIVITY 1.5 Curvature of a plane curve and of a surface

In general a surface will have K > 0 if, with respect to the tangent plane in P , it is "all on one side" (at least
locally), while it will have K < 0 if the surface is on both sides with respect to the tangent plane in P .

For a torus we have the outer zone with K > 0, the inner one with K < 0, separated by two circumferences,
above and below, with zero curvature.

One could de�ne the curvature of a surface in other ways, for example K ′ = k1 + k2. In this case, plane and
cylinder would be di�erent locally. But the main advantage of the Gauss curvature lies in the fact that, as we
shall see, it may be determined by resorting only to measurements carried out on the surface, without the need
to "see" the surface in 3 dimensions (as would happen instead for K ′ = k1 + k2).

The Gauss curvature is an intrinsic property of the surface, and can be determined by knowing the metric tensor
gij (i, j = 1, 2). This is the result of the so-called Theorema Egregium, so named by the same Gauss.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Example: The mysterious planet (from Weinberg, 1972)

To have an intuitive idea of how this is possible, consider this example: suppose we have measured on the
surface of a celestial body on which we were transported blindfolded (so without seeing it from space!) the
distances between four locations P1, P2, P3, P4 as shown in the �gure. Given the values of the six segments,
can we tell if the planet's surface is �at or not?

d12 = 780km d13 = 1498km d14 = 1112km d23 = 735km d24 = 960km d34 = 813km

By Carnot theorem: d2
13 = d2

12 + d2
23 − 2d12d23cosα3 , so that

cosα3 =
d2

12 + d2
23 − d2

13

2d12d23

In a similar way

cosα4 =
d2

12 + d2
24 − d2

14

2d12d24

Coordinates of the points: P1 = (0, 0) ; P2 = (d12, 0) ;

P3 = (d12 + d23cos(π − α3), d23sin(π − α3) = (d12 − d23cosα3, d23sinα3) ; P4 = (d12 − d24cosα4, d24sinα4).

13



1.6 Geodesics 1 GENERAL RELATIVITY

d2
34 = [d12 − d23cosα3 − d12 + d24cosα4]2 + [d23sinα3 − d24sinα4]2 = d2

23 + d2
24 − 2d23d24cos(α3 − α4)

So, if the surface was �at, we would get d34 = 1147.6, but this is di�erent from the measured value (813!). So
we can say thet we are not on a �at planet (if we assume that the surface is a sphere, we could even derive the
radius of the planet).

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1.6 Geodesics

Let r(s) =
(
ui(s)

)
, con a ≤ s ≤ b, be a curve on a surface (s being the curvilinear abscissa s) between two

points P1 and P2 (P1 = r(a); P2 = r(b)). We say that this curve is a geodesic between P1 and P2 if its length
is stationary for small variations of the curve which cancel at the extremes. The curve that connects, on the
surface, P1 e P2 along the shortest path is a geodesic, but the opposite is not always true.

For example, on a sphere both C1 and C2 (both arcs of a great circle) are geodesics between P1 e P2, but the
shortest path corresponds to C1.

From the relation ds2 = gjkdu
jduk, if we express the coordinates ui in parametric form by means of the

parameter t (not necessarily the time) we get:

ds2 =

(
gjk

duj

dt

duk

dt

)
dt2

By de�ning L(ui, u̇i, t) = (gjku̇
j u̇k)1/2 (with gjk = gjk(ui) and u̇i ≡ dui

dt ) the length of a curve between P1 and
P2 is:

S =

∫ P2

P1

Ldt =

∫ P2

P1

ds

To �nd the condition for S to be stationary we use Euler-Lagrange equations (see variational calculus):

∂L

∂ui
− d

dt

(
∂L

∂u̇i

)
= 0 (15)

After some algebra and some �tricks� we get the following relation:

d2ui

ds2
+ Γijk

duj

ds

duk

ds
= 0 (16)

This expresses the condition of stationarity, i.e. it is the di�erential equation that de�nes a geodesic. The
symbol with three indices Γljk is the so-called a�ne connection or Christo�el symbol of 2nd type, de�ned as:

Γijk =
1

2
gil
(
∂glj
∂uk

+
∂glk
∂uj

− ∂gjk
∂ul

)
(17)
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1 GENERAL RELATIVITY 1.6 Geodesics

This quantity depends on gij and on its �rst derivatives. Moreover, notice that Γljk = Γlkj . Often, in order to
simplify even more the notation, we use to write:

∂gij
∂uk

≡ ∂kgij ≡ gij ,k

Note that Γijk is not a tensor, as

Γ'lmn 6=
∂u′l

∂ui
∂uj

∂u′m
∂uk

∂u′n
Γijk

In the geodesic equation the term on the left hand side is a tensor of rank 1 (a contravariant vector), although
Γijk is not a tensor. So, if it is zero in a reference system, it will also be zero in a generic reference system.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Example: the plane in cartesian coordinates

ds2 = du2 + dv2; since gij is constant, the Γ are all zero, and geodesics are solutions of

d2u

ds2
= 0 and

d2v

ds2
= 0 → u = as+ b

v = cs+ d

(with a, b, c, d real numbers): those are the parametric equations of a straight line.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

In a similar, but more complicate, way one can show that arcs of great circle are geodesic lines on the sphere.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Example: geodesics in the plane in polar coordinates

u1 ≡ r , u2 ≡ θ , ds2 = dr2 + r2dθ2

gij =

(
1 0
0 r2

)
g = r2 gij =

(
1 0
0 1/r2

)

d2ui

ds2
+ Γijk

duj

ds

duk

ds
= 0
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1.6 Geodesics 1 GENERAL RELATIVITY

Γijk =
1

2
gir
(
∂gjr
∂uk

+
∂gkr
∂uj

− ∂gjk
∂ur

)
remember the symmetry on j and k

Γ1
jk =

1

2
g11

(
∂gj1
∂uk

+
∂gk1

∂uj
− ∂gjk
∂u1

)
since g12 = 0

Γ1
22 =

1

2
g11

(
− ∂g22

∂u1

)
= −1

2
g11 ∂g22

∂r
= −1

2
· 1 · 2r = −r

Γ2
jk =

1

2
g22

(
∂gj2
∂uk

+
∂gk2

∂uj
− ∂gjk
∂u2

)
Γ2

12 =
1

2
g22

(
∂g22

∂u1

)
=

1

2
· 1

r2
· 2r =

1

r
= Γ2

21

Γ1
11 = Γ1

12 = Γ2
11 = Γ2

22 = 0

d2r

ds2
+ (−r) ·

(
dθ

ds

)2

= 0 (I)

d2θ

ds2
+

2

r

(
dr

ds

)(
dθ

ds

)
= 0 (II)

(if dθ/ds = 0 we get the staight line passing through the origin); if we put dθ/ds ≡ θ′ and divide (II) by θ′ we
get:

1

θ′
dθ′

ds
+

2

r

dr

ds
= 0 → lnθ′ + lnr2 = ln(θ′r2) = const

and then

r2 dθ

ds
= h = cost

Instead of integrating (I), we use another method. From ds2 = dr2 + r2dθ2, dividing by ds2, we get

1 =

(
dr

ds

)2

+ r2

(
dθ

ds

)2

=

(
dr

ds

)2

+
h2

r2

You can verify that this relation is an integral of (I). From this we get

dr

ds
= ±

√
1− h2

r2
= ±
√
r2 − h2

r
together with

dθ

ds
=

h

r2

Dividing the second equation by the �rst one, to eliminate s, we obtain

dθ

dr
= ± h

r
√
r2 − h2

= ± d

dr

[
arccos

(h
r

)]
that is

θ = ±arccos
(h
r

)
+ θ0 → h

r
= cos(θ − θ0) → rcos(θ − θ0) = h

which is precisely the equation of a line in polar coordinates (h is the minimum distance of the line from the
origin, obtained for θ = θ0).

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

We have de�ned the geodesics on a surface (which correspond to the lines in the Cartesian plane). We know
that, on the plane, the circumference C of a circle of radius a is C = 2πa.

In a similar way, on any surface, to de�ne a circle of radius a and center O, let's draw from this point all the
geodesics and let's mark on each of them the point at a distance from O equal to a curvilinear abscissa a; the
geometric locus of all these points is the requested circumference. We can now move along this circle (always
staying on the surface) and, with the same ruler we used to measure s = a, we can measure the length C.
Let's see this for a sphere of radius R.
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1 GENERAL RELATIVITY 1.6 Geodesics

a

We will obviously have (we know this because we �see� the sphere in E3)

C = 2πx = 2πR sin
( a
R

)
' 2πR

[ a
R
− 1

6

a3

R3
+ ...

]
= 2πa− π

3

a3

R2
+O(a5)

But we also know that, for the sphere,1/R2 = K and, if a→ 0, neglecting higher order terms, we can write:

K =
3

π
lim
a→0

(
2πa− C

a3

)
(18)

This result, which is true in general, shows us how to actually derive the Gauss curvature K, with measurements
carried out on the surface.

For the plane 2πa = C and K = 0; for the sphere 2πa > C and K > 0; around a saddle point 2πa < C and
K < 0.

The Gauss curvature is therefore an intrinsic, local property of a surface. As the result does not depend on
the particular coordinate system used on the surface, K is an invariant quantity (such as ds2, for example),
although it may change from point to point on the surface (invariant doesn't mean constant).

While in the Euclidean plane the sum of the internal angles (α, β and γ) of a triangle is equal to π, on a curved
surface the result is di�erent. Another property linked to Gauss curvature is that the area A of a triangle formed
by geodesic arcs is given by the relation

A =
α+ β + γ − π

K

and if K > 0, like for the sphere, α+ β + γ > π, while the opposit holds if K < 0.

How does one determine K from gij? Since the metric tensor contains the information about distances, and
measuring these we get K, there must be a link between these two quantities; K must depend on the second
derivatives (at least) of gij at a selected point. This comes from the fact that K is invariant, i.e. does not
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1.7 Covariant derivative 1 GENERAL RELATIVITY

depend on the coordinate system used, and is a local quantity, that is it depends on the behavior of gij in an
in�nitesimal region around the selected point.

It can be proved that, in an in�nitesimal neighborhood of an point, we can always choose a coordinate system

in which gij is like

(
1 0
0 1

)
(actually, gij can be give the values we want), and in which the derivatives gij ,k

are zero, but the second derivatives gij ,kl cannot all be set to zero . We name it locally Euclidean system .

Since we can always put gij in the form δij , and have gij ,k = 0 at a point, the curvature must necessarily depend
on the second derivatives of gij . And the simplest form of dependence would be linear: let's see if we can �nd
some suitable expression. Before doing so, however, we must address another issue.

1.7 Covariant derivative

We have seen that the derivative (the gradient) of a scalar �eld φ, ∂φ/∂ui, is a covariant vector. We could then
think to perform the derivative of vectoer �eld Ai(u

k), obtaining in this way a rank two tensor. But this is
not correct! The di�erential dAi of a vector Ai, basic ingredient of the di�erence quotient, doesn't in general
behave like a tensor. In fact, from the transformation rule

Ai =
∂u′k

∂ui
A′k

it comes that

dAi =
∂u′k

∂ui
dA′k +A′kd

∂u′k

∂ui
=
∂u′k

∂ui
dA′k +

∂2u′k

∂ui∂ul
A′kdu

l

We see that dAi is a vector only if ∂2u′k

∂ui∂ul
= 0, that is if the u′i are linear functions of ui (as it is when we go

from a rectilinear coordinate system to another).

But why isn't dAi a vector? The reason is that the di�erence dAi = Ai(u
i + dui)− Ai(ui) is the di�erence of

two vectors that are located in two di�erent points (although in�nitely close). The two vectors Ai(u
i + dui)

and Ai(u
i) transform then in a di�erent way as the coe�cients of the transformations depend on the position.

If we want that the di�erence between two vectors is a tensor, it is necessary that the two vectors are compared
at the same point (in this case both, and therefore also their di�erence, transform in the same way). In order
to have a derivative that behaves as a tensor it is necessary to de�ne a new type of derivative, the so-called
covariant derivative.

For a covariant vector the covariant derivative DAi/∂u
l, also written as Ai;l, is

DAi
∂ul

= Ai;l =
∂Ai
∂ul
− ΓmilAm (19)

The covariant derivative for a contravariant vector is:

DBi

∂ul
= Bi;l =

∂Bi

∂ul
+ ΓimlB

m (20)

The general rule for the covariant derivative of a tensor of arbitrary rank is to make the partial derivative and
then add a term of the type +Γ for each contravariant index and a term of type −Γ for each covariant index:

Akl...pq...;j =
∂Akl...pq...

∂uj
+ ΓkmjA

ml...
pq... + ΓlnjA

kn...
pq... + · · · − ΓrpjA

kl...
rq... − ΓsqjA

kl...
ps... − · · · (21)

An important result is that the covariant derivative of the metric tensor is zero: gik;l = 0.

1.8 Parallel transport and curvature tensor

Let ui = ui(s) be the parametric equation of a curve, with s curvilinear abscissa measured by starting at a
given point on the curve. We know that dui is a vector (from the de�nition of contravariant vector), ds is a
scalar, and dui/ds ≡ vi is then a vector. In particular, vi is a unit vector, the versor1 tangent to the curve.

1To check that viis a versor, let's see what is his magnitude by means of the sclar product viv
i:

viv
i = gijv

ivj = gij
dui

ds

duj

ds
≡ 1 ⇐= ds2 = gij du

iduj
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1 GENERAL RELATIVITY 1.8 Parallel transport and curvature tensor

If we were in an Euclidean space, to de�ne a geodesic as a segment of a straight line, we would say that the
tangent versor does not change with s:

dvi

ds
= 0

If we want now to generalize this relation to any space, 2 or more dimensional, we must not use the normal
derivative, but the covariant one, since it is a tensor quantity:

Dvi

ds
= 0

Expanding
Dvi

ds
=

Dvi

dul
dul

ds
=

dul

ds

(
∂vi

∂ul
+ Γimlv

m

)
= 0

that is

∂vi

∂ul
dul

ds
+ Γimlv

m dul

ds
= 0

dvi

ds
+ Γimlv

mvl = 0

from this, by remembering that dui/ds ≡ vi, we have

d2ui

ds2
+ Γiml

dum

ds

dul

ds
= 0

We �nd again the geodesic equation (and this is another proof of the fact that, when we leave the Euclidean
space, we must switch from usual derivatives to covariant derivatives).

We now introduce the concept of parallel transport of a vector along a geodesic: a vector parallel transported
along a geodesic always form the same angle with the tangent to the curve.

Now imagine we parallel transport a vector v0 along a triangle formed by pieces of geodesic. If we are in a
Euclidean space (e.g. on a plane) the vector vf we get after closing the path coincides with v0.

The same thing does not happen along a spherical triangle: the vector is rotated by an angle which has the same
direction of rotation of the direction in which we moved along the spherical triangle. The opposite happens if
K < 0. We can look at it in another way: imagine we have to go from point A to point B, either directly or
through a point C, always along geodesic arcs. In Euclidean space the result of the parallel transport along the
two paths is the same, but the same thing does not happen on curved surfaces (what said here for a triangle
formed by arcs of geodesic applies to a generic path, which can be thought as consisting of a large number of
arches of geodesic). The result is that, unless we are in a Euclidean space, there is no natural and not ambiguous
way to move a vector from one point to another ; we can move it in parallel, but the result depends on the path,
and there is not a natural choice for this. So we can compare two vectors only if they are applied at the same
point. For example, two particles that pass alongside one another have a well-de�ned relative velocity (and
less than c, with c the speed of light), but two particles in di�erent points of a generic space do not have a
well-de�ned, relative velocity.
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1.9 Properties of the curvature tensor 1 GENERAL RELATIVITY

Let's now quantify what we said above in a qualitative way. Moving along a closed path formed by arcs of
geodesic, a vector Ak parallel transported will undergo, returning to the starting point, a variation ∆Ak. If we
assume that the surface element bounded by the closed curve is in�nitesimal (any �nite surface element can be
divided into in�nitesimal elements), the integrand is constant and, by neglecting in�nitesimals of higher order,
∆Ak can by shown to be proportional to a tensor containing products and derivatives of the a�ne connections:

∆Ak ∝ ∂Γikm
∂ul

− ∂Γikl
∂um

+ ΓnkmΓinl − ΓnklΓ
i
nm

This tensor is named Riemann-Christo�el tensor or curvature tensor:

Riklm =
∂Γikm
∂ul

− ∂Γikl
∂um

+ ΓnkmΓinl − ΓnklΓ
i
nm (22)

(Warning : you can �nd it de�ned with the signs interchanged!) If, in a volume of space, Riklm = 0, then
∆Ak = 0: The parallel transport along a closed curve keeps the vector unchanged, and that volume of space is
said to be �at. This happens in a Euclidean space, as well as in any (volume of) space in which gij is constant,
because the a�ne connections are null and so also the curvature tensor; and since a tensor equal to zero in a
coordinate system is zero in any coordinate system, then Riklm = 0 in any refernce frame. On the contrary,
if Riklm 6= 0 the parallel transport depends on the path, and the space (or the volume of space) is said, by
contrast, curved (this is the reason for the Riemann-Christo�el tensor is also named curvature tensor).

1.9 Properties of the curvature tensor

It can be proved2 that Riklm is the only tensor that can be constructed from the metric tensor and its �rst and
second derivatives, and which is linear in the second derivatives (and also quadratic in the �rst derivatives).
The metric tensor allows to write it in the totally covariant form Rjklm = gjiR

i
klm.

The Riemann tensor has its own properties, let's see them in the fully covariant formRjklm = gjiR
i
klm:

• Symmetry properties
Rjklm = Rlmjk

• Antisymmetry properties
Rjklm = −Rkjlm = −Rjkml = Rkjml

• Cyclic properties
Rjklm +Rjmkl +Rjlmk = 0.

From the Riemann tensor, by contraction, we can get a rank 2 tensor, the Ricci tensor, de�ned as:

Rkm ≡ Rikim (23)

(indices i and l of Riklm are contracted). Ricci tensor is symmetric:

Rmk = Rimik = girRrmik = girRikrm = Rrkrm = Rkm

It is the only symmetric tensor of rank 2 that can be obtained from Riklm. From the Ricci tensor one can obtain
the Ricci scalar or curvature scalar :

R = gkmRkm (24)

It is the only scalar that can be obtained from Riklm.

All these properties of the Riemann tensor reduce the number of its independent components and, in N

dimensions, this number is N = N2(N2−1)
12 . In particular:

• For N = 1, N = 0 and R1111 ≡ 0 always: a curve has always (intrinsic) curvature zero, we do not have
information on how the curve is "embedded" in a space with 2 or more dimensions.

• For N = 2, N = 1. There is only one independent componenet, for instance R1212.

2See, e.g., Weinberg, 1972
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1 GENERAL RELATIVITY 1.10 The Theorema Egregium

• For N = 3, N = 6, as many as the components of the (symmetrical) Ricci tensor. So for N = 3 it is
su�cient to know Rkm to describe the space cuvatura.

• For N = 4, N = 20, while Rkm has only 10 components. One must use the complete Riklm tensor (apart
from situations of particular symmetry, and we'll see that it is so in the case of the homogeneous and
isotropic universe).

If we apply covariant derivatives to the curvature tensor we get the so called Bianchi identities, which can be
expressed in di�erent forms. A particularly important one is the following:

Rlj;l −
1

2
R;j = 0. (25)

The quantity Rlj;l is the (covariant) divergence of the Ricci tensor; since R is a scalar (it does not depend on
the reference system used) its covariant derivative coincides with the simple partial derivative. Now consider
the mixed tensor

Rlj −
1

2
δljR

Its covariant divergence is (for the rule of the derivation of a product and being δlj;l = 0 3

Rlj;l −
1

2
δlj
∂R

∂ul
= Rlj;l −

1

2

∂R

∂uj
= 0

as seen just above. So the (covariant) divergence of this tensor is equal to zero. If we switch to its covariant
components we get

gilR
l
j −

1

2
gilδ

l
jR = Rij −

1

2
gijR ≡ Gij (26)

where Gij is the so-called Einstein tensor. This tensor has very relevant properties: it is symmetric, has
vanishing divergence and, since it comes from Riemann tensor, it contains terms linear in the second derivatives
of the metric and quadratic in its �rst derivatives.

1.10 The Theorema Egregium

In 2 dimensions the Theorema Egregium of Gauss states that the Gauss cirvature K can be derived from the
metric tensor; in particular K = R1212/g (remember that in two dimensions the curvature tensor has only one
independent component). It can also be shown that R1212/g = R/2, so even if R1212 is a component of a tensor,
and g is not a scalar, their ratio is a scalar

We observe that the relation which expresses the Theorema Egregium, K = R1212/g = R/2, is a relationship
between tensors of rank zero, i.e. scalars. If it is true in a particular frame of reference, it applies in any frame
of reference.

The curvature tensor is related to the Gauss curvature even in spaces with any number of dimensions. Given
a point P in one of these spaces, and two vectors aµ and bµ applied at the point P , we can draw a family of
geodesic curves xµ(s, α, β) through P , with α and β real numbers. All these geodesics, which have as their
initial tangent vector dxµ/ds = αaµ + βbµ, form a two-dimensional surface through P, with Gauss curvature
given by4

K(a, b) =
Rλµνκa

λbµaνbκ

(gλνgµκ − gλκgµν) aλbµaνbκ

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Example: estimation of Gauss curvature

Given, for a surface element, the following metric

ds2 = du2 + e
2u
k dv2

estimate K (intrinsic Gauss curvature).

3δlj;l =
∂δlj
∂ul

+ Γllkδ
k
j − Γmjl δ

l
m = Γllj − Γljl = 0

4See Weinberg 1972, Section 6.9
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1.10 The Theorema Egregium 1 GENERAL RELATIVITY

We know that K = R1212/g

gij =

(
1 0
0 e2u/k

)
→ g = e2u/k → gij =

(
1 0
0 e−2u/k

)
Considering the particular values of gij and g

ij we get R1212 = g1kR
k
212 = R1

212

R1
212 =

∂Γ1
22

∂u1
− ∂Γ1

21

∂u2
+ Γr22Γ1

r1 − Γr21Γ1
r2 =

∂Γ1
22

∂u
− ∂Γ1

21

∂v
+ Γ1

22Γ1
11 + Γ2

22Γ1
21 − Γ1

21Γ1
12 − Γ2

21Γ1
22

Then

Γ1
22 =

1

2
g11

(
∂g21

∂u2
+
∂g21

∂u2
− ∂g22

∂u1

)
= −1

k
e2u/k

Γ1
21 = 0 Γ1

11 = 0 Γ2
21 =

1

k

∂Γ1
22

∂u
= − 2

k2
e2u/k

R1
212 = − 2

k2
e2u/k −

(1

k
· −1

k
e2u/k

)
= − 1

k2
e2u/k ≡ R1212

K =
R1212

g
= − 1

k2
e2u/k

/
e2u/k = − 1

k2

The metric of this example de�nes a surface of revolution named pseudosphere; it is obtained by revolving a
tractrix 5about its asymptote, and has the shape of a trumpet.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5Tractrix (from the Latin verb trahere "pull, drag"; plural: tractrices) is the curve along which an object moves, under the
in�uence of friction, when pulled on a horizontal plane by a line segment attached to a tractor (pulling) point that moves at a
right angle to the initial line between the object and the puller at an in�nitesimal speed. It is therefore a curve of pursuit. It was
�rst introduced by Claude Perrault in 1670, and later studied by Sir Isaac Newton (1676) and Christiaan Huygens (1692). The
revolution of a tractrix about its asymptote produces the surface called pseudosphere. The name derives from the fact that the
curvature is constant, as for the sphere, but has the opposite sign.
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1 GENERAL RELATIVITY 1.11 Minkoswki space

1.11 Minkoswki space

In Special Relativity, passing from one frame of reference to another, the in�nitesimal distance between two
events:

ds2 = c2dt2 − (dx2 + dy2 + dz2) (27)

is preserved (= is invariant). If we de�ne x0 = ct; x1 = x; x2 = y; x3 = z we can write

ds2 = ηαβdxαdxβ with ηαβ =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 (28)

We have then the metric of Minkoswki space, which is "pseudo-Euclidean", but it is �at: in fact the ηαβ are
constant, therefore Γijk and Rhijk are zero. In the following we will use, by convention, the Greek indices α, β,
γ, . . . if these vary from 0 to 3, while we will use italic indices i, j, k, . . . if they vary from 1 to 3. Warning:
in literature also the opposite convention is used. Even ηαβ is often de�ned with opposite signs, i.e. with the
signature (−1, 1, 1, 1) instead of (1, −1, −1, −1).

Moreover, we say that the interval ds2 is:

• time-like if ds2 > 0 (corresponding to a physical trajectory with v < c)

• space-like if ds2 < 0

• light-like, null if ds2 = 0 (corresponding to the motion of particles, like photons, which move with speed
v = c)

Each observer has with him a ruler and a clock: the time marked by this clock is the proper time τ . An observer,
who sees two events (physically connected) occur at di�erent times but at the same place (dx = dy = dz = 0)
obtains ds2 = c2dτ2: ds and dτ are proportional.

The distance ds between the same two events, both for an observer who sees them occurring at the same point,
and for another observer who sees them occurring at a distance dl, is the same:

ds2 = c2dτ2 = c2dt2 − |dl2| → dτ2 = dt2
(

1− 1

c2
dl

dt
· dl
dt

)
= dt2

(
1− v2

c2
)

where v is the particle speed for the observer who sees it moving, and also the relative velocity between the
two observers. De�ning β ≡ v/c and γ ≡ 1/

√
1− β2 we get dt = γdτ. Since γ ≥ 1, then dt ≥ dτ : the interval

between two "ticks" of a clock is shorter for the �proper� clock; moving clocks appear slower (think about the
twin paradox).

The velocity four-vector (four-velocity) is de�ned as uα ≡ dxα

ds ; it is a vector since dxα is a vector and ds is a
scalar.

In a generic reference frame, not at rest with a particle which has a 3D velocity v ≡ dx
dt , we have

u0 =
dx0

ds
=

d(ct)

cdτ
=

dt

dτ
= γ

ui =
dxi

cdτ
=

1

c

dxi

dt

dt

dτ
= γ

vi

c
= γβi

and we can write uα = γ(1, β). If the particle is at rest we have uα = (1, 0, 0, 0).

The quantity uαuα is invariant: uαuα = ηαβu
αuβ = u0u0 − (u1u1 + u2u2 + u3u3) = γ2 − (γ2v2/c2) = 1; uα is

the unit vector (versor) tangent to the trajectory of the particle (in the 4-D space-time).

The four-momentum is de�ned as Pα = m0u
αwhere m0 is the rest mass of the particle. If we remember that

P = mv = γm0v; E = mc2 = m0c
2γ we get:

P 0 = γm0 = E/c2 P i = γm0
vi

c
= m

vi

c
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1.12 The energy-momentum tensor 1 GENERAL RELATIVITY

PαPα = γ2m2
0 − γ2m2

0

v2

c2
= γ2m2

0

(
1− v2

c2

)
= m2

0

PαPα = m2
0 =

E2

c4
− 1

c2
P · P → m2

0c
2 =

E2

c2
− |P |2

If dP
α

ds = 0 then Pα = const ⇒ E = const and P = const: this is the energy and momentum conservation for
a single particle.

The four-acceleration is d
2xα

ds2 = duα

ds . The geodesic equation has always the same form:

d2xα

ds2
+ Γαβγ

dxβ

ds

dxγ

ds
= 0 (29)

If the metric tensor is simply ηαβ , then the Γαβγ vanish, so that d2xα/ds2 = 0, i.e. xα = aα · s+ bα, or{ ct = a0 · s+ b0

x = a · s+ b

and the trajectory is a straight line covered with uniform, rectilinear motion. In a curved space-time geodesics
correspond to �straight lines�.

While in 3-D Euclidean space the geodesic between two points is a straight line, so it is the shortest distance

between two points, in Minkovski geometry the quantity
∫ B
A
ds is a maximum on a time-like (physical) trajectory

(remember that ∆τ = ∆s/c, and you can think at the twin paradox, where the elapsed time is maximized for
the twin who remained on the Earth), while it is a minimum on a space-like line.

1.12 The energy-momentum tensor

To deal with General Relativity and Cosmology we need an "object" that describes enegy and momentum con-
servation for a continuous medium. We know from analytical mechanics that, for a physical system, invariance
with respect to time (i.e. ∂/∂x0 = 0) corresponds to energy conservation, while invariance with respect to space
(i.e. ∂/∂xi = 0) corresponds to momentum conservation. Since we are working within Special Relativity, the
invariance will be expressed as ∂/∂xα = 0, α = 0, 1, 2, 3. You probably met such a kind of object in Quantum
Field Theory: the so-called stress tensor or energy-momentum tensor. Let's look for a similar object in the case
of a �uid.

Let's consider �rst the case of incoherent matter, whose particles (for the moment) do not interact ("dust").
The matter �eld will be described at any point by the four-velocity uα = γ(1, v/c) and by its proper density
ρ0(x), i.e. that measured by an observer who follows the �uid. With these quantities one can form a symmetric
tensor of rank 2 in the simplest way as:

Tαβ = ρ0c
2uαuβ (30)

Let's see how this tensor is made in detail:

T 00 = ρ0c
2γ2 = γ2ρ0c

2 = ρc2 by writing ρ = γ2ρ0

To interpret this result remember that the mass is m = γm0(m0= rest mass) and that a volume element in
motion appears contracted by a factor 1/γ, and its density grows by another factor γ. So if the proper density
is ρ0, an observer with respect to which the �uid has velocity v measures a density γ2ρ0.

T 00 represents the mass-energy density (in this case the only contribution to the energy comes from matter
motion).

The components of Tαβ can be written:

Tαβ = ρ c2 ·


1 vx/c vy/c vz/c

vx/c v2
x/c

2 vxvy/c
2 vxvz/c

2

vy/c vyvx/c
2 v2

y/c
2 vyvz/c

2

vz/c vzvx/c
2 vzvy/c

2 v2
z/c

2

 (31)

We now derive the motion equations from the expression ∂βT
αβ = 0, the four-divergence of Tαβ(remember we

are in Minkowski space-time, and covariant derivatives are simply partial derivatives).
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1 GENERAL RELATIVITY 1.12 The energy-momentum tensor

• For α = 0 we have ∂βT
0β = 0 ⇔ ∂T 0β

∂xβ
= 0 which can be expanded:

1

c

∂(ρc2)

∂t
+
∂(ρcvx)

∂x
+
∂(ρcvy)

∂y
+
∂(ρcvz)

∂z
= 0

and then simpli�ed to
∂ρ

∂t
+∇ · (ρv) = 0 (32)

which is the continuity equation for a �uid, expressing mass-energy conservation.

• For α = 1, 2, 3 we have

1

c

∂(ρcvx)

∂t
+
∂(ρvxvx)

∂x
+
∂(ρvxvy)

∂y
+
∂(ρvxvz)

∂z
= 0 (α = 1)

1

c

∂(ρcvy)

∂t
+
∂(ρvyvx)

∂x
+
∂(ρvyvy)

∂y
+
∂(ρvyvz)

∂z
= 0 (α = 2)

1

c

∂(ρcvz)

∂t
+
∂(ρvzvx)

∂x
+
∂(ρvzvy)

∂y
+
∂(ρvzvz)

∂z
= 0 (α = 3)

If we multiply the �rst by î (unit vector of the x-axis), the second by ĵ and the third by k̂ and then add them
toghether they can be summarized in the expression

∂

∂t
(ρv) +

∂

∂x
(ρvxv) +

∂

∂y
(ρvyv) +

∂

∂z
(ρvzv) = 0

which, by expanding and by using continuity equation, becomes

ρ
∂v

∂t
+ v

[
∂ρ

∂t
+∇ · (ρv)

]
+ ρvx

∂v

∂x
+ ρvy

∂v

∂y
+ ρvz

∂v

∂z
= 0

that is ρ

[
∂v

∂t
+
(
v · ∇

)
v

]
= 0 (I) ⇔ ρ

dv

dt
= 0 (II) (33)

This equation, typical of �uid dynamics, is the motion equation for a �uid without pressure, viscosity and
external forces. Therefore it expresses the conservation of momentum. In particular, in the form (I ) one
imagines to observe the �uid at a �xed point and to see how its motion evolves (the so-called Eulerian point
of view), while in the form (II ) one imagines to follow in their motion the particles of �uid (the so-called
Lagrangian point of view).

Thus we see that the tensor Tαβ expresses the energetic and dynamical properties of the �uid (dust, in this
case). Tαβ is the stress-energy tensor or the energy-momentum tensor.

In a locally inertial frame at rest (LIRF) with respect to the �uid, in which uα = (1, 0, 0, 0), Tαβ has the
particularly simple form

TαβLIRF =


ρ0c

2 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0


We now come to consider the case in which the particles interact in the simplest way, that is through collisionss
due to their thermal motion: in this case the �uid has a pressure. We assume that there is no transport of
energy by conduction or radiation and there is no viscosity. The �uid so de�ned is said to be perfect.

If we are now in the LIRF, Tαβ will be no more that one written just above, with only T 00 6= 0. The particles
now have random motions around the zero of their positions and velocities. We must then refer back to the
previous form (Eq. (31)) of Tαβ , in which however the terms that appear will be mediated on the distribution
of particle velocity.

But this gives us immediately an important information: all the o�-diagonal terms contain elements as vx, vy
or vz or their products; when we average 〈vx〉 = 0 and also 〈vxvy〉 = 〈vx〉〈vy〉 = 0 (assuming that vx and vy are
not correlated). Then Tαβ is diagonal in the LIRF.
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1.12 The energy-momentum tensor 1 GENERAL RELATIVITY

T 00
LIRF (expressing the mass-energy density) will be no longer ρ0c

2, but rather ρc2, with ρ > ρ0 to take account
of the fact that the particles have velocities di�erent from zero even in LIRF and their mass-energy density is
greater than in the case of pure dust. For the other diagonal terms we have 〈ρv2

x〉, 〈ρv2
y〉, 〈ρv2

z〉, which represent
the pressure p (also for a relativistic gas).

So, for a perfect �uid:

TαβLIRF =


ρc2 0 0 0
0 p 0 0
0 0 p 0
0 0 0 p

 (34)

where ρ takes into account also the mass-energy due to thermal motions.

It's easy to check that, in the LIRF, all this can be summarized in the relation

TαβLIRF = (p+ ρc2)uαuβ − pηαβ

For instance, for T 00, by considering that u0 = 1 and η00 = 1 , we get T 00 = p+ ρc2 − p = ρc2

But this expression is a tensor, and then will hold in any frame of reference, with uα 6= (1, 0, 0, 0) and the
appropriate metric tensor instead of ηαβ :

Tαβ = (p+ ρc2)uαuβ − pgαβ (35)

In this case the relation

∂βT
αβ =

[
(p+ ρc2)uαuβ − pηαβ

]
,β = 0

leads, for α = 0, to
∂

∂t

[
(p+ ρc2)γ2

]
+∇ ·

[
(p+ ρc2)γ2v

]
=
∂p

∂t
(36)

If the overall motion of particles is not relativistic, we have γ ≈ 1 and if p� ρc2(as for non relativistic matter)
this relation reduces again to continuity equation

∂ρ

∂t
+∇ ·

[
ρ v
]

= 0.

For α = 1, 2, 3, in a way similar to that followed in the �dust� case, we get(
p

c2
+ ρ

)
γ2 dv

dt
= −

[
∇p+ v

∂(p/c2)

∂t

]
(37)

which is a generalization of the �uid-dynamics relation ρdv
dt = −∇p (the so-called Euler equation). As one can

see, (ρ+ p/c2) plays the role of "inertial mass density".

Within the perfect �uid there is no exchange of energy by conduction (or radiation), nor is there dissipation.
From the �rst law of thermodynamics, in the frame that follows the �uid and for a volume V , dQ = dU + pdV
and U = ρc2 · V . Then

dQ = ρc2dV + V d(ρc2) + pdV = (p+ ρc2)dV + V d(ρc2) = TdS (38)

Since dQ = 0 → dS = 0, the entropy of the volume V is conserved.

If we write the equation of state as p = wρc2 (with w constant, although, in general, it may be that w = w(T )),

(1 + w)ρc2dV = −V d(ρc2) (39)

and, if w = const, we have dρ/ρ = −(1 + w) dV/V , that is ρV 1+w = constant.

We will meet three interesting cases in cosmology:

1. For a non-relativistic gas p � ρ0c
2 (ρ ≈ ρ0) so that w ' 0 and ρ0V ' const. If L is the edge of a cubic

volume V = L3, we obtain ρ ∝ 1/L3
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1 GENERAL RELATIVITY 1.13 Mach principle

2. For a gas of photons (and in general for a relativistic gas) ρrad ∝ aT 4 and p = 1
3ρc

2; w = 1
3 :

T 4V 4/3 = const TV 1/3 = const V ∝ L3 → T ∝ 1

L

ρradV
4/3 = const V ∝ L3 → V 4/3 ' L4 → ρrad '

1

L4

3. If p = −ρc2 (w = −1) → ρV 0 = const that is ρ does not depend on V and L and remains
constant if V changes.

We can express the �rst principle in another useful way by writing V ∝ L3(
ρ+

p

c2

)
dV + V dρ = 0 →

(
ρ+

p

c2

)
· 3L2dL+ L3dρ = 0

which gives

3

(
ρ+

p

c2

)
dL

L
+ dρ = 0

and, taking into account a possible dependence of L on time,

3

(
ρ+

p

c2

)
L̇

L
+ ρ̇ = 0 (40)

We wrote ∂αT
βα = 0 in Minkowski space; but, if the Γαβγ do not all vanish, and this is the general case, instead

of the simple partial derivative we must use the covariant derivative:

Tαβ;β = 0

that expresses the conservation laws in a generic frame of reference.

1.13 Mach principle

According to Newton's dynamics the inertial properties of a body depend on its motion with respect to absolute
space. Ernst Mach6 suggested instead that the inertia is related to the motion with respect to the total
distribution of matter in the universe. The motion is only relative to other bodies: operationally we can only
measure the motion of matter in relation to other matter, not with respect to the absolute space of Newton. If
there were only one body in the universe, its motion would not be de�ned: without other matter we can not
say if this body is at rest or is accelerating. And since the reaction of matter to the acceleration is the only way
to determine the inertia, this body does not possess a well de�ned inertia. The idea that masses and positions
of celestial bodies de�ne the inertia and inertial systems is called Mach principle. Several objections can be
moved to this idea: for instance, no observer can be in an empty universe and verify the ideas of Mach, and
inertia may exist even in an empty universe.

Anyway, the ideas of Mach in�uenced, by his own admission, Einstein himself. According to Newtonian physics,
in a volume without interactions, the bodies should remain at rest or move with uniform motion. But since
the universe is permeated by gravitational �elds that can not be shielded, all bodies move along curved paths
due to these �elds. Then a question arises: if we say that a path is curved, we assume that we know how to
de�ne a straight line. But how can we do this if no body, not even photons, as we shall see, follows a straight
line? So we try to do without the concept of straight line, and assume that there are no physical entities such
as "gravitational forces" curving the trajectories of heavenly bodies, but that the geometry of space is modi�ed
by gravitation in such a way that the trajectories observed correspond to free, inertial motions of bodies. In a
more dramatic way we could say that space-time is the gravitational �eld7. But how do we express this
link between inertial motion and gravitation?

Special Relativity can be described by a geometry of Minkowski ds2 = ηαβdx
αdxβand, from the properties

of invariance of ds2 between inertial systems, we derive all the results of this theory (time dilation, length
contraction, ...). How do we move to a metric ds2 = gαβdx

αdxβ in the presence of a gravitational �eld? What
are the links between gαβ and the gravitational �eld, and between gαβ and the gravitation according to Newton?
If seen in this way, General Relativity turns out to be a geometrical theory of gravitation.

6Ernst Mach (1838-1916) was professor of physics and then philosophy at the University of Vienna. His ideas have had a
precursor in the English bishop and philosopher George Berkeley, in 1710, when Newton was still alive.

7This is the point of view of Loop Quantum Gravity, one of the major candidates for a quantum theory of gravitation.
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1.14 Locally inertial frames

If our aim is to give a geometric description of space-time, we can now use what we learned about surface
elements and generalize it to 4 dimensions. In particular, we have seen that, in a neighborhood of a generic
point, one can transform gαβ in such a way that it can assume the required form and its �rst derivatives are
zero. So, in the neighborhood of an event E, we can always write gαβ ≡ ηαβ +O(|x|2), where x represents the
displacement in space-time from E : to the �rst order the geometry is the same as that of Special Relativity. In
the (in�nitesimal) neighborhood of each event the laws of physics are those that hold in an inertial frame of
reference. In a neighborhood of each event we can de�ne a locally inertial reference frame.

In the presence of gravitational �elds, as mentioned above, local deviations from Special Relativity occur only
at the level of the second derivatives of gαβ which, remember, are related to the curvature tensor Rαβγδ. In this
sense gravity curves space-time. But what are these locally inertial reference frames?

1.15 The Principle of Equivalence

The evidence that all bodies fall (in the absence of air resistance) in the same way under the e�ect of gravity, led
to conclude, with great precision, that inertial massmin and gravitational massmgrav are mutually proportional
(and are, in practice, the same, by including the constant of proportionality within the gravitational constant
G ). Einstein assumed that, by de�nition, min ≡ mgrav. This leads to the famous thought experiment of
Einstein elevator: an observer, equipped with scienti�c instruments and locked up into an elevator without
the possibility to see what is happening around him, will not be able to distinguish, by his experiments in
mechanics, between the two situations:

• he is at rest in a gravitational �eld with gravitational acceleration g

• he is in empty space, and the elevator is accelerated upward with constant acceleration g

Similarly, since all bodies fall in the same way in a gravitational �eld, the observer will not be able to distinguish
between the situations of:

• uniform rectilinear motion in the vacuum

• free fall in a gravitational �eld

m=min
m=mgrav

This allows us to say what are the locally inertial frames: those in free fall. Then, in a free falling frame, the
laws of Special Relativity hold locally (and to the �rst order in gαβ).

The Principle of Equivalence requires that all the laws of physics (not just those of mechanics) are the same
both in a locally inertial frame and in Special Relativity.

Since the e�ects of gravitation disappear in a system in free fall, the phenomena occurring there are totally
independent from the presence of nearby masses. However, according to the point of view of Mach, a large,
nearby mass should introduce an anisotropy of the inertial mass. E�ects due to the Sun or our Galaxy have
been searched, but not found within ∆m/m ∼ 10−20, for which the Principle of Equivalence seems favored
over the assumptions of Mach (so they are not completely consistent with General Relativity, apart from the
inspiration provided to Einstein8).

8Einstein conceived his theory of General Relativity trying to incorporate the idea of Mach according to which the inertia is
due to gravitational interactions with all matter in the universe. But, as admitted by himself, he was only partially successful,
since he obtained a solution of his �eld equations in which a single particle, immersed in a completely empty universe, had inertial
properties.
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1.16 The Principle of General Covariance

This principle tells us how to write the equations of physics in the presence of a gravitational �eld, when we
know how they are made in the absence of gravity.

In order for an equation, expressing a physical law, applies in a gravitational �eld it is necessary that:

1. It is "covariant", i.e. does not change shape changing reference frame, and this happens when it is
expressed as a relationship between tensors.

2. The equation applies in the absence of gravity, i.e. when gαβ ≡ ηαβ and Γαβγ ≡ 0.

There can be many covariant equations which reduce, in absence of gravity, to the same equation of Special
Relativity. However, as the Principle of General Covariance and the Priciple of Equivalence operate on small
scales, we expect that only gαβ and its low order derivatives come into play. This also obeys a principle of
simplicity (Occam's razor).

In this wayTαβ,β → Tαβ;β (covariant derivative) or, for instance, for the free fall equation,

d2xα

ds2
= 0→ d2xα

ds2
+ Γαβγ

dxβ

ds

dxγ

ds
= 0

We have seen that at each point (event) we can de�ne a locally inertial system, and in it the second derivatives
of gαβ are in general 6= 0: it is therefore at the level of the second derivatives of the metric tensor that the
gravitational �eld comes into play.

Similarly, in Newtonian physics, in a system in free fall, what can be measured is the di�erence in gravitational
acceleration between two bodies ∆g/∆x. This is the kind of phenomenon we call tide. But g = −∇Φgrav and
then ∂g/∂x ∝ ∂2Φgrav/∂x

2. What can be measured are therefore the second derivatives of Φgrav, as in General
Relativity are the second derivatives of gαβ . Then we see that there is an analogy between gαβ and Φgrav: the
gαβ take the place of the Newtonian gravitational potential.

1.17 The Einstein equations

In Newton's theory of gravitation the potential Φ satis�es Poisson equation: ∇2Φ = 4πGρ0 and g = −∇Φ.
Special Relativity teaches us that all forms of energy are equivalent to mass, and then a relativistic theory
of gravity will have as sources of the gravitational �eld all forms of energy, and not just ρ0. In particular,
the energy density of the gravitational �eld itself is proportional to (∇Φ)2 in the Newtonian case 9(think, by
analogy, that the energy density of the electromagnetic �eld is proportional to E2).

If, therefore, we move to the left hand side, in Poisson equation, the term ∝ (∇Φ)2 which would result from
the gravitational energy density, we obtain a non-linear di�erential equation (which is linear in the second
derivatives and quadratic in the �rst ones) for the gravitational �eld.

Formally we will have an equation such as:

F (gαβ) ∼ κT

where gαβ is the metric tensor (corresponding to Φ), F is a di�erential operator (likely something linear in the
second derivatives and quadratic in the �rst derivatives) which reduces to ∇2 when the �eld is weak10, κ is a
proportionality constant that contains the Newtonian gravitational constant G, T is a quantity that describes
all forms of non-gravitational energy, and that, in the non-relativistic case, should essentially be reduced to ρ0.

A natural candidate for T is the component T 00 of the stress-energy tensor. But keeping as a source of the �eld
only one component of a tensor would not produce an invariant theory: we should adopt a particular reference
frame to calculate T 00. So Einstein conceived the idea that the source is the entire Tαβ : pressure, stresses (if

9We can see that the energy density of the gravitational �eld is proportional to (∇Φ)2, that is to the square of the intensity of the
gravitational �eld g2, in the following way. The gravitational potential energy of a mass M of radius R is given by E = −GM2/R.
If you think that this energy is distributed in the �eld (g ∝M/r2) created by M , between R and ∞, we see that, by calling δG the
density of gravitational energy, for it to be −

∫∞
R δG(r) · 4πr2dr ≈ −M2/R, δG(r) ∼ (M/r2)2 ∼ g2 is required.

10We will see soon what does this mean; at the moment you can think that it is when Newton's law holds
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Tαβ is not diagonal), etc. ... , all acts as a source. But if T is a tensor, then the left-hand side of the equation
must also be a tensor function of gαβ .

We know that Tαβ is symmetrical, and has vanishing covariant divergence: Tαβ;β = 0. Then the left-hand side
must share these properties. Moreover, we expect it to be linear in the second derivatives of gαβ and quadratic
in the �rst derivatives.

We have already met a tensor with these properties, and we have seen that it is unique: the Einstein tensor

Gαβ = Rαβ −
1

2
gαβR

So Einstein proposed, as a possible equation of the gravitational �eld,

Rαβ −
1

2
Rgαβ = κTαβ (41)

If we think to include also the derivatives of order zero in the di�erential operator, being gαβ symmetric and
with vanishing covariant divergence, we can add a term proportional to gαβand we get:

Rαβ −
1

2
Rgαβ − Λgαβ = κTαβ , (42)

where Λ and κ are constant; Λ is the so-called cosmological constant.

1.18 The Newtonian limit (weak �eld)

Once written Einstein's equations, we must check that, within the limits of validity of classical physics, they
reduce to Newton's law; we must also �nd what is the constant κ that appears in the equations.

Let us suppose that the �eld is stationary (i.e. its time derivative is zero), the velocities of the particles are small
(v � c) and that, at large distances from the masses that generate the �eld, the metric tensor is asymptotically
�at: gαβ → ηαβ . We also assume that the �eld is weak: the deviations from metric ηαβ are small:

gαβ = ηαβ + hαβ with |h| � 1 (43)

By means of the geodesic equation it can be shown that

h00 '
2Φ

c2
→ g00 ' 1 +

2Φ

c2
(44)

where Φ is the Newtonian gravitational potential, The weak �eld hypothesis, |h| � 1, implies then that
|2Φ/c2| � 1.

In the case of a mass M with density distributed with spherical symmetry, the external potential, at a distance
r from the centre, is given by Φ = −GM/r, according to Newton. The assumption that the �eld is weak,
|2Φ/c2| � 1, implies that

2GM

rc2
� 1 ⇒ r � 2GM

c2

For a black hole or a generic spherical body, RS ≡ 2GM/c2 is the so-called Schwarzschild radius, corresponding,
for a non-rotating and electrically neutral black hole, to the event horizon, the zone from which nothing can
escape (apart from quantum e�ects of evaporation). In this case we see that the condition of weak �eld is

RS
r
� 1 ⇒ r � RS

For our Sun, RS ∼ 3 km.
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Let's see now, with the same assumptions made above, that the Einstein equations reduce to Poisson equation
∇2Φ = 4πGρ0. Then we will determine the value of the constant κ. Let us take Einstein equation with the
term containing Λ brought to the right:

Rαβ −
1

2
gαβR = κTαβ + Λgαβ

If we multiply it by gαγ we get:

Rγβ −
1

2
Rδγβ = κT γβ + Λδγβ

Let us put γ = β (that is, we add on β = γ = 0, 1, 2, 3, δββ = δ0
0 + δ1

1 + δ2
2 + δ3

3 = 1 + 1 + 1 + 1 = 4) and contract
tensors; since R = Rγγ we get:

R− 1

2
R · 4 = κT γγ + 4Λ → R = −κT γγ − 4Λ

Substituting this result into the starting equation, it becomes:

Rαβ = κTαβ + Λgαβ +
1

2
gαβ
(
− κT γγ − 4Λ

)
= κ

(
Tαβ −

1

2
gαβT

γ
γ

)
− Λgαβ (45)

The Ricci tensor, if we neglect higher order terms, can be written (by using a suitable reference frame and some
�tricks�):

Rβδ ' −
1

2
ηασ

∂2hβδ
∂xα∂xσ

(46)

We evaluate now the component 00 of Rβδ:

R00 ' −
1

2
ηασ

∂2h00

∂xα∂xσ

but if α = 0 and/or σ = 0 the derivative is zero (for stationarity ∂/∂x0 = 0); then only the terms with indices
1, 2, 3 (and η11 = η22 = η33 = −1) are left:

R00 '
1

2

[
∂2h00

∂x1∂x1
+

∂2h00

∂x2∂x2
+

∂2h00

∂x3∂x3

]
' 1

2
∇2h00

On the other hand

R00 = κ

[
T00 −

1

2
g00T

γ
γ

]
− Λg00

The fully covariant energy-momentum tensor is

Tµν = gµαgνβ (p+ %c2)uαuβ − gµαgνβ p gαβ (47)

We have assumed that motions are not relativistic, so ui � u0 ' 1, and

Tµν ∼= gµ0gν0(p+ %c2)− p gµν ∼= ηµ0ην0(p+ %c2)− p ηµν , (48)

where we have neglected terms which are of �rst and second order in hµν with respect to ηµν . So we see that
T00
∼= %c2. The tensor in the mixed form is

T γν = gγµTµν ∼= ηγµTµν ∼= ηγµηµ0ην0(p+ %c2)− p ηγµηµν ∼= δγ0 ην0(p+ %c2)− p δγν . (49)

If we now want the trace T γγ we get �nally

T γγ
∼= δγ0 ηγ0(p+ %c2)− p δγγ ∼= p+ %c2 − 4 · p ∼= %c2 − 3 · p. (50)

We then have

1

2
∇2h00 ' κ

[
ρc2 − 1

2

(
%c2 − 3 · p

) ]
− Λ → ∇2h00 ' κ(ρc2 + 3 p)− 2Λ.
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But h00 = 2Φ/c2 and then:

∇2Φ ' κc4

2
(ρ+ 3

p

c2
)− Λc2 (51)

Poisson equation tells that ∇2Φ = 4πgρ0; if pressure and cosmological constant are negligible, and velocities
are non relativistic, so that ρ ∼= ρ0, the two relations coincide if

κ =
8πG

c4
(52)

Finally we arrive to the complete Einstein equation

Rαβ −
1

2
gαβR− Λgαβ =

8πG

c4
Tαβ (53)

The above conditions require that %� 3p/c2 and, for Λ,

|Λ| � 4πGρ0

c2
= ΛE

In 1916, when Einstein derived the equations of General Relativity, he was not aware of cosmic expansion (still
to be discovered), and sought a static solution for his model of universe. We see that if Λ = ΛE and ρ0 is
the density of the (homogeneous and static) universe, and p is negligible, from Eq. (51) we have ∇2Φ = 0,
Φ = const, g = −∇Φ = 0.

A similar result, as we shall see, comes from the equations of General Relativity. This static model, however, is
unstable: just a small density �uctuation and locally we have expansion or contraction.

According to dimensional analysis [c2Λ] = [4πgρ0] = [∇2Φ] that is [Λ] = [∇2(Φ/c2)] = L−2(remember that
Φ/c2 is adimensional).

From the relation ∇2Φ = 4πG[ρ0 + 3p/c2 − c2Λ/4πG] we can think that Λ corresponds to the mass-energy of
vacuum, i.e. when mass-energy and pressure are removed.

After Hubble's discovery, in 1929, of the expansion of the universe, Einstein considered the cosmological constant
as �the biggest blunder� of his life but, as we shall see, it has come back strongly in vogue in recent years..
For long time it was only possible to set upper limits to the value of Λ, just by assuming that there was no
evidence of its e�ects. But recent observations (1997) based on Type Ia supernovae in distant galaxies, and the
study of the cosmic microwave background, have allowed to obtain no longer an upper limit, but an estimate
of Λ ∼ 10−56cm−2.

1.19 Gravitational waves

We have seen, treating the weak �eld, that Ricci tensor can be written as in Eq. (46):

Rβδ ' −
1

2
ηασ

∂2hβδ
∂xα∂xσ

= −1

2

[
1

c2
∂h2

βδ

∂t2
−
(
∂2hβδ
∂x2

+
∂2hβδ
∂y2

+
∂2hβδ
∂z2

)]
≡ −1

2
�2hβδ

where �2 is the d'Alembert operator or d'Alembertian.

We have seen that the Einstein equations can be written also as in Eq. (45). If we are in vacuum, and we
neglect Λ, they become:

Rβδ ≡ 0 ⇒ �2hβδ ≡ 0

which is the equation of a wave propagating at the speed of light. This shows the existence of gravita-
tional waves. They are transverse waves with two components (polarizations).
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1.20 Weak �eld metric and gravitational lenses

Let's use again Eq. (46) which, for a stationary �eld, simply becomes

Rβδ '
1

2
∇2hβδ. (54)

If pressure and cosmological constant are negligible, and velocities are non relativistic, so that ρ ∼= ρ0, as before,
Tαβ has only one element di�erent from zero: T00

∼= ρ0c
2, and T γγ

∼= ρ0c
2. We use now Eq. (45); for β 6= δ both

Tβδ and gβδ are equal to zero, and by using Eq. (54), Einstein equations reduces to

∇2hβδ = 0 (55)

which is Laplace equation. If the solution is equal to zero at the in�nity (as we have assumed), it is zero also
everywhere: hβ 6=δ = 0. For β = δ = 1 we have

R11 =
8πG

c4

[
T11 −

1

2
η11 · ρ0c

2

]
=

4πGρ0

c2
=
∇2Φ

c2
=

1

2
∇2h11

which gives h11 = 2Φ/c2; the same holds for h22 = h33 = 2Φ/c2.

The complete metric, for a stationary weak gravitational �eld, is then

ds2 =

(
1 +

2Φ

c2

)
c2dt2 −

(
1− 2Φ

c2

)(
dx2 + dy2 + dz2

)
(56)

This relation allows us to obtain another very interesting result. For a light ray ds2 = 0 and, assuming
dx2 + dy2 + dz2 ≡ dl2, we have

(
1 +

2Φ

c2

)
c2dt2 =

(
1− 2Φ

c2

)
dl2

from which (
dl

dt

)2

= c2

(
1 + 2Φ

c2

)
(

1− 2Φ
c2

) ≡ v2
eff ≡

c2

n2
g

where veff is the e�ective speed of propagation of the luminous wave and ng can be thought as an index of
refraction of gravity. it is

ng =

√√√√√√√
(

1− 2Φ
c2

)
(

1 + 2Φ
c2

) ∼√(1− 2Φ

c2

) (
1− 2Φ

c2

)
→ ng ' 1− 2Φ

c2
(57)

If Φ = 0 to the in�nity and is negative near a mass, ng > 1 and veff < c. This relation show us that space, as
a consequence of gravitation, behaves as a refractive medium: this is the basis of those phenomena known as
gravitational lenses.
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2 THE ROBERTSON-WALKER METRIC

2 The Robertson-Walker metric

2.1 The cosmological principle

If we want to apply General Relativity (intended as the best available theory to describe the motion of bodies
due to the distribution of matter) to the study of the cosmos, we would expect that, in general, the geometry of
space-time is not static, but depends on time. This is also suggested by the observational evidence of a general
motion of galaxies away from us (Hubble's law).

But if the world lines (trajectories in space-time) of galaxies, considered as "building blocks" of the universe
and "tracers" of its evolution, were as they appear in the �gure, things would be very complicated: there would
be no order in the evolution, and there would be collisions where the lines cross.

ct

Fortunately, astronomical observations are comforting. The expansion of the universe appears to be quite
regular. Due to the presence of inhomogeneities (as groups, clusters of galaxies) there are perturbations in the
motions of galaxies, gravitationally induced by these inhomogeneities. But these perturbations , corresponding
to a speed on the order of 100 ÷ 1000 km/s, are "small" if compared to the recession velocity11 of galaxies,
which can be a signi�cant fractions of the speed of light. These motions also appear generally not systematic.

It is also more and more evident that, on scales of the order of 100 h−1Mpc, the universe is on average similar
to itself. The high degree of isotropy of the microwave background radiation, which is of the order of 10−5, and
the not relevant position occupied by our Galaxy in the large-scale structure, make it reasonable to assume that
this isotropy is not characteristic of our position, but is typical of every point in space: a further application of
the so-called "Copernican" point of view, according to which the Earth no longer occupies the geometric center
of the Universe. But isotropy around each point of space implies homogeneity12 (in an inhomogeneous
space it would be impossible to get isotropy everywhere). We observe that, on the contrary, the reverse is
not necessarily true: one can have a space which is homogeneous but not isotropic (as an example imagine a
homogeneous universe, but in rotation around a certain spatial axis).

On the basis of what we said above, we can state the Cosmological Principle: "At any given epoch the
universe looks the same at every point, apart from local irregularities".13

This principle makes it possible to greatly simplify the study of cosmology. We can imagine to smooth any
irregularity and local motion, on scales of the order of 100 h−1Mpc, obtaining a substrate that evolves in a
uniform way everywhere, at a given time. We say "at a given time", suggesting the existence of a time de�nable
unequivocally: since the universe is homogeneous at any point the physical parameters evolve in the same way
(one can imagine to link the passing of time, at each point, to the local density of matter, equal densities
correspond to equal times).

11Rather than a real speed, it is the rate of variation of the proper distance, as we shall see; but, albeit improperly (and
dangerously), this term is used habitually, as we do in this page.

12This is true if the matter distribution is not fractal.
13There is also a Perfect Cosmological Principle, according to which the universe appears the same at every point and at all

times, in which the density and the various cosmological parameters do not change with time. This principle has been implemented,
in the so-called Steady State model of the universe, by Hoyle, Bondi and Gold.
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ct

Imagine that we �ll this smoothed and homogeneous space with observers, all at rest with respect to the mean
motion of the surrounding matter, each one with his own clock and ruler. The world lines (geodesics) of these
observers do not intersect, except possibly at a singular point in the past and, perhaps, in the future. There
is only one geodesic passing through a point in space-time, and then the material possesses, at each point,
a well-de�ned speed. This smoothed substrate behaves as a perfect �uid. The regularity of the motion of
observers (Weyl's postulate) allows us to de�ne, for each value of the cosmic time, a spatial section t = cost
of space-time. These spatial sections are perpendicular to the geodesic followed by observers (see below).

In fact, if we consider one of these observers O at rest with respect to the mean motion of local matter, its
geodesic is de�ned for him by the conditions xi = cost (i = 1, 2, 3); if we consider a close observer, which is on
the same surface t = t0 = cost, i.e. x0 = cost, of O, the vector ∆x connecting the event O to the event O′ is
normal to the vetctor ∆t parallel to the geodesic for O and to the four-velocity with components (1, 0, 0, 0). If
∆t ·∆x 6= 0 the events O and O′ would no longer be simultaneous, since ∆x would have a non-zero component
along the time axis of O.

This allows us to simplify the choice of the metric for the observer O, that will be in general

ds2 = gαβdx
αdxβ

But, since vectors of the type (1, 0, 0, 0) (like ∆t) and vectors of the type (0, 1, 0, 0) like ∆x are perpendicuolar,
their dot procut is:

∆t ·∆x = 0 = g0i∆t
0∆xi ∀∆t0, ∀∆xi ⇒ g0i = 0

and the metric will be
ds2 = g00(dx0)2 + gijdx

idxj (i, j = 1, 2, 3)

We recall that, for the chosen type of observers, at rest with respect to the mean motion of the local universe,
the spatial components dxi are zero, i.e. xi = const: the values of spatial coordinates assigned to the observer
remain constant over time. These coordinates are called co-moving. The fact that the coordinates of the
observers are constant does not imply that mutual distances are constant, since gαβ depend, in general, also on
time.

Let us consider a co-moving observer O. His spatial coordinates are xi = cost, and so dxi = 0; the interval ds2

between two two successive events along the world line of O is then ds2 = g00(dx0)2, but this is also equal, by
de�nition, to c2dτ2, where τ is the proper time associated to O:

c2dτ2 = g00(dx0)2 (58)
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Space is homogeneous, and this relationship must hold for any observer, no matter what its coordinates xi are,
so g00 must depend only on x0. W can then de�ne a new scale of cosmic time such that

cdt =
√
g00dx

0

that coincides with the proper time of co-moving observers and we write, using t to denote the proper time,

ds2 = c2dt2 + gijdx
idxj (59)

A reference frame in which g00 ≡ 1 and g0i ≡ 0 is named synchronous. In this case the world lines xi = const.
are geodesic lines. In fact, the four-vector tangent to the world line uα ≡ dxα/ds has the components equal to
(1, 0, 0, 0) and automatically satis�es the geodesics equation because

duα

ds
+ Γαβγu

βuγ ' Γα00

but, since g00 = 1 = const. and g0i = 0,

Γα00 =
1

2
gασ

(
∂gσ0

∂x0
+
∂gσ0

∂x0
− ∂g00

∂xσ

)
= 0

Let us consider now a triangle formed by three particles both at time t = t0 and at a later time t = t1. The two
triangles will not generally be the same, but will necessarily be similar, because if it were not so there would
exist inhomogeneity and/or anisotropy in the universe, in contrast to the Cosmological Principle. From this it
follows that the dependence of the gij from time must be similar for all of them, and does not depend on the
spatial coordinates. So it will be:

ds2 = c2dt2 + a(t)2gijdx
idxj (60)

where the dependence on time is all in the function a(t) named scale factor, and the gij do not depend on
time. The ratio a(t1)/a(t0) gives the enlargement at time t1, with respect to time t0, of a length (as the side of
a triangle) measured along the two surfaces t = t1 and t = t0.

Notice that, for events whic lie on a surface t = cost (dt = 0), and are therefore simultaneous, ds2 will be
space-like and then < 0, i.e. a2(t)gijdx

idxj < 0; if we write g̃ij = −gij then a2(t)g̃ijdx
idxj > 0 and

ds2 = c2dt2 − a2(t)g̃ijdx
idxj (61)

similar to ds2 = c2dt2− (dl)2 (as we used to write in Special Relativity), where dl2 is the interval in a 3-D space
with t = const = t0

dl2 = a2(t0)g̃ijdx
idxj i = 1, 2, 3 (62)

We must now de�ne g̃ij for an isotropic and homogeneous 3D space.

2.2 The Robertson-Walker metric

We use �rst of all the fact that we have a spherical symmetry due to isotropy, and we choose a spherical
coordinate system, which re�ects this symmetry. We remain, for now, in the Euclidean space and de�ne:

x = Rsinθcosφ

y = Rsinθsinφ

z = Rcosθ
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x

y

z

q

f

R

O

P

The metric tensor can be easily derived (we extend to three dimensions what we learned about surface elements):

xR = (sinθcosφ, sinθsinφ, cosθ)

xθ = (Rcosθcosφ,Rcosθsinφ,−Rsinθ)
xφ = (−Rsinθsinφ,Rsinθcosφ, 0)

3gij =

1 0 0
0 R2 0
0 0 R2sin2θ


dl2 = dR2 +R2(dθ2 + sin2θdφ2) = dR2 +R2dΩ2

For R = const we have dl2 = R2dΩ2 with 2gij =
( R2 0

0 R2sin2θ

)
. Remember that the area of a surface can

be obtained by using Eq. (8):

dA =
√

2g dθdφ = R2sinθdθdφ

so the area of the sphere is

A =

∫ 2π

0

∫ π

0

R2sinθdθdφ = 4πR2

This relation can be generalized to three dimensions obtaining in this case a volume:

dV =
√

3g dRdθdφ = R2sinθdRdθdφ

and then

V =
4

3
πR3

All this is true in Euclidean space, in which the area of the sphere is 4π×(the coe�cient of dΩ2). In a generic,
non-Euclidean space, but spherically symmetric, the deviation from Euclidean space will be felt (because of
isotropy) only in the radial direction. Each point will be on a two-dimensional spherical surface, whose line
element is

dl2 = g(r′)(dθ2 + sin2θdφ2) = g(r′)dΩ2

where g(r′) is a function of the third, radial coordinate, which we named r′. On the sphere g(r′) = const. and
the area of the sphere is 4π × g(r′).

Since we can freely de�ne the coordinate system, we rede�ne the radial coordinate r so that r2 ≡ g(r′), with
a transformation r′ → r. So again, a surface r = cost has area 4πr2, but now r no longer corresponds to the
proper, radial distance (we imagine to freeze expansion and to measure it with a ruler, at t = const.) from the
center of the spherical surface, although of course there will be a link between the two variables.

We can see it in an intuitive way by reducing the dimensions of space from 3 to 2, and by speaking of a
circumference instead of an area. In the Euclidean plane we have C = 2πa, but on a sphere C = 2πf(a) = 2πx
with x = f(a) = Rsinθ = Rsin(a/R). Now x is not the proper distance of the circle from the center, which is
equal to a, but it is a coordinate like the others, and we can use it if useful.
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C

a

a

C=2pa C=2px

Let's go back to the sphere in 3D space, with r as radial coordinate (linked to proper distance, but not coincident
with it). The line element, in space, is then

dl2 = grrdr
2 + r2dΩ2 (dΩ2 = dθ2 + sin2θdφ2)

Terms like grθ or grφ are equal to zero since the radial coordinate r is, due to the imposed spherical symmetry,
perpendicular to the surfaces r = const.

Going now back to space-time we have

ds2 = c2dt2 − a(t)2
[
f(r)dr2 + r2dΩ2

]
with the unknown function f(r) to be determined. We �x the time coordinate: t = t0, so that a(t) = a(t0) =
a0 = const; the metric tensor of the spatial part is (in spherical coordinates r, θ, φ):

gij =

a2f(r) 0 0
0 a2r2 0
0 0 a2r2sin2θ

 gij =

 1
a2f(r) 0 0

0 1
a2r2 0

0 0 1
a2r2sin2θ

 g = a6f(r)r4sin2θ

We want to impose the condition that space is homogeneous, which means that the curvature of space is constant
everywhere. We have just one function to �nd out, f(r), so we need only one condition: the Ricci scalar of the
space section at constant cosmic time, 3R, is constant in space.

Remember that 3R = gαβ 3Rαβ and 3Rαβ =3 Rγαγβ (we use the upper index 3 in front of R to mean that we
refer to the spatial part, not to the complete space-time).

The calculation is long, boring but trivial. Here are just a few steps. It starts as usual from the a�ne connections;
18 of them are independent, but only 7 are di�erent from zero:

Γ1
11 =

1

2

1

f

df

dr
Γ1

22 = − r
f

Γ1
33 = −rsin

2θ

f
Γ2

12 = Γ2
21 =

1

r

Γ3
13 = Γ3

31 =
1

r
Γ2

33 = −sinθcosθ

Γ3
23 = Γ3

32 =
cosθ

sinθ

Since 3R = gβδRβδ = g11 3R11 + g22 3R22 + g33 3R33 it turns out that:

3R11 =
1

r
· 1

f

df

dr
3R22 = 1− 1

f
+

1

2

r

f2

df

dr
3R33 = sin2θ ·3 R22

and from this, by imposing that 3R = constant = K

3R = K =
2

a2r2

[
1− 1

f
+

r

f2

df

dr

]
=

2

a2r2

[
1− d

dr

(
r

f

)]
=

2

a2r2

d

dr

[
r

(
1− 1

f

)]
which gives

d

[
r

(
1− 1

f

)]
=
Ka2r2

2
dr
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that is

r

(
1− 1

f

)
=
Ka2r3

6
+A ⇒ f(r) =

1

1− Ka2r2

6 − A
r

But, if r → 0, the metric tends to be euclidean, so that f(r) ≡ 1; this gives A = 0 and

ds2 = c2dt2 − a2(t)

[
dr2

1− Ka2(t)r2

6

+ r2dΩ

]
(63)

We said before that the dependence on time of the space part of the metric is all contained in the function a2(t)
in front of the square braket, and everything inside the square brakets is independent on time. This means that
Ka2(t) does not depend on time, and this can be seen also from the relation de�ning K, which tells us that
Ka2 is a function of r. This implies that K = K(t).

We de�ne a further change of scale for r such that Ka2r2

6 ≡ kr̃2, where k = 0 ifK = 0, otherwise k has the same
sign of K, but magnitude 1. This gives

r2 =
6k

Ka2
r̃2 → r = r̃

√
6k

Ka2
dr =

√
6k

Ka2
dr̃

and then

dl2 = a2(t)

[
6k

K(t)a2(t)
· dr̃2

1− kr̃2
+

6k

K(t)a2(t)
r̃2dΩ2

]
=

6k

K(t)

[
dr̃2

1− kr̃2
+ r̃2dΩ2

]
If we prefer writing dl2 = ã2(t)[...], we de�ne 6k

K(t) ≡ ã
2(t) and we obtain:

dl2 = ã2(t)

[
dr̃2

1− kr̃2
+ r̃2dΩ2

]
where K(t) =3 R(t) ≡ 6k

ã2(t) .

Finally, if we drop the (inessential) tilde we can write the metric for our universe in the following way:

ds2 = c2dt2 − a2(t)

[
dr2

1− kr2
+ r2

(
dθ2 + sin2θdφ2

)]
(64)

which is the so-called Robertson-Walker metric (or line element). The Ricci scalar, giving the curvature of
the space part, is given by K = 6k/a2(t), where t is the cosmic time (proper time of co-moving observers), θ
and φ are angular coordinates and r is linked to the radial distance.

2.3 Topology of the Universe

Let's see now in detail the topologiacal properties of the cosmological models corresponding to the three cases
k = 0,+1,−1.

2.3.1 The k = 0 case

If k = 0 the space section at constant cosmic time is an euclidean (�at) space E3, with 0 < r < ∞; space is
in�nite. Surface areas and volumes are written in the usual way.

2.3.2 The k = +1 case

If dθ = dφ = 0 we have dl = a(t) dr√
1−r2

, we see that |r| < 1 and the metric diverges if r → 1. We can eliminate

this divergence by choosing a new coordinate χ instead of r, such that r = sinχ and

dr = cosχdχ =

√
1− sin2χdχ =

√
1− r2dχ

dl2 = a2(t)

[
(1− r2)dχ2

1− r2
+ sin2χdΩ2

]
= a2(t)

[
dχ2 + sin2χdΩ2

]
(65)

with 0 ≤ χ ≤ π, 0 ≤ θ ≤ π, 0 ≤ φ ≤ 2π.
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To better understand this metric let's step back to the 2-D sphere E3. In this case χ = s/a; s = aχ, a sinχ = x

dl2 = a2dχ2 + x2dφ2 = a2
(
dχ2 + sin2χdφ2

)
Moreover, we de�ne u ≡ x/a, u = sinχ, du = cosχdχ =

√
1− sin2χdχ =

√
1− u2dχ and the metric becomes:

dl2 = a2

[
du2

1− u2
+ u2dφ2

]
(66)

We see that the r coordinate in Robertson-Walker metric with k = +1 corresponds to x/a for the 2-D sphere;
χ varies between 0 and π.

Let's go back to the R&W metric in the form dl2 = a2(t)
[
dχ2 + sin2χdΩ2

]
and, remembering how we evaluate

the elements of surface and volume, we just calculate them.

For a 2-D sphere, by assuming dχ = 0, we have

2gij =

(
a2sin2χ 0

0 a2sin2χsin2θ

)
→

√
2g = a2sin2χsinθ

A(χ) =

∫ 2π

φ=0

∫ π

θ=0

a2sin2χsinθdθdφ = 4πa2(t)sin2χ

This has a minimum both for χ → 0 and χ → π, and has a maximum at the �equator� χ = π/2. It is always,
as expected for K > 0, k = +1:

Surface Area

(radius)2
=

4πa2sin2χ

a2χ2
< 4π

The proper radius is derived from the metric by imposing dθ = dφ = 0 and is rp = aχ.

To calculate the volume of the space we have

3gij =

a2 0 0
0 a2sin2χ 0
0 0 a2sin2χsin2θ

 →
√

3g = a3sin2χsinθ

The volume within the �radial� coordinate χis then:

V (χ) =

∫ χ

χ=0

∫ 2π

φ=0

∫ π

θ=0

a3sin2χsinθdθdφdχ = 2πa3

(
χ− sin2χ

2

)
which monotonically increases and has a maximum, �nite value for χ = π , which is V = 2π2a3.

The total volume of the space is proportional to a3, so a(t) is sometimes named �radius of the universe�. The
volume is �nite, even if there are no physical boundaries and the topology of this space is named S3.
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2.3.3 The k = −1 case

In this case there are no discontinuities in r (0 ≤ r ≤ ∞) and

dl2 = a2

[
dr2

1 + r2
+ r2dΩ2

]
We introduce here again the variable χ and de�ne r ≡ sinhχ so that (cosh2χ − sinh2χ = 1 ) dr = coshχdχ =√

1 + sinh2χdχ =
√

1 + r2dχ and

dl2 = a2
[
dχ2 + sinh2χ

(
dθ2 + sin2θdφ2

)]
(67)

This space is named H3. Similarly to what we did for k = +1 we can calculate the surface area of the sphere
of radius aχ (proper radius):

A(χ) =

∫ 2π

φ=0

∫ π

θ=0

a2sinh2χsinθdθdφ = 4πa2sinh2χ

and, since sinhχ ≥ χ, we get
Surface Area

(radius)2
=

4πa2sinh2χ

a2χ2
> 4π

The volume, since χ→∞, is in�nite. Note the fact that the surface of the sphere increases more rapidly than
in the Euclidean space E3, while for S3 the area increases less rapidly than in E3.

We close the paragraph noting that the metric of R&W, as well as in the way it was presented above, namely

ds2 = c2dt2 − a2(t)

[
dr2

1− kr2
+ r2

(
dθ2 + sin2θdφ2

)]
,

can be also written in the equivalent form

ds2 = c2dt2 −R2(t)

[
dχ2 + S2

k(χ)
(
dθ2 + sin2θdφ2

)]
(68)

with R(t) scale factor, and the function Sk(χ) de�ned as:

Sk(χ) =

 sin(χ) (k = +1)
χ (k = 0)

sinh(χ) (k = −1)
(69)

But, be careful, in some textbooks and scienti�c papers yuo can �nd r in place of χ, so you need to understand
from the context which of the two relations is used! We will generally use the �rst of the two forms.

2.3.4 More complex topologies

In the three cases above we have seen the three simplest topologies: E3, S3ed H3. But, actually, General
Relativity is a local theory, and our assumption of local isotropy and homogeneity implies that the space is
locally that of E3, S3 and H3.

However, more complex topologies are possible14. Let's see some examples.

If we start initially in 2 dimensions (to help intuition) we can construct a 2-D Torus (T2) from a �at rectangular
surface (Euclidean). Points belonging to the edges of the rectangle are suitably identi�ed, and this can be
visualized imagining to perform bending and gluing as shown below (but the curvature remains zero, while the
donut shown below has not zero curvature in E3!):

14See, for example, the articles The Mathematics of Three-Dimensional Manifolds by W.P. Thurston and J.R. Weeks, Scienti�c
American, July 1984, p. 94, and La forma dell'universo by C. Adams and J. Shapiro, Le Scienze, 414, p. 72 (translation of The
Shape of the Universe: Ten Possibilities, which appeared in American Scientist in 2001). The book La segreta geometria del cosmo
by J.-P. Luminet, 2004, Ra�aello Cortina Editore (see also the paper arXiv:astro-ph/0310253 ), and the site of Je�rey Weeks
www.geometrygames.org
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Now imagine an insect walking on the surface of the Torus. The insect crosses the upper boundary in 2 and
re-enters from the bottom in 2', goes out in 3 on the right and re-enters in 3', to the left. The Torus is equivalent
to a rectangle whose edges are identi�ed two by two. Despite being �nite, the surface has no boundaries.

1

2

2’

33’

?’

Another typical e�ect of this type of compact topology is the presence of ghosts, that is multiple images of the
same object S, arriving in O from di�erent directions. Since the paths, and then the travel times, are di�erent,
images of the same object show it at various stages of its evolution (so it is not trivial to recognize it!).

O

S

The analogue of T2 in 3D is the 3D Torus, T3. An observer placed inside has the impression of being in a room
with walls, �oor and ceiling covered with mirrors that do not reverse the image. Here too, for each real object,
we see its ghosts in all directions.
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T
3

3D Torus

What we said above is true for an Euclidean space (2D or 3D). This can be represented not only by a cell of
parallelepiped shape, but also by a prism-shaped cell with hexagonal base. For an Euclidean 3D space there
exist 10 possible compact varieties able to represent the universe, which apparently do not have borders, such
as the 2D or 3D Tori.

There are also compact manifolds in non-Euclidean spaces, with positive and negative curvature. These include
the dodecahedral, hyperbolic space of Seifert-Weber, a compact variant (i.e. with �nite volume) of H3, obtained
by pasting each face of the dodecahedron to the opposite face after a rotation of 108◦(three tenths of a round
angle). A compact variant of the hypersphere S3 is represented by the dodecahedral spherical space of Poincaré,
obtained by pasting each face of the dodecahedron to the opposite face after a rotation of 36◦(a tenth of a round
angle).

Dodecahedral hyperbolic space
of Seifert-Weber

Dodecahedral spherical space
of  Poincaré

Friedmann, in 1924, and Lemaître, in 1927, realized that Einstein's equations did not allow, alone, to decide
whether the universe is �nite or in�nite. Friedmann showed how space can be made �nite if points are suitably
identifyied; he also realized that this allowed the existence of ghosts and observed that a positive-curvature
space is always �nite. Lemaître pointed out that the spaces with negative curvature admit topologies with �nite
volume.

J.-P. Luminet 15 interpreted the lack of �uctuations in the cosmic microwave background (CMB) on angular
scales greater than 60◦ as due to the �nite size of our universe. The cell which agrees with the experimental
data (those of the WMAP satellite) would be the Poincaré spherical, dodecahedral space.

On the basis of what we said above, the claims that if the universe is �nite its geometry must be locally spherical,
and that if the geometry is locally hyperbolic or Euclidean the universe must be in�nite, are wrong. But all
spaces of constant curvature and locally spherical (k = +1) are compact.

15J.-P. Luminet et al., 2003, Nature 425, 593; also arXiv:astro-ph/0310253
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curvature topology (space volume)

sferical k = +1 �nite
euclidean k = 0 �nite or in�nite
hyperbolic k=-1 �nite or in�nite

2.4 Hubble's law

Let us consider a co-moving observer taken as the origin, a point characterized by the co-moving coordinates
(r, θ, φ) and a beam of light (the most e�cient way to exchange information) that joins them radially (dθ =
dφ = 0). We know that for photons ds2 = 0.

From R&W metric:

ds2 = c2dt2 − a2(t)
dr2

1− kr2
≡ 0 (70)

A light signal emitted from the point (r, θ, φ) at t = 0 (assuming that there is an initial instant of the universe,
as in the Big-Bang model) arrive at r = 0 (the observer) at time t such that (note that if dt is positive, dr is
negative, that is, as time goes by the beam passes through points gradually closer to us):∫ t

0

cdt′

a(t′)
=

∫ r

0

dr′√
1− kr′2

(71)

Let us see the meaning of the term to the right. Imagine to measure with a ruler, at a �xed instant t (by freezing
the expansion during the measurement), the radial distance between the origin and the point of coordinates
(r, θ, φ); from the space part (dt ≡ 0) of R&W metric this distance, named proper distance dpr, will be given
by:

dpr(t) =

∫ r

0

a(t) · dr′√
1− kr′2

= a(t)

∫ r

0

dr′√
1− kr′2

= a(t) · fk(r). (72)

If we derive with respect to time the relation dpr(t) = a(t) · fk(r) we obtain the rate of variation of dpr in time
which, dimensionally, is a speed, and is named recession velocity vr:

ddpr(t)

dt
≡ vr(t) = ȧ(t) fk(r) =

ȧ(t)

a(t)
dpr(t) ≡ H(t) dpr(t) (73)

vr(t) = H(t) dpr(t) (74)

From what we saw above, when we made the changes of coordinate r = sinχ, r = χ, r = sinhχ:

fk(r) =

 arcsin r ' r + r3/6 + · · · (k = +1)
r (k = 0)
arcsinhr ' r − r3/6 + · · · (k = −1)

 ' r + k r3/6 + · · · (75)

Actually, dpr(t) cannot be directly measured. Its relation with dpr(t0) (t = t0 corrisponds to today) comes from
the fact that

dpr(t)

a(t)
=
dpr(t0)

a(t0)
= fk(r) since r = const in time

dpr(t) =
a(t)

a0
dpr(t0) (a0 = a(t0) )

So dpr(t) depends on time through a(t). The quantity fk(r), or also a0fk(r), time-invariant, is named co-moving
distance (it corresponds to the proper distance today).

This is Hubble's law, and the quantity H(t) = ȧ(t)/a(t) is named Hubble parameter. If we write this
relation for the present time t0 we get vr(t0) = H0 dpr(t0), where H0 ≡ H(t0) is the Hubble constant.
The uncertainty on its value is parametrized by writing H0 = 100h kms−1Mpc−1, with 0.5 ≤ h ≤ 1.0. H0

has dimension time−1, and approximately 1/H0 ' 3 · 1017h−1 s. After decades of disputes, the value of H0

seems today quite well de�ned; the value given by the devoted Key Program of the Hubble Space Telescope
is H0 = 72 ± 8 kms−1Mpc−1, while the analysis of the cosmic microwave background (CMB) gives H0 =
70 ± 2 kms−1Mpc−1 (WMAP9) and H0 = 67 ± 1.5 kms−1Mpc−1 (Planck).
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2 THE ROBERTSON-WALKER METRIC 2.5 Conformal time - Redshift

An important point has to be made on Hubble's law. Keeping H0 �xed, if dpr increases, vr may become greater
than the speed of light. The proper distance correspondig to vr = c is named Hubble radius, RH , which is
then de�ned by the relation

RH(t) ≡ c

H(t)
(76)

and, like H, depends on time.

The fact that vr > c for dpr > RH , can create some confusion, but this is not in contrast with Special Relativity
because, when referred to co-moving observers, the velocity of any object is, locally, always less than c. No
information travels with v > c. The distance between observers, the space interposed between them, grows
more rapidly than c, but this does not correspond to a transmission of information. In addition, to evaluate
the velocity of an object relatively to an observer, we must move the two velocity vectors (of the object and of
the observer) to the same locationt and make a di�erence; in Euclidean space this implies a parallel transport,
but in a curved space the result depends on the path followed. Therefore, in a curved space (or space-time) the
relative velocity of two objects, not located in the same position, is ambiguous and meaningless.

In addition to Hubble's parameter, which depends on the time derivative of the scale factor, we de�ne also the
so-called deceleration parameter q, related to ä, always positive in a universe without cosmological constant,
but begative when expansion accelerates. By de�nition

q(t) ≡ − ä(t)a(t)

ȧ(t)2
, (77)

with value q0 for t = t0 (at the present time). The two parameters H0 and q0 are useful for a series expansion
of a(t) around t = t0:

a(t) = a(t0) + ȧ(t0)(t− t0) +
1

2
ä(t0)(t− t0)2 + . . . = a(t0)

[
1 +H0(t− t0)− 1

2
q0H

2
0 (t− t0)2 + . . .

]
(78)

2.5 Conformal time - Redshift

We wrote R&W metric as

ds2 = c2dt2 − a2(t)
[
dχ2 + S2

k(χ)dΩ2
]

with Sk(χ) =


sinχ k = +1

χ k = 0

sinhχ k = −1

In this case we use the so-called syncronous gauge. But sometimes it is useful to factorize completely the scale
factor. To do that we de�ne the conformal time η in such a way that dη = cdt/a(t), and the metric can be
written as (conformal gauge):

ds2 = a2(η)
[
dη2 −

(
dχ2 + S2

k(χ)dΩ2
)]

(79)

If a photon travels toward us radially, with θ = φ = const, since ds2 = 0, we have

a2(η)[dη2 − dχ2] = 0 (80)

that is dη = ±dχ. This represents the light cone, with the rays inclined at 45◦. If η = 0 represents the beginning
of the universe, We see that there are values of χ such that no information has yet arrived from those points: we
say that there is a particle horizon (we will discuss better this point in next section). The equation of motion
of a photon traveling toward the observer (χ = 0) is η = η0 − χ with η0 = ”η today”.

dh
0

Particle horizon
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Two signals, emitted at times ηe and ηe + dηe from a co-moving source at χ = χe, will be received in χ = 0 at
times η0 and η0 + dη0.

In conformal gauge the motion of photons is always inclined at 45◦, so dηe ≡ dη0 and

cdte
a(te)

=
cdt0
a(t0)

If dte is the period of an electromagnetic wave with frequency νe = 1/dte, the observed frequency ν0 = 1/dt0 is
related to νe by νea(te) = ν0a(t0) = ν0a0, that is:

νe
ν0

=
a0

a(te)
→ λe

λ0
=
a(te)

a0
(81)

The wavelength undergoes a "dilation" equal to that of the scale factor. This e�ect is produced by the variation
of the scale factor due to the expansion, and not by the relative velocity between source and receiver; thus it is
improper to call it a Doppler e�ect. To illustrate this fact let us suppose that, in an ideal cosmological model,
a photon is emitted when a(t) is constant, then a phase of expansion from ae to a0 follows, and �nally there is
a new phase of a = cost = a0, during which the photon is received by an observer. Source and observer are at
rest with rescpect to the universe when the photon is emitted and received, so there is no Doppler e�ect, but
the cosmological redshift is present and λ0/λe = a0/ae!

The redshift z is de�ned as

z ≡ λ0 − λe
λe

=
λ0

λe
− 1 =

a0

a(te)
− 1 (82)

and
λ0

λe
= 1 + z =

a0

a(te)
⇒ a(t) =

a0

1− z
(83)

This relation is also useful to link the redshift (observable) to the scale factor.

The cosmological redshift is not due to a simple Doppler e�ect, but locally, to the �rst order in v/c, it can be
understood in this way. In fact, from the formula of the Doppler e�ect, we have:

v

c
=

∆λ

λ
=
λ0 − λe
λe

=
λ0

λe
− 1 =

a0 − a(te)

a(te)

but a(te) ' a0 +H0a0(te − t0) +O(∆t2) and so

v ' c −H0a0(te − t0)

a0 +H0a0(te − t0)
' cH0(t0 − te)

[
1 +H0(t0 − te)

]
' cH0(t0 − te) ' cH0∆t

But, if ds2 = 0 and dθ = dφ = 0, c2dt2 = a2dχ2 and c∆t = a0∆χ = dpr and so v = H0dpr which is just
Hubble's law. Then, working backward from this, we �nd the formula of the Doppler e�ect. Locally, therefore,
the cosmological redshift can be seen as a Doppler e�ect due to the di�erential motion between two nearby,
co-moving observers.

But we can also interpret it as a large-scale integrated Doppler e�ect, the sum of many di�erent e�ects on the
path of the photon from the source to us.

lem

ae

lobs

a0
l+dl l

photon path
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2 THE ROBERTSON-WALKER METRIC 2.6 Horizons

Consider the co-moving observers placed along the path the photon takes from its emission (a = ae) to its
arrival to us (a = a0). Consider two of these observers, separated by an in�nitesimal proper distance dl that the
photon travels in a time dt (dl = cdt), which move with relative velocity dv due to the expansion (dv = Hdl),
and who observe the photon, emitted with λ = λem, with wavelengths λand λ+dλ, respectively.If we remember
that H(t) = ȧ(t)/a(t), the local Doppler e�ect implies:

dλ

λ
= dz =

dv

c
=
Hdl

c
=
Hcdt

c
=

da

dt

1

a
dt =

da

a

By integrating this relation we get

∫ λ0

λe

dlnλ =

∫ a0

ae

dln a → ln
λ0

λe
= ln

a0

ae
→ λ0 = λe

a0

ae
= λe(1 + z)

We can understand the cosmological redshift simply as a global e�ect due to the di�erent relative speeds of
the co-moving observers placed along the path of the photon coming to us. There is no need to think of a
"stretching e�ect" of the wavelength of the photon due to the expansion of the space!

2.6 Horizons

The di�culty in de�ning the global topology of the universe resides also in a limit to observations, which is not
merely instrumental, but physical. One question we can ask is: Is there a maximum distance from which I got
so far information? As we have repeatedly emphasized, the observational evidence suggests that the universe
had an origin in time (and most of the theoretical models support this evidence).

We have seen that a luminous signal, emitted at the co-moving coordinate r = rH at t = 0 arrives at the
observer (r = 0) at time t according to the relation∫ t

0

cdt′

a(t′)
=

∫ rH

0

dr√
1− kr2

(84)

According to the de�nition of proper distance we have∫ t

0

cdt′

a(t′)
=

∫ rH

0

dr√
1− kr2

= fk(rH) ≡ dpr(t, rH)

a(t)
(85)

The quantity

dH(t) ≡ dpr(t, rH) = a(t)

∫ t

0

cdt′

a(t′)
(86)

represents the maximum proper distance from which, at time t, we received light signals. If dH(t) is �nite, there
is a part of the universe from which we have not yet received a light signals and there is a so-called particle
horizon (PH ). The fact that dH(t) is �nite depends on the behavior of a(t). We will see that, for reasonable
cosmological models, dH ∝ t and is therefore �nite. For cosmological models without singularity (such as the
Steady State), the lower limit of integration should be placed not to 0 but to −∞.

If instead we look forward, we can ask: From what distance we may in the future receive signals that start
today? The answer is obtained by integrating between t and ∞(or t = tmax if the universe recollapses) instead
of between 0 and t.

dE(t) ≡ a(t)

∫ ∞
t

cdt′
′

a(t′)
(87)

If the integral diverges we have just to be patient enough to see any event, otherwise there are distances from
which we will never receive information. In this case, there is an event horizon (EH ). For this to happen it
is necessary that a(t) grows faster than t. For example, if a(t) ∝ eHt, with H = const, we have:

dE(t) = eHt ·
∫ ∞
t

cdt′

eHt′
= c eHt

[
− 1

H
e−Ht

]∞
t

= c eHt · e
−Ht

H
=

c

H
= const (88)

as in models dominated by a cosmological constant and in the Steady State model. But while dE = const, the
distances of galaxies grow on their own as a(t) ∝ eHt and then, as time goes on, they "go out" from dE : do we

47



2.7 Milne's model 2 THE ROBERTSON-WALKER METRIC

expect a lonely destiny in this cosmological model? Not exactly, since galaxies going beyond EH are always
visible, but with a story, as seen by us, more and more slowed, and with photons increasingly reddened. In fact,
from galaxies at the edge we will receive photons at t → ∞,when a(t) → ∞ and then with a redshift z → ∞
(λoss →∞).

At �rst glance it may seem strange that in an expanding universe, initially very "small" compared to today,
there is a particle horizon. The cause of this resides in the fact that the rate of expansion de�ned by the recession
velocity vr(t) can be, and in some cases is, much larger than c (see the above). This does not violate Special
Relativity because the recession velocity does not correspond to a transmission of information, but measures
only how the space between co-moving observers increases.

Because of this expansion, which in the early stages of the Big Bang occurs with vr � c, a photon emitted
towards us in the early stages of the universe initially moves away from us because the space to cover increases,
per unit time, faster than the speed of the photon; this may �nally come closer to us only when the velocity of
the expansion becomes smaller than c.

x

b

b

b

xx

x

b

Let us return brie�y to the growth of the mutual distances between co-moving observers. It is usual to express
this fact by saying that the space "expands", but one should not think that expanding space carries with it the
galaxies, such as a cake that, brewing, remove the candies from each other. Immediately after the Big Bang,
the elementary particles present in the early universe (and which, later, formed galaxies) found themselves in
a state of mutual separation (for the moment we must take this as an initial condition of the motion, but the
mechanism may be similar to that producing in�ation). The evolution of this mutual distancing, described by
the scale factor a(t), results from the application of Einstein's equations. This mutual separation of objects can
also be given a description in terms of expansion of the cosmic substrate, but it is more correct and safe to think
that the objects, given the initial conditions, move under the e�ect of the gravitational interaction (in this we
include also the cosmological constant) with all sources of mass-energy of the universe, and not because they
are dragged or "elongated" and "stretched" by a mysterious expanding space (which, among the other, would
require to introduce a new type of interaction producing this "stretching").

At the conclusion of these observations on the geometry of the universe, we come to the conclusion that physical
limitations prevent us from accessing to the entire universe: we know only a part, and extrapolate our "local"
knowledge to the whole. Recall also that the universe, by de�nition, is the set of all existing objects and
physical concepts (such as stars, galaxies, atoms, space and time). There is not a physical space �outside� of
a �nite universe. In this sense, certain "naive" representations of the universe like a balloon (2D) that swells
in space (3D) can be confusing. In addition, if the universe is spatially in�nite, it was that even in the past,
when a(t) → 0. Finally, there is not a point from which we can say that everything expanded. Each point is
equivalent, and the Big Bang happened at any point: if, at any point, we come back in time, the density and
the local temperature increase and tend to in�nity when t→ 0.

2.7 Milne's model

We de�ned "cosmic time" in a way that seems obvious but, as we shall see, some consequencies of this assumption
(together with the �nite value of the speed of light) are far less obvious. We will show this by means of the
cosmological model of E. A. Milne (1932), a most ingenious und simple model universe, which nicely illustrates
many of the features shared by the more complicated models. And, though it wiIl not be immediately apparent,
Milne's model satis�es the Cosmological Principle. It does not use General Relativity, but only Special Relativity.

48



2 THE ROBERTSON-WALKER METRIC 2.7 Milne's model

Furthermore, while this model is not satisfactory and in some way unphysical, it helps us to understand some
basic elements of the cosmic expansion.

Consider an empty Minkowski space-time. Totally neglecting gravity, Milne considered an in�nite number of
test particles (no mass, no volume) shot out (for reasons unknown), in all directions and with all possibie speeds,
at a unique creation event C. Let us look at this situation in some particular inertial frame S, and suppose C
occurred al its origin O at t = 0. All the particles, being free, will move uniformly and radially away from O,
with all possible speeds u < c. The observer S, at rest with respect to O, sees a ball of dust particles whose
unattained boundary expands at the speed of light.

At �rst glance it seems that this model does not satisfy the Cosmological Principle, because O is a privileged
point. But the "boundary" of the universe behaves, kinematically, as a spherical front of light emitted in O at
timet = 0 (creation event, C). And each particle, having been present in C, consider itself at the center of the
wavefront.

O

r1

r2

P1

P2

u1

u2

r1 - r2

The motion is radial from O, with r = u · t for each particle. Then u = r/t = H · r with H = 1/t and Hubble's
law holds. But Hubble's law holds for every single moving �grain�: in fact, for particle 2, as for any other,
(r1 = u1t, r2 = u2t) r1 − r2 = (u1 − u2)t ⇒ d = v · t. Each particie will consider the whole motion pattern
to be radially away from itself, and of course uniform.

There remains the question whether we can have an isotropic density distribution around each particle. To
study this, let τ denote the proper time elapsed at each particle since creation. Then n0, the proper particle
density measured at any given particle P , is of the form

n0 =
N

τ3
(N = const) (89)

because a small sphere around P , containing a �xed number of particles, expands with the constant, relative
velocity δu of the farthest particles, and thus has radius δu · τ and volume 4

3πδu
3τ3.

For the particle P at a distance r from the origin of S in O it is:

τ =
t

γ(u)
u =

r

t
γ(u) =

1√
1− u2/c2

(90)

and the number density of particles in P , relative to O, is (recall that volumes are contracted by a factor1/γ in
the direction of motion)

n =
γ(u) ·N
τ3

=
γ4N

t3
=

Nt

(t2 − r2/c2)2
(91)

Notice that (91) near the origin O (for r → 0) gives n ' N/t3. It is clear that, conversely, a density de�ned by
(91) relative to the origin particle in O reduces to (89) at each particle, and thus to (91) relative to any other
particle taken as origin. This is therefore the density distribution we must require to hold around any particle.

Observe how this density approaches in�nity at the �edge� r = ct; this is due to the fact that when we look at
points near the edge, we look back to times near the creation, when the density tended tomin�nity. Note also
that τ is the cosmic time in Milne's model, linked to the local number density via Eq.(89).

Although Milne's model satis�es the cosmological principle, is not satisfactory since it accepts that there is an
"outside" of the universe of galaxies (over the edge r = ct) which can, however, interact with these (for example
by sending light signals that can be seen). The expansion of dust grains occurs in space, while in a satisfactory
cosmological model, without an "outside", the space between galaxies expands.

Consider now Milne's model from another point of view. We take now cosmic time as time coordinate and
consider co-moving coordinates (e.g., u, θ, φ) with respect to the inertial frame S. The speed u is a co-moving
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coordinate since it doesn't change in time and is linked to the proper distance r. The metric in spherical polar
coordinates will be, relative to S,

ds2 = c2dt2 −
[
dr2 + r2(dθ2 + sin2θdφ2)

]
(92)

and suppose the origin r = t = 0 coincides with Milne's creation-event C. We move now to cosmic time
τ , (see Eq. 90): τ = t · (1 − u2/c2)

1
2 and de�ne a new co-moving coordinate r̃, more suitable than u, as

cr̃ = u/(1− u2/c2)
1
2 . With the help of the relation r̃ = sinhψ (remember that cosh2ψ− sinh2ψ = 1) we obtain:

r = ut =
uτ√

1− u2/c2
= cτ r̃ = cτsinhψ

sinhψ =
u/c√

1− u2/c2
→ sinh2ψ =

u2/c2

1− u2/c2
= cosh2ψ − 1

cosh2ψ =
1− u2/c2 + u2/c2

1− u2/c2
=

1

1− u2/c2
→ coshψ =

1√
1− u2/c2

This allows us to write t = τcoshψ. Note also that cosh2ψ = 1 + sinh2ψ = 1 + r̃2, and, from r̃ = sinhψ, by
di�erentiation, we have dr̃ = coshψ dψ, that is dψ = dr̃/

√
1 + r̃2.

If now, in (92), we go from r, t to r̃, τ :

ds2 = c2
[
τsinhψdψ + coshψdτ

]2 − [cτcoshψdψ + csinhψdτ
]2 − c2τ2sinh2ψdΩ2

= c2dτ2 − c2τ2
[
dψ2 + r̃2dΩ2

]
= c2dτ2 + c2τ2

[
dr̃2

1 + r̃2
+ r̃2dΩ2

]
This corresponds to a R&W metric with k = −1 and with a(τ) = cτ (remember that time t in R&W metric is
the proper time here named τ)!

The de�nition of cosmic time as the proper time of co-moving observers, the �nite value of the speed of light,
and a negligible (actually vanishing) mass density produce a negatively curved space section (k = −1), but the
space-time curvature is zero, since we just changed reference frame from the �at Minkowski metric of Eq. 92.
If we gradually increase mass density, k becomes �rst equal to zero and then equal to +1.

Moreover, in this model (and only in this model!) based solely on Special Relativity, it is correct to apply the
the relativistic Doppler e�ect formula linking redshifts and recession velocity:

1 + z =

√
1 + (v/c)√
1− (v/c)

(93)
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3 Cosmological Models

3.1 Friedmann equations

We are now ready to derive the equations ruling the behaviour of the scale factor a(t) in a universe described
by a R&W metric, and by the energy-momentum tensor of a perfect �uid.

We start with the metric tensor; coordinates are (x0, x1, x2, x3) = (ct, r, θ, φ):

gαβ =


1 0 0 0

0 − a2

1−kr2 0 0

0 0 −a2r2 0
0 0 0 −a2r2sin2θ

 4g = −a
6r4sin2θ

1− kr2
gαβ =


1 0 0 0

0 − 1−kr2

a2 0 0
0 0 − 1

a2r2 0
0 0 0 − 1

a2r2sin2θ


We than evaluate the a�ne connections. Most of them vanish; those di�erent from zero are

Γ0
ij = − ȧ

a

gij
c

Γi0j =
ȧ

a

δij
c

where i, j = 1, 2, 3. Connections like Γijk are the same already estimated when we derived R&W metric (the

−1 factors present in gij and gij are simpli�ed): just substitute, in place of the unknown function f(r), the
expression 1

1−kr2 ; for instance: Γ1
11 = kr

1−kr2 .

Then we move from Γαβγ to Ricci tensor Rαβ = Rγαγβ ; with a bit of patience, the components di�erent from
zero are:

R00 = − 3

c2
ä

a

Rij = −gij
c2

[
ä

a
+

2ȧ2

a2
+

2kc2

a2

]
(3 components 6= 0 : R11, R22, R33)

and the Ricci scalar is:

R = gαβRαβ = − 6

c2

[
ä

a
+
ȧ2

a2
+
kc2

a2

]
We calculate the components of the stress-energy tensor Tαβ = (p+ ρc2)uαuβ − pgαβ
In the co-moving frame uα = (1, 0, 0, 0); you can easily check that uα = gαβu

β = gα0u
0 = gα0 = (1, 0, 0, 0). So

T00 = (p+ ρc2)− p = ρc2 e Tij = −pgij

So we can �nally write

Rαβ −
1

2
Rgαβ =

8πG

c4
Tαβ + Λgαβ

The 00 component gives

ȧ2 + kc2 =
8πG

3
ρa2 +

1

3
a2c2Λ (F1) (94)

From any of the three components (11, 22, 33) we obtain:

ä+
1

2a

(
ȧ2 + kc2

)
= −4πG

c2
p a+

1

2
Λc2a

and, by using (F1):

ä = −4πG

3

(
ρ+

3p

c2
)
a+

1

3
Λc2a (F2) (95)

Equations (F1) and (F2) aren't really independent: if we make explicit ρ from (F1) and derive with respect to
time we get:

ρ̇ =
3ȧ

4πGa2

[
ä− 1

a

(
ȧ2 + kc2

)]
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By using (F2) for ä and reusing (F1) for the term in parentheses, we get:

ρ̇+ 3
ȧ

a

(
ρ+

p

c2
)

= 0 (F3) (96)

We have already seen a similar expression (Eq. 40) when we were speaking about the energy-momentum tensor
(we used the edge L of a cubic cell instead of the scale factor a). It is just a way to express energy and
momentum conservation through the First Principle of Thermodynamics, and is linked to the four-divergence
of Tαβ : Tαβ ;β = 0. The above relation can be again derived from dQ = dU + dL = 0, which represent an
adiabatic expansion:

d

dt

(
ρc2a3

)
= −p d

dt

(
a3
)

→ d
(
ρc2a3

)
+ p d

(
a3
)

= 0 (97)

3.2 The density of the Universe

One of the key parameters in Friedmann's equations is the density of the Universe; we will try to estimate its
value. First of all we de�ne the so-called critical density ρcr:

ρcr =
3H2

8πG
(98)

which, like the Hubble parameter H, is a function of time. Its present value, from H0 = h ·100 kms−1Mpc−1 =
h · 3.241 · 10−18s−1= (h/3.086 · 1017) s−1 is ρcr ' 1.879 · 10−29h2g cm−3.

Usually the density ρ is referred to ρcr by means of the density parameter Ω :

Ω ≡ ρ

ρcr

Since there are many contributions to the overall density of the Universe, there is a particular value of Ω for
each of them. Let's see now these di�erent contributions.

3.2.1 Luminous Matter

The density ρlum of luminous matter, basically stars, can be derived from the luminosity density ρL of the
Universe (ρL ∼ 2 · 108h L�Mpc−3), by assuming a mass-to-light ratio 〈M/L〉 ∼ 1M�/L�. We obtain Ωlum ≡
ρlum/ρcr:

Ωlumh ' 0.002 − 0.006

3.2.2 Galaxies

The presence of massive, dark halos around the luminous part of galaxies, revealed by �at rotation curves,
increases the mass-to-light ratio to a value 〈M/L〉 ∼ 30hM�/L�

16. This gives an estimate of Ωgal which is an
order of magnitude larger than Ωlum:

Ωgal ≥ 0.03 − 0.05

3.2.3 Galaxy clusters

From the virial theorem applied to groups and clusters of galaxies (Zwicky, 1933), as well as from mass estimates
by means of gravitational lensing or from the X-ray emission of the intra-cluster medium (ICM ), we obtain
〈M/L〉 ∼ 100− 400h M�/L� , i. e. a value about 10 times larger than that for single galaxies. So we get the
estimate

Ωcl ∼ 0.1− 0.3

16Recall that, for a galaxy or a galaxy cluster with mass M , M ∼ V 2R ∼ V 2θD, where V is the velocity dispersion , D is the
distance, θ the subtended angle, and R is the size of the system. The mean recession velocity of the system 〈v〉 is, according to
Hubble's law, 〈v〉 = H0D ∝ hD, that is D ∝ h−1. So mass scales as M ∝ h−1. The measured �ux is F ' L/D2 and so L ∝ D2 ∝
h−2. It turns out that M/L ∝ h−1/h−2 ∝ h. The luminosity density will then scale as L/Volume ∝ L/length3 ∝ h−2/h−3 ∝ h.
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3 COSMOLOGICAL MODELS 3.2 The density of the Universe

3.2.4 Primordial (Big Bang) Nucleosynthesis

TheHot Big Bang involves the synthesis (called primordial, or Big Bang, nucleosynthesis, BBN ) of 3He, 4He,D, 7Li
when the universe was about three minutes old. As we shall see, from theoretical calculations, compared with
the observations, we have that the density of baryons (in astrophysics this term is referred to protons, neutrons,
nuclei of helium, etc., i.e. the ordinary matter we and thing around us are made of) gives a contribution

Ωbh
2 ' 0.005− 0.024

with a preference for the higher values of this range, as suggested by observations of the Cosmic Microwave
Background (CMB).

3.2.5 The Baryon Catastrophe

The hot, di�used plasma (ICM ) present in the space among galaxies of galaxy clusters, detected by means of
its X-ray emission, contributes by about 6h−3/2% to the total mass of the cluster. Stars, in galaxies, contribute
with a further 2%.

From numerical simulations, the ratio between the mass Mb in baryons and total mass Mtot of a cluster is
representative of the relation, on a cosmic scale, between the density of baryons and the total matter density,
or between the corresponding density parameters Ωb and ΩM . By taking into account that some of the baryons
may be dark, we get (by assuming Ωbh

2 ' 0.02)

Ωb/ΩM ≥ 0.06h−3/2 + 0.02 → ΩM ≤
0.02h−2

0.06h−3/2 + 0.02
≤ 0.33

if we use h ' 0.7. The term baryon catastrophe dates back to the early nineties, when it was believed that
ΩM ' 1; the catastrophe was represented by the impossibility to have a value of ΩM close to one.

3.2.6 Radiation and (massless) neutrinos

The Universe is also �lled by the cosmic microwave radiation (Cosmic Microwave Background, CMB), discovered
in 1965; it has a thermal, black body spectrum with a temperature, today, Tγ ' 2.73K; this corresponds to a
mass-energy density

ργ =
aT 4

γ

c2
' 4.7 · 10−34g/cm3 ⇒ Ωγ ' 2.5 · 10−5h−2

There is also a contribution from a cosmic background of neutrinos. If they have no or negligible mass, they
behave like photons, i.e. as relativistic matter, providing

ρν ∼ Nν · 10−34g/cm3

where Nν is the number of lepton generations; if Nν = 3, then Ων ' 1.7 · 10−5. The total contribution ΩR in
the form of relativistic matter, i.e. photons and (massless) neutrinos is then

ΩRh
2 = (Ωγ + Ων)h2 ' 4.2 · 10−5

If neutrinos, as we shall see later, have a mass di�erent from zero, their contribution may be larger than this,
but then it should be counted among the non-relativistic matter.

We see that, at present, the dominant contribution to the density of mass-energy is provided by matter, so
ρ ∼ ρM . As this matter does not possess relativistic motions, pressure p0 = p(t0) will be negligible.
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3.2.7 Baryonic and non-baryonic dark matter

The following Figure summarizes the conditions described above for the various components of matter in the
Universe.

If we take H0 ∼ 70 km · s−1 ·Mpc−1 we see that, compared to the luminous matter, the total contribution
by baryonic matter is larger by at least an order of magnitude. The dynamics of clusters of galaxies and the
baryonic catastrophe further increase by another order of magnitude the density.

This shows that in the Universe the vast majority of matter is dark, i.e. not luminous. Moreover, there are
dark baryons, but the main contribution to the density of the Universe is due to some form of non-baryonic
dark matter.

3.2.8 The cosmological constant

In the last ten years the observations of SNIa up to z ∼ 1, and the observed properties of the CMB, both
by satellites (COBE, WMAP, Planck) and by stratospheric balloons, have suggested that the geometry of the
space part (at t = const.) of the R&W metric is consistent with an Euclidean metric (k = 0). This is due to
the contribution of a cosmological constant Λ di�erent from zero.

It is useful to include the cosmological constant into the energy-momentum tensor by the de�nition of an e�ective
energy-momentum tensor:

T̃αβ ≡ Tαβ +
Λc4

8πG
gαβ =

(
p̃+ ρ̃c2

)
uαuβ − p̃gαβ (99)

where e�ective pressure p̃ and e�ective density ρ̃ are de�ned as

p̃ = p− Λc4

8πG
and ρ̃ = ρ+

Λc2

8πG
= ρ+ ρΛ (100)

So Λ can be associated to a density ρΛ = Λc2/8πG and to a density parameter

ΩΛ =
ρΛ

ρcr
=

Λc2

8πG
· 8πG

3H2
=

Λc2

3H2
(101)

The following Figure shows the observational constraints on the values of ΩΛ and ΩM derived from distant SNIA,
from the CMB and from galaxy clusters. The meaning of the various curves will be clari�ed later [Adapted
from: Knop et al., 2003, The Astrophysical Journal (ApJ ) 598, 102].
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3 COSMOLOGICAL MODELS 3.3 Peculiar motions

As one can see, the con�dence regions related to SNIA and to the CMB intersect almost at right angles, allowing
a good determination of ΩΛ ' 0.7 and ΩM ' 0.3.

3.3 Peculiar motions

Before we go on with the study of cosmological models, we examine the so-called peculiar velocites by using
the already computed a�ne connections. The peculiar velocity uα (4-velocity) is the velocity of a particle with
respect to the local co-moving frame. The equation of the geodesic motion is, as usual,

duα

ds
+ Γαβγu

βuγ = 0 ( remember that uα ≡ dxα

ds
)

For the α = 0 component:
du0

ds
+ Γ0

βγu
βuγ = 0

For the R&W metric (see above) the only non-vanishing component of Γ0
βγ is Γ0

ij = − ȧa
gij
c , (i, j = 1, 2, 3), and

using the fact that 1 = gαβu
αuβ = (u0)2 + giju

iuj = (u0)2 − |u|2, with u the space part of the 4-vector, the
geodesic equation becomes

du0

ds
= +

ȧ

a

gij
c
uiuj = − ȧ

a

|u|2

c

If we di�erentiate 1 = (u0)2 − |u|2 we have u0du0 = |u|d|u|, and since u0 = dxo

ds = c dt
ds we get

|u|
u0

d|u|
ds

= − ȧ
a

|u|2

c
⇒ d|u|

dt
= − ȧ

a
|u| ⇒ |u̇|

|u|
= − ȧ

a
(102)

This implies that |u| ∝ 1/a, and recalling thet pα = m0u
α, |p| ∝ 1/a: the magnitude of the 3-momentum of a

freely-propagating particle �red shifts� as a−1.

We see again that the co-moving frame is the most natural one. In fact, in an expanding universe the peculiar
velocity (3-velocity) decreases with increasing expansion: the particles tend to move at rest with respect to
co-moving observers. We can understand this just thinking that if a particle is moving away from a point at a
certain speed it will cross the positons of observers, in motion with respect to the original one, for which the
peculiar velocity of the particle will be smaller:
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D = vp ·∆t v′0 = H0D = H0vp∆t v′p = vp − v′0

⇒ ∆vp = v′p − vp = −v′0 = −H0vp∆t ⇒ 1

vp

dvp
dt

= −H0 = − ȧ0

a0

Since the temperature of an ideal gas is proportional to the square of the mean velocitiy of particles: Tgas ∝
|u|2 ∝ 1/a2 (Trad ∝ 1/a), consistent with the adiabatic expansion of a perfect gas: pV γ = const ⇒
TV γ−1 = const γ = 5/3, V ∝ a3 ⇒ Ta2 = const.

3.4 The equation of state

Friedmann equations contain, in addition to density and cosmological constant, another relevant parameter,
the pressure p of the cosmic �uid. In cosmology the pressure is linked to the density by means of a barotropic
equation of state such as p = wρc2, with w = const, 0 ≤ w ≤ 1.

As we have seen, the case w = 0 corresponds to non relativistic matter for which, even if p = w(T )ρc2 is
non-zero, p� ρc2 (note that pressure is always associated to density in Friedmann equations) , and then w ' 0.
For a non-degenerate, ultrarelativistic �uid in thermal equilibrium the equation of state is p = 1

3ρc
2 with , also

valid for a photon gas.

The quantity w is also linked to the adiabatic speed of sound (at constant entropy):

cs =

(
∂p

∂ρ

)1/2

S

⇒ cs = c
√
w

If w = 0, then cs = 0; if w = 1/3 then cs = c/
√

3. We have already seen that, with this equation of state,

ρwV
1+w = const, but V ∝ a3 → ρwa

3(1+w) = const = ρ0wa
3(1+w)
0 (the su�x 0 implies t = t0):

ρw = ρ0w(
a0

a
)3(1+w) (103)

• w = 0 → ρMa
3 = ρ0Ma

3
0; a0

a = 1 + z ⇒ ρM = ρ0M (1 + z)3

• w = 1/3 → ρRa
4 = ρ0Ra

4
0 ⇒ ρR = ρ0R(1 + z)4

Regarding the behavior of the cosmological constant, we refer to the e�ectitive quantities de�ned in Eq. 100.
If we imagine that the pressure and density of matter and radiation are negligible, we obtain

p̃ ≡ pΛ = − Λc4

8πG
e ρ̃ ≡ ρΛ = +

Λc2

8πG

which gives

pΛ = −ρΛc
2 =⇒ wΛ = −1

Thus we see that the cosmological constant is characterized by an equation of state with w = wΛ = −1. A
similar case, as we shall see, is present during the phase of in�ation that occurs in the early Universe. If w = −1,
Eq. 103 tells that ρw (in this case ρΛ) is constant in time: ρΛ = const.

Eq. 103 can be derived also from (F3) in the form given by Eq. 97

d
(
ρc2a3

)
+ p d

(
a3
)

= 0

In fact, by writing p = wρc2,

d
(
ρc2a3

)
+ wρc2 d

(
a3
)

= 0

a3d(ρc2) + ρc2(1 + w) · 3a2da = 0

dρ

ρ
= −3(1 + w)

da

a
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which, by integration with w = cost, gives∫ ρ0

ρ

d ln ρ = −3(1 + w)

∫ a0

a

d ln a

and again

ρw = ρ0w(
a0

a
)3(1+w)

If w is not constant in time (as occurs in some theories that, in place of the cosmological constant, consider a
scalar �eld variable in time to explain the origin of so-called dark energy) tje factor 1 +w cannot be taken out
of the above integral and the formal solution is

ρ(a) = ρ0 exp

{
3

∫ a0

a

[1 + w(a)] d ln a

}
If we want to use the redshift z, remember that a = a0/(1 + z), so da = −a0/(1 + z)2dz and

ρ(z) = ρ0 exp

{
3

∫ 0

z

[1 + w(z)]
−a0

(1 + z)2

1 + z

a0
dz

}

ρ(z) = ρ0 exp

{
3

∫ z

0

[1 + w(z)]

1 + z
dz

}
(104)

3.5 A useful relation among cosmological parameters

We start from (F1) and divide it by a2:

ȧ2 + kc2 =
8πG

3
ρa2 +

1

3
a2c2Λ / · 1

a2

ȧ2

a2
+
kc2

a2
=

8πG

3
ρ
H2

H2
+

1

3
c2Λ

H2

H2

H2 +
kc2

a2
= H2 · ρ

ρcr
+H2 · c

2Λ

3H2

kc2

a2
= H2

[
ρ

ρcr
+
c2Λ

3H2
− 1

]
Remember that Λc2/3H2 = ΩΛ, ρ = ρM + ρR and then

kc2

a2
= H2 [ΩM + ΩR + ΩΛ − 1]

We name Ω ≡ ΩM + ΩR + ΩΛ, and get

kc2

a2
= H2 [Ω− 1] (105)

This relation holds at any time; in particular, today (at t = t0, with H = H0 and Ω = Ω0) we have

kc2

a2
0

= H2
0 [Ω0 − 1] (106)

This relation shows the link between the density parameter Ω0 and the curvature k of the space section at
constant cosmic time:

• Ω0 > 1 ⇒ k = +1

• Ω0 = 1 ⇒ k = 0

• Ω0 < 1 ⇒ k = −1

Eq. 106 express also (for k 6= 0) the present value of the scale factor:

a0 =
c

H0

√
k

Ω0 − 1
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3.6 The Hubble parameter

Let's consider again (F1), divide it by a2
0, and rimember that kc2/a2

0 = H2
0 [Ω0 − 1], Ω0 ≡

∑
w Ω0w, Ω0w ≡

ρ0w/ρ0cr; we include the cosmological constant into ρ through the relation ρΛ = Λc2/8πG:

ȧ2 + kc2 =
8πG

3
ρa2 / · 1

a2
0

ȧ2

a2
0

− 8πG

3H2
0

H2
0 ρ

(
a

a0

)2

= −kc
2

a2
0

where ρ ≡
∑
w ρw =

∑
w ρ0w(a0

a )3(1+w) = ρ0 cr

∑
w Ω0w(a0

a )3(1+w). Then

ȧ2

a2
0

−H2
0

∑
w

Ω0w(
a0

a
)3(1+w)

(
a

a0

)2

= −H2
0

[∑
w

Ω0w − 1

]

ȧ2

a2
0

= H2
0

[∑
w

Ω0w(
a0

a
)1+3w +

(
1−

∑
w

Ω0w

)]
(107)

If we remember that H(t) ≡ ȧ/a0, and we multiply by (a0/a)2, the previous relation gives

H2(t) = H2
0

(
a0

a

)2[∑
w

Ω0w

(
a0

a

)1+3w

+ (1−
∑
w

Ω0w)

]
(108)

Since a0/a = 1 + z, this gives the dependence on redshift H(z)

H2(z) = H2
0 (1 + z)2

[∑
w

Ω0w(1 + z)1+3w + (1−
∑
w

Ω0w)

]
(109)

Making explicit the di�erent components we �nally get

H2(z) = H2
0 (1 + z)2

[
ΩR(1 + z)2 + ΩM (1 + z) + ΩΛ(1 + z)−2 + 1− (ΩR + ΩM + ΩΛ)

]
(110)

3.7 The three eras of the Universe

In Eq. 110, describing the evolution of H(z), and also the evolution of the scale factor a, there are three di�erent
contributions depending on ΩR, ΩM , ΩΛ. These contributions evolve di�erently in redshift.

At high z the term containing ΩΛ, as well as the term 1− (ΩR + ΩM + ΩΛ) which is on the order of unity, are
negligible if compared to the terms containing ΩR and ΩM . Moreover, the term depending on ΩR grows more
rapidly and, even if today ΩR � ΩM , relativistic matter dominates the dynamics of the Universe before the
epoch of equivalence (or matter/radiation equality), corresponding to

ΩR(1 + zeq)
2 = ΩM (1 + zeq)

1 + zeq =
ΩM
ΩR
' 23800 ΩMh

2 (111)

which, for ΩM ' 0.3 and h ' 0.7, gives zeq ' 3700. We have �rst, starting with the birth of the Universe, an
era during which the dynamics is dominated by relativistic matter. Then, after the equivalence, non-relativistic
matter dominates. This era lasts until the cosmological constant enters the game, that is when

ΩM (1 + z) = ΩΛ(1 + z)−2

i.e. at a redshift zΛ given by
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1 + zΛ =

(
ΩΛ

ΩM

) 1
3

(112)

which, for ΩΛ = 0.7 and ΩM = 0.3, gives zΛ = 0.33.

Summarizing, we have three phases (eras): a �rst era dynamically dominated by relativistic matter (radiation)
(radiation dominated - RD - era); a second phase dominated by non-relativistic matter (matter dominated -
MD - era); a third phase dominated by the cosmological constant (or by some form of dark energy) named
dark-energy dominated era or vacuum dominated (VD) era. During the RD era, as we shall see, an in�ationary
phase occurs, dynamically similar to the VD era.

3.8 Hubble time

Suppose that, at a time (for instance at t = t0), ȧ > 0 (expansion); Eq.(F2) tells us that if (ρ + 3p/c2) > 0
(i.e. if (1 + 3w)ρ > 0, w > −1/3) ä is always < 0, the graph of a(t) has the concavity facing downwards, and
a(t) must be zero at a certain instant, that we can take as t = 0. At t = 0 ρ and H diverge, and we have a
singularity, the so-called Big Bang.

We also see that a0/TH = ȧ0 ⇒ 1/TH = H0 e TH > t0 that is H0t0 ≤ 1: the inverse of H0 gives an
upper limit to the age of the Universe (TH is called Hubble time = 1/H0). This is no more true if the expansion
is dominated by the cosmological constant, as we shall see.

We also note that, if at any moment is ȧ < 0, the concavity of a(t) implies that in the future there will be an
unstoppable collapse: the Big Crunch. We �nally note that the e�ect of expansion is not due to the pressure,
which always acts in the direction to decelerate the expansion, if w > −1/3.

3.9 Evolution of the density parameter Ω

If we divide Eq. 105, referred to a generic time,

kc2

a2
= H2(Ω− 1)

by the corresponding Eq. 106, referred to time t = t0, we get

a2
0

a2
=
H2

H2
0

Ω− 1

Ω0 − 1
⇒ Ω− 1 = (Ω0 − 1)

H2
0a

2
0

H2a2
.

The time evolution of H (Eq. 108)gives:

Ω− 1 =
Ω0 − 1

1− Ω0 +
∑
w Ω0w(1 + z)1+3w

Making explicit the three components R, M, Λ:

Ω− 1 =
Ω0 − 1

ΩR(1 + z)2 + ΩM (1 + z) + ΩΛ(1 + z)−2 + 1− Ω0
(113)
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which gives the time evolution of Ω(z). We �rst see that, since the denominator of the right hand side is always
positive (see Eq. 110) the sign of Ω(z)− 1 does not change during the evolution. So if Ω0 > 1, Ω(z) is always
greater than one through cosmic history. Similarly if Ω0 < 1; if Ω0 = 1 it keeps that value at all times. This
e�ect is strictly linked to the fact that the curvaturek cannot change during cosmic evolution.

If we go back in time, for z → ∞, Ω − 1 → 0, i.e. Ω → 1: going back into the past, the Universe increasingly
resembles that with k = 0 and the e�ects of the curvature are negligible in the early stages of cosmic evolution.

The fact that Ω tends to diverge from 1 as time goes on, while today it seems to be very close to 1, requires
that in the distant past Ω was actually extremely close to 1, with considerable "�ne tuning" between density
and expansion rate. This is the so-called �atness problem, which is solved by the paradigm of in�ation. The
existence of a phase of in�ation, dominated by the energy density of a false vacuum that mimics the e�ects
of a cosmological constant, provides the mechanism through which Ω is so forced towards unity in the early
Universe, that it stays up to date very near to 1. To understand the reason for the cosmological constant forces
Ω to one, let's look at Eq. 113. Remember that a0/a = 1 + z, so that in the future, when a → ∞, z → −1.
Now let z → −1 in Eq. 113: the numerator of the left hand side diverges and Ω−1→ 0, i.e. Ω→ 1. Something
similar happened during in�ation.

3.10 Evolution of the deceleration parameter q(z)

The deceleration parameter, de�ned by Eq. 77, by using the de�nition of the Hubble parameter, can be written

q(t) ≡ − ä(t) a(t)

ȧ(t)2
= − ä(t) a(t)2

a(t) ȧ(t)2
= − ä(t)

a(t)H(t)2
(114)

We use again Eq. 107; time t0 corresponds to a generic reference time, not necessarily to the presen time. We
rewrite Eq. 107 as

ȧ2 = H2
0a

2
0

[∑
wi

Ω0wi(
a0

a
)1+3wi +

(
1−

∑
wi

Ω0wi

)]
(115)

and derive it with respect to time. We obtain

2ȧä = H2
0a

2
0

[∑
wi

Ω0wi (1 + 3wi) (
a0

a
)3wi · −a0ȧ

a2

]

ä = −H
2
0a

3
0

2a2

[∑
wi

Ω0wi (1 + 3wi) (
a0

a
)3wi

]
= −H

2
0a

3
0

a2

[
1

2

∑
wi

Ω0wi(
a0

a
)3wi +

3

2

∑
wi

wiΩ0wi(
a0

a
)3wi

]
(116)

We insert this in Eq. 114 and we have

q = − ä

aH2
=
H2

0a
3
0

H2a3

[
1

2

∑
wi

Ω0wi(
a0

a
)3wi +

3

2

∑
wi

wiΩ0wi(
a0

a
)3wi

]
.

If we now take t = t0 this relation simpli�es and we get

q0 =
1

2

∑
wi

Ω0wi +
3

2

∑
wi

wiΩ0wi . (117)

But, as we already said, time t0 is just a suitable reference time, and the above relation holds at any time
or redshift, provided we use the density parameters corresponding to that reference time. We put Ωtot(z) ≡∑
wi

Ωwi(z) and �nally get

q(z) =
1

2
Ωtot(z) +

3

2

∑
wi

wiΩwi(z). (118)

We apply now this formula to a particular Universe. We neglect ΩR (i.e. z � zeq), and assume k = 0. So
Ωtot(z) ≡ 1 at any time and ΩM (z) + ΩΛ(z) = 1. Eq. 118 gives

q(z) =
1

2
− 3

2
ΩΛ(z). (119)
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How do we estimate ΩΛ(z)? In our particular case Eq. 110 becomes

H2(z) = H2
0 (1 + z)2

[
ΩM (1 + z) + ΩΛ(1 + z)−2

]
= H2

0 (1 + z)3

[
ΩM +

ΩΛ

(1 + z)3

]
.

Now ΩΛ(z) = 1− ΩM (z) and, by de�nition,

ΩM (z) =
ρM (z)

ρcr(z)
=
ρ0M (1 + z)3

ρ0,cr · H2
/H2

0

, (120)

where we used the relation

ρcr ≡
3H2

8πG
=

3H2
0

8πG
· H

2

H2
0

= ρ0,cr ·
H2

H2
0

.

So Eq. 120 can be written

ΩM (z) = ΩM
(1 + z)3

(1 + z)3

[
ΩM + ΩΛ

(1+z)3

] (121)

and

ΩΛ(z) = 1− ΩM[
ΩM + ΩΛ

(1+z)3

] = 1− ΩM (1 + z)3

ΩM (1 + z)3 + ΩΛ
=

ΩΛ

ΩΛ + (1− ΩΛ)(1 + z)3
. (122)

Finally, Eq. 119 can be written

q(z) =
1

2
− 3

2

[
ΩΛ

ΩΛ + (1− ΩΛ)(1 + z)3

]
. (123)

We see that, for z � 1, q → 1/2, i.e. ä < 0, the expansion slows dows. For z = 0, since ΩΛ ∼ 0.7, q < 0, the
expansion is accelerated. Eq. 123 tells us that q = 0 for a particular value of z = z̃ given by

z̃ =

(
2ΩΛ

1− ΩΛ

)1/3

− 1 (124)

which, for ΩΛ = 0.7, gives z̃ = 0.67. We can compare this result with Eq. 112, another way to de�ne the
beginning of the era dominated by the cosmological constant (or dark energy).

3.11 Cosmological models

Friedmann equations (F1) and (F2)

ȧ2 + kc2 =
8πG

3
ρa2 +

1

3
a2c2Λ (F1)

ä = −4πG

3

(
ρ+

3p

c2
)
a+

1

3
Λc2a (F2)

allow a qualitative classi�cation of cosmological models with Λ 6= 0, for di�erent values of the curvature pa-
rameter k. We assume for simplicity that ρ ≡ ρM = %0M (a0/a)3, i.e. we are in the MD era (a more general
treatment leads to the same qualitative conclusions).

Let's �rst consider eq. (F2) and assume that ä = 0; we get (pressure is negligible in MD era)

1

3
Λc2a =

4πG

3

(
ρ+

3p

c2
)
a / · 3

c2a
(125)

Λ(a) =
4πG

c2
ρ0M

a3
0

a3
≡ B

2a3
(126)

We draw this critical curve in the Λ versus a plane, as in the following �gure (the dashed line). This curve is
contained in the region Λ > 0. It marks the border between the region where ä < 0 and that where ä > 0.
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Let's now consider eq. (F1) and assume that, in this case, ȧ2 = 0. We act as for eq. (F2) and we get

1

3
Λc2a2 = kc2 − 8πG

3
ρa2 / · 3

c2a2
(127)

Λ(a) =
3k

a2
− 8πG

c2
ρ0M

a3
0

a3
≡ A

a2
− B

a3
. (128)

Here we must distinguish two cases: k = 0 or −1, and k = +1. In the �rst case the right hand side of eq. 128 is
always negative, as shown on the left side of the following �gure. The curve corresponding to ȧ2 = 0 marks the
border between the region of the (Λ, a) plane where ȧ2 > 0 and that where ȧ2 < 0, forbidden by dynamics. So,
for a given vale of Λ < 0, a starts from zero and grows (it moves horizontally in the plane) until the crossing of
the ȧ2 = 0 line. Since it cannot enter the forbidden region, the scale factor must go back to zero: the Universe
recollapses. On the contrary, for Λ > 0, the scale factor can grow inde�nitely; it starts in the ä < 0 region
and self-gravitation slows down expansion, but after the crossing of the ä = 0 line, in the ä > 0 region, the
expansion accelerates. If Λ ≡ 0, ä is always negative and expansion is slowed forever.

The other case, k = +1, is more complex. According to eq. 128, for small values of a, the −B/a3 term prevails
and Λ(a) < 0, while for large values of a the A/a2 term, positive, prevails. So the ȧ2 = 0 line crosses the Λ = 0
line and has a maximum at a particular value of a: a = aE = 3B/2A, corresponding to Λ = ΛE . Moreover,
the two curves de�ned by eq. 126 and eq. 128 cross at the point (a = aE , Λ = ΛE), as can be easily checked.
So at this point we have both ȧ2 = 0 and ä = 0: this correspond to the static Einstein model (see below for
more details). This situation is described on the right side of the following �gure. For Λ < 0, and for Λ ≡ 0,
the Universe has to recollapse. For Λ > 0 we have three possibilities. For Λ > ΛE we have again an initial
deceleration followed by acceleration and expansion to in�nity. Among the cases with Λ > ΛE there is the
so-called Lemaitre model, in which, if Λ = ΛE(1 + ε) with ε� 1, the evolution of the scale factor can have an
arbitrarily long stationary phase (the smaller is ε, the longer this almost-static phase). This model was invoked
in 1967 to explain an observed excess of quasars17 at z ∼ 2 (this observational evidence is today ascribed to
the evolution of quasars). In this model TH ≡ 1/H > t0 is violated, as it is in many models with Λ > 0. If
0 < Λ < ΛE , depending on the initial condition, we may have a contraction phase, followed by an expansion
era (bouncing universe), or still a model that recolapses, such as those with Λ < 0.

The following �gure shows, in summary, all the cases above discussed.

17Quasars are active galactic nuclei, i.e. supermassive black holes hosted in the center of galaxies and emitting a huge amount of
energy
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3 COSMOLOGICAL MODELS 3.11 Cosmological models

Now we will start to see in detail some models that are interesting for historical reasons or because they may
be useful approximations in certain stages of cosmic evolution.

3.11.1 Einstein model

If we include the cosmological constant into the energy-momentum tensor, as done in eq. 100, eq. (F1) and eq.
(F2) become:

ȧ2 + kc2 =
8πG

3
ρ̃a2 (F1)

ä = −4πG

3

(
ρ̃+

3p̃

c2
)
a (F2)

These equations have a static solution with ä = 0 and ȧ = 0 if:

ρ̃ = −3p̃

c2
=

3kc2

8πGa2

If this model corresponds to our Universe as it is today, dominated by non relativistic matter, then matter
pressure is negligible and p ' 0 , so that:

−3p̃

c2
= − 3

c2

(
− Λc4

8πG

)
=

3kc2

8πGa2
⇒ Λ =

k

a2

ρ̃ = ρ+
Λc2

8πG
=

3kc2

8πGa2
⇒ ρ =

kc2

4πGa2

Since ρ > 0 we have k = +1 and Λ > 0. The value of Λ which makes the Universe static is

ΛE =
k

a2
=

4πGρ

c2
and a = aE =

c√
4πGρ

This model is unstable because even small �uctuations in density may lead both to local collapse or local
expansion. There are two models, the so-called Eddington-Lemaitre models, with Λ = ΛE and k = +1,
whose asymptote is the Einstein model. The �rst starts from a = 0 and tends asymptotically to aE , with
a < aE . The second one starts from a = aE and, after a long time (tending to in�nity) slowly diverges with
a > aE .

3.11.2 de Sitter model

This model is empty (p = 0 and ρ = 0) and �at (k = 0). In this case eq. (F1) is simply

ȧ2 =
Λ

3
c2a2 ⇒ a(t) = A e

√
Λ
3 ct with H =

ȧ

a
=

√
Λ

3
c = const
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This model, characterized by an equation of state p̃ = −ρ̃c2, describes the in�ation phase in the early universe.
It also represents the asymptotic behavior of the models with Λ > 0, as can be seen by examining eq. (F1) and
by letting a grow to in�nity. Therefore, this model also represents the asymptotic behavior of the cosmological
model which currently has more credit.

3.12 Einstein-de Sitter model

In this model (EdS) we neglect the cosmological constant and it is assumed that the dynamics is dominated by
a single component (radiation or matter), with Ω0w ≡ 1 (this, as seen above, implies that Ωw(z) ≡ 1 always);
i.e. k = 0. To be more precise, the EdS model has k = 0 and w = 0, but in general we call by that name
even models with w 6= 0. Then also Λ = 0. We will have, from eq. (F1), in the phase dominated by the w
component:

ȧ2

a2
0

= H2
0

(
a0

a

)1+3w

= H2
0 (1 + z)1+3w (129)

that is

a
1+3w

2 da = Cdt ⇒ a
3(1+w)

2 = C ′ · t

and, referring to a0 and t0:

a(t) = a0

(
t

t0

) 2
3(1+w)

. (130)

The Universe expands forever. Eq. 130 can be written as a function of z:

t = t0(1 + z)−
3(1+w)

2 (131)

For this model we also have:

H ≡ ȧ

a
=

2

3(1 + w)t
→ Ht = const → H =

H0t0
t

= H0(1 + z)
3(1+w)

2

q ≡ − äa
ȧ2

= − 2

3(1 + w)

ȧt− a
t2

a

ȧ2
=

1 + 3w

2
= const = q0

t0cr,w ≡ t0 =
2

3(1 + w)H0
from the �rst relation

ρwa
3(1+w) = const → ρw

ρ0w
=

(
a

a0

)−3(1+w)

=

(
t

t0

)−2

→ ρw(t) =
ρ0wt

2
0

t2
.

Since Ω0w = Ωw = 1 , it follows that ρ = ρcr = 3H2

8πG , and

ρw(t) =
3H2

0

8πG

(
2

3(1 + w)H0

)2
1

t2
=

1

6πG(1 + w)2t2
(132)

It is useful to explicitly write these relations in the two cases:

• w = 0 �dust�, matter-dominated Universe (= non relativistic �uid)

a(t) = a0

(
t

t0

) 2
3

t = t0(1 + z)−
3
2 H =

2

3t
= H0(1 + z)

3
2

q0 =
1

2
t0cr,m = t0 =

2

3

1

H0
ρm(t) =

1

6πGt2

• w = 1/3 relativistic matter, radiation dominated Universe

a(t) = a0

(
t

t0

) 1
2

t = t0(1 + z)−2 H =
1

2t
= H0(1 + z)2

q0 = 1 t0cr,r = t0 =
1

2H0
ρr =

3

32πGt2
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3 COSMOLOGICAL MODELS 3.13 Matter dominated models

Note that when the pressure increases (from w = 0 to w = 1/3) the deceleration parameter q0 grows.

This model can also be extended to more general cases. Indeed, in the phases dominated by radiation or matter,
when the contribution of ΩΛ is negligible as well as the term of curvature, the evolution of a(t) is given by

ȧ2

a2
0

= H2
0 Ω0w

(
a0

a

)1+3w

(133)

similar to eq. 129, but with an e�ective Hubble constant H0,eff given by

H0,eff = H0

√
Ω0w

So, at high z, we can use the relations derived for EdS model just by putting H0 → H0,eff ; for instance:

t(z) =
2

3(1 + w)H0

√
Ω0w

(1 + z)−
3(1+w)

2 (134)

H(z) = H0

√
Ω0w(1 + z)

3(1+w)
2 (135)

The relations giving ρw(t) (in which the terms with H0 are simpli�ed) and q (which does not depend on H0).

These relations are useful to have some rough estimates of the correct values of cosmological quantities. More-
over, at high z the EdS model is an excellent approximation of the real model of Universe, whatever its
curvature.

For instance, we can use eq. 134 to estimate the age of the Universe at matter/radiation equality, at z = zeq
given by eq. 111. Since zeq is at the edge of the MD era we use eq. 134 with w = 0:

t(zeq) =' 2

3H0

√
ΩM (1 + zeq)

3
2

' 1.8 · 103(ΩMh
2)−2 years, (136)

about 8 · 104 years for ΩM = 0.3 and h = 0.7. A more precise calculation gives an age of about 5 · 104 years.

3.13 Matter dominated models

As we have just seen, the epoch of matter/radiation equality corresponds to an age of the Universe of about
50000 years, much less then about 13.5 billion years (see below), the present age of the cosmos in which we live.
If we neglect this "small" amount of time (if compared to the total age), and suppose that the cosmological
constant is zero or negligible, we obtain the classic cosmological models listed in all the texts, popular and not,
more than ten years old. So let's see in detail these models, pointing out that the EdS model dominated by
matter is already one of these cases, the one with Ω ≡ ΩM = 1.

For matter dominated models eq. 107 gives(
ȧ

a0

)2

' H2
0

[
ΩM

a0

a
+ 1− ΩM

]
(137)

Let's see the two cases ΩM > 1 and ΩM < 1:

• ΩM > 1: Since 1− ΩM < 0, while ΩM (a0/a) becomes smaller and smaller as a grows, there is a value of
the scale factor which makes ȧ = 0; larger values of a would make ȧ an imaginary number. This means
that the scale factor has a maximum value am at the time t = tm, given by

a(tm) = am = a0
ΩM

ΩM − 1
(138)

The evolution of the scale factor can be derived by using an auxiliary parameter, the development angle

θ, de�ned by the relation ( aa0
) · 2(ΩM−1)

ΩM
≡ 1− cos θ , θ ∈ [0, 2π]. The parametric solution is:

H0t =
ΩM

2(ΩM − 1)3/2
(θ − sin θ) a(t) = a0

ΩM
2(ΩM − 1)

(1− cos θ) (139)
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This is the parametric equation of a cycloid. The maximum is obtained for θ = θm = π:

a(tm) = am = a0
ΩM

ΩM − 1
H0tm =

ΩM
2(ΩM − 1)3/2

(θm − sin θm) =
ΩMπ

2(ΩM − 1)3/2

For t = 2tm (θ = 2π) the scale factor collapses (Big Crunch). We obtain an expression for t0 by putting
a(t0) = a0:

1− cos θ0 ≡
2(ΩM − 1)

ΩM
⇒ cos θ0 =

2− ΩM
ΩM

=

(
2

ΩM
− 1

)
.

By transforming cos θ0 → sin θ0 we easily obtain, from eq. 139,

H0t0 =
ΩM

2(ΩM − 1)3/2

[
arccos

(
2

ΩM
− 1

)
− 2

ΩM

√
ΩM − 1

]
<

2

3
,

i.e. less than for the EdS model, in which H0t0 = 2
3 .

• ΩM < 1: In this case it is useful to write ( aa0
) · 2(1−ΩM )

ΩM
≡ coshψ − 1, and the parametric solution is

H0t =
ΩM

2(1− ΩM )3/2
(sinhψ − ψ) a(t) = a0

ΩM
2(1− ΩM )

(coshψ − 1) (140)

In a way similar to what we did for ΩM > 1

coshψ0 = 1+
2(1− ΩM )

ΩM
=

2

ΩM
−1 and Ht0 =

ΩM
2(1− ΩM )3/2

[
2

ΩM

√
1− ΩM−cosh−1

(
2

ΩM
−1

)]
>

2

3

By means of the relation cosh−1(x) = ln[x+
√
x2 − 1] and expanding for ΩM → 0 we get

H0t0 ' 1 +
ΩM ln ΩM

2
→ 1.

The asymptotic behaviour for the scale factor can be inferred from eq. 137 for a→∞(
ȧ

a0

)2

' H2
0 (1− ΩM ) = const =⇒ ȧ = const =⇒ a(t) ∝ t (141)

and a grows linearly with time, while in EdS a ∝ t 2
3 .

Why do we study models that are clearly not representative of the currently accepted cosmological model?
Regarding the model with ΩM > 1, it may represent the evolution (simpli�ed) of a density �uctuation in excess
of the average density: if we suppose that a spherical region of the universe has a density greater than the
mean density and also greater than the critical one, the spherical region evolves (its radius evolves) as the scale
factor of a Universe with ΩM,local > 1, reaching a maximum and then recollpsing, while the rest of the Universe
continues to expand. The model with ΩM < 1 shows us that, as the density tends to zero due to the expansion,
the universe approaches the Milne model, with a ∝ t, H = 1/t, k = −1.

3.14 Models with Λ 6= 0

We have already seen a qualitative classi�cation of these models. Let's now try to be more quantitative. We
have also seen that the models that begin with a Big Bang recollapse or expand inde�nitely. But in other cases
the universe never had a Big Bang: the universe collapsed in the past, but the repulsive e�ect of a Λ > 0 slowed
the collapse to turn it into expansion.

To see in detail the various cases it is necessary to integrate numerically Friedmann equations; if we neglect the
contribution of radiation, one can also proceed analytically. The Friedmann equation (F1) with ΩR = 0 (see
eq. 107)becomes (

ȧ

a0

)2

= H2
0

[
ΩM

(a0

a

)
+ ΩΛ

(a0

a

)−2

+ 1− ΩM − ΩΛ

]
(142)

If we put a/a0 = R and τ = H0 · t we get:(
dR

dτ

)2

= 1 + ΩM

(
1

R
− 1

)
+ ΩΛ(R2 − 1) (143)
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The present epoch corresponds to R = 1 and the slope of the curve, at present, is equal to one.

Let's explore the future (and the past) of cosmological models as a function of the present values of the density
parameters ΩM and ΩΛ.

We have seen that, if Λ < 0 (ΩΛ < 0), the Universe �nally recollapses in all cases. We have also seen that, if
k ≤ 0 and Λ > 0 (ΩΛ > 0), the Universe �nally expands to in�nity like in de Sitter model.

The case with k = +1 and Λ > 0 (ΩΛ > 0) is more complicate. If we look at the past, it is possible, at least
in principle, that our Universe is a bouncing universe. Since it is now expanding, the bounce already happened
and a(t) had a minimum in the past. So we must �nd the conditions for dR/dτ = 0. But eq. 142 leads in this
case to a cubic equation for R, and cubic equations are not so easy to solve.

We will do in another way. As we can see in the following �gure, the limiting case between a bouncing universe
and a model with a Big Bang in the past corresponds to the case in which our universe is described by an
Eddington-Lemaitre model, i.e. a deviation from an originally static Einstein model. In this case, in the past,
both ȧ and ä had to be equal to zero. So we use eq. 107 and eq. 116 with ΩR = 0:

ΩM (1 + z) + ΩΛ(1 + z)−2 + 1− ΩM − ΩΛ ≡ 0 (144)

ΩM (1 + z)0 + ΩΛ(−2)(1 + z)−3 = ΩM − 2ΩΛ(1 + z)−3 ≡ 0 (145)

Eq. 145 gives immediately

ΩΛ =
ΩM
2

(1 + z)3 (146)

This means that, given ΩM , if ä = 0 at redshift z, ΩΛ is given by eq. 146. Remember that ΩM and ΩΛ refer
always to the present epoch. We can work in a similar way with eq. 144; we multiply it by (1 + z)2 and, after
some algebra, we �nally get

ΩΛ =
(1 + z)2

z (z + 2)
(1 + ΩMz) (147)

We want that both ȧ and ä are zero, so eq. 146 and 147 have both to be ful�lled. If we solve both equations
we get {

ΩM (z) = 2
z2(3+z)

ΩΛ(z) = (1+z)3

z2(3+z) (∗)
(148)

If we want to explore the past, z must go from 0 to ∞. If we let z to move within this range we obtain the
curve labelled �past� in the following Figure. Some values of z are shown. Note that in bouncing models the
scale factor has a minimum value and, since a0/a = 1 + z, this means that there is a maximum value for z. The
minimum value of a and the maximum value for z correspond to those of the Eddington-Lemaitre model and
are, also in this case, those shown in the following Figure on the �past� curve. We see that, in order to have
a maximum redshift much larger than one, the value of ΩM must be very low, in disagreement with with the
observations. So bouncing models are excluded for our Universe.

But our Universe could tend to an Eddington-Lemaitre model not in the past but in the future. This would
mark the border between a recollapsing universe and a universe expanding to in�nity. We can again apply eqs.
148, but the trick is to let z to move now within the range between 0 and −1, since as a becomes larger than
a0 the relation a0/a = 1 + z shows that z < 0 and z → −1 as a→∞.
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The Figure above shows a synthesis of the discussion. The following Figure shows some models with the
corresponding values of (ΩM ,ΩΛ).
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3.15 Our Universe?

We have seen that our Universe, after matter/radiation equality, is �rst matter dominated and then vacuum
dominated. There exists an analytical solution for a Universe with matter and cosmological constant and
spatially �at (ΩM + ΩΛ = 1).

Eq. 107 is, in this case, (
ȧ

a0

)2

= H2
0

[
ΩM

(a0

a

)
+ ΩΛ

(a0

a

)−2
]
, (149)

and, by putting R ≡ a/a0,

dR

dt
= H0

[
ΩM
R

+ ΩΛR
2

]1/2

→ H0dt =
dR√

ΩM/R+ ΩΛR2

H0t =

∫ R

0

dx√
ΩM/x+ ΩΛx2

=

∫ R

0

√
xdx√

ΩM + ΩΛx3

We use the substitution x3 ≡ u2 and we get

H0t =
2

3
√

ΩΛ

∫ R3/2

0

du√
ΩM/ΩΛ + u2

.

By solving the integral18, we �nally obtain

H0t =
2

3
√

ΩΛ

sinh−1

[(
a

a0

)3/2√
ΩΛ

ΩM

]
(150)

a(t) = a0

(
ΩM
ΩΛ

) 1
3
[
sinh

(
3
√

ΩΛ

2
H0t

)] 2
3

(151)

Since a/a0 = (1 + z)−1, eq. 150 gives, for this model, the age of the Universe as a function of redshift. In the
following Figure we draw a(t) for ΩM ∼ 0.3, ΩΛ ∼ 0.7 and h ∼ 0.7. Note that the dashed line, tangent to
the curve at the present time, goes approximatly through the origin; H0t0 = 0.964 and the present age of the
Universe (t0 ' 13.5 Gyr19) is almost equal to the Hubble time.

18By de�ning q ≡
√
x2 + a2,

∫
dx√
x2+a2

= ln(x+ q) e ln
(
x+q
a

)
= sinh−1

(
x
a

)
19One Gyr = 109year
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The following Figure (with the same cosmological parameters) shows the link between redshift and age of the
Universe (in billion year).

3.16 The age of the Universe

We have so far seen the age of the Universe as a function of redshift for some particular models. Now let's see
a general formulation. From the very de�nition of the Hubble parameter, we have:

H ≡ ȧ

a
=

1

a

da

dt
=⇒ dt =

da

a ·H
=

d(a/a0)

(a/a0) ·H(a)
. (152)

If we write a/a0 ≡ u,

t(a/a0) =

∫ a/a0

0

du

u ·H(u)
(153)

which can be integrated, at least numerically, by using the known dependence of H on a/a0 and on the
cosmological parameters (see eq. 108). It is more useful to use the redshift; remember that a/a0 = 1/(1 + z)
and so

da = − a0

(1 + z)
2 dz =⇒ dt = − a0

(1 + z)
2
aH

dz = − dz

(1 + z) H(z)
(154)

where we used again a0/a = 1 + z. Finally, we get the useful, general relation

t(z) =

∫ ∞
z

dz′

(1 + z′)H(z′)
(155)

in which

H(z) = H0(1 + z)
[
ΩR(1 + z)2 + ΩM (1 + z) + ΩΛ(1 + z)−2 + 1− Ω0

]1/2
where Ω0 ≡ ΩR + ΩM + ΩΛ.

The following Figure shows the e�ect produced by the cosmological constant on the age of the Universe. It
compares, in the (H0,ΩM ) plane, the "�at" case (ΩM + ΩΛ = 1) with the "open" case (Ω0 = ΩM ). Note that
the cosmological constant makes the age of the Universe longer, in better agreement with the estimated age of
globular clusters.
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3 COSMOLOGICAL MODELS 3.17 Horizons again

A cosmological parameter often used is the so-called look-back time, tlb = t0− t(z), which is the time elapsed
between redshift z and today. In particular, for EdS model:

tlb = t0 − t0(1 + z)−
3(1+w)

2 = t0
[
1− (1 + z)−

3(1+w)
2

]
(156)

Example: Let's take w = 0, and assume H0 = 70kms−1Mpc−1.

H0 =
1

4.4 · 1017
s ⇒ t0 =

2

3H0
=

2

3
4.4 · 1017s = 2.9 · 1017s = 9.3 · 109years

If we observe a quasar at z = 2, how many years ago was emitted the light we see today? Eq. 156 gives in this
case

tlb = t0
[
1− (1 + z)−3/2

]
= 0.8075 t0 = 7.5 · 109 years ago.

For the model described by eq. 150 tlb(z = 2) ' 10 Gyr.

3.17 Horizons again

Let's estimate the size of the horizons for a particular,useful model, the EdS model.

dH(t) = a(t)

∫ t

0

cdt′

a(t′)
= a(t)

∫ t/t0

0

t0
cd( t

′

t0
)

a0( t
′

t0
)

2
3(1+w)

=
a(t)

a0
· ct0

∫ t/t0

0

dx

x
2

3(1+w)

=

=
a(t)

a0
ct0

3(1 + w)

1 + 3w

(
t

t0

) 1+3w
3(1+w)

=
3(1 + w)

1 + 3w
ct

We see that dH(t) ∝ ct; if w = 0, dH(t) = 3ct; if w = 1/3, dH(t) = 2ct. If we calculate the event horizon for
EdS model, we �nd that the integral involved diverges; this means that we don't have, in this model, an event
horizon: if we are patient enough we will receive information from any future event.

Let's now estimate, for the same model, the value of the Hubble radius RH , de�ned by eq. 76.

R(t) ≡ c

H(t)
=
c · 3(1 + w)t

2
=

1 + 3w

2
dH(t) (157)

Although RH and dH appear comparable in the EdS model, they are actually two very di�erent things: RH(t)
is an instantaneous quantity, depending on the instantaneous value of H, while dH(t) is an integral quantity
that depends on the entire past history of the Universe. For this reason, if an object has entered the particle
horizon it will always remain inside, while it may happen that an object is, for example, �rst inside, then out,
then back into the Hubble radius. If H = const (as in de Sitter model), RH = const = c/H.
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4 OBSERVATIONAL COSMOLOGY

4 Observational cosmology

4.1 Introduction

In the previous Section we have met many di�erent theoretical cosmological models. Now it's time to see which
of these models matches better the observational constraints. To do that we will need some useful tools and
quantities. Then we will use them into the �classical� tests which have been used to derive estimates of the
theoretical cosmological models.

4.2 a0 r(z)

As a �rst step we derive a quantity which is involved in almost every cosmological, observational test: a0 r(z).
Let's consider the radial motion of a photon travelling towar us (see eq. 70). We get

a dr√
1− kr2

= −cdt = −da

ȧ
= −c da

a H
(158)

which can be rewritten (remember that a = a0/(1 + z) → da = −a0/(1 + z)2 dz) as

a0

1 + z
· dr√

1− kr2
= − c

H
· 1 + z

a0
·
[
− a0

(1 + z)2

]
dz (159)

and gives
a0 dr√
1− kr2

=
c

H(z)
dz =

c

H0E(z)
dz (160)

where we have de�ned the quantity E(z) ≡ H(z)/H0. Going back to eq.110 we have (Ω0 = ΩR + ΩM + ΩΛ)

E(z) =

[
ΩR(1 + z)4 + ΩM (1 + z)3 + ΩΛ + (1−Ω0)(1 + z)2

]1/2

. (161)

If we use now eqs.71, 72 and 75 we have

fk(r) =

∫ r

0

dr′√
1− kr′2

=
c

a0H0

∫ z

0

dz′

E(z′)
=

 arcsin r (k = +1)
r (k = 0)
arcsinhr (k = −1)

 . (162)

We use also eq.106:

kc2

a2
0

= H2
0 [Ω0 − 1] → c

a0H0
=
√
|Ω0 − 1| → 1 =

c

a0H0

√
|Ω0 − 1|

. (163)

Finally, for k = +1,

c

a0H0

∫ z

0

dz′

E(z′)
= arcsin r → r = sin

(
c

a0H0

∫ z

0

dz′

E(z′)

)
=

c

a0H0

√
|Ω0 − 1|

· sin
(√
|Ω0 − 1|

∫ z

0

dz′

E(z′)

)
(164)

and:

a0 r(z) =
c

H0

√
|Ω0 − 1|

· sin
(√
|Ω0 − 1|

∫ z

0

dz′

E(z′)

)
(k = +1). (165)

For k = −1 we get a similar result, with sin → sinh:

a0 r(z) =
c

H0

√
|Ω0 − 1|

· sinh

(√
|Ω0 − 1|

∫ z

0

dz′

E(z′)

)
(k = −1). (166)

For k = 0 we have simply:

a0 r(z) =
c

H0

∫ z

0

dz′

E(z′)
(k = 0). (167)
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4 OBSERVATIONAL COSMOLOGY 4.2 a0 r(z)

The functionE(z), eq. 161, can be approximated in di�erent ways: for z < zeq, and ΩR = 0,

E(z) =

[
(1 + z)2(1 +ΩMz)− z (2 + z)ΩΛ

]1/2

; (168)

when ΩΛ is also negligible this gives
E(z) = (1 + z)

√
1 +ΩMz; (169)

�nally, when Ω0 = 1, i.e. ΩM +ΩΛ = 1, ΩR = 0,

E(z) =

[
1−ΩM + ΩM (1 + z)3

]1/2

. (170)

There are no general. analytical expressions for a0r(z); in the case ΩΛ = 0 the following expression can be
obtained (the so called Mattig formula):

a0r(z) =
2c

H0

ΩMz + (ΩM − 2)[(ΩMz + 1)1/2 − 1]

Ω2
M (1 + z)

, (171)

which holds for both ΩM > 1 and ΩM < 1.

For z � 1 (z →∞) Mattig formula gives

a0r(z) =
2c

H0ΩM
(ΩΛ = 0), (172)

while, when ΩM +ΩΛ = 1, a useful approximation is

a0r(z) =
2c

H0Ω0.4
M

(ΩM +ΩΛ = 1). (173)
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