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energy is 2.00 eV? 2,00 keV? 2.00 MeV?
2.00 GeV? (b) For what kinetic energies
will an electron and a proton each have a
momentum of 5.00 MeV/c? (¢) An elec-
tron, a muen, and a proton each have a
kinetic energy of 10.0 MeV. What are their
speed parameters? (d) An electron, a
muon, and a proton each have a relativistic
mass that is three times their rest mass.
What are their kinetic energies?

74C. Using your calculator (II}.  For particles
whose speed parameters are sufficiently
close to unity, the program called for in
Problem 72C will yield a meaningless re-
sult for B because of calculator overflow.
In such cases it is useful to calculate
I — B, using an approximate formula ap-
propriate to the extreme relativistic case.
To study the transition from the relativistic
to the extreme relativistic case, write a pro-
gram for your hand-held calculator that
will accept as an input the kinetic energy of
an electron and will display as successive
outputs: (1) the speed parameter B, calcu-

REFERENCES

L. R. Koueark anp D, Menzer, **Measurement of the
Charge on Moving Electrons,”” Z. Phys. 134, 530
(1953).
+ W. Bertozzi, “*Speed and Kinetic Energy of Rela-
tivistic Electrons,”” Am. J. Phys., 32, 551 (1964).
3. R.R. Wuson, “The Batavia Accelerator,” Sci.
Am. (February 1974); R. R. Wilson, ““The Te-
vatron,”” Phys. Today (October 1977).

R. T. Wemser, **On Weighing Photons." Ant. J,
Phys., 35, 443 (1967).

. See The Principle of Relativity (Dover, New York,
1953), p. 29. This book is a collection of English

[ =]

&

wm

lated exactly; (2) the quantity 1 — @, also
calculated exactly; (3) the quantity | — (3,
calculated using an approximate formula
appropriate to the extreme relativistic case;
and (4) the percent difference between
these last two quantities. (Hint: Store the
rest energy of the electron, which is
0.511003 MeV, in your calculator. For the
extreme relativistic formula, use (1 —
Bl = (1/2)imyc¥KP, in which K is the
kinetic energy and myc? is the rest energy.)

75C. Checking it out (II). (a) Run the pro-
gram that you have written in Problem 74
for electron kinetic energies extending
from a few keV to several hundred GeV
and get a feeling for the transition from the
relativistic to the extremely relativistic
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energy do the predictions of the exact for-
mula for B break down totally because of
calculator overflow?
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SUPPLEMENTARY TOPIC A

The Geometric Representation of
Spacetime

O, that Einstein, always cutting lectures—1 veally would noi have befieved him
capable of i,

Hermann Minkowski jea, 1 908)

A-1 Spacetime Diagrams

We have seen that in classical physies it is proper to treat the space and time
coordinates separately. In relativity, however, it is natural to treat them together,
their intimate interconnection being clearly displaved in the Lorentz transformation
equations; see Tables 2-2 and 2-3. The common use of the single word **spacetime’”
(without a hyphen) to represent the coordinate description of events is symbolic of
the general acceptance of this view.

As we have learned, it was Einstein [1T who first set forth, in his special theory
of relativity, the physical basis for the proper description of events in space and
time, Shortly afterwards the mathematician Hermann Minkowski (who., inciden-
tally, had formerly been Einstein’s mathematics professor in Zurich) [2] presented
a simple and symmetrical geometric representation of these ideas, a representation
that permits a ready understanding in geometric terms of such matters as the rela-
tivity of simultaneity, the length contraction, and the time dilation, including their
reciprocal nature.

In what follows, we shall consider only one space axis, the x axis, and shall
ignore the y and z axes. We lose no generality by this algebraic simplification, and
this procedure will enable us to focus maore clearly on the interdependence of space
and time and its geometric representation. The coordinates of an event are given,
then, by x and 1. All possible spacetime coordinates can be represented on a
spacetime diagram in which the space axis is horizontal and the time axis is vertical
It is convenient to keep the dimensions of the coordinates the same; this is easily
done by multiplying the time by the universal constant ¢, the velocity of Tight, et
cf be represented by the symbol w, Then, the Lorentz transformation equations (see
"Table 2-2 and Problem 11 of Chapter 2) can be written as follows:

[;

la) x' = ylx — Bw) 'l x = yix" + pu')

, (A-1)
thl w Yyiw — Bx] ') w = yiw' + By
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Notice the symmetry of this form of the equations.

To represent the situation geometrically, we begin by drawing the x and w axes
of frame § at right angles to one another, as in Fig. A-1. If we want to represent a
moving particle in this frame, we draw a curve, called the world line of the particle,
which gives the loci of spacetime points corresponding to the motion. The tangent
to the world line at any point makes an angle # with the direction of the time axis
that is given by tan § = dx/dw = [dx/di}l/e] = w/c. Because we must have u <
¢ for a material particle, the angle # at any point on its world line must always be
less than 45°, If the particle is at rest, say, at position x; on the x axis of Fig. A-1,
its world line is parallel to the w axis, with 8 [= tan~' w/c] = 0 at all points. For
a light ray traveling along the x axis we have 1 = ¢, so its world line is a straight
line making an angle of 45° with the axes.

Consider now the primed frame (5°), which moves relative to § with a velocity
v along the common x-x' axis. The equation of motion of the origin of §' relative
to § can be obtained by setting x* = 0: from Eq. A-la, we see that this corresponds
tox = Bw. We draw the line x' = 0 (that is, ¥ = Bw) on our diagram (Fig. A-2)
and note that since v < ¢ and (3 < 1, the angle this line makes with the w axis,
¢ (= tan~' B, is less than 457 Just as the w axis corresponds to x = 0 and is the
time axis in frame §, so the line x* = 0 gives the time axis w' in §'. Now, if we draw
the line w" = 0 (giving the location of clocks that read 1* = 0 in §'), we shall have
the space axis x'. That is, just as the x axis corresponds to w = 0, so the x" axis
corresponds to w' = 0, But, from Eq. A-1b, w' = 0 gives us w = [x as the
equation of this axis on our w-x diagram (Fig. A-2). The angle between the space
axes is the same as that between the time axes. Note that, for simplicity, we have
shown in Fig. A-2 only the quadrant in which both x and w are positive.

w(=ct) ;
' A
A
Moving
particle Light ray
| Resting
// particle
e |
— ® X
o X

FIGURE A-1. The world lines of light and
some particles.
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FIGURE A-2. The Minkowski diagram for
frames S and 5'.

w=10

You should compare Fig. A-2 carefully with the standard representation of Fig.
1-1, which we have used exclusively in the main body of the text, A point in the
coordinate reference frames of Fig. 1-1 shows only the space coordinates of the
event to which it corresponds; the time of occurrence of the event must be given
separately. A point on the Minkowski diagram of Fig. A-2, however, shows both the
space and the time coordinates of the event in a single geometric representation.

A-2 Calibrating the Spacetime Axes

Before we can make practical use of the spacetime diagram we must establish scales
on its x, wand its x', w' axes. We can use the Lorentz transformation equations of
Eq. A-1 for this purpose. Consider first point Q, located at the common origin of
the two pairs of axes in Fig. A-3. It has coordinates x = w = Qand x' = w' =
0, and the event to which it corresponds is the coincidence in time of the origins of
the § and §' reference frames,

Point P, on the x" axis of Fig. A-3 has been chosen as a point to which we wish
to assign the value x’ = |, representing a unit of length on this axis. As for all
points on the x" axis, the time coordinate w' of P, is zero. Putting x' = 1 and w'
= (0 into Eq. A-la" yields, by simple inspection, x = « for the x coordinate of
Py. With this information we can easily construct numerical scales for both the x and
the x' axes, based on our initially assumed unit length.

Consider now point P, on the w' axis of Fig. A-3, to which we wish to assign
the value w' = 1, representing a unit of time (measured in terms of ¢t', to be sure}
on that axis. We wish the scales on both the x' and the w' axes to be based on the
same unit length, so we choose to locate P, so that the line segment OP; is equal
in length to the segment OP,. As for all points on the w' axis, the space coordinate
x' of P, is zero. Putting w' = 1 and x" = 0 into Eq. A-15' yields, again by simple
inspection, w = v for the w coordinate of P,. We are now able to construct
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FIGURE A-3. Establishing the scales on the
spacetime axes.

numerical scales for both the w and the w' axes, based on the same unit length as
we assumed in calibrating the space axes,

To gain some physical familiarity with the Minkowski diagram, let us consider
a clock at rest at the origin of the 5" frame. For that clock we have x' = 0 (always),
so events involving it must correspond to points along the w' axis of Fig. A-3. Point
O, which is on that line, could represent the coincidence of the clock hand with a
fiducial marker on the clock face, corresponding to zero time. Point P,, whose time
coordinate in the §' frame gives unit time (w' = 1) on that resting clock, is also on
that line. The event represented by P, might correspond to a second coincidence of
the clock hand with the fiducial marker. In frame §, however, the clock would be
seen as a moving clock. We have seen above that w' = 1 in the §' frame corre-
sponds to w = vy in the § frame, Thus, by S-frame clocks, the unit time interval of
the §' clock would be recorded as <y, corresponding exactly to the time dilation
effect described by Eq. 2-14b.

In Fig. A-4 we show the calibration of the axes of the frames § and S, the unit
time interval along w' being a longer line segment than the unit time interval along
w and the unit length interval along x' being a longer line segment than the unit
length interval along x. The first thing we must be able to do is to determine the
spacetime coordinates of an event such as P directly from the Minkowski diagram.
To find the space coordinate of the event, we simply draw a line parallel to the time
axis from P to the space axis. The time coordinate is given similarly by a line
parallel to the space axis from P to the time axis. The rules hold equally well for the
primed frame as for the unprimed frame. In Fig. A-4, for example, the event P has
the spacetime coordinates x = 3.0 and w = 2.5 in § (long dashed lines) and
spacetime coordinates x" = 2.0 and w' = 1.2in §' (short dashed lines). Figure A-4
was drawn assuming that § = 0,50, which yields v = 1.15. Using these values for
B and vy, you can readily derive the S-frame coordinates from the §'-frame
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FIGURE A-4. Calibrating the axes of the frames
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FIGURE A-5. An orthogonal reference frame,
{a), transforms into a nonorthogonal one, (b).

coordinates—or conversely —by means of the Lorentz transformation equations
(Eq. A-1), thus verifying the graphical relationships displayed in the Minkowski
diagram,

In using the Minkowski diagram it is almost as if the rectangular grid of coor-
dinate lines of § (Fig. A-5a4) became squashed toward the 45° bisecting line when
the coordinate lines of §" are put on the same graph (Fig. A-5b). In more formal
language, we say that the Lorentz transformation equations transform an orthogonal
(perpendicular) reference frame into a nonorthogonal one. Note that as B—1,
corresponding to v — ¢, the angle & in Fig. A-5b (= tan ! ) approaches 45°, thus
compressing the §'-frame coordinate space into a thinner and thinner wedge of the
S-frame coordinate space. Alternatively, as B — 0, corresponding to an approach to
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FIGURE A-6. Showing the relativity of simultaneity.

classical conditions, the angle ¢ between corresponding § and S" axes becomes very
small. Even for a speed as high as that of a typical earth satellite (~17,000 mi‘h),
we note that B = 2.5 x 1077, which yields a value of only _0.09|5 for ¢>
relativistic mechanics is not much different from classical mechanics in these cir-
cumstances,

A-3 Simultaneity, Contraction, and Dilation

Now we can easily show the relativity of simultaneity. As measured in S’,. two
events will be simultaneous if they have the same time coordinate w'. Henclc, if th;
events lie on a line parallel to the x' axis, they are simultaneous to 5 In Fig. A-6,
for example, events @, and (J; are simultaneous in §'; they 0]3\“[0_[13}}" are not
simultaneous in S, occurring at different times w, and w, there. Similarly, two
events R, and R,, which are simultaneous in §, are separated in_ time in §'. _

As for the space contraction, consider Fig. A-7a. Let a meter suck‘ be at rest in the
§ frame, its end points being at x = 3 and x = 4, for example. As t1mt? goes on, the
world line of each end point traces out a vertical line parallel to the w axis. The length
of the stick is defined as the distance between the end points measured simultaneously.
In S, the rest frame, the length is the distance in § between the intersections of the wgrld
lines with the x axis, or any line parallel to the x axis, for these intersecting points
represent simultaneous events in S. The rest length is one meter. To get the length of Ithc
stick in §', where the stick moves, we must obtain the distance in § ' betwecnlend points
measured simultaneously. This will be the separation in S of the intersect_tons of Ithe
world lines with the x' axis, or any line parallel to the x' axis, for these intersecting
points represent simultaneous events in §". The length of the (moving) stick is clearly
less than one meter in S’ (see Fig. A-Ta).

o

A-3 { Bimultaneity, Contraction, and Dilation 147

W w

@ (b)

FIGURE A-7. Showing the space contraction, (a), and its reciprocal nature, (b).

Notice how very clearly Fig. A-Ta reveals that it is a disagreement about the
simultaneity of events that leads to different measured lengths. Indeed, the two
observers do not measure the same pair of events in determining the length of a body
(for example, the § observer uses £, and E;. say, whereas the 8" observer would use
Eyand £y, or E; and E,) for events that are simultaneous to one inertial observer are
not simultaneous to the other. We should also note that the +' coordinate of each end
point decreases as time goes on (simply project from successive world-line points
parallel to w' onlo the x" axis), consistent with the fact that the stick that is at rest
in § moves towards the left in §* .

The reciprocal nature of this result is shown in Fig. A-7b. Here, we have a meter
stick at rest in §', and the world lines of its end points are parallel to w' (the end
points are always at x' = 3 and x" = 4, say). The rest length is one meter. In S,
where the stick moves to the right, the measured length is the distance in S between
intersections of these world lines with the x axis, or any line parallel to the x axis.
The length of the (moving) stick is clearly less than one meter in § (Fig. A-7b).

It remains now to demonstrate the time-dilation result geometrically. For this
purpose consider Fig. A-8. Let a clock be at rest in frame S, ticking off units of time
there. The solid vertical line in Fig, A-8, atx = 2.3, is the world line corresponding
to such a single clock. T, and T, are the events of ticking at w (= ¢7) = 2 and w (
cr) = 3, the time interval in § between ticks being unity, In 5, this clock is moving
to the left so that it is at a different place there each time it ticks. To measure the
time interval between events T, and 7, in §', we use two different clocks, one at the
location of event 7 and the other at the location of event T,. The difference in
reading of these clocks in ' is the difference in times between T, and 7, as
measured in S*. From the graph, we see that this interval is greater than unity.
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FIGURE A-8. Showing time dilation.

Hence, from the point of view of §', the moving § clock appears slowed down,
During the interval that the § clock registered unit time, the S clock registered a
time greater than one unit,

The reciprocal nature of the time-dilation result is also shown in Fig. A-8. You
should construct the detailed argument. Here a clock at rest in §” emits ticks U, and
U/, separated by unit proper time. As measured in S, the corresponding time interval
exceeds one unit.

A-4 The Time Order and Space Separation of Events

We can also use the geometric representation of spacetime to gain further insight
into the concepts of simultaneity and the time order of events that we discussed in
Chapter 2, Consider the shaded area in Fig. A-9, for example. Through any point
P in this shaded area, bounded by the world lines of light waves, we can draw a w'
axis from the origin; that is, we can find an inertial frame §' in which the events O
and P occur at the same place (x" = () and are separated only in time.* As shown
in Fig. A-9, event P follows cvent @ in time (it comes later on 5" clocks), as is true
wherever event P is in the upper half of the shaded area. Hence, events in the upper
half (region | on Fig. A-10) are absolutely in the future relative to O, and this region
is called the Absolute Future, If event P is at a spacetime point in the lower half of
the shaded area (region 2 on Fig. A-10), then P will precede event O in time. Events
in the lower half are absolutely in the past relative to O, and this region is called the
Absolute Past. In the shaded regions, therefore, there is a definite time order of

#We cannot draw an ¥ axis through points such as £ in Fig. A-9 because the angle & in Fig. A-2 would
then exceed 457, which requires that 3 = 1 (or, equivalently, that v = c). For the same reason, we
cannot draw a w' axis through points such as (¢ in Fig. A-9,
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EIGURE A-9. The time order and space separa-
tion of events.

Absolute Future

Present 37 Present
Present ) '3 Present

Absolute Past

FIGURE A-10. Location in time of events rela-
tive to the origin,

events relative to O, for we can always find a frame in which O and P occur at the
same place; a single clock will determine absolutely the time order of the event at
this place.

Consider now the unshaded regions of Fig. A-9. Through any point Q we can
draw an x" axis from the origin; that is, we can find an inertial frame §' in which
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the events O and Q occur at the same time (w' = er' = 0) and are separated only
in space. We can always find an inertial frame in which events O an_d 0 appear to
be simultancous for spacetime points Q that are in the unshadcd. rcgl'ons\{regmn 3_
of Fig. A-10), so that this region is called the Present. In other 1_ncrt|al Tmm.cs. of
course, O and Q are not simultaneous, and there is no absolute time order of these
events but a relative time order, instead.

If we ask about the space separation of events, rather than their time order, we
see that events in the Present are absolutely separated from O, whereas those in the
Absolute Future or Absolute Past have no definite space order relative to O. Indeed,
region 3 (Present) is said to be **spacelike™ whereas reginng 1 and 2 (Absolute Paf'.t
or Future) are said to be “‘timelike.”” That is, a world interval such as OQ is
spacelike and a world interval such as OP is timelike. '

The geometric considerations that we have presented are connected with the
invariant nature of the spacetime infervaf, described in Section 2.3. As presented
there, the interval involves a pair of events, For our purposes we can choose as one
universal member of this pair the standard reference event reprcselnll.ed by_ point O
in Fig. A-9. It corresponds to the coincidence in time of the origins of the lwr:
reference frames, § and §', and has the spacetime coordinates ¥ = w = 0 and x
— w' = 0. The other member of the event pair can then be a generalized cvent
represented by points such as P or Q in Fig. A-9. In this way we can assuc.iale the
spacetime interval with P and Q alone, and can write (from Eq. 2-16, recalling that
W = ct),

2 =w?—x2=w?-x" (A-2)

We have seen that 52, which has the same numerical value in all reference frames,
can be either positive, negative, or zero, depending on the relative nlwguiludcs of w
and x (or of w' and x'). If w = x, as it is for points such as P in Fig. A-9, lhcr? 5
is positive and s is a real quantity: we write it as c7, where 7 is lqh:: proper fime
interval associated with the event pairs such as OP; see Eq. 2-17. If w = x, asitis
for points such as @ in Fig. A-9, then — % is a positive quantity; we call its square
root o, the proper distance interval for the event pairs such as Q. We have then
two relations,

¢t = w? - x? (A-3a)

e 2=y —wh (A-3b)
Now consider Fig. A-10. In regions | and 2 we have spacetime points for which

w == x, so the proper time is a real quantity, ¢*1* being positive; see Eq. A-3a. In
regions 3 we have spacetime points for which x = w, so the proper distance o is
real quantity; see Eq. A-3bh. Hence either 7 or o is real for any two events (that is,
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In the spacelike region we can always find a frame §” in which the two events are
simultaneous, so that o can be thought of as the spatial interval between the events
in that frame. (That is, o* = &* — w® = x> — w2 Butw' = 0in§', so o = ')
In the timelike region we can always find a frame S in which the two events oceur
at the same place, so that T can be thought of as the time interval between the events
in that frame. [That is, 7> = > — (X% = "2 — (x"*e?). Butx' = 0in §', so
T=1]

What can we say about points on the 45° lines? For such points, x = w.
Therefore, the proper time interval between two events on these lines vanishes, for
e1* = w? — x* = 0if x = w. We have seen that such lines represent the world
lines of light rays and give the limiting velocity (v = ¢) of relativity. On one side
of these 45° lines (shaded regions in Fig. A-9), the proper time interval is real: on
the other side (unshaded regions), it is imaginary, An imaginary value of 7 would
correspond to a velocity in excess of ¢. But no signals can travel faster than ¢, All
this is relevant to an interesting question that can be posed about the unshaded
regions,

In this region, which we have called the Present, there is no absolute time order
of events; event O may precede event ( in one frame but follow event @ in anather
frame. What does this do to our deep-seated notions of cause and effect? Does
relativity theory negate the causality principle? To test cause and effect, we would
have to examine the events at the same place so that we could say absolutely thgt:
Q followed O, or that O followed Q, in each instance. But in the Present, or
spacelike, region these two events occur in such rapid succession that the time
difference is less than the time needed by a light ray to traverse the spatial distance
between two events. We cannot fix the time order of such events absolutely, for no
signal can travel from one event to the other faster than c. In other words, no frame
of reference exists with respect to which the two events occur at the same place;
thus, we simply cannot test causality for such events even in principle. Therefore,
there is no violation of the law of causality implied by the relative time order of O
and events in the spacelike region. We can arrive at this same result by an argument
other than this operational one. If the two events, O and Q, are related causally, then
they must be capable of interacting physically. But no physical signal can travel
faster than ¢, so events & and ( cannot interact physically. Hence, their time order
is immaterial, for they cannot be related causally. Events that can interact physically
with O are in regions other than the Present. For such events, O and P, relativity
gives an unambiguous time order. Therefore, relativity is completely consistent with
the causality principle.

the event at the origin and the event elsewhere in spacetime) and either T or o may
be called the spacetime interval between the two events. When 7 is real the interval

QUESTIONS AND PROBLEMS

is called *‘timelike’’; when o is real the interval is called “*spacelike.”” Because o 1. Interpreting events on a spac‘etimc dia- m). With respect to the standard reference
and T are invariant properties of two events, it does not depend at all on what inert.ual gram (I). Draw a Spacetfme d]agram and event 0 at thc_ ongli:. (a) does P ffp@sent an;
frame is used to specify the events whether the interval between them is spacelike on it locate an event P w.hosr: coordinates are cv;nt in lh'e future? The prcs.entr; T‘he p‘astl;
Ak x=450mandt = 1.00 us (w = ¢t = 300 (b) Is the interval OP spacelike? Timelike?
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e (e ~ dx, -
L\':'=J;d1'—fP \I(dt)2 (C), (B-2)

Both dt and dx in the above are differential spacetime path elements as meafeured by
the observer in the inertial reference frame of Fig. B-1b. We are not surprised that
the two paths shown in this figure differ as far as x is conce'mcd (odo}‘neter‘read-
ings), and we have learned not to be surprised that clock readlggs vary in much Lhe_
same way. Simple inspection of Eq. B-2 shows that the quantity depends not only
on the initial and final points but also on the path taken F)etween them. .

In Fig. B-1c we let one of these paths be a straight line, conespQIidlng to the
simple passage of time for a stationary particle; the other path remains arbitrary.
From Eq. B-2 we have, for the straight path,

A = ff N (“'—‘)2 = ff dt = 1g = tpn

c
in which the subscript on A7 refers to the stationary clock. '[n m_lch a case dx is zero
along the path, and the proper time coincides with the time interval, IQ_.IP’. re-
corded by the stationary clocks of the imlartiall reference frame. Along the second
world line, however, the elapsed power time is

o= I o - (2.

in which the subscript refers to the traveling clock; we see that A1, will not equal
Ar,. In fact, since (dx)* is always positive, we find that
At < AT, (B-3)

The clocks will read different times when brought back together, the traveling clock
running behind (recording a smaller time difference than) thf: stay-at-home c!oc‘k.
Figure B-1d is a special case of Fig. B-1¢ in that the_ traveling clock moves W]-th.
constant velocity over most of its path, its motion being accelerated only uceltr its
“‘turnaround point.”” Note that, although the turnaround may accupy only a s.mal!
fraction of the total travel time, it is vitally necessary to the motion if the two clocks
are to reconvene. o .

We have noted that the reference frame whose axes are drawn in flg. B-1 is an
inertial frame. The motion of the traveling clock is represented in this frame h) a
curved world line, for this clock undergoes accelerated motion ralher_than notion
with uniform velocity. It could not return to the stationary clock, for exgmplc.
without reversing its velocity. The special theory of relativity can prf:d:tt the
behavior of accelerated objects as long as, in the formulation of the physical laws,
we take the view of the inertial (unaccelerated) observer. This is \fvha[ we have
done so far. A frame attached to the clock traveling along its rnundttrlp path would
not be an inertial frame. We could reformulate the laws of physics so that they
have the same form for accelerated (noninertial) observers— this is thelprogram ?f
general relativity theory—but it is unnccessary to do so to explain Ehe mfm
ﬁaradox. All we wish to point out here is that the situation is not Isymmctrwal with
respect to the clocks (or twins); one is always in a single inertial frame and the
other is not.
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B-2 Spacetime Diagram of the Twin Paradox

In our earlier discussions of time dilation, we spoke of “‘moving clocks running
slow.” What is meant by that phrase is that a clock moving at a constant velocity
u relative to an inertial frame containing synchronized clocks will be found to run
slow by the factor \/—I —u*c? when timed by those clocks. That is, to time a clock
moving at constant velocity relative to an inertial frame, we need at least fwo
synchronized clocks in that frame. We found this result to be reciprocal in that a
single §' clock is timed as running slow by the many S clocks, and a single § clock
is timed as running slow by the many 8" clocks.

The situation in the twin paradox is different. If the traveling twin traveled
always at a constant speed in a straight line, he would never get back home. And
each twin would indeed claim that the other’s clock runs slow compared to the
synchronized clocks in his own frame. To get back home— that is, to make a round
trip—the traveling twin would have to change his velocity. What we wish to com-
pare in the case of the twin paradox is a single moving clock with a single clock at
rest. To do this we must bring the clocks into coincidence twice — they must come
back together again. It is not the idea that we regard one clock as moving and the
other at rest that leads to the different clock readings, for if each of two observers
seems (o the other to be moving at constant speed in a straight line, they cannot
absolutely assert who is moving and who is not. Instead, it is because one clock has
changed its velocity and the other has not that makes the situation unsymmetrical.

Now you may ask how the twins can tell who has changed his velocity. This is
clearcut. Each twin can carry an accelerometer. If he changes his speed or the
direction of his motion, the acceleration will be detected. We may not be aware of
an airplane’s motion, or a train’s motion, if it is one of uniform velocity, but let it
move in a curve, rise and fall, speed up or slow down, and we are our own
accelerometer as we get thrown around, Our twin on the ground watching us does
not experience these feelings—his accelerometer registers nothing. Hence, we can
tell the twins apart by the fact that the one who makes the round-trip experiences
and records accelerations whereas the stay-at-home does not.

A numerical example, suggested by C. G. Darwin [2], is helpful in fixing the
ideas. We imagine that, on New Year’s Day, Bob leaves his twin brother Dave, who
is at rest on a spaceship, fires rockets that get him moving at a speed of 0. 8¢ relative
to Dave, and by his own clock travels away at this constant speed toward a distant
star, which he reaches after three years of travel. He then fires more powerful
rockets that exactly reverse his motion and gets back to Dave after another three
years by his clock. By firing rockets a third time, he comes to rest beside Dave and
compares clock readings. Bob's clock says he has been away for six years (the AT,
of Eq. B-3), but Dave’s clock says that ten years have elapsed (the Ar, of Eq. B-3)
Let us see how this comes about.

First, we can simplify matters by ignoring the effect of the accelerations on the
traveling clock. Bob can turn off his clock during the three acceleration periods, for
example. The error thereby introduced can be made very small compared to the total
time of the trip, for we can make the trip as far and as long as we wish without
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FIGURE B-2. Spacetime diagram of the twin paradox.

changing the acceleration intervals. It is the total time that is at issue here in any
case.” We do not destroy the asymmetry, for even in the ideal simplification of Fig.
B-2 (where the world lines are straight lines rather than curved ones), Dave is
always in one inertial frame whereas Bob is definitely in two different inertial
frames — one going out (0.8¢) and another coming in (—0.8¢).

Let the spaceships be equipped with identical clocks that send out light signals
at one-vear intervals, Dave receives the signals arriving from Bob's clock and
records them against the annual signals of his own clock; likewise, Bob r;c;ivcs the
signals from Dave’s clock and records them against the annual signals of his clock.

In Fig. B-2, Dave’s world line is straight along the cf-axis; he is at x = 0 and we
mark off ten years (in terms of ¢r), a dot corresponding to the annual New Year's

*An analogy is that the total distance traveled by two drivers between the same twi il)ointt, one along [f&e
hypolenuse of a right triangle and the other along the other two sides of the triangle, can be quite
different, One driver always moves along a straight line, whercas the other makes a right e to travel
along two straight lines, We can make the distance between the two points as long as we wish without
altering the fact that only one turn must be made. The difference in mileage traveled by the drivers
certainly is not acquired at the murn that one ol them makes,
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Day signal of his clock. Bob’s world line at first is a straight line inclined to the cr
axis, corresponding to a ¢t’ axis of a frame moving at +0.8¢ relative to Dave’s
frame. We mark off three years {in terms of ¢}, a dot corresponding to the annual
New Year's Day signal of his clock. After three of Bob's years, he switches to
another inertial frame whose world line is a straight line inclined to the ¢r axis,
corresponding to the cr” axis of a frame moving at —0.8¢ relative to Dave’s frame.
We mark off three years (in terms of ¢t"), a dot corresponding to the annual New
Year’s Day signal of his clock. Note the dilation of the time interval of Bob's clock
compared to Dave’s.

Now let us draw the light signals from Bob's clock on the spacetime diagram of
Fig. B-2. Recall (see Fig. A-1) that such signals are drawn at 45° to the spacetime
axes, corresponding to their speed of ¢. Thus from each dot on Bob’s world line we
draw such a 45°-line headed back to Dave on the line at x = (). There are six signals,
the last one emitted when Bob returns home to Dave. Likewise, the signals from
Dave’s clock are straight lines, from each dot on Dave’s world line, inclined 457 to
the axes and headed out to Bob's spaceship. We see that there are ten signals, the
last one emitted when Bob returns home to Dave.

How can we confirm this spacetime diagram numerically? Simply by the Doppler
effect. As the clocks recede from each other, the frequency v of their signals is
reduced from the proper frequency v, by the Doppler effect. From Eq. 2-30f we
thus have

v_ fi=p_ fT-08_1

vw N1+p Ni+08 3
Hence, Bob receives the first signal from Dave after three of his years, just as he is
turning back. Similarly, Dave receives messages from Bob on the way out once
every three of his years, receiving three signals in nine years. As the clocks ap-
proach one another, the frequency v of their signals is increased from the proper
frequency vy, by the Doppler effect. In this case (see Eq. 2-30a) we have

v_ [L+B_ [1+08 .

vw NI-B NI-08
Thus, Bob receives nine signals from Dave in his three-year return journey. Alto-
gether, Bob receives ten signals from Dave. Similarly, Dave receives three signals
from Bob in the last year before Bob is home. Altogether, Dave receives six signals
from Bob,

Figure B-3 shows the signal logs for Dave’s and Bob's spaceships. Signals sent
are indicated below the time axis in each case and signals received are shown above
that axis. There is no disagreement about the signals: Bob sends six and Dave
receives six; Dave sends ten and Bob receives ten. Everything works out, each
secing the correct Doppler shift of the other’s ¢lock and each agreeing to the number
of signals that the other sent. The different total times recorded by the twins
corresponds to the fact that Dave sees Bob recede for nine years and return in one
year, although Bob both receded for three of his years and returned for three of his
years. Dave’s records will show that he received signals at a slow rate for nine years
and at a rapid rate for one year. Bob’s records will show that he received signals at
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FIGURE B-3. The signal logs for the twins.

a slow rate for three years and at a rapid rate for another three years. The essential
asymmetry is thereby revealed by a Doppler effect analysis. When Bob and Dave
compare records, they will agree that Dave’s clock recorded ten years and Bob's
recorded only six. Ten years have passed for Dave during Bob's six-year round trip.

B-3 Some Other Considerations

Will Bob really be four years younger than his twin brother? Since for the word
“clock’” we could have substituted any periodic natural phenomena, such as heart-
beat or pulse rate, the answer is yes. We might say that Bob lived at a slower rate
than Dave during his trip, his bodily functions proceeding at the same slower rate
as his physical clock. Biological clocks behave in this respect the same as physical
clocks. There is no evidence that there is any difference in the physics of organic
processes and the physics of the inorganic materials involved in these processes. If
motion affects the rate of a physical clock, we expect it to effect a biological clock
in the same way.

It is of interest to note the public acceptance of the idea that human life processes
can be slowed down by refrigeration, so that a corresponding different aging of
twins can be achieved by temperature differences. What is paradoxical about the
relativistic case, in which the different aging is due to the difference in motion, is
that since (uniform) motion is relative, the situation appears (incorrectly) to be
symmetrical, But, just as the temperature differences are real, measurable, and
agreed upon by the twins in the foregoing example, so are the differences in motion
real, measurable, and agreed upon in the relativistic case— the changing of inertial
frames, that is, the accelerations, are not symmetrical. The results are absolutely
agreed upon.

Although there is no need to invoke general relativity theory in explaining the
twin paradox, the student may wonder what the outcome of the analysis would be
if we knew how to deal with accelerated reference frames. We could then use Bob's
spaceship as our reference frame, so that Bob is the stay-at-home, and it would be
Dave who, in this frame, makes the round-trip space journey. We would find that we
must have a gravitational field in this frame to account for the accelerations that Bob
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feels and the fact that Dave feels no accelerations even though he makes a round
trip. If, as required in general relativity, we then compute the frequency shifts of
light in this gravitational field, we come to the same conclusion as in special
relativity [3].

B-4 Experimental Tests

Testing the conclusions we have reached with actual twins and clocks in spaceships
moving with speeds close to the speed of light is, of course, more than can be
managed at present. However, totally equivalent high-speed tests can be carried out
using as clocks unstable elementary particles such as muons or pions or one of the
hundreds of varieties of radioactive atoms available to us. At lower speeds— those
of jet planes, for example — tests can be carried out with macroscopic atomic clocks,
thanks to impressive improvements in the stability and time-keeping ability of such
clocks.

In Section 2-7 we described the precise measurements of Kundig |Ref. 9, Chap-
ter 2| on the transverse Doppler effect. This effect, as we noted in that section, is
a direct measure of the time dilation, and we can use it to illustrate the twin paradox.
From the point of view of the observer on the rotor axis (the stay-at-home twin), the
absorbing foil on the perimeter of the rotor (the traveling twin) has a characteristic
resonant absorption frequency that matches the source frequency only when the
rotor is nor turning. When the rotor is turning, the resonant frequency of the moving
foil drops, just as predicted by Egs. 2-32, Put another way, the round-trip twin ages
less than his stay-at-home brother and (to within | percent) by exactly the amount
predicted by relativity theory.

In 1968 a careful measurement of time dilation was reported from CERN (the
European Nuclear Research Center, located near Geneva) in which laboratory-
generated 1.18-GeV muons, for which the corresponding speed is 0.9966¢, served
as high-speed traveling clocks [4]. These muons were constrained to circulate in an
orbit 5.0 m in diameter in the muon storage ring in that laboratory. Thus, like the
traveling twin (and also like the resonant absorbing foil in the experiment described
above), they traverse a closed path and undergo (centripetal) acceleration during
their journey. Their mean life for decay in flight can then be compared with the
mean life observed when muons are brought to rest in an absorbing block, Many
experiments give the accepted value of 2.200 = 0.0015 ps for the decay of resting
muons (the stay-at-home twin); the CERN experimenters measured 26.15 = 0.03
s for the mean decay time for the traveling muons (the traveling twin). This agrees
within about 2 percent with the lifetime predicted for these traveling muons because
of the time dilation, namely, 26.72 ps. The time dilation phenomenon is universally
accepted and is, in fact, turned to specific advantage in the design of certain
high-energy particle experiments. As one high-energy physicist has written [5]:
““We frequently transport beams of unstable particles over long distances such that
no particles would be left without the help of Einstein’s factor.””

Refinements of atomic clocks have so improved the accuracy of timekeeping that
time-dilation effects can be detected at speeds as low as those of jet planes. In
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TABLE B-1

Round-the-World Atomic Clocks [6] (The numbers shown are
time differences, in nanoseconds, with respect to reference
clocks at the U.S. Naval Observatory.)

Eastward Westward

Predicted:
Special relativity — 184 + 18 96 = 10
General relativity 144 = 14 179 = 18
Nel predicted: - 40 *+ 23 275 + 21
Ob + 10 3 = 7

Observed: - 59

Qctober 1977, Joseph Hafele and Richard Keating [6] carried four cesium-beam
atomic clocks around the world on commercial airline flights, ** . . . to test Ein-
stein’s theory of relativity with macroscopic clocks.”” They took their clocks around
once each way, that is, once eastward and once westward, comparing the traveling
clocks to those that stayed at home at the Naval Observatory on the Earth, rotating
(eastward) below them. The calculations must take into account not only the kine-
matic time-dilation effect (which is related only to the speed of the traveling clocks),
but also relativistic frequency shifts associated with changes encountered in the
strength of the earth’s gravitational field (see Supplementary Topic C, Section C-2).
Table B-1 shows the predictions of relativity theory along with the experimental
findings. Hafele and Keating conclude: *‘There seems to be little basis for further
arguments about whether clocks will indicate the same time after a round trip, for
we find that they do not.”

Today, when precision clocks move from one location to another, cumulative
time corrections with respect to a stay-at-home clock are made routinely [7]. Such
considerations enter, for example, when precision clocks are moved for comparison
purposes between Washington, D.C., and the National Bureau of Standards Labo-
ratory at Boulder, Colorado. Similarly, relativistic time-dilation effects must be
considered in the design and operation of the Global Positioning System (GP-
S/NAVSTAR), a precision navigation system in which it is planned to employ 24
orbiting satellites.

QUESTIONS AND PROBLEMS

1. The shortest distance between two points
is a straight line (7).

Draw a spacetime diagram to represent this
situation.
Einstein on the clock “‘paradox.’” Ein-

Comparison of Fig.

B-1¢ and Eq. B-3 shows us that, in terms of 2

elapsed proper time in units of ¢7 on a space-
time diagram, a straight line is not the short-
est distance between two points but the long-
est. Is this statement still true if one of the
two particles involved is not stationary (as in
Fig. B-1c) but moves with constant speed?

stein. in his first paper on the special theory
of relativity, wrote the following: **If one of
two synchronous clocks at A is moved in a
closed curve with constant velocity until it
returns to A, the journey lasting ¢ seconds,
then by the clock that has remained at rest

the travelled clock on its arrival at A will be
1v212¢? seconds slow.”" Prove this statement.
(Note: Elsewhere in his paper Einstein indi-
cated that this result is an approximation,
valid only for v =< ¢.)

Do you really want to do it? You wish to
make a round trip from earth in a spaceship,
traveling at constant speed in a straight line
for six months and then returning at the same
constant speed. You wish further, on your
return, to find the earth as it will be a thou-
sand years in the future. (¢) How fast must
vou travel? (b) Does it matter whether or not
you travel in a straight line on your journey?
If, for example, you traveled in a circle for
one year, would you still find that a thousand
years had elapsed by earth clocks when you
returned?

Synchronizing clocks. Consider two clocks
fixed along the x axis of an inertial reference
frame, one at x = x; and the other at v = x,.
In Section 2-1 we saw how to synchronize
such clocks, using light signals. Here is an-
other proposed method that, at first glance,
may seem quite reasonable: Let a traveler
move out along the x axis with constant speed
v, wearing a wristwatch. Let the traveler then
set each of the two x axis clocks to agree with
the wristwatch as she passes them. What is
wrong with this method of synchronization?
Bob and Dave. (a) In the spacetime dia-
gram of Fig. B-2, how far apart are Bob and
Dave when Bob turns around? (b) Suppose
that Dave did not know beforehand when
Baob was planning to turn around. When (by
his own clocks and calendars) would Dave
find out that Bob had done so? (¢) If Boh's
clock runs slow on the outhound trip (as it
does), then why does it not run fast on the
inbound trip, for which his velocity is re-
versed in sign?

Bob changes his mind. Suppose that Bob,
after noting the passage of three years by his
on-board clock, decides not to return to Dave
but simply stops. He compares his on-board
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clock with one of the local clocks belonging
to the synchronized array of stationary
clocks fixed in Dave's inertial frame. (a)
What will this local clock read? (b) Draw
Bob’s world line for this new situation on a
spacetime diagram,

Bob is older than Dave this time. Bob,
once started on his outward journey from
Dave, keeps on going at his original uniform
speed of 0.8¢. Dave, knowing that Bob was
planning to do this, decides, after waiting for
three years, to catch up with Bob and to do
so in three additional years. (a) To what
speed must Dave accelerate to do so? (&)
What will be the elapsed time by Bob’s
clock when they meet? (c) How far will they
each have traveled when they meet, mea-
sured in Dave’s original inertial reference
frame? (d) Draw the world lines for Bob and
Dave on a spacetime diagram and compare it
with Fig. B-2. Notice that the present sce-
nario is the mirror image of the one dis-
cussed in connection with that figure; there
Dave turned out to be four years older than
Bob when they reconvened; here Bob will
turn out to be four years older than Dave [8],
Bob and Dave are twins again.  Suppose
that Bob and Dave each agree to follow the
scenario described by Fig. B-2 for three
years, each counting the years by his own
onboard clock. Then Bob will come to rest
and Dave will accelerate to (0.8¢ and even-
tually catch up with Bob. (@) What will be
the total elapsed times on each of their
clocks when they meet? (b) Draw a space-
time diagram and compare it carefully with
that of Fig. B-2. Note the total symmetry of
the situation. In the scenario as given origi-
nally, Dave turned out to be four years older
than Bob when they met; in Problem 7, the
reverse turned out to be true; in this case they
turn out to be the same age at the end of their
Journeys [8].

The twins talk it over. Explain (in terms
of heartbeats, physical and mental activities,



