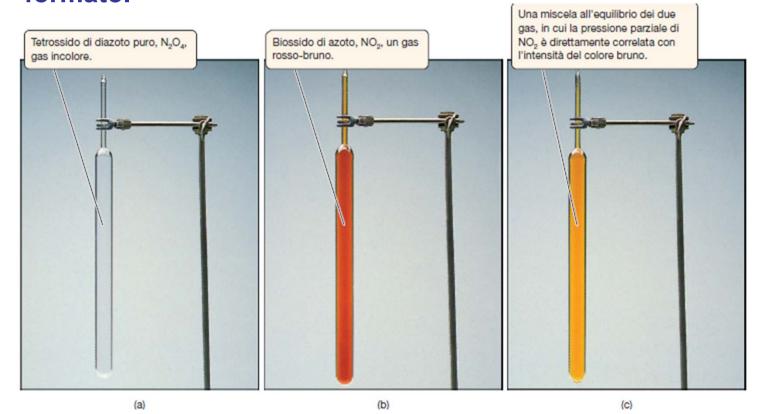

L'EQUILIBRIO CHIMICO

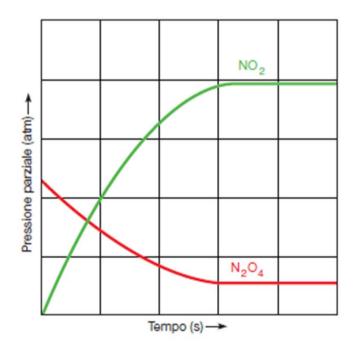
Lo stato di equilibrio rappresenta una situazione in cui una grandezza ben definita rimane costante.

Equilibrio FISICO Equilibrio CHIMICO



L'EQUILIBRIO CHIMICO

LE PROPRIETA' DELL'EQUILIBRIO CHIMICO

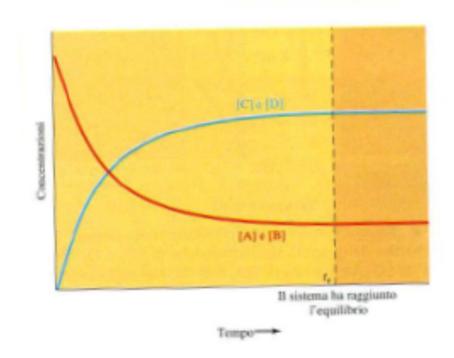

- 1. Le reazioni di equilibrio sono reazioni reversibili;
- 2. L'equilibrio è uno stato dinamico;
- 3. All'equilibrio le concentrazioni dei reagenti e dei prodotti sono costanti nel tempo;
- 4. L'equilibrio che si raggiunge è sempre lo stesso indipendentemente dalla direzione della reazione che lo ha formato.

L'EQUILIBRIO CHIMICO

Tabella 12.1	Avvicinamento all'equilibrio nel sistema $N_2O_4(g) \rightleftharpoons 2NO_2(g)$ (a 100 °C)							
Tempo (s)	0	20	40	60	80	100		
$P_{N_2O_4}$ (atm)	1.00	0.60	0.35	0.22*	0.22	0.22		
P _{NO₂} (atm)	0.00	0.80	1.30	1.56	1.56	1.56		

^{*} I numeri in neretto indicano le pressioni all'equilibrio.

Tabella 12.2 Misure all'equilibrio nel sistema N ₂ O ₄ -NO ₂ a 100 °C						
		Pressione iniziale (atm)	Pressione di equilibrio (atm)			
Esp. 1	N ₂ O ₄	1.00	0.22			
	NO ₂	0.00	1.56			
Esp. 2	N_2O_4	0.00	0.07			
	NO ₂	1.00	0.86			
Esp. 3	N_2O_4	1.00	0.42			
	NO ₂	1.00	2.16			


Reazioni reversibili = reazioni chimiche che avvengono in entrambe le direzioni

$$aA + bB \implies cC + dD$$

Reazione diretta: $aA + bB \rightarrow cC + dD$

Reazione inversa: $cC + dD \rightarrow aA + bB$

Si ha un equilibrio chimico (equilibrio dinamico) quando le due reazioni opposte avvengono <u>contemporaneamente</u> e con la stessa velocità

Le reazioni chimiche raggiungono uno stato di equilibrio nel quale le velocità delle reazioni diretta e inversa si eguagliano e non si verifica alcun cambiamento netto di composizione

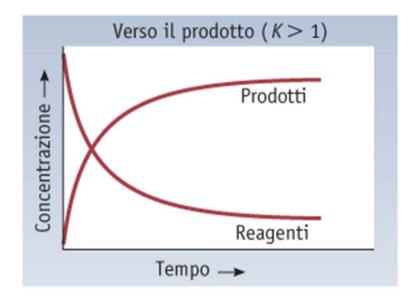
In condizioni d'equilibrio il rapporto tra il prodotto delle concentrazioni dei prodotti della reazione elevate ai rispettivi coefficienti stechiometrici, ed il prodotto delle concentrazioni dei reagenti, elevate ai rispettivi coefficienti stechiometrici, è costante a temperatura costante.

$$aA + bB \rightleftharpoons cC + dD$$

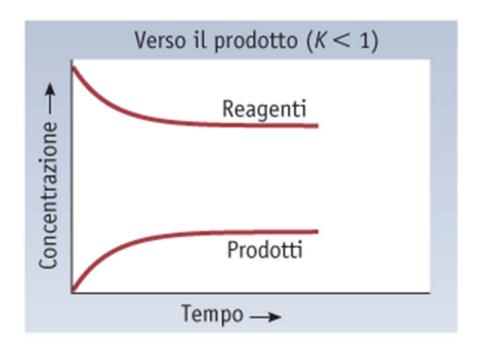
$$K_C = \frac{[C]^c[D]^d}{[A]^a[B]^b}$$

$$costante\ d'equilibrio$$

 K_{C} E' costante ad una data temperatura


Varia al variare della temperatura

Non dipende dalle concentrazioni iniziali


Non ha unità di misura $(K = e^{\Delta G/RT})$

Le concentrazioni all'equilibrio hanno valori tali da dare sempre lo stesso valore di K_C indipendentemente dalle concentrazioni iniziali dei vari prodotti.

La costante d'equilibrio permette di prevedere in quale direzione evolve il sistema di reazione per raggiungere lo stato di equilibrio (K_C grande \Rightarrow formazione dei prodotti favorita)

$$CH_4 + Cl_2 \longrightarrow CH_3C1 + HC1 \quad K_C = \frac{[CH_3C1][HC1]}{[CH_4][Cl_2]} = 1.2 \times 10^{18} \quad \begin{array}{ll} la \ reazione \ \dot{e} \\ spostata \ verso \\ i \ prodotti \end{array}$$

$$N_2 + O_2 \longrightarrow 2NO$$
 $K_C = \frac{[NO]^2}{[N_2][O_2]} = 4.5 \times 10^{-31}$ spostata verso i reagenti

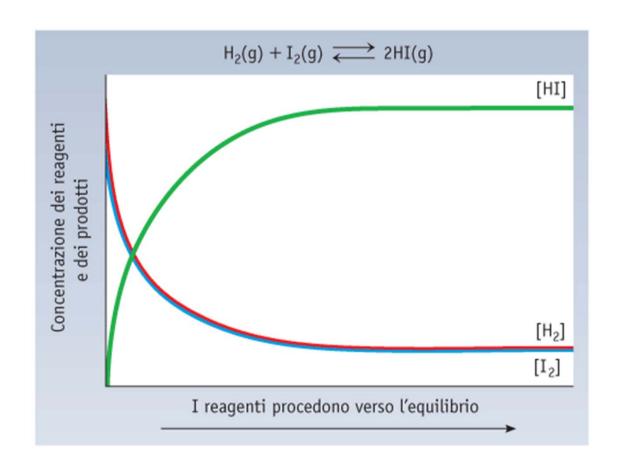
TABELLA 16.1 Valori di costanti di equilibrio per alcune reazioni selezionate

	Costante di equilibrio, K	
Reazione	(a 25 °C)	Reazione spostata verso
Reazione di combinazione di non metalli		
$S(s) + O_2(g) \iff SO_2(g)$	4.2×10^{52}	K > 1; prodotti
$2 H_2(g) + O_2(g) \Longleftrightarrow 2 H_2O(g)$	3.2×10^{81}	K > 1; prodotti
$N_2(g) + 3 H_2(g) \rightleftharpoons 2 NH_3(g)$	3.5×10^{8}	K > 1; prodotti
$N_2(g) + O_2(g) \iff 2 NO(g)$	1.7×10^{-3} (a 2300 K)	K < 1; reagenti
Reazioni di ionizzazione di acidi e basi deboli		
$HCO_2H(aq) + H_2O(\ell) \iff HCO_2^-(aq) + H_3O^+(aq)$ acido formico	1.8×10^{-4}	K < 1; reagenti
$CH_3CO_2H(aq) + H_2O(\ell) \iff CH_3CO_2^-(aq) + H_3O^+(aq)$ acido acetico	1.8×10^{-5}	K < 1; reagenti
$H_2CO_3(aq) + H_2O(\ell) \iff HCO_3^-(aq) + H_3O^+(aq)$ acido carbonico	4.2×10^{-7}	<i>K</i> < 1; reagenti
$NH_3(aq) + H_2O(\ell) \iff NH_4^+(aq) + OH^-(aq)$ ammoniaca	1.8×10^{-5}	K < 1; reagenti
Reazioni di dissoluzione di solidi "insolubili"		
$CaCO_3(s) \iff Ca^{2+}(aq) + CO_3^{2-}(aq)$	3.8×10^{-9}	K < 1; reagenti
$AgCl(s) \iff Ag^{+}(aq) + Cl^{-}(aq)$	1.8×10^{-10}	K < 1; reagenti

Tabella 12.3 Dipendenza di k dalla forma della reazione chimica

$$R(g) \iff Y(g) \qquad k = \frac{P_{\gamma}}{P_{R}}$$
Forma dell'equazione Espressione di K Relazione con K Regola

$$Y(g) \iff R(g) \qquad K' = \frac{P_{R}}{P_{\gamma}} \qquad K' = \frac{1}{K} \qquad \text{Regola del reciproco}$$


$$nR(g) \iff nY(g) \qquad K'' = \frac{(P_{\gamma})^{n}}{(P_{R})^{n}} \qquad K'' = K^{n} \qquad \text{Regola del coefficiente}$$

$$R(g) \iff A(g) \qquad K_{1} = \frac{P_{A}}{P_{R}}$$

$$A(g) \iff Y(g) \qquad K_{2} = \frac{P_{\gamma}}{P_{A}}$$

$$R(g) \iff Y(g) \qquad K = K_{1} \times K_{2} \qquad \text{Regola degli equilibri multipli}$$

CALCOLI CON LE REAZIONI DI EQUILIBRIO: LA TABELLA ICE

EQUILIBRI ETEROGENEI

- 1. La posizione dell'equilibrio è indipendente dalla quantità di solido o liquido, finchè è presente almeno una piccola quantità di essi;
- 2. Non è necessario che i termini dei liquidi o dei solidi puri compaiano nell'espressione di K.

Un sistema eterogeneo all'equilibrio: l₂ solido-l₂ gassoso.

Tabella 12.4	$CO_2(g) + H_2$	Un sistema eterogen I ₂ solido-I ₂ gassoso.			
	Esp. 1	Esp. 2	Esp. 3	Esp. 4	
Massa di H ₂ O(/)	8 g	6 g	4 g	2 g	
P _{H₂0} (atm)	3×10^{-2}	3×10^{-2}	3×10^{-2}	3×10^{-2}	
Kı	9×10^{-6}	9×10^{-6}	9×10^{-6}	9×10^{-6}	
K_{II}	3×10^{-4}	3×10^{-4}	3×10^{-4}	3×10^{-4}	
	V	$P_{CO} \times P_{H_2O}$	P _{C0}		

IL QUOZIENTE DI REAZIONE Quoziente di reazione Q = KQ < KTempo FIGURA 30-5 La relazione tra quoziente di reazione e costante di equilibrio. (a) Non all'equilibrio. Q < K. (b) All'equilibrio. Q = K. (c) Non all'equilibrio. Q > K. In questo caso nel contenitore sono presenti In questo caso nel contenitore sono presenti In questo caso nel contenitore sono presenti 4 molecole di isobutano e 3 molecole di butano. 5 molecole di isobutano e 2 molecole di butano. 6 molecole di isobutano e 1 molecola di butano. La reazione procederà per convertire butano La reazione è all'equilibrio. La reazione procederà per convertire isobutano in isobutano per raggiungere l'equilibrio. in butano per raggiungere l'equilibrio.

FIGURA 16.5 L'interconversione di isobutano in butano. Solo quando le concentrazioni di isobutano e butano sono in rapporto [isobutano/butano] = 2.5 il sistema è all'equilibrio. (b) Con qualunque altro rapporto di concentrazione, una molecola verrà convertita in un'altra fino a che si raggiunge l'equilibrio.

IL QUOZIENTE DI REAZIONE

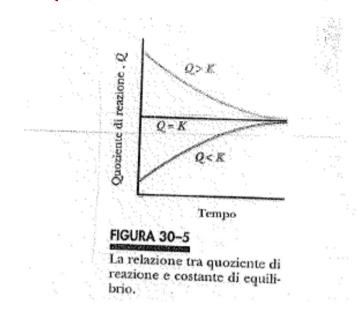
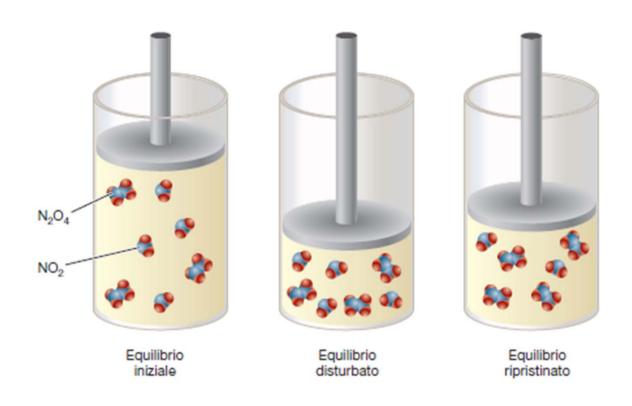


Tabella 12.5 Avvicinamento all'equilibrio del sistema A \iff B per cui K = 1.00

	Esperimento 1*				Esperim	ento 2*		
t	0	20	40	60	0	20	40	60
conc. B	1.00	1.35	1.50	1.50	2.00	1.65	1.50	1.50
conc. A	2.00	1.65	1.50	1.50	1.00	1.35	1.50	1.50
a = [B]/[A]	0.500	0.818	1.00	1.00	2.00	1.22	1.00	1.00
	Q < K		a:	a = K $a > K$		a =	K	

^{*}In entrambi gli esperimenti, i sistemi alla destra della linea tratteggiata hanno raggiunto l'equilibrio.

Quando si disturba con una sollecitazione esterna un sistema all'equilibrio, il sistema stesso reagisce in modo da annullare, per quanto possibile, gli effetti di tale sollecitazione


$$aA + bB \rightleftharpoons cC + dD$$

L'effetto della concentrazione

Se si aggiunge una certa quantità di reagente A o B (a T costante) avverrà la reazione che porta alla sua scomparsa

Se si sottrae una certa quantità di prodotto C o D (a *T costante*) avverrà la reazione che porta alla sua formazione

L'effetto della pressione o del volume

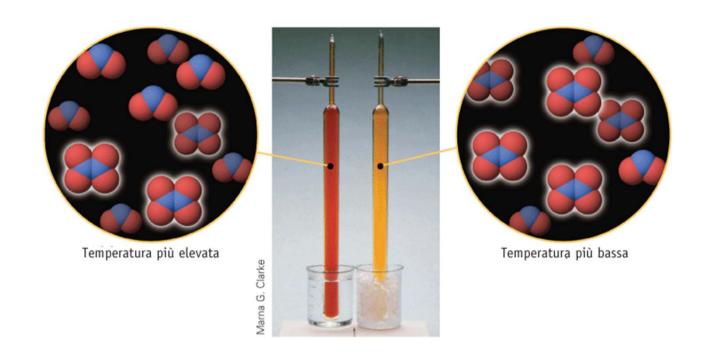

L'effetto della pressione o del volume

Tabella 12.7 Effetto della press	Effetto della pressione sulla posizione degli equilibri gassosi Aumento di Diminuzione di					
Sistema	$\Delta n_{\rm gas}^*$	P _{tot}	P _{tot}			
1. $N_2O_4(g) \iff 2NO_2(g)$	+1	←	\longrightarrow			
2. $SO_2(g) + \frac{1}{2} O_2(g) \iff SO_3(g)$	$-\frac{1}{2}$	\longrightarrow	←			
3. $N_2(g) + 3H_2(g) \iff 2NH_3(g)$	-2	\longrightarrow	←			
4. $C(s) + H_2O(g) \iff CO(g) + H_2(g)$	+1	←	\longrightarrow			
5. $N_2(g) + O_2(g) \iff 2NO(g)$	0	0	0			

 $^{^*\}Delta n_{\rm oss}$ è la variazione del numero di moli del gas che ha luogo nel corso della reazione diretta.

L'effetto della temperatura

FIGURA 16.8 Effetto della temperatura sull'equilibrio. Entrambi i tubi nella fotografia contengono NO₂ (rosso-bruno) e N₂O₄ (incolore) all'equilibrio. *K* è più grande a temperatura più bassa poiché l'equilibrio favorisce l'incolore N₂O₄. Questo si osserva chiaramente nel tubo di destra, dove il gas nel bagno di ghiaccio è solo leggermente colorato, indicando una bassa concentrazione del gas rosso-bruno NO₂. A 50°C (tubo di sinistra), l'equilibrio è spostato verso NO₂, come indicato dall'intensa colorazione rosso-bruna.

TABELLA 16.2 Effetti delle perturbazioni sulla composizione di equilibrio

Perturbazione	Cambiamento quando la miscela torna all'equilibrio	Effetto dell'equilibrio	Effetto sulla K				
Reazioni coinvolgenti solidi, liquidi o gas							
Aumento della temperatura	Energia termica è consumata dal sistema	Spostamento nella direzione endotermica	Cambiamento				
Diminuzione della temperatura	Energia termica è generata dal sistema	Spostamento nella direzione esotermica	Cambiamento				
Addizione di un reagente*	Il reagente addizionato viene in parte consumato	Aumenta la concentrazione dei prodotti	Nessun cambiamento				
Addizione di un prodotto*	Il prodotto addizionato viene in parte consumato	Aumenta la concentrazione dei reagenti	Nessun cambiamento				
Reazioni coinvolgenti gas							
Diminuzione del volume, aumento della pressione	Diminuzione della pressione	La composizione cambia per ridurre il numero totale di molecole gassose	Nessun cambiamento				
Aumento del volume, diminuzione della pressione	Aumento della pressione	La composizione cambia per aumentare il numero totale di molecole gassose	Nessun cambiamento				

^{*}Non si applica se il reagente o il prodotto addizionato è un solido insolubile o un liquido puro. Si ricordi che la loro "concentrazione" non compare nel quoziente di reazione.