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Introduction

Introduction

We have defined a discrete random variable as a random variable
X : Q — R whose range X (Q) is discrete.

Now we introduce the notion of a continuous random variable,
which is a random variable whose range is an interval of R (the
exact definition is given above).

This means that a continuous random variable can take any value
within some interval.

Examples:

» In the experiment of the falling meteor, the distance between the
impact point and our town is a random variable with range the
interval [0, w Re], where Rg is the Earth’s radius.

» In the experiment given by the life of a person, the lifespan of the
person and the height of the person (in adulthood) are random
variables with range a finite interval of non-negative real numbers.
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@ Before to present the formal exact definition of a continuous
random variable, we need to introduce the notion of a distribution

function.

Definition
Let X : Q — R be a random variable. The function Fx : R — [0, 1]
given by

Fx(x)=P(X <x), x eR,
is called the distribution function or the cumulative distribution
function of X.

The distribution function Fx has the following three properties:
i) Fx is increasing;
i) limy_, oo Fx (X) = 0;

i) My 400 Fx (X) = 1.
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Graph of a distribution function
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In fact:

i) for x,y € R such that x < y, we have
X<x=>X<y, iee X<x C X<y,
and so
Fx(x) =P(X <x) <P(X<y)=Fx(y).

i) Since Fy is an increasing function, limy_, . Fx (x) exists. Consider
a decreasing sequence {x,} in R such that x, - —oc0, n — <.
Consider the events

X<x1 2 X<x 2 X<x32 -
By the lower monotone convergence property, we have

Xl!moo FX (X) - nli~>moo FX (Xn) - nimoo ]P) (X S Xn)

- P(ﬁx<xn> =P (0)=0.

n=1
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Continuation

i) Since Fx is an increasing function, limy_, ., Fx (x) exists. Consider
an increasing sequence {x,} in R such that x, — +oo, n — oco.
Consider the events

X<xg CX<x CX<x3C -
By the upper monotone convergence property, we have

lim Fx(x) = lim Fx(xp) = lim P(X < xp)
X—+00 n—oo

n—oo

]P’(Ong,,) =P(Q)=1.

n=1
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@ As a very simple example of a distribution function, consider the
following discrete random variable X related to a single trial in a
Bernoulli process with outcomes « with probability p and g with
probability q:

X — { 1 if the outcome is «
0 if the outcome is 3.

We have

Oifx<O
Fx(x)=P(X<x)=1¢ qif0<x<1 , xeR
1ifx>1
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@ Graph of Fx
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Introduction

In general, for a discrete random variable X whose values are y;,
i€l,where | ={1,2,..., n} for some positive integer n or
I1={1,2,3,...},and y; < yo < y3 < ---, we have

Fx(x) = PX<x)=P(|J X=y)=> P(X=y)
i€l iel
yi<x yi<x
0if x <y

x(yn) ifyr < x <y
Dot =9 i)+ (o) it ya < x <y
<, tx(y1) + fx(y2) + fx(ys) if ya < X < ya

So, Fx is piecewise constant with jumps at the points y;, i € I.

Moreover, the previous expression of Fx explains why the name
"cumulative distribution function” is used.

, XER



Introduction

@ Exercise. Prove that the distribution function Fx of a random
variable X is right-continuous, i.e.

lim Fx(y) = Fx(x) forany x € R.
yix

To this aim, observe that lim,, , Fx(y) exists since Fx is
increasing. Then consider a decreasing sequence {y,} in R such
that y, — x, n — oo, and the events

X<Xxg 2 X<Xx 2 X<Xx3 2D -
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Continuous Random Variables and Probability Density

Functions
°
Definition
A random variable X is called continuous if Fx has a derivative.

The derivative of Fx is denoted by fx and it is called the probability
density function (pdf) of X.

The pdf of X is also called the distribution of X.

Observe that fx is a non-negative function since Fy is increasing.

@ Local meaning of the pdf: for any x € R, we have
fx(x)dx = Fx(x+dx)— Fx(x) =P(X < x4+ dx) —P(X < x)
= P(x < X< x+dx)
where the last equality holds since the event X < x is included in
the event X < x + dx and the the event x < X < x + dx is their
difference.
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We can write B X < x+ dx)
X < X+ dx
fX(X) - dX
and this explain the name "probability density function” for f,: the
values of the probability are distributed along the real line and
fx(x) is the probability for length unit at the point x, i.e. the linear
density of probability at x.

On the other hand, for a discrete random variable X, the values
fx(x) =P(X = X), x € X(Q),

of the "probability mass function" are values of probability
concentrated at the points of X(2) and so such points have a
mass of probability.
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@ Global meaning of the pdf: for any a, b € R with a < b, we have
b
/fx(x) dx = Fx(b)—Fx(a)=P(X<b)-P(X<a)
a
= P(a<X<b).

By letting a — —oo, we obtain

a——00

b b
/fx(x)dx = lim /fx(X)dX:aﬂmoo(Fx(b)—Fx(a))

= Fx(b) = _lim Fx(a) = Fx(b) - 0= Fx(b).

Thus,

Fx(x) = / fx(y)dy, x € R.



Continuous Random Variables and Probability Density Functions

@ For a continuous random variable X, Fx is a continuous function
since Fx is an integral function.

Observe that a discrete random variable X cannot be a
continuous random variable, since Fx is not a continuous function
(it is piecewise constant with jumps).

@ Let X be a random variable such that Fx is continuous. Then, we
have
P(X = x) =0 forany x € R.
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In fact, consider an increasing sequence {x,} in R such that
Xn — X, n — oo. Consider the events

X< X<X D X< X<XDx3<X<XxD -

By the lower monotone convergence property, we have

lim P (xp < X < x) = ﬂxn<X<x) P(X = x).
n=1
and
nImeP(xn <X<x) = nILmOO(P (X <x)—P(X < xp))

= nILmOO(FX(x) — Fx(xn))

= F(x)— nILmOO Fx(xn)

= Fx(x) — Fx(x) since Fx is continuous
= 0.
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@ Now, let X be a continuous random variable, so that Fx is
continuous. For a, b € R with a < b, we have

b
/fx(x)dx _ Pla<X<b)—P(a<X<b)

= Pl@a<X<b=Pla<X<b)),

since P(X = a) = P(X = b) = 0 and all these probabilities are the
area under the graph di fx between aand b

a b
Pla< X< b}=area of shaded region
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Once we know that probabilities of the events
X € closed box of R,
i.e the probabilities

b
P(X e [a,b]):/fx(x)dx, a,be Rwith a< b,
a

we also know the probabilities of the events
X € Borel subset of R.

These probabilities are obtained by the same way with which the
Borel subsets of R are constructed from the closed boxes of R, by
applying the properties of a measure of probability.

We obtain, for any Borel subset A of R,

P(X € A) = / fy () dx.

XEA
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In particular, we have

/fx P(X € R) =1,
XER

i.e. the area under the whole graph of fx is 1. On the other hand,
this can be seen by observing that

b
/fx(x)dx: lim /fx(x)dx: lim Fx(b) =1.

b—+o00 b—+o00
XER

Finally, observe that, since
P(X =x)=0forany x € R,
for a discrete subset A = {a; : i € I} of R, we have

P(X € A) = (UXa,)—ZIP’(X—a,-)—O.

iel i€l -0
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@ Here is an interesting interpretation of the pdf of a continuous
random variable.

Consider an experiment with sample space Q2 and a continuous
random variable X : Q — R.

Suppose to consider as the new outcome for the experiment
X (w), rather than w. So, the new sample space is the continuous
set QY = R, rather than Q.

The non-negative integrable function p : Q"% = R — R giving the
probabilities of the closed boxes of the new sample space
Q¥ = R is the pdf of X:

b
P([a, b]) = P(X € [a, b]) = / fy () dx

a

for a closed box [a, b] of Q™Y = R.
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@ Now, we see a first example of a continuous random variable.

A continuous random variable X is said have the uniform
distribution U(a, b), where a, b € R with a < b, if

Oifx<a
fx(x)={ pzifa<x<b ,xeR

Oifx>»b
So, if X has the uniform distribution U(a, b), then

X
[0=0ifx<a

X
X
Fx(X)Z/fX(y)dy= [ padx=g=5ifasx<b , xeR,
a
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and, for any Borel subset A of [a, b],

d

J dy
1 A length (A
IP(XeA):/fx(y)dy:/b_ady:yg_a: bg_(a).
yeA yEA

Here are two examples of random variables with uniform
distribution:

» The number obtained by a random number generator in a computer
is a random variable with uniform distribution U(0, 1).

» Consider a railway connecting the city A (at the position 0 in the
railway) to the city B (at the position D in the railway). The position
in the railway where the next train with a malfunction will stop is a
random variable with uniform distribution U(0, D).
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Exercise. What is the probability that the number obtained by a
random number generator is rational?

Exercise. Consider the next time that there will be here an
earthquake. Is the time during the day (from 0 h to 24 h) at which
the earthquake will strike an uniform random variable? Is the
length of time interval from now to the moment when the
earthquake will strike a uniform random variable?

Exercise. Suppose it is known the final result 1-0 of a football
match, but the time at which the goal is scored is not known. Is
this time a uniform random variable?
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fx as derivative of Fx

@ We have defined the pdf of a continuous random variable as the
derivative of the distribution function but a better definition is the
following one.

A random variable X is called continuous if there exists a function
fx, called a pdf of X, such that

Fx(X)Z/fx(y)dy,xeR.

So fx is meant as a derivative in a weaker sense than the usual
one: we only require that Fx is the integral function of fx.

@ By recalling Analysis Il, we can say the distribution function Fy of
a continuous random variable X, as any integral function, is
continuous at any point of R and differentiable at any point of R
except for a set a points of measure (length) zero.



Continuous Random Variables and Probability Density Functions fy as derivative of Fy

The derivative F}, which is defined at any point of R except for a
set a points of measure zero, is only a particular pdf of X, i.e. itis
only a particular function whose integral function is Fy.

We have that each pdf of X, i.e. each function whose integral
function is Fy, coincides with F; except for a set of points of
measure zero.

So the pdf fx of X is unique except for a set of points of measure
zero: observe that by changing the values of fx in a set of points
of measure zero does not modify the integrals

FX(X)Z/fX(Y)dy, x € R.
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For example, if X has the uniform distribution U(a, b), then
Oifx<a
Fx(x)=4 $2ifa<x<b , xeR,
1ifx>b

is continuous at any point and differentiable at any point except a
and b: we have

Oifx<a
Fi(x)={ psifa<x<b ,xeD:=R\{a b},
Oifx>b

Thus fx is any function coinciding con Fj except for a set of points
of measure zero.
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Rule of transformation for pdfs
@ We have the following rule of transformation for pdfs.

Let X be a continuous random variable and let Y be a random
variable implicitly defined by

X =y(Y)

where ¢ : [ — R, l'interval of R, is differentiable and strictly
increasing. Observe that Y(Q2) C /. Then Y is a continuous
random variable with pdf

fy(y) = fx(¥(y))-4'(y), y € 1.

In fact, since ¢ is strictly increasing we have
Fy(y) =B(Y < y) =P(¥(Y) <9(y)) =P(X <o(y)) = Fx(¥(y)), y € 1,
and so, since v is differentiable, we have

fy(y) = Fy(y) = Fx(()¥'(¥) = () (y), y € 1.
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Exercise. Suppose that / # R. How is it defined the pdf of Y
outside /?

Example. Consider a random variable X with X(Q2) = /= [0, 1]
and distribution U (0, 1). We determine the distribution of Y = X<,
where « > 0. We have X = ¢ (Y), where ¢ : | — [is given by

G(y) =y, y el

Thus

) = b @O () =1 Syt = Lyit

(%

, yel
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@ Exercise. Prove this other rule of transformation for pdfs. Let X be
a continuous random variable and let Y be a random variable
implicitly defined by X = ¢(Y), where ¢ : | — R, linterval of R, is
differentiable and strictly decreasing. Then Y is a continuous
random variable with pdf

fr(y) = —&(@W)Y'(y), y e l.

@ Exercise. Let X be a continuous random variable. Find the pdf of
Y = aX + b, where a, b € R with a # 0, in terms of the pdf fx.
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Normal Random Variables

@ The most important type of random variable is the normal random
variable, or gaussian random variable.

Definition
A random variable X is said to have the normal distribution N(y, o2),
where © € R and o > 0, if it is @ continuous random variable with pdf

1 (x=p)?

e 22 | xcR.

X is said a normal random variable if it has some normal distribution
N(u, ).
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@ The pdf fx of a normal random variable X is a bell-shaped curve.

() (b) (©

u=2,0=05 n=2a0=2 n=2,o0=4

@ The curve is symmetric about .

In fact, for any ¢ > 0, we have

1 7(1L+C—u)2 1 _ A
fx (,U,+C) = e 252 = e 202
over over
1 (=2 1 ,(u—c—zmz

20
over oVer
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@ The variability of the curve is measured by o: the curve flattens
out as o increases and the peak at . is smaller as o increases.

In fact, we have

ho0= & (e ) o ) wew
X) = — 20 = — 20 X — , X ’
X dx \ ov2r o3V 2T K
and ,
1 _ (x=p)
W(ﬂ\zme 202 |x — pf, x €R,
with
_ = _x=w)? _x=w)?
d%%e : ) ‘%e P+ e T ()
_x=w)?
e 252

RY:
27(—302+(X—M)2) <0, 02>%,

and so at the same x € R, for o > 'ng‘, |fy(x)| decreases as o

increases and tends to zero, as o0 — +o0.
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Moreover, since f;(x) is positive for x < p and negative for x > p,
fx at 1 has the maximum value

fic () = 0}27

that decreases as o increases.
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@ We also observe that the presence of the factor (ﬂﬁ in front of
2

_ew? N
the exponential e 27 is due to the need of the normalization

/fx(x)dx:1.

XeR

In fact, we have

=)
/e 202 dx = oV 2r.

XeR

Exercise. Prove this starting from the fact that

/ e‘yzdy = /.

yEeR

@ Exercise. Find the inflection points of the pdf fx.
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@ Finally, we observe that the symmetry of the pdf fx around
implies: for any a, b € [0, +o0] with a < b, we have

Pu+a<X<p+b)=Pu—b<X<pu-—a).

Plu-b< X < p-a) P(u+a< X < p+b)

N ¥

] —

I
I
I
I
I
I
I
i
p-b p-a [ uta )




Normal Random Variables

In fact
utb
Plu+a<X<u+b)= /fx(x dx—/fx(u+y)dy, =X—p,
uta
/fx(u y)d /fx(x Jax, X =p—y,

_ / () dX=P(u—b<X<u-a).

pn—b
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0.34 | 0.34

0.135 0.135

——0.024 0.024
pH—36 m-20 p-06 " w+c p+2c p+3c

—o0.68—
| 0.95 |

} 0.997 |

@ In Figure, we see the probabilities of some intervals [ + a, 1 + b]
with a and b multiples of o. From the figure we can deduce that

P(—c < X—-—pn<o)=68%
P(—20 < X —pu<20)=95%
P(—=80 < X — u < 30) =99.7%.
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The standard normal distribution

@ The distribution N(0, 1) is said the standard normal distribution.
A random variable with the standard normal distribution is said a
standard normal random variable.

@ If Z has the standard normal distribution, then

fz(Z) =

_2
2, ZzeR.

1
—e
V2T
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@ Let X be a random variable with normal distribution N(, o2). Then

z_X=n
g

called the standardized form of X, is a standard normal random
variable.

In fact,

X=p+oZ=19y(2)
where
P(zZ)=p+oz, Z€R,

and so

fz(2) = fx(¥(2)'(2) = fx(u+02) 0
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Importance of normal random variables

@ The great importance of the normal random variables is due to the
following fact:

» in a process that produces a final result, which is programmed in
some measure but it is also influenced by many random factors,
numerical quantities related to this final result are normally
distributed.

Examples:

» Consider the formation process of an individual: when the process
has produced the adult individual, its height, blood pressure, length
of the feet, cholesterol level, etc., are normally distributed;

» Consider the race of an athlete, for example a marathon or a
cycling race: the time to complete the race is normally distributed.

» Consider the weather in a given place and in a given month:
quantities as the average of the temperatures and the quantity of
rainfall during the month are normally distributed.
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Exercise. Which of the following random variables are normally
distributed?

» The life time of a notebook battery.
» The time to travel by car from city A to city B.

» The distance from here to the impact point of the next meteor falling
on the Earth.

» The birth weight of a newborn.

» The length of time interval from now to the moment when an
earthquake will strike here in this place.
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@ Once we know that many interesting quantities have a normal
distribution, the big problem is to estimate the parameters i and o
of a normal distribution. This is one of the main task of the
Inferential Statistics.

@ Another reason for which the normal distribution is important is
the Central Limit Theorem that will be presented later.
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@ The k-Sigma methodology. Consider an industrial process
producing pieces.

Let X be a numerical quantity related to a produced piece. For
example, if the piece is a disk, X can be the diameter of the piece.

We can assume that, in the experiment of the production of a
piece, X is a random variable with normal distribution N(y, 02),
where u is some reference value for the quantity X.

We consider the produced piece as defective if | X — u| > TOL,
where TOL is a given tolerance.

The industrial process is said to adopt the k-Sigma methodology,
where k > 0, if the standard deviation ¢ is such that ko < TOL.

As a consequence, the probability that the produced piece will be
defective is

p=P(X — u| > TOL) < P(|X — | > ko) =1 — P(|X — p| < ko).
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So, in the Three-Sigma methodology, we have
p<1-99.7% = 0.3%

and in the Six-Sigma methodology, adopted by General Electric,
Toyota, Honeywell and Microsoft, we have

p<1-107°.

Indeed, this value of p is unattainable and what is known as
Six-Sigma methodology is actually a 4.5-Sigma methodology with

p<34-1075.
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Independence of Continuous Random Variables

@ Consider a finite or infinite sequence X;, i € I, of continuous
random variables for the same experiment of sample space Q.

Definition
The random variables of the sequence X;, i € I, are called
independent if, for any sequence [a;, bj], i € 1, of closed boxes of R,
the events

Xi € lai,bj], i€,

are independent.
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@ As a consequence of the definition of independence we have the
following property.

Given a sequence Xj, i € I, of independent continuous random
variables, for any positive integer k such that 2 < k < |/|, for any

it, i, . .., ix € I distinct and for any Borel subset U of RX, we have

IP’((X;”....,X,"()EU): / th (X,-1)---f)(/k (Xik)dxfw"'dxfk'

In fact, for any closed box [a;, b;] x - - - x [a;,, b;] of R¥, we have
P((X,...,X) € [ay, by] x - x [a,bi])
=P(X, € [ay,b,]N---N X, € [aj.bi])
=P(X, €la,, by])---P (X, € lai,bi])
S RGO RO A CALN

i, €lajy »bj; ] ;. €lay by ]

fo (X,‘1 ) .. fok (ka) dX,‘1 . dX,'k.

(%ig s--oXi ) Elary by 1 X [y, by ]
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Now, by starting from the formula
]P)(()(H P 7)(/';() € [af17bf1] X X [afk7bfk])

= le1

(i) -+« B, (X)) dXi, - . . dxj,.
(g s+ ) Elary by 1 - x [y, by ]
for closed boxes, the formula
P((Xy,...,X,) € U)
= / f, (X)) - B (%) dXi, ... dXj,.

for a general Borel subset U is then obtained by the same way
with which Borel subsets are constructed from the closed boxes of
RX , simply by applying the properties of a measure of probability.
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@ Then we have the following other property.

Given a sequence Xj, i € I, of independent continuous random
variables, for any positive integer k such that 2 < k < |/|, for any
It, b, ..., Ik € ldistinct and for any Borel subsets U;,,. .., U, of R,
we have

IP(XH € Ul'w ﬁ"'mek € Uik):P(Xfw € Ul'1)"'IP)(X/'k € Uik)’

Exercise. Prove this by taking U = U;, x --- x U, in the previous
formula.

@ This property can be rewritten as follows.

Given a sequence X;, i € I, of independent continuous random
variables, for any sequence U, i € I, of Borel subsets of R, the
events of the sequence

Xie U, iel,

are independent.
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Operations preserving independence

@ Similarly to the discrete case, the following operations on a
sequence X;, i € 1, of continuous independent random variables
preserve the independence relationship.

@ First operation. Given a sequence X, i € I, of independent
continuous random variables, the random variables
are independent, where £, : R — R.

The proof is the same as in the discrete case.

@ Second operation. Given the finite or infinite sequence
Xi,. .., X, Xni1, Xnio, . .. Of independent continuous random
variables, the random variables

Y == f(X‘],...7Xn),Xn+17Xn+2,...
are independent, where f: R" — R.

The proof is an adaption to integrals of the proof involving sums
given in the discrete case.
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@ The functions f; : R — R and the function f : R” — R in the previous
operations preserving independence needs to be Borel functions:
a function h: R¥ — R is said a Borel function if, for any Borel
subset U of R, the counter-image

fF~1(U) = {x e R¥: f(x) € U}
is a Borel subset of Rk.
Any piecewise continuous function is a Borel function. Indeed, any

function encountered in theory and applications is a Borel
function.
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@ Finally, we have the following two facts, whose proofs are exactly
the same as in the discrete case.

@ Third operation. Independent continuous random variables
X1, X2, X3, ... remain independent if they are presented in any other
order

@ Fourth operation. A subsequence X;, i € J C I, of a sequence
X;, i € 1, of independent continuous random variables is a
sequence of independent continuous random variables.
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Mean of a Continuous Random Variable
@ Here is the definition of mean for a continuous random variable.
With respect to the case of a discrete random variable, we simply
replace the sum with an integral.
Definition
Let X be a continuous random variable. The mean of X is the quantity

E (X) = / xf (x) dx = / X-P(x < X < X+ dx).

XER XER

@ If X has distribution U (a, b), then
b

b
E(X) = /xfx(x)dx:/xbladx:bia/xdx
a

xeR a

1

.1 _a+b
b—a 2

(B? - &) = = middle point of [, b].
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@ Similarly to the case of a discrete random variable, the mean of a
continuous random variable X can be intepreted as center of
mass of a distributed mass along a rod with linear density fx(x) at
the point of abscissa x on the rod.

So, it is not a surprise that the mean of a random variable with
uniform distribution U(a, b) is just in the middle of the interval
[a, b].
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e If X has distribution N (1, 02), then

E(X) = /xfx(x)dx: /(u+x—u)fx(x)dx

XER XER

:u/fx(x)dx—k /(x—u)fx(x)dx = /L.

XER XER

=1 =0 since fx is symmetric around

Due to the symmetry of fx around p, the last integral

[ x—wiax= [ ycturyidy. y=x-n
XER YER
is zero, since it is the integral sum of positive infinitesimal terms
yix(u+y)dx,y >0,
as well as opposite negative infinitesimal terms
Yix(p+y)dy = —(=y)x(n+ (=y)).y <O0.
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@ If Q is continuous, the mean can be also expressed by

E(X) = / xf (X) dx = /X(w)p(w)dw,

XeR we

where p : Q — R is the non-negative integrable function giving
the probabilities of the closed boxes of Q.

This form of the mean is a continuous analog of the form seen for
discrete random variables in case of a discrete sample space. Its
proof is an adaption to integrals of the proof involving sums given
in the discrete case.



Mean of a Continuous Random Variable

@ By using this form of the mean, we can prove, in case of Q2
continuous, the linearity and the monotonicity of the mean.

@ Linearity of the mean: for X, Y : Q — R continuous random
variables,
EX+Y)=E(X)+E(Y)

and
E (cX) = cE (X) forany ¢ € R.

As a consequence, we have

EXi+Xo+--+Xp)=E(X))+--- +E(Xn)
for an arbitrary number of continuous random variable
X1,X2,...,Xn Q2 — R

@ Monotonicity of the mean: for X, Y : 2 — R continuous random
variables,
X<Y=E(X)<E(Y).



Mean of a Continuous Random Variable

@ We have the rule of moltiplication of the means in case of
independence: for Xi, Xo,..., X, : Q2 — R independent
continuous random variables,

E(XiXo- Xn) =E (X)) E(Xe) - E(Xp).

The proof of this property for n = 2 is an adaption to integrals of
the proof involving sums of the analogous result in the discrete
case.

@ Another useful formula is

E(h(X)) = / h(x) fx (x) dx

for a continuous random variable X and h: R — R Borel function.

The proof of this formula is once again an adaption to integrals of
the proof of the discrete analog.



Mean of a Continuous Random Variable

Exercise. Let X be a continuous random variable such that
X(2) C I, linterval of R. By using the rule of transformation for
pdfs, prove the formula

E(h(X)) = /h(x) fy (x) dx

xel

in case of a function h : | — R differentiable and strictly increasing.

Exercise. Prove that
E(X + ¢) = E(X) + ¢ forany c € R,

for a continuous random variable X.



Variance

Variance

@ Variance and standard deviation for continuous random variables
are defined exactly as in case of discrete random variables.

The variance of X is
Var (X) := E (X = 0)?) , 1= E(X),
and the standard deviation of X is
SD (X) := 4/ Var (X).

As in the discrete case, we have
Var (X) =E (XZ) — 2.

and we have that Var (X) can intepreted as momentum of inertia
of a rod with distributed mass of linear density fx around the axis
passing through the center of mass.



Variance

@ Moreover, we have the Chebyshev’s inequality, that is proved
exactly as in the discrete case : for a continuous random variable
X with mean pu, we have

V
P(X—pul>c) <
or the equivalent form

P(|X — u| < kSD (X)) >1— —, k > 0.



Variance

@ Finally, with proofs exactly as in the discrete case, we have the
properties of the variance : for X, Y : 2 — R continuous random
variables,

Var (cX) = c®Var (X) forany c € R

and
Var (X + ¢) = Var (X) forany c € R.

@ Moreover, we have the rule of addition of the variances in case
of independence: for Xi, X>,..., X, : 2 — R independent
continuous random variables,

Var (X1 + Xo + -+ - + Xp) = Var (X)) + Var (Xo) + - - - 4+ Var (Xp) .



Variance

@ Now, we determine the variance of a normal random variable.

If Z has distribution N (0, 1), then

E(Z?) = /zzfz(z)dz: /zzLefédz

or
ZER ZER
/ 1 D 2 d
= — ——2zD (e 2 ) dz
Vvar ( )
zeR
1 2]
= - [ze 2] /—e Zdz
Vor
—,_/
=0—0=0 %/—’

=1

and so
Var(Z) =E (Z2) ~E(Z)? =1-02 =1.



Variance

If X has distribution Ny, 02), then
X=p+oZ2,
where Z has distribution N(0, 1), and then

Var(X) = Var(u+ 0Z) = Var(02Z) = o?Var (Z) = 02
SD(X) = +/Var(X)=Vo2=o0.

@ Note that, whereas Chebyshev’s inequality says that

P (X — | < 20) > % =75% and P (|X — | < 30) > - = 88.9%,

|

we actually have

P(|X —ul <20)=95%and P(|X — p| < 30) = 99.7%.



Variance

@ Exercise. Find the variance and the standard deviation of a
continuous random variable U with distribution U(0, 1). Then,
compute the probabilities

P(|U — u| < 2SD(U)) and P(|U — u| < 3SD(U)),

where . = E(U), and compare them with the lower bounds given
by the Chebyshev’s inequality.

Exercise. Let X be a continuous random variable with distribution

U(a, b). Show that
X—a

b—a
has distribution U(0, 1). Find the variance and the standard
deviation of X.

U=
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Finding probabilities for Standard Normal Random
Variables

@ Let Z be a standard normal random variable. We denote by ¢ its
distribution function:

O(x)=Fz;(x)=P(Z<x)=P(Z<x)= /—e’*dz x cR.

@ In the next table, we see the values ¢ (x) for x > 0.
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Table 6.1 Standard Normal Probabilities

0.5040 05120 05160 05199 05238 05279 05319 05350

H.I O.S‘JBE 05438 C.54'|'E 0.5517 0.8557 055986 05836 05673 04714 05TER
02 05783 0832 05371 05310 05848 Q58T 0.G02E 0B0B4 DE108 06141
03 05178 O0E21T 06255 06283 06331 QG35 06406 06443 05480 06517
06354 OE581 0MBE3@ 06364 O0ETD0 QETI6 06772 06a08 05344 06ATR

05 06915 06950 06885 07018 07084 Q7088 07123 07157 O7180 0O7224

07257 07281 07324 07357 07389 07422 07454 07436 OT517 07540
Q7 0750 OF611 07842 07673 07704 OQ7734 07764 0774 OT7E23 QA5
08 07831 07910 0738 07967 07985 Q8023 0805t 08078 08106 08133
08 08153 08186 O0&A21Z 08238 08264 08230 08315 08340 08365 0A3ap
10 02413 0A43E 08451 04485 08508 Q8531 0ABsd4 0BT 0AS89 08BN
11 08643 O0AGES 08BA6 0ATOR O0ATZS (QAT48 O0ATTD 0&TEQ 0A310 08830
1.2 02843 O0AAE8 08888 08907 0885 (8844 OABGE 08%30 0A837T 08015
13 08032 08049 09056 08082 08083 08115 08131 08147 08162 08177
14 08182 0BT 08222 0823 08251 08255 08278 08282 08306 08318
16 08332 08345 08357 08370 08332 08334 004056 08498 05420 00441
16 08452 OBdE3 05474 08484 02485 08505 08515 08525 08835 08545
17 08554 08664 08573 08382 08581 089530 09608 086596 08625 08833
18 08541 058649 09656 00564 08671 089678 0986 08583 08639 00706
18 08713 08718 05726 06732 08738 09744 009750 08756 08761 00767
20 05772 OQETF 047E3 06782 O0ETE3 Q8THR 08303 0BADE 08312 O08AT
21 0BE21 0BR26 099330 08834 08838 (8342 08346 08850 08854 08AET
22 08861 OBBAd 09362 08371 08875 08878 08381 08834 05887 08330
23 05383 08@B6 09398 08301 08604 056806 08808 08311 05813 08816

08318 02420 098722 08923 08937 (09929 09831 08332 05834 08836
25 005333 08040 09841 00943 08045 09846 0.004A 08848 DS051 00852

08353 0BO55 09856 08357 008958 09050 09861 08962 08053 0.095964
27 083965 O0BO066 09957 003968 008959 089670 09871 0852 08673 095974
28 08374 08075 08876 08377 08977 Q8078 09878 08879 05030 09281
29 08381 0S082 098982 00383 00984 (09634 09885 083985 09086 0.9886

a0 0537 0B6AT 09887 0893\&8 08688 (96830 0825 08983 05930 08830
a1 05390 0B8B1 08931 08391 08082 (080932 0.886GF 08382 05933 08833
A2 08393 0893 09934 089984 08084 (8934 09894 08985 08935 08885
43 0P995 08085 09935 009995 08085 (9936 0.9806 08995 09936 0.8097
a4 02907 00007 09097 00307 08007 09037 00007 00997 09937 (00098
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How to use this table?

For example, suppose that we want to compute ¢ (x) for x = 1.22.

We split x as

x=122=12 + 0.02
— =~

row column

and we use the entry of the table with row 1.2 and column 0.02.

x
0.0
1.1
1.2
1.3

0.00
0.5000

0.8413
0.8849
0.9032

0.01 0.02 0.03 0.04 ... 0.09
0.5040

0.8869 |0.8888

We obtain ¢ (1.22) = 0.8888.
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@ Now observe that, for x > 0,

P(Z>x)=P(Z>x)=1-P(Z<x)=1-d(x).

So, for example,

P(Z>152)=1—®(1.52) =1 — 0.9357 = 0.0643.
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P{Z<-a) P(Z> a)

@ Moreover,
P(x)=1-d(—x), x<0.

In fact, due to the symmetry of the pdf f> of Z, we have, for x < 0,
P(x)=P(Z<x)=P(Z>—x)=1-d(—x).

So, for example,
®(—0.14) = 1 — ®(0.14) = 1 — 0.5557 = 0.4443.
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@ Finally, for a, b € R with a < b, we can compute the probability

Pla<Z<b)=Pa<Z<b)=P(a<Z<b)=P(a<Z<b)
as

Pla<Z<b)=P(Z<b)-P(Z<a)=d(b)—d(a).

Examples:
P (0.5 < Z < 1.48) = ¢ (1.48) — ¢ (0.5) = 0.9306 — 0.6915 = 0.2391.

P(-1.12< Z<0.73) = $(0.73) — & (~1.12) = ¢ (0.73) — (1 — d(1.12))
= ®(0.73) + ® (1.12) — 1 = 0.7673 + 0.8686 — 1 = 0.6359.

P(—2.38 < Z < —1.94) = & (—1.94) — & (—2.38)

=1—®(1.94) — (1 — ©(2.38)) = & (2.38) — ® (1.94) = 0.9913 — 0.9738
=0.0175.
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@ Exercise. Prove that, for ¢ > 0, we have
P(-c<Z<c)=2d(c)—1

and
P(|Z]=zc)=2(1—-%(c)).
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Finding probabilities for general Normal Random
Variables

@ Now, let X be a normal random variable with distribution N (1, o2).

@ For a, b € R with a < b, the probabilities

P(X<a)=P(X<a)
P(X >b)=P(X > b)
Pla<X<b)=Pla<X<b)=Pa<X<b)=Pa<X<b)

can be determined by reducing them to probabilities relevant to
the standardized form
X—u

g

Z =

of X, which is a standard normal variable.
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We have

and

and
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@ Example. The IQ score for a sixth-grader (a student after six years
of school) is normally distributed with mean 1 = 100 and standard
deviation o = 14.2.

» What is the probability that a sixth-grader has a score greater than
1307

» What is the probability that a sixth-grader has a score between 90
and 1107?

Indeed, the 1Q score is a discrete random variable, since the
possible scores are finite. But here, we approximate it by a
continuous normal random variable by imagining that the possible
scores are all the real numbers in an interval.

Let X be the random variable 1Q score for a sixth grader. X has
distribution N (100, 14.22).
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We have

130 — 100
14.2
= 1-0.9826 =1.74%

P(X>130) = P(zz :2.11):1—d>(2.11)

and

P(90 < X < 110) = ]1”(90_100 110—100)

<ZzZ<
42 =45 a2
P(-0.70 < Z < 0.70)
= 2¢(0.70)—1=2-0.7580 — 1 = 51.6%.
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@ Let X be a normal random variable with distribution N (1, o?).

For kK > 0, we have

P(X —pul <ko) = P(u—ko<X<pu+ko)
— P(-kgz_x_”gk>

g

— 20 (k)—1.

In particular:
—1=2.0.8413 -1 =168.26%

1)
(2)—1=2.0.9772 — 1 = 95.44%
(3)—1=2.0.9987 — 1 = 99.74%

B(IX - | < o) = 20
P (X — y < 20) = 26
P (X — | < 30) =26

as we have already seen.



Finding probabilities for Normal Random Variables Finding probabilities for general Normal Random Variables

@ In MATLAB, the values of the (comulative) distribution function of a
normal random variable are computed by the function normcdf:

normedf(x)

computes ®(x) = Fz(x), where Z is a standard normal variable,
and
normedf(x, i, o)

computes Fx(x), where X has distribution N(u, 02).
Exercise. By using MATLAB compute the previously shown upper

bounds of the probability p for the Six-Sigma and 4.5-Sigma
methodologies.
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@ Exercise. The time that a given runner will run the 100m men race
at the Olympic Games is normally distributed with mean 9.70 s
and standard deviation 0.06 s. What is the probability that he will
obtain the world record for this race?

@ Exercise. The height of a male individual of the italian population
is a random normal variable with mean 176 cm and standard
deviation 7 cm. Estimate the number of italian males whose
height is more than 2 m.

@ Exercise. Assume that a given shot put male athlete throws the
shot at a distance normally distributed with mean 19.9 m and
standard deviation 45 cm. What is the probability that he will
overcome 21 m in at least one of three independent throws.
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@ Exercise. A worker has two possible paths A e B for reaching
her/his work place by car. She/he leaves home at 8 : 00 and has
to be at work at 8 : 30. The travel time for the path A (with heavy
traffic) is a normal random variable with distribution N( 4, af\) with
pua = 23 min and o4 = 3.5 min. On the other hand, the travel time
for the path B (with much less traffic) is a normal random variable
with distribution N(ug, 03) with ug = 27 min and og = 1.4 min.
What is the best path?

@ Exercise. It is advisable to change the timing belt of a given car
after an usage of 120000 km. Assume that the lifespan of such a
timing belt is a normal random variable with distribution N(u, o),
where o = 10%u and . — 30 = 120000 km. For such a car,
compute the probability that the timing belt breaks before an
usage of 120000 km. Moreover, assume that the timing belt of
such a car is still working after an usage of 135000 km. What is
the probability that the timing belt does not break in the next 1000
km?
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Exercise. The lifespan as a time of a given object before it breaks
for the usage is a normal random variable with distribution

N(u, 0?). Assume that after a time T the object is still working.
Given a > 0, find the limit, as T — +o0, of the probability that the
object is still working at the time T + a,
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Properties of Normal Random Variables

@ Let X be a normal random variable with mean . and standard
deviation o.

@ Forany c € R, Y = X + cis still a normal random variable: Y has
distribution N(p + ¢, 02).

In fact,
X=Y—-c=9y(Y)

and so for the rule of transformation for pdfs:

fr(y) = @)Y (y) =y —c)-1

1 _(y=c—p) 1 _ y=(uto)?

= -e 2052 = - e 202 ,yGR
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Moreover, for any ¢ € R\ {0}, also Y = cX is still a normal
random variable: Y has distribution N(cu, (Ic| a)2>.

In fact,

]
X=_Y=u(Y)

and so for the rule of transformation for pdfs:

fr(y) = sign (&) fx (& (1)) ¥ () = sign (l) e <1y>.1c

(o
1 _(%Y—u)z 1 _(yfw):
= _ . e 252 = . e 2(lclo) ’yER
lc|ov2n lc|ov2n

Exercise. Let X be a normal random variable with mean . and
standard deviation . Find the distribution of

Y =aX+ b,
where a, b € R with a # 0.
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Sum of independent normal random variables
@ Another important property concerns the sum

S=Xi+Xo+---+Xp

of nindependent normal random variables X1, Xo,..., Xn : Q — R.

If X;, i € {1,2,...,n}, has distribution N(y;, 02), then
E(S) = E(X1) + E(X2) + -+ + E(Xn) = p1 + p2 + -+ + pin
and

Var(S) = Var(X;) 4 Var(X) 4 - - - + Var(X,)) = 02 + 03 + - -- 4 02

But, what is the distribution of S?

@ To answer this, we have to introduce the following notion.



Sum of independent normal random variables
Definition
Let X be a discrete or continuous random variable. The moment
generating function of X is the function My : (—y (X),v (X)) = R
given by
Mx (a) =E ("), a € (—7(X),7 (X)),

Observe that

> e™P(X = x) if X is discrete
xeX(Q) "

aXy __ >0
Ee) = [ e™*fx(x) if X is continuous
A,_/

XeR
>0

and so 0 < E(e°X) < 400 or E(e*X) = +oc.
~v(X) € [0, +o¢], which depends on X, is the largest number ~ in

[0, +o00] such that E (e2X) < +oo for a € (—7,7). When
~(X) = 400, the domain of My is the whole R.
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The name "moment generating function" comes from the fact that

1 1
Mx(a) = E(e) = E(1 + aX + 50°X% + 51a®X% + )
=1+ aE(X) + %azE(Xz) + %asE(XS) +oe
where « is in a neighborhood of 0, and so the moments E(X"),
re{1,2,...},of X are given by E(X") = M)((')(O).
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@ Let Z be a standard normal random variable. We determine its
moment generating function.

For a € R, we have

z2
Mz(a):E(eaZ) = / e*“fz(z)dz = /eazx/;?e‘zdz

since

where Y has distribution N(a, 1). We have v (Z) = +oc.
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@ Now, let X be a normal random variable with distribution N(y, 02).

We have
X=pu+oZ,

where Z is a standard normal distribution.
Thus
Mx(a) = E (eocX> ) (eo‘(/””z))
= E (e”a+ MZ) ) (e”a edaZ)
= &“E (e7°) = &Mz (00)
12,2

15202 1
= e'ex” ™ =gl aeR.

We have (X) = +oc.
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Exercise. Determine the first four moments of a standard normal
random variable by using its moment generating function. Then
determine the first four moments of a general normal random
variable.

@ Exercise. Let U be a random variable with distribution U (0, 1).
Determine the moment generating function of U. Determine the
first four moments of U by using its moment generating function.
Then determine the moment generating function and the first four
moments of a random variable X with distribution U (a, b).
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@ The following fact holds: the moment generating function
determines the distribution function: let X and Y be random

variables, if there exists v with 0 < v < min{~ (X),~v(Y)} such
that

Mx () = My (@), a € (—7,7),
then FX = Fy.

@ Next theorem says how to determine the moment generating
function of a sum of independent random variables.

Theorem

Let Xi, X5, ..., X, : Q — R be discrete or continuous random variables.
If X1, X, ..., Xy are independent, then

MX1 +X2+"'+Xn (Oé) = MX1 (Oé) MXZ (a) e MXn (CM) b « e (_77 7) 9

where v = minjcy  m v (X))
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Proof.

Let a € (—v,7). If Xy, X, ..., X, are independent, then
e g% g% gre independent and so

MX1 Xt X (Oé) - E (ea(X1 +X2+'"+Xn)) —E (eaX1 ean . eOzXn>
scod o

_ E(eax1>E(eax2)_“E<eaxn)

= My, (@) My, (@) - My, (@).

Ol

v

@ Next theorem answers to the question about the distribution of a
sum of normal random variables.

Theorem

Let X1, Xo, ..., Xn : Q — R be normal random variables, where X; has
distribution N (pj,02), i€ {1,--- ,n}. I Xy, X, ..., X, are independent,
then S = X1 + X5 + - - - + X, is a normal random variable with
distribution N (pu4 + pip + + - + fin, 05 + 05+ -+ +02) .
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Proof.
We have, for i € {1,2,...,n},

. 1,2,2
My (o) = 9T271%" o € R.
Since Xi, Xo, ..., X, are independent, we have

Ms(a) = Mx, (a) My, (a)--- Mx, (@)
eu1a+%a12a2 euga—i—%agaz . euna—l—%aza%

1 (52452 2) 2
+po+--+pn)oatz(oytos5++op )
e(FH M2 tn) 2( 1772 n) , o € R.

This is the moment generating function of a random variable of
distribution N (p1 + po + - -+ + pin, 0% 4+ 05 + - - + 02). Since the
moment generating function determines the distribution, we can
conclude that S has this normal distribution.
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@ Example. Suppose that the lifespan of a light bulb before burning
out is a normal random variable with mean x = 400 h and
standard deviation o = 40 h.

An individual purchases n such light bulbs and use them one after
the other: when a bulb burns out, it is replaced with another bulb.
What is the probability that the total lifespan of the bulbs will
exceed ku with k > 07?

Let Xj, i € {1,2,..., n}, be the lifespan of the /—th light bulb. It is
reasonable to assume that Xy, Xo, ..., X, are independent. Then,
the total lifespan S = X; + Xo + - - - + X, of the bulbs has

distribution
N (nu, n02> =N (nu, (ﬁa)Q) .
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Thus

() (%)

Now, suppose that the individual wants S > ku, where k is given
integer. How many bulbs does she/he need to purchase in order

to be quite sure of this?

By purchasing n = k light bulbs, we have

P(S > ku) = &(0) = %
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By purchasing n = k + 1 light bulbs, we have
n 1
> = q) —_ — .
(S = kn) (a m)

and if
u

’
o Vk+i1 -

where 3.49 is the largest x in the table of the values ®(x), i.e.

TN 10 \?
< —_ = _— — = /.
K <3 49) 1 <3.49) t=721,

P(S > ku) > (3.49) = 99.98%.

> 3.49,

then

So, for k < (3 49) —1=7.21, to be almost sure that the total

lifespan of the bulbs will exceed ky, it is sufficient to purchase
k + 1 bulbs.
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@ Another example. In the place A, the yearly rainfall is normally
distributed with mean ;4 = 998 mm and standard deviation
oa = 156 mm. In the place B, very very far from A, the yearly
rainfall is normally distributed with mean pg = 1212 mm and
standard deviation cg = 180 mm.

What is the probability that A will have more rainfall than B in the
next year?

Let X and Y be the yearly rainfall at A and B with distribution
N (pa,0%) and N (ug, 03), respectively.

We look for the probability

P(X>Y)=P(X-Y>0).
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Since A is very very far from B, it is reasonable to assume that X
and Y are independent.

So X and —Y are independent, where — Y has distribution
N (~ps, 05)-
Then, X — Y has distribution

2
N(#A—MB,U%JrU%) _N(MA_MBa <\/0§\+U%> >

Therefore
P(X—-Y>0)
_p(z XY (ua—ng)  O—(pa—ps) _ 15— pa
\/UA—FUB \/(TA-FJB \/U/%—i-a'%

—P(Z>090)=1—P(Z<0.90)=1—d(0.90) = 18.4%.
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@ Exercise. A tradesman possesses three supermarkets, denoted
by A, B and C. During a saturday, the takings of the supermarkets
are normal random variables:

» the taking of A has mean ua4 = 70K Euro with standard deviation
oa = 8K Euro.

» the taking of B has mean ug = 40K Euro with standard deviation
og = 4.5K Euro.

» the taking of C has mean u¢ = 35K Euro with standard deviation
oc = 2.8K Euro.

Assume that the three takings are independent. What is the
probability that, during a saturday, the total taking of the three
supermarkets is over 160K Euro? What is the probability that in
the total taking the contribution of A is at least 60%?
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@ Exercise. Let X and Y be independent random variables with
distribution U(0, 1). Determine the moment generating function of
X + Y. Has X+ Y a uniform distribution U(a, b), for some a,b € R
with a < b?



Percentiles

Definition
Let X be a continuous random variable whose distribution function Fx
is such that:

@ Fx(x)=0forx < a;

@ Fy is strictly increasing in (a, b);

@ Fx(x)=1forx > b;

for some a, b with —oo < a < b < +o00. Forany a € (0, 1), the 100ath
percentile, or the quantile «, of X is the number z, € (a, b) such that

P(X <z,)=Fx(z,) = .
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An illustration of z,:

0sk
08l y=Fy(x)

07

05

04

03

01
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Observe that such a number z, exists and it is unique since Fy is
continuous and strictly increasing in (a, b) with range (0, 1).

Moreover, z, is determined by Fx and then it depends only on the
distribution of X, not on the particular random variable X with that
distribution. So, we can also say that z, is the 100ath percentile of
the distribution of X.

Also observe that the conditions on Fy are satisfied if there exist
a, b with —oo < a < b < +o0 such that fx is positive in (a, b) and
zero outside.

The percentiles 25th, 50th and 75th are called the quartiles of X.
The 50th percentile is called the median of X.

Exercise. Consider a random variable X with uniform distribution
U(a, b). Determine z,, for a € (0,1).

Exercise. Explain why it is not possible to introduce the notion of a
percentile for a discrete random variable.



Percentiles

@ In the frequentist interpretation, where we repeat the experiment
relevant to the random variable X a very large number n of
independent times with outcomes w?bs, ..., w9, the 100ath
percentile of X, a € (0,1), is the value z, such that

) ~ |{i€{1,2,...,n}:X(w}’bs) SZO(}"
n

a=P(X <z,

So, z, divides the ordered data x°4, where
X = (X (w?bs) yoe oy X (w?,bs)) ,

in two parts, one has the components not larger than z, and the
other has the components larger than z,, and the sizes of these
two parts are (approximately) proportional to o and 1 — «,
respectively.

We conclude that z,, is (approximately) the 100ath percentile of
the data x.
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@ In the following, the 100ath percentile z, of a random variable X
will be denoted by z,(X), by reserving the symbol z, without any
indication of a random variable for the 100ath percentile of a
standard normal random variable.

Observe that z, is such that such that ¢(z,) = «, i.e.
Zy = (a),

where ¢ is the distribution function of a a standard normal random
variable.



Percentiles

e If X has distribution N (1, 02) (in this case a = —co and b = +o0),
the 100a—th percentile of X, where « € (0, 1), is the number
Z, (X) such that

a:P(sza(X)):P(zzx_“gZa(X)_").

g g

We see that
Zo (X) — 1

(o2
is the 100ath percentile z, of Z and we conclude that

Zo (X)) =p+o0z,.
So, percentiles of a normal distribution are computed from
percentiles of the standard normal distribution.

@ Now, we see how to compute the percentiles z,, « € (0,1), of a
standard normal distribution.
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For z, with o > 0.5, we can use the table of the values ¢ (x),
x > 0. We have to find z, such that

Zy = (a).

Suppose that « is included in the interval [®(xq), ®(x2)], where X
and x» are two consecutive tabulated abscissae in the table.

For example, o = 0.6 is included in the interval
[0.5987,0.6026] = [¢(0.25), $(0.26)].

A first rough approximation of z, is given by

| xqifais closer to ®(xq) than ®(xz)
“ 1 xo otherwise.

In our example of a = 0.6, the rough approximation is zy g = 0.25,
since 0.6 is closer to ¢ (0.25) = 0.5987 than ¢ (0.26) = 0.6026.
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A better approximation of z, can be obtained by the linear
interpolation of the values ®(x;) and ®(xz).

We replace, in the interval [xy, x|, the function ®(x) with the
straigth line passing through the points (xq, ®(x1)) and (x2, ®(x2)):

P(x2) — ®(x1)

y =f(x) =o(x1) + X X (x —x1)
and then we look for z,, such that
f(z4) = «a,

instead of ®(z,) = «.
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An illustration of the linear interpolation:

®(0.26)

(025

YR

0.25
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By solving

L 20e) — ¢(x)

f(zo) = P(x1) P

(Za — X1) = «

we obtain

Xo — X4

7T 8 () b (x)

(o= o (xq)).

In our example of o = 0.6, the approximation is

0.26 — 0.25
206 =025+ G5 o (025 (06~ ®(025)
01
~0.25+ 0.0 (0.6 — 0.5987) = 0.2533.

0.6026 — 0.5987
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For z, with o < 0.5, we have
a=¢(z,)=1-90(-2,)

and so

Zo=—0""(1-0a)=—21_,
with 1 — a > 0.5 and so z, can be computed by the table as just
described.

For example, for o = 0.2, we have

Zp2 = —2p8-

Since 0.8 is included in
[0.7995,0.8023] = [¢ (0.84) , $(0.85)],

the rough approximation is zy » = —0.84 and the approximation by
linear interpolation is

0.01
0.8023 — 0.7995

202 = — <0.84 + (0.8 — 0.7995)> = —-0.8418
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Exercise. Find the three quartiles of a standard normal random
variable. Then, find the three quartiles of a general normal
random variable with distribution N(u, o2).
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@ Example. The IQ test on sixth-graders produces a score that is
normally distributed with 4 = 100 and o = 14.2.

Assume that a large number of sixth-graders do the test. What is
the value v over which there is the top 1 percent of all scores?

Let X be the random variable score, whose distribution is
N(u,0?). Since (by using the frequentist interpretation)
99%
_ number of sixth graders who did the test not in the top 1%
N number of sixth graders who did the test
~P(X <v),

we have v = Zggo, (X) = 1 + 0Zg99.

The rough approximation of the 99th percentile zgg0, Of a standard
normal variable is 2.33: 0.99 is included in

[0.9898,0.9901] = [¢(2.32), $(2.33)]
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So, the rough approximation of the 99th percentile of X is

Zogo, (X) = 11+ 0Zgge, = 100 + 14.2.2.33 = 133.1.

We conclude that the top 1% has scores larger than 133.

Exercise. Find the 99th percentile of X by using the approximation
by linear interpolation.

@ Exercise. By assuming that the height of an italian male is
normally distributed N (1 76 cm, (7 cm)2>, find the range of heights
between the first and third quartiles.

@ Exercise. What is the probability that a continuous random
variable X lies between its 100ath and 1004th percentiles (with
a < fB)?
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@ Exercise. Consider the example of the bulb lights. How many light
bulbs the individual needs to purchase in order to have

P(S > ku) > 99.98%

for an arbitrary k > 0 (in the previous example, we answered in

©

case of k < (349)2 —1=7.21).
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@ In MATLAB, the percentiles of a normal random variable are
computed by the function norminv:

norminv(a),

where o € (0, 1), computes ~(a), i.e. the 100ath percentile of a
standard normal random variable, and

norminv(a, p, o)

computes the 100ath percentile of a normal random variable with
distribution N(y, 02).

Exercise. By using MATLAB, compute the 99th percentile of the
normal random variable 1Q score and compare such value with
the values previously computed by the table.

Exercise. Find the deciles of a normal random variable with mean
1 and standard deviation o.
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@ Observe that when we will deal with the "Testing Statistical
Hypotheses", the symbol z,, o € (0, 1), will denote

&~ 1(1 —a) = 100(1 — a)th percentile of the standard normal distribution,

i.e. our Zyi_,.

So, in this context, zg g1 = VAT A is our Zg g9 = 299y, = 2.33.



Mixed random variables

Mixed random variables

@ There are random variables which are neither discrete nor
continuous, but a mixed between the two types.

As an example, consider a car policy proposed by an insurance
company. Let X be the random variable yearly claim of a
policyholder.

X is neither discrete nor continuous. In fact, X cannot be
continuous since P(X = 0), the probability that the policyholder
has not car accidents during the year, is not zero. On the other
hand, X cannot be discrete since the yearly claim of a policyholder
can be any positive number and we can assume, for any x € R,

X
PO < X < x) = / fe(y)dy
0
for some pdf fx.

Exercise. Describe and draw the graph of the distribution function
Fy.



Mixed random variables

Exercise. If the policy has a deductible, what is the form of the pdf
fx?

@ The random variable X is an example of a mixed random variable.

Definition
A random variable Y : Q — R is called mixed if there exist points
Vi, Yo,...,¥n € RWith yy < yo < --- < y, such that

P(Y=y)=pi, i€{l,...,n},
Y1
Ploo <Y <y1) = g(y)dy

Vit
Py, <Y <VYit1)= gy)dy, ie{1,....,n—1}
Yi
+oco
P(y, < Y<+oo)=/ a(y)dy.
Yn

for some numbers p;, i € {1,...,n}, and for some function g : R — R.

v




Mixed random variables

Observe that the distribution Fy of a mixed random variable Y is a
piecewise integral function with jumps:

n y
Fr(y)=>_ pi+ / g(s)ds, y e R.
i=1 oo

Yi<y
Exercise. Draw the graph of Fy.

@ A more general definition of a mixed random variable includes the
situation where instead of a finite sequence of points yi, yo, ..., ¥,
we have an infinite sequence of them. A random variable Y is
called mixed if there exist a discrete subset A of R, a function
p: A— Rand a function g : R — R such that

y
Fry) =S p(s)+ [ ale)ds, y e &,

SEA
s<y

Observe that the mixed random variable Y has both a pmf, the
function p, and a pdf, the function g.



Mixed random variables

Moreover, the discrete random variables are the mixed random
variables with g = 0. and the continuous random variable are the
mixed random variables with A = 0.

@ For a mixed random variable Y we have

+oo
Zp(s)+/g(s)ds:1.

seA

The mean of the mixed random variable Y is defined as

—+o0

E(Y) =) s-p(s)+ / s-g(s)ds.

scA — o0

Variance and standard deviation for a mixed random variable are
defined as usual, the notion of independence of a sequence of
mixed random variables is exactly the same as for continuous
random variables and all the results regarding discrete or
continuous random variables can be extended to mixed random
variables.
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