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Bash script

 Formato di uno script in bash:

 Lo script deve essere leggibile ed eseguibile per poter essere eseguito
 Oppure si può chiamare la shell direttamente (basta il permesso di lettura): 

$bash script
 Metacaratteri (# * ? > < ! % % | & ;  , Apostrofi, Spazio): caratteri con 

significato particolare
  Gli APOSTROFI hanno un  significato particolare: 

double quote (doppio apice):  “  

single quote (apice singolo) :   '   

back quote (apice inverso):      `   (si ottiene con AltGr ')

#!/bin/bash
# primo esempio di script
echo $RANDOM

Per eseguire lo script come 
$./script

commento Istruzione di 
scrittura

Variabile 
d'ambiente

Per 
recuperare il 
contenuto di 
una variabile
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Quoting

● Quoting = disabilitazione dell'intrepretazione dei metacaratteri

● Uso di caratteri per disabilitare l'interpretazione di metacaratteri:

– Backslash: quota il carattere che segue (esempio \#)

– Single quote: tutti i caratteri circondati da ' perdono il loro 
significato tranne il carattere '

– Double quote: tutti i caratteri circondati da “ perdono il loro 
significato  tranne $ ` \ “

●  Variabili d'ambiente

– $set   --- mostra tutte le variabili definite fino a questo momento

– $env  --- mostra solo le variabili d'ambiente definite dal sistema



 4

Variabili 

● Nomi: combinazione illimitata di lettere, numeri e underscore, MA: 
NON possono cominciare con numeri e sono CASE sensitive

●  Lettura delle variabili dal terminale: istruzione read:

● Il valore di una variabile si recupera con la scrittura $nome. 
ESEMPIO:

●  Assegnazione: a=100 (senza spazi), a=$b

$read nome
$read uno due tre

$echo “x” # scrive x
$echo “$y”
$echo “$x” # scrive il valore
$echo “y=$x”
$echo “$y”
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Tipi di dati

  USO IMPROPRIO DEL SEGNO $:

 TIPI DI DATI (definiti con gli statement typeset o declare):
– Costanti:  typeset (o declare) ­r nome_della_costante=valore

– Stringhe (default) oppure typeset

– Interi: typeset ­i variabile  oppure declare ­i variabile

Y=50 → ok
x=y  → assegna il nome y ad x
x=$y → assegna 50 ad x
$x=$y  errore→

$typeset ­i a
$a=100
$echo "a = $a"

$ declare ­r a=1

$typeset lettera, stringa_numerica, messaggio
$declare lettera, stringa_numerica, messaggio
$lettera="a"
$stringa_numerica="12345"
$messaggio="chiamami al 3861"
$echo "ecco qualche stringa"
$echo "$lettera, $stringa_numerica,$messaggio"
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Array 
  Dichiarazione di array: typeset (o declare) ­a nome_array

  lettura di un elemento dell'array: read b[10]
  lettura dell'array fino al CR:   read b
  Stampa di un array:

#array di stringhe
$declare ­a arr
$arr[0]="primo"
$arr[1]="secondo"
$arr[10]="decimo"
#Array di interi:
typeset ­i b
b[1]=1
b[2]=2

#Valori individuali
echo "elemento 0 = ${vettore[0]}
indice=2
echo "elemento $indice = $
{vettore[$indice]}
echo ${a[1]}
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  Solo numeri interi con  segno
  Se si usano valori floating non segnala errore ma fa i calcoli con 

numeri interi
  Operazioni ammesse: + - * / % << >> & ^(or esc.) |
  Operazioni matematiche anche su variabili stringa (conversione 

implicita)
  Se si racchiude l'operazione tra ((.)) il risultato viene convertito in 

numero altrimenti resta stringa
  Numeri in base 2, 8, 16

Operazioni matematiche

$typeset ­i x=123
$typeset ­i2 y
$typeset ­i8 z
$typeset ­i16 h
$h=z=y=x # conversione automatica 
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Struttura di controllo if

  STATEMENT if-elif-then-else-fi . 

read n1 n2
if (( n1<n2 ))
then  echo “$n1 minore di $n2”
else  echo “$n2 minore di $n1”
fi

=======================

read n1 n2
if (( n1<n2 ))
then  echo “$n1 minore di $n2”
elif (( n1==n2 ))
then  echo “$n1 uguale a $n2”
else  echo “$n1 maggiore di $n2”
fi

Oppure (( $n1<$n2 ))

Oppure:
then

echo “$n1 minore di $n2” 
else

echo “$n2 minore di $n1”
fi
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Condizioni e confronti

  TRA NUMERI  →  (( ))
  TRA STRINGHE  →  [[ ]]
  DUE PUNTI (:) →  CONDIZIONE TRUE
  TEST SU NUMERI: ==   !=   <   >   <=   >=
  TEST SU STRINGHE:  = != > < -z (stringa nulla)
  Esempi:

#!/bin/bash
S1='string'
S2='String'
if [[ $S1!=$S2 ]]
then
    echo "$S1 non uguale a $S2"
fi

#!/bin/bash
echo “scrivi una stringa”
read nome
if [[ $nome = c* ]]
then

echo “$nome comincia con c”
else
   echo “non comincia con c”
fi
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Operatori logici

  Operatori logici  AND, OR:  || &&

#!/bin/bash
declare ­i x
declare ­i y
declare ­i z
read x
read y
read z
if ((x<y)) && ((x<z))
then

echo "$x e’ minore di $y e $z"
fi
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Operatori logici

  Possibili opzioni :

­a nome →  esiste?
­f nome  e’ un file regolare?→
­d nome  e’ un direttorio?→
­c nome  e’ un file di caratteri?→
­b nome  e’ un file a blocchi?→
­p nome  e’ una pipe?→
­S nome  e’ un socket?→
­L nome   e’ un link ad un altro oggetto?→
­s nome  e’ non vuoto?→

 [[ ­a $nome ]] && [[ ­f $nome ]] && [[ ­s $nome ]]

­r nome  posso leggere?→
­w nome → posso modificarlo?
­x nome → posso esguirlo?
­O nome → ne sono proprietario?
­G nome → e’ il mio gruppo?

 [[ ­r $nome ]] && [[ ­w $nome ]] && [[ ­x $nome ]]
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Strutture di controllo 

 STATEMENT case-esac

for file in * 
do  # per ogni elemento della dir corrente
   case $file in   # visualizza un messaggio 
      *.txt) echo "$file: file di testo" ;;

      *.gif) echo "$file: file grafico" ;;

      *.pdf) echo "$file: file PDF" ;;

      *.c) echo "$file: file sorgente" ;;

        *) echo "$file: file generico" ;;

   esac

done

echo "scrivi nome"
read nome
case $nome in

nome1) echo "primo caso"
echo ;;

nome2) echo "secondo caso"
echo ;;

[a­z][a­z])echo "coppia"
echo  ;;

*) echo "caso inatteso"
;;

esac
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Strutture di controllo 
  STATEMENT WHILE

  STATEMENT UNTIL

  STATEMENT for

declare ­i n=0
while ((n<4))
do
((n=n+1))
done

declare ­i n=0
until((n>4))
do
((n=n+1))
done

for nome in mario giuseppe vittorio
do 
    echo “$nome”
done

for n in 1 2 3 4
do
  echo “valore di n = $n”
done

typeset ­i ris=5
for n in 10 100 1000
do
      ((ris=$ris*n))
done
echo “ris=$ris”

typeset ­i ris=5
for n in 10 100 1000
do  ((ris=$ris*n))
done
echo “ris=$ris”

oppure
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Qualche esempio

for parola in $linea  #parsing di una stringa
do

echo “$parola”
done

for nome in *  # lista dei file nella directory corrente 
do # con permesso di lettura

if [[ ­f $nome ]] && [[ ­r $nome ]] && [[ ­w $nome ]]
then

echo " il file regolare $nome puo’ essere letto e scritto"
fi

done

● Comandi composti: separati da punto e virgola
$for n in *; do if [ ­d $n ]; then echo $n; fi; done
$ls ­l|while read l;do echo $l;done

Attenzione: il ';' va dove ci sarebbe return nella notazione 
compatta della slide 8 !
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Parametri di linea ad uno script
● Possono essere: 

– Argomenti semplici (numeri stringhe pathname), opzioni (per esempio –x o +x ), 
redirezioni (> o <)

● Parametri posizionali:

– $$  PID 

– $#  NUMERO DEI PARAMETRI

– $*  STRINGA FORMATA DA TUTTI I PARAMETRI

– $@  ESPANDE GLI ARGOMENTI

– $0  NOME DELLO SCRIPT, DELLA FUNZIONE

– $1…$9,${10}…  PARAMETRI

#!/bin/bash
if (($# > 4))
then

echo "troppi parametri"
elif (($# == 4))
then

echo "ok"
for i in $@
do

    echo  "$i"
done

else
  echo "$USAGE"
fi



 16

Parametri di linea ad uno script
● Funzioni in BASH

● Variabili globali: dichiarate implicitamente o dichiarate fuori da una funzione

● Variabili locali: definite all'interno di una funzione con typedef o declare

● Le variabili riservate sono globali

● E' ammessa la ricorsione

● I parametri passati ad una funzione sono recuperati con il meccansmo degli script

● Uno script può chiamare un altro script con lo stesso meccanismo del passaggio di 
parametri

● Ritorno parametri: 

– Con Return:ritorno un valore di 8 bit nella variabile $? ATTENZIONE: salvare 
subito $? perchè è usata da tutti i comandi

– tramite variabili globali

– tramite file

– con la scrittura a=$(nome_funzione  param)



 17

Parametri di linea

ESEMPI

function sqr
{

((s=$1*$1))
echo "quadrato di $1 = $s"

}
n=5
sqr $n

function sqr
{

((s=$1*$1))
return $s

}
n=5
sqr $n
p=$? # da salvare perche’ echo modifica la $?
echo "quadrato di $n = $p"
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Input/Output

● Istruzioni di base:
● Read
● Echo
● Exec →   apre e chiude streams
● operatori per la redirezione

● read var
● il terminatore dell'ingresso è dato dalla variabile  IFS
● di default, IFS=spazio|tab|return
● Esempio di ridefinizione di IFS: IFS= “.|”

declare ­i var # Lettura all'interno di un ciclo:
declare ­i tot=0
while read var # continua a leggere fino a quando scrivo ^d
do

((tot=$tot+$var))
done
echo "totale = $tot"
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Input/Output

● Redirezione dell'input:
● Totale:  $script < file
● Parziale:

● REDIREZIONI:

while read var
do

((tot=tot+var))
done < aa
echo $tot

#parsing di un file
read inp
read out
while read stringa
do 

for word in $stringa
do

echo "$word"
done

done < $inp > $out
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Exec 

● Istruzione Exec: apre un file per lettura e scrittura

● Apertura di un file per lettura: 
exec 8< file # 8 e’ il descrittore del file

● Apertura di un file per scrittura: exec 8> file # idem

● Chiusura di un file : exec 8<&­

● Lettura/scrittura del file: read –u8 var  /   echo –u8  $var

● Cattura dell'output (testuale) di un comando: var=$(comando­Unix)
ESEMPIO:

var=$(ls –l)
var=$(sort filename)

● Lettura di un file in una variabile stringa:

var=$(< filename)
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Segnali
● Segnali inviata dalla tastiera:

control­c → INT  (segnale nr.2)
control­\  QUIT (segnale nr. 3)→
control­s  STOP (segnale nr. 17)→
control­q  CONT (segnale nr. 19)→

● Segnali inviati da un processo: comando kill
$kill [­nomesegnale| ­numerosegnale] PID

● Per catturare un segnale (tranne il segnale 9): istruzione TRAP

● Sintassi: trap  'uno o piu’ comandi Unix separati da ;'  segnale
 
● ERRORE DI SCRIPT:    trap 'echo “c’e’ stato un errore”'  ERR

● FILE TEMPORANEI: trap 'rm /tmp/* > /dev/null ; exit'  EXIT

NB: EXIT è il segnale 0, che un processo invia al kernel quando termina

● Per evitare che un processo sia terminato da tastiera: trap ‘’ INT QUIT
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Segnali
● Esempi di cattura segnale

#!/bin/bash
# questo script cattura i segnali
trap 'echo "ho ricevuto quit"'  QUIT
trap 'echo "ho ricevuto int"'  INT

count=1
while (:) #while true
do

(( count=$count+1 ))
done
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Varie

● Lunghezza stringhe: ${#stringa}

● Pattern matching in bash:
● * corrisponde a tutte le stringhe

● ? corrisponde ad un singolo carattere qualsiasi

● \X disinibisce il significato particolare del carattere X. 
● Esempio: \\ rappresenta \

● […] corrisponde a uno dei caratteri racchiusi

● [X-Z] corrisponde a tutti i caratteri dsa X a Z

● [^…] (oppure [!…]) corrisponde a tutti i caratteri che non ci sono
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Ereditare variabili

● Le variabili d'ambiente sono ereditate dai processi creati
● Le variabili utente NON sono ereditate dai processi creati
● $export nome_variabile fa sì che i processi creati ereditino la variabile

● I processi creati NON modificano l'ambiente del padre
● Per far si che uno script modifichi l'ambiente del padre -->  dot script

● Esempio:

$. ./script

Dove Script può essere:

!/bin/bash

cd $1
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Altri esercizi con riga di comando 

● Contare i file creati, ad esempio, il 30 settembre

ls ­l|while read l;do echo $l|cut ­f6­7 ­d" ";done|grep "set 30"|wc ­l

● Contare  i processi che appartengono ad un dato proprietario 
 

● Contare  i file che appartengono ad un dato proprietario 

● Contare i processi creati da init
 
ps ­ef|while read l; do case $(echo $l|cut ­f3­3 ­d" ") in 1)echo 1;esac;done|wc ­l
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Esempi di Script 

 

#!/bin/bash
#scrive il nome dei file leggibili e scrivibili se il nome contiene la stringa data
USAGE='Use $0 <string>'
if [ "$#" != "1" ]
then
    echo $USAGE
else
    for file in *
    do
        if [[ $file = *$1* ]] && [[ ­r $file ]] && [[ ­w $file ]]
        then
            echo $file
        fi
    done
Fi
======================================================================

#!/bin/bash
# verifica se la subdir esiste; se esiste, cambia directory corrente, 
# se non esiste, crea la directory e cambia directory.
#
if [ "$#" ­eq "0" ]
then
  echo "USAGE: $0 nomedir"
  exit
fi
  
if [[ ­a $1 ]]
then  cd $1
else  mkdir $1;cd $1
fi
echo "script $0. Sono nella directory $PWD"



 27

Esempi di Script 

 

#!/bin/bash
# questo script aggiunge una intestazione data ai file specificati
#script "lista file" "intestazione"
for i in $1 #per tutti i file specificati
do

echo ­e ­n "#\n#$2\n#\n" > temp
cat temp $i > temp1
mv temp1 $i

done

=====================================================================================

#!/bin/bash
#scrive la stringa passata come argomento carattere per carattere
declare ­i i
declare ­i n
l=$1
i=1
while (( i < ${#l} ))
do
  n=$i
  echo $(echo $l | cut ­c $n­$n)
  i=$i+1
done
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Esempi di Script 

 

#!/bin/bash
#script stringa1 stringa2 stringa3
# se stringa2 e' contenuta in stringa1 sostituisce stringa2 con stringa3 
#
a=$1
b=$2
c=$3
l1=${#a}
l2=${#b}
l3=${#c}
i=1
if [[ $a = *$b* ]]
then
    while(( $i<$l1 ))
    do

(( i1=$i+$l2­1 ))
c1=$(echo $a|cut ­c$i­$i1)
if [[ $c1 = $b ]]
then
  ((start=$i))
fi
((i=$i+1))

     done
     (( end=$start+$l2 ))
     (( start=$start­1))
     testa=$(echo $a|cut ­c1­$start)
     coda=$(echo $a|cut ­c$end­$l1)
     echo "$testa$c$coda"
fi
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Esempi di Script 

 

#!/bin/bash
#script stringa1 stringa2 stringa3
# se stringa2 e' contenuta in stringa1 sostituisce stringa2 con stringa3 
#
#
#         Elaborazione di stringhe in bash
#rimpiazza pattern con replacement in string:
#   ${string/pattern/replacement}
#
a=$1
b=$2
c=$3
echo ${a/$b/$c}
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Esempi di Script 

 
#!/bin/bash
# questo script sostituisce le parole che contengono una stringa p1 con la stringa p2
# nel file indicato nella lista data come terzo argomento
# ./subs.sh p1 p2 lista_file
for i in $3 #per tutti i file indicati
do

echo "file $i"
while read n # $n contiene una stringa
do

for k in $n # $k contiene parole
do

              if [[ $k = *$1* ]]
then

echo ­n "$2 "
else

echo  ­n "$k "
    fi
done

                echo
done < $i > temp

     mv temp $i
done
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Esempi di Script 

 

#!/bin/bash
#scrive le righe del file dal carattere c1 al carattere c2
#
USAGE="Use: $0 <char1> <char2> <file>."
declare flag="OFF"
declare ­i c
declare ­i length
if (( $# != 3 )) 
then   echo $USAGE
elif [[ $1 != ? ]] || [[ $2 != ? ]]
then    echo $USAGE
elif [[ ! ­f $3 ]] && [[ ! ­r $3 ]]
then    echo "Il file non esiste o non è leggibile"
else
   while read line
   do

for word in $line
do

((c=1))
((length=$(echo $word | wc ­c))­1) #uguale a length=${#word}
while (( $c < length ))

   do
   character=$(echo $word | cut ­c $c)

        if [[ $character = $2 ]]
        then flag="OFF"

   fi
   if [[ $flag = "ON" ]]
   then echo ­n $character
   fi
   if [[ $character = $1 ]]
   then flag="ON"
   fi
   ((c=$c+1))

done
done

   done < $3
fi
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Esempi di Script 

 

#!/bin/bash
USAGE="myls.ksh, stampa la lista dei file ordinati nel formato size­nome­filemode­data"

echo ­e "\n File ordinati per data \n"
echo ­e "SIZE­NOME­FILE mode­DATA \n" 

ls ­latr|while read l;do echo $l|cut ­f5­5 ­d" ";done >size.tmp 
ls ­latr|while read l;do echo $l|cut ­f9­9 ­d" ";done >nome.tmp
ls ­latr|while read l;do echo $l|cut ­f1­1 ­d" ";done >mode.tmp 
ls ­latr|while read l;do echo $l|cut ­f6­7 ­d" ";done >data.tmp

paste size.tmp nome.tmp mode.tmp data.tmp
rm *.tmp  # rimozione file temporanei

echo ­e "\n\n return.. \n\n"
read nn

echo ­e "\n File ordinati per dimensione \n"
echo  ­e "SIZE­NOME­FILE mode­DATA \n" 

ls ­laSr|while read l;do echo $l|cut ­f5­5 ­d" ";done >size.tmp 
ls ­laSr|while read l;do echo $l|cut ­f9­9 ­d" ";done >nome.tmp
ls ­laSr|while read l;do echo $l|cut ­f1­1 ­d" ";done >mode.tmp 
ls ­laSr|while read l;do echo $l|cut ­f6­7 ­d" ";done >data.tmp

paste size.tmp nome.tmp mode.tmp data.tmp
rm *.tmp
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Esempi di Script 

 

#!/bin/bash
#legge tutti i file con estensione .log selezionando solo le righe di commento
#che contengono la parola Giorgio e le scrivono accodandole sul file commenti.log
#Si supponga che le linee di commento inizino con #
#La sua attivazione può essere
#./script >> commenti.ksh
#
for n in *.log
do

echo "file $n"
while read linea
do

if [[ $linea = "#"* ]]
then

for nn in $linea
do

if [[ $nn = "Giorgio" ]]
then

echo "$linea"
fi

done
fi

done < $n
done
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Esempi di Script 

 

#!/bin/bash
#scrive il file dato come argomento per righe alternativamente minuscole e maiuscole
#
USAGE="Use: $0 <file>."
declare ­i nlet=0
if (( $# != 1 )) 
then
  echo $USAGE
else
   if [[ ! ­f $1 ]]
   then
    echo "il File non esiste!"
   else
     while read line
     do
       for word in $line
       do
        if (( $nlet%2 == 0 )) 
        then
          echo ­n $word " "
        else
          echo ­n $word " " | tr '[a­z]' '[A­Z]'
        fi
        ((nlet=$nlet+1))
       done
       echo ­e ­n "\n"
     done < $1
   fi
fi
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#!/bin/bash
#Questo script legge un file di testo (in cui nome viene dato in linea) e accoda in un
#secondo file (anch’esso dato in linea) solo le righe che contengono parole che
#cominciano (opzione –d) o finiscono (opzione –c) con un numero.
#
#script [­d][­c] <nome1> <nome2>  Il nr. corretto di parametri e' 3
#
USAGE="script [­d][­c] <file1> <file2>"
if (( $# != 3 ))
then
    echo "errore nei parametri!"
    echo "$USAGE"
else
    case $1 in
    ­d)     while read linea
            do
                 for n in $linea
                 do
                      if [[ $n = ["0"­"9"]* ]]
                      then
                           echo "$linea"
                      fi
                 done
              done < $2 >> $3 ;;
      ­c)   while read linea
              do
                 for n in $linea
                 do
                      if [[ $n = *["0"­"9"] ]]
                      then
                           echo "$linea"
                      fi
                 done
              done < $2 >> $3;;
          *) echo "switch errato!";;
      esac
fi
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