
 1

Introduzione alla
Programmazione in Bash

E.Mumolo, DIA
mumolo@units.it

 2

Bash script

 Formato di uno script in bash:

 Lo script deve essere leggibile ed eseguibile per poter essere eseguito
 Oppure si può chiamare la shell direttamente (basta il permesso di lettura):

$bash script
 Metacaratteri (# * ? > < ! % % | & ; , Apostrofi, Spazio): caratteri con

significato particolare
 Gli APOSTROFI hanno un significato particolare:

double quote (doppio apice): “

single quote (apice singolo) : '

back quote (apice inverso): ` (si ottiene con AltGr ')

#!/bin/bash
primo esempio di script
echo $RANDOM

Per eseguire lo script come
$./script

commento Istruzione di
scrittura

Variabile
d'ambiente

Per
recuperare il
contenuto di
una variabile

 3

Quoting

● Quoting = disabilitazione dell'intrepretazione dei metacaratteri

● Uso di caratteri per disabilitare l'interpretazione di metacaratteri:

– Backslash: quota il carattere che segue (esempio \#)

– Single quote: tutti i caratteri circondati da ' perdono il loro
significato tranne il carattere '

– Double quote: tutti i caratteri circondati da “ perdono il loro
significato tranne $ ` \ “

● Variabili d'ambiente

– $set --- mostra tutte le variabili definite fino a questo momento

– $env --- mostra solo le variabili d'ambiente definite dal sistema

 4

Variabili

● Nomi: combinazione illimitata di lettere, numeri e underscore, MA:
NON possono cominciare con numeri e sono CASE sensitive

● Lettura delle variabili dal terminale: istruzione read:

● Il valore di una variabile si recupera con la scrittura $nome.
ESEMPIO:

● Assegnazione: a=100 (senza spazi), a=$b

$read nome
$read uno due tre

$echo “x” # scrive x
$echo “$y”
$echo “$x” # scrive il valore
$echo “y=$x”
$echo “$y”

 5

Tipi di dati

 USO IMPROPRIO DEL SEGNO $:

 TIPI DI DATI (definiti con gli statement typeset o declare):
– Costanti: typeset (o declare) ­r nome_della_costante=valore

– Stringhe (default) oppure typeset

– Interi: typeset ­i variabile oppure declare ­i variabile

Y=50 → ok
x=y → assegna il nome y ad x
x=$y → assegna 50 ad x
$x=$y errore→

$typeset ­i a
$a=100
$echo "a = $a"

$ declare ­r a=1

$typeset lettera, stringa_numerica, messaggio
$declare lettera, stringa_numerica, messaggio
$lettera="a"
$stringa_numerica="12345"
$messaggio="chiamami al 3861"
$echo "ecco qualche stringa"
$echo "$lettera, $stringa_numerica,$messaggio"

 6

Array
 Dichiarazione di array: typeset (o declare) ­a nome_array

 lettura di un elemento dell'array: read b[10]
 lettura dell'array fino al CR: read b
 Stampa di un array:

#array di stringhe
$declare ­a arr
$arr[0]="primo"
$arr[1]="secondo"
$arr[10]="decimo"
#Array di interi:
typeset ­i b
b[1]=1
b[2]=2

#Valori individuali
echo "elemento 0 = ${vettore[0]}
indice=2
echo "elemento $indice = $
{vettore[$indice]}
echo ${a[1]}

 7

 Solo numeri interi con segno
 Se si usano valori floating non segnala errore ma fa i calcoli con

numeri interi
 Operazioni ammesse: + - * / % << >> & ^(or esc.) |
 Operazioni matematiche anche su variabili stringa (conversione

implicita)
 Se si racchiude l'operazione tra ((.)) il risultato viene convertito in

numero altrimenti resta stringa
 Numeri in base 2, 8, 16

Operazioni matematiche

$typeset ­i x=123
$typeset ­i2 y
$typeset ­i8 z
$typeset ­i16 h
$h=z=y=x # conversione automatica

 8

Struttura di controllo if

 STATEMENT if-elif-then-else-fi .

read n1 n2
if ((n1<n2))
then echo “$n1 minore di $n2”
else echo “$n2 minore di $n1”
fi

=======================

read n1 n2
if ((n1<n2))
then echo “$n1 minore di $n2”
elif ((n1==n2))
then echo “$n1 uguale a $n2”
else echo “$n1 maggiore di $n2”
fi

Oppure (($n1<$n2))

Oppure:
then

echo “$n1 minore di $n2”
else

echo “$n2 minore di $n1”
fi

 9

Condizioni e confronti

 TRA NUMERI → (())
 TRA STRINGHE → [[]]
 DUE PUNTI (:) → CONDIZIONE TRUE
 TEST SU NUMERI: == != < > <= >=
 TEST SU STRINGHE: = != > < -z (stringa nulla)
 Esempi:

#!/bin/bash
S1='string'
S2='String'
if [[$S1!=$S2]]
then
 echo "$S1 non uguale a $S2"
fi

#!/bin/bash
echo “scrivi una stringa”
read nome
if [[$nome = c*]]
then

echo “$nome comincia con c”
else
 echo “non comincia con c”
fi

 10

Operatori logici

 Operatori logici AND, OR: || &&

#!/bin/bash
declare ­i x
declare ­i y
declare ­i z
read x
read y
read z
if ((x<y)) && ((x<z))
then

echo "$x e’ minore di $y e $z"
fi

 11

Operatori logici

 Possibili opzioni :

­a nome → esiste?
­f nome e’ un file regolare?→
­d nome e’ un direttorio?→
­c nome e’ un file di caratteri?→
­b nome e’ un file a blocchi?→
­p nome e’ una pipe?→
­S nome e’ un socket?→
­L nome e’ un link ad un altro oggetto?→
­s nome e’ non vuoto?→

 [[­a $nome]] && [[­f $nome]] && [[­s $nome]]

­r nome posso leggere?→
­w nome → posso modificarlo?
­x nome → posso esguirlo?
­O nome → ne sono proprietario?
­G nome → e’ il mio gruppo?

 [[­r $nome]] && [[­w $nome]] && [[­x $nome]]

 12

Strutture di controllo

 STATEMENT case-esac

for file in *
do # per ogni elemento della dir corrente
 case $file in # visualizza un messaggio
 *.txt) echo "$file: file di testo" ;;

 *.gif) echo "$file: file grafico" ;;

 *.pdf) echo "$file: file PDF" ;;

 *.c) echo "$file: file sorgente" ;;

 *) echo "$file: file generico" ;;

 esac

done

echo "scrivi nome"
read nome
case $nome in

nome1) echo "primo caso"
echo ;;

nome2) echo "secondo caso"
echo ;;

[a­z][a­z])echo "coppia"
echo ;;

*) echo "caso inatteso"
;;

esac

 13

Strutture di controllo
 STATEMENT WHILE

 STATEMENT UNTIL

 STATEMENT for

declare ­i n=0
while ((n<4))
do
((n=n+1))
done

declare ­i n=0
until((n>4))
do
((n=n+1))
done

for nome in mario giuseppe vittorio
do
 echo “$nome”
done

for n in 1 2 3 4
do
 echo “valore di n = $n”
done

typeset ­i ris=5
for n in 10 100 1000
do
 ((ris=$ris*n))
done
echo “ris=$ris”

typeset ­i ris=5
for n in 10 100 1000
do ((ris=$ris*n))
done
echo “ris=$ris”

oppure

 14

Qualche esempio

for parola in $linea #parsing di una stringa
do

echo “$parola”
done

for nome in * # lista dei file nella directory corrente
do # con permesso di lettura

if [[­f $nome]] && [[­r $nome]] && [[­w $nome]]
then

echo " il file regolare $nome puo’ essere letto e scritto"
fi

done

● Comandi composti: separati da punto e virgola
$for n in *; do if [­d $n]; then echo $n; fi; done
$ls ­l|while read l;do echo $l;done

Attenzione: il ';' va dove ci sarebbe return nella notazione
compatta della slide 8 !

 15

Parametri di linea ad uno script
● Possono essere:

– Argomenti semplici (numeri stringhe pathname), opzioni (per esempio –x o +x),
redirezioni (> o <)

● Parametri posizionali:

– $$  PID

– $#  NUMERO DEI PARAMETRI

– $*  STRINGA FORMATA DA TUTTI I PARAMETRI

– $@  ESPANDE GLI ARGOMENTI

– $0  NOME DELLO SCRIPT, DELLA FUNZIONE

– $1…$9,${10}…  PARAMETRI

#!/bin/bash
if (($# > 4))
then

echo "troppi parametri"
elif (($# == 4))
then

echo "ok"
for i in $@
do

 echo "$i"
done

else
 echo "$USAGE"
fi

 16

Parametri di linea ad uno script
● Funzioni in BASH

● Variabili globali: dichiarate implicitamente o dichiarate fuori da una funzione

● Variabili locali: definite all'interno di una funzione con typedef o declare

● Le variabili riservate sono globali

● E' ammessa la ricorsione

● I parametri passati ad una funzione sono recuperati con il meccansmo degli script

● Uno script può chiamare un altro script con lo stesso meccanismo del passaggio di
parametri

● Ritorno parametri:

– Con Return:ritorno un valore di 8 bit nella variabile $? ATTENZIONE: salvare
subito $? perchè è usata da tutti i comandi

– tramite variabili globali

– tramite file

– con la scrittura a=$(nome_funzione param)

 17

Parametri di linea

ESEMPI

function sqr
{

((s=$1*$1))
echo "quadrato di $1 = $s"

}
n=5
sqr $n

function sqr
{

((s=$1*$1))
return $s

}
n=5
sqr $n
p=$? # da salvare perche’ echo modifica la $?
echo "quadrato di $n = $p"

 18

Input/Output

● Istruzioni di base:
● Read
● Echo
● Exec → apre e chiude streams
● operatori per la redirezione

● read var
● il terminatore dell'ingresso è dato dalla variabile IFS
● di default, IFS=spazio|tab|return
● Esempio di ridefinizione di IFS: IFS= “.|”

declare ­i var # Lettura all'interno di un ciclo:
declare ­i tot=0
while read var # continua a leggere fino a quando scrivo ^d
do

((tot=$tot+$var))
done
echo "totale = $tot"

 19

Input/Output

● Redirezione dell'input:
● Totale: $script < file
● Parziale:

● REDIREZIONI:

while read var
do

((tot=tot+var))
done < aa
echo $tot

#parsing di un file
read inp
read out
while read stringa
do

for word in $stringa
do

echo "$word"
done

done < $inp > $out

 20

Exec

● Istruzione Exec: apre un file per lettura e scrittura

● Apertura di un file per lettura:
exec 8< file # 8 e’ il descrittore del file

● Apertura di un file per scrittura: exec 8> file # idem

● Chiusura di un file : exec 8<&­

● Lettura/scrittura del file: read –u8 var / echo –u8 $var

● Cattura dell'output (testuale) di un comando: var=$(comando­Unix)
ESEMPIO:

var=$(ls –l)
var=$(sort filename)

● Lettura di un file in una variabile stringa:

var=$(< filename)

 21

Segnali
● Segnali inviata dalla tastiera:

control­c → INT (segnale nr.2)
control­\ QUIT (segnale nr. 3)→
control­s STOP (segnale nr. 17)→
control­q CONT (segnale nr. 19)→

● Segnali inviati da un processo: comando kill
$kill [­nomesegnale| ­numerosegnale] PID

● Per catturare un segnale (tranne il segnale 9): istruzione TRAP

● Sintassi: trap 'uno o piu’ comandi Unix separati da ;' segnale

● ERRORE DI SCRIPT: trap 'echo “c’e’ stato un errore”' ERR

● FILE TEMPORANEI: trap 'rm /tmp/* > /dev/null ; exit' EXIT

NB: EXIT è il segnale 0, che un processo invia al kernel quando termina

● Per evitare che un processo sia terminato da tastiera: trap ‘’ INT QUIT

 22

Segnali
● Esempi di cattura segnale

#!/bin/bash
questo script cattura i segnali
trap 'echo "ho ricevuto quit"' QUIT
trap 'echo "ho ricevuto int"' INT

count=1
while (:) #while true
do

((count=$count+1))
done

 23

Varie

● Lunghezza stringhe: ${#stringa}

● Pattern matching in bash:
● * corrisponde a tutte le stringhe

● ? corrisponde ad un singolo carattere qualsiasi

● \X disinibisce il significato particolare del carattere X.
● Esempio: \\ rappresenta \

● […] corrisponde a uno dei caratteri racchiusi

● [X-Z] corrisponde a tutti i caratteri dsa X a Z

● [^…] (oppure [!…]) corrisponde a tutti i caratteri che non ci sono

 24

Ereditare variabili

● Le variabili d'ambiente sono ereditate dai processi creati
● Le variabili utente NON sono ereditate dai processi creati
● $export nome_variabile fa sì che i processi creati ereditino la variabile

● I processi creati NON modificano l'ambiente del padre
● Per far si che uno script modifichi l'ambiente del padre --> dot script

● Esempio:

$. ./script

Dove Script può essere:

!/bin/bash

cd $1

 25

Altri esercizi con riga di comando

● Contare i file creati, ad esempio, il 30 settembre

ls ­l|while read l;do echo $l|cut ­f6­7 ­d" ";done|grep "set 30"|wc ­l

● Contare i processi che appartengono ad un dato proprietario

● Contare i file che appartengono ad un dato proprietario

● Contare i processi creati da init

ps ­ef|while read l; do case $(echo $l|cut ­f3­3 ­d" ") in 1)echo 1;esac;done|wc ­l

 26

Esempi di Script

#!/bin/bash
#scrive il nome dei file leggibili e scrivibili se il nome contiene la stringa data
USAGE='Use $0 <string>'
if ["$#" != "1"]
then
 echo $USAGE
else
 for file in *
 do
 if [[$file = *$1*]] && [[­r $file]] && [[­w $file]]
 then
 echo $file
 fi
 done
Fi
==

#!/bin/bash
verifica se la subdir esiste; se esiste, cambia directory corrente,
se non esiste, crea la directory e cambia directory.
#
if ["$#" ­eq "0"]
then
 echo "USAGE: $0 nomedir"
 exit
fi

if [[­a $1]]
then cd $1
else mkdir $1;cd $1
fi
echo "script $0. Sono nella directory $PWD"

 27

Esempi di Script

#!/bin/bash
questo script aggiunge una intestazione data ai file specificati
#script "lista file" "intestazione"
for i in $1 #per tutti i file specificati
do

echo ­e ­n "#\n#$2\n#\n" > temp
cat temp $i > temp1
mv temp1 $i

done

===

#!/bin/bash
#scrive la stringa passata come argomento carattere per carattere
declare ­i i
declare ­i n
l=$1
i=1
while ((i < ${#l}))
do
 n=$i
 echo $(echo $l | cut ­c $n­$n)
 i=$i+1
done

 28

Esempi di Script

#!/bin/bash
#script stringa1 stringa2 stringa3
se stringa2 e' contenuta in stringa1 sostituisce stringa2 con stringa3
#
a=$1
b=$2
c=$3
l1=${#a}
l2=${#b}
l3=${#c}
i=1
if [[$a = *$b*]]
then
 while(($i<$l1))
 do

((i1=$i+$l2­1))
c1=$(echo $a|cut ­c$i­$i1)
if [[$c1 = $b]]
then
 ((start=$i))
fi
((i=$i+1))

 done
 ((end=$start+$l2))
 ((start=$start­1))
 testa=$(echo $a|cut ­c1­$start)
 coda=$(echo $a|cut ­c$end­$l1)
 echo "$testa$c$coda"
fi

 29

Esempi di Script

#!/bin/bash
#script stringa1 stringa2 stringa3
se stringa2 e' contenuta in stringa1 sostituisce stringa2 con stringa3
#
#
Elaborazione di stringhe in bash
#rimpiazza pattern con replacement in string:
${string/pattern/replacement}
#
a=$1
b=$2
c=$3
echo ${a/$b/$c}

 30

Esempi di Script

#!/bin/bash
questo script sostituisce le parole che contengono una stringa p1 con la stringa p2
nel file indicato nella lista data come terzo argomento
./subs.sh p1 p2 lista_file
for i in $3 #per tutti i file indicati
do

echo "file $i"
while read n # $n contiene una stringa
do

for k in $n # $k contiene parole
do

 if [[$k = *$1*]]
then

echo ­n "$2 "
else

echo ­n "$k "
 fi
done

 echo
done < $i > temp

 mv temp $i
done

 31

Esempi di Script

#!/bin/bash
#scrive le righe del file dal carattere c1 al carattere c2
#
USAGE="Use: $0 <char1> <char2> <file>."
declare flag="OFF"
declare ­i c
declare ­i length
if (($# != 3))
then echo $USAGE
elif [[$1 != ?]] || [[$2 != ?]]
then echo $USAGE
elif [[! ­f $3]] && [[! ­r $3]]
then echo "Il file non esiste o non è leggibile"
else
 while read line
 do

for word in $line
do

((c=1))
((length=$(echo $word | wc ­c))­1) #uguale a length=${#word}
while (($c < length))

 do
 character=$(echo $word | cut ­c $c)

 if [[$character = $2]]
 then flag="OFF"

 fi
 if [[$flag = "ON"]]
 then echo ­n $character
 fi
 if [[$character = $1]]
 then flag="ON"
 fi
 ((c=$c+1))

done
done

 done < $3
fi

 32

Esempi di Script

#!/bin/bash
USAGE="myls.ksh, stampa la lista dei file ordinati nel formato size­nome­filemode­data"

echo ­e "\n File ordinati per data \n"
echo ­e "SIZE­NOME­FILE mode­DATA \n"

ls ­latr|while read l;do echo $l|cut ­f5­5 ­d" ";done >size.tmp
ls ­latr|while read l;do echo $l|cut ­f9­9 ­d" ";done >nome.tmp
ls ­latr|while read l;do echo $l|cut ­f1­1 ­d" ";done >mode.tmp
ls ­latr|while read l;do echo $l|cut ­f6­7 ­d" ";done >data.tmp

paste size.tmp nome.tmp mode.tmp data.tmp
rm *.tmp # rimozione file temporanei

echo ­e "\n\n return.. \n\n"
read nn

echo ­e "\n File ordinati per dimensione \n"
echo ­e "SIZE­NOME­FILE mode­DATA \n"

ls ­laSr|while read l;do echo $l|cut ­f5­5 ­d" ";done >size.tmp
ls ­laSr|while read l;do echo $l|cut ­f9­9 ­d" ";done >nome.tmp
ls ­laSr|while read l;do echo $l|cut ­f1­1 ­d" ";done >mode.tmp
ls ­laSr|while read l;do echo $l|cut ­f6­7 ­d" ";done >data.tmp

paste size.tmp nome.tmp mode.tmp data.tmp
rm *.tmp

 33

Esempi di Script

#!/bin/bash
#legge tutti i file con estensione .log selezionando solo le righe di commento
#che contengono la parola Giorgio e le scrivono accodandole sul file commenti.log
#Si supponga che le linee di commento inizino con #
#La sua attivazione può essere
#./script >> commenti.ksh
#
for n in *.log
do

echo "file $n"
while read linea
do

if [[$linea = "#"*]]
then

for nn in $linea
do

if [[$nn = "Giorgio"]]
then

echo "$linea"
fi

done
fi

done < $n
done

 34

Esempi di Script

#!/bin/bash
#scrive il file dato come argomento per righe alternativamente minuscole e maiuscole
#
USAGE="Use: $0 <file>."
declare ­i nlet=0
if (($# != 1))
then
 echo $USAGE
else
 if [[! ­f $1]]
 then
 echo "il File non esiste!"
 else
 while read line
 do
 for word in $line
 do
 if (($nlet%2 == 0))
 then
 echo ­n $word " "
 else
 echo ­n $word " " | tr '[a­z]' '[A­Z]'
 fi
 ((nlet=$nlet+1))
 done
 echo ­e ­n "\n"
 done < $1
 fi
fi

 35

Esempi di Script

#!/bin/bash
#Questo script legge un file di testo (in cui nome viene dato in linea) e accoda in un
#secondo file (anch’esso dato in linea) solo le righe che contengono parole che
#cominciano (opzione –d) o finiscono (opzione –c) con un numero.
#
#script [­d][­c] <nome1> <nome2> Il nr. corretto di parametri e' 3
#
USAGE="script [­d][­c] <file1> <file2>"
if (($# != 3))
then
 echo "errore nei parametri!"
 echo "$USAGE"
else
 case $1 in
 ­d) while read linea
 do
 for n in $linea
 do
 if [[$n = ["0"­"9"]*]]
 then
 echo "$linea"
 fi
 done
 done < $2 >> $3 ;;
 ­c) while read linea
 do
 for n in $linea
 do
 if [[$n = *["0"­"9"]]]
 then
 echo "$linea"
 fi
 done
 done < $2 >> $3;;
 *) echo "switch errato!";;
 esac
fi

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35

