Introduzione alla
Programmazione in Bash

E.Mumolo, DIA
mumolo@units.1t



Bash script

Formato di uno script in bash: #!/bin/bash , ,
# primo esempio di script
echo SRANDOM

Per eseguire lo script come
$./script / \

commento Istruzione di Per Variabile
scrittura recuperare il d'ambiente
contenuto di
una variabile

Lo script deve essere leggibile ed eseguibile per poter essere eseguito

Oppure si puo chiamare la shell direttamente (basta il permesso di lettura):
Sbash script

Metacaratteri (#*?><!1% % | & ; , Apostrofi, Spazio): caratteri con
significato particolare

Gl APOSTROFI hanno un significato particolare:
double gquote (doppio apice): *

single quote (apice singolo) :
back quote (apice inverso):  (si ottiene con AltGr ")



Quoting

* Quoting = disabilitazione dell'intrepretazione dei metacaratteri
* Uso di caratteri per disablilitare l'interpretazione di metacaratteri:

- Backslash: quota il carattere che segue (esempio \#)

- Single quote: tutti | caratteri circondati da ' perdono il loro
significato tranne il carattere '

— Double quote: tutti i caratteri circondati da “ perdono il loro
significato tranne $ "\ *“

 Variabili d'ambiente

- $set --- mostra tutte le variabili definite fino a questo momento

- $env --- mostra solo le variabili d'ambiente definite dal sistema



Variabili

Nomi: combinazione illimitata di lettere, numeri e underscore, MA:
NON possono cominciare con numeri e sono CASE sensitive

| ettura delle variabili dal terminale: istruzione read:
Sread nome

Sread uno due tre

Il valore di una variabile si recupera con la scrittura $nome.

ESEMPIO:
Secho “x" # scrive x
Secho 7] $y"

Secho “S$x"” # scrive 1l valore
Secho “y=$x"
Secho 7] Sy"

Assegnazione: a=100 (senza spazi), a=$b



Tipi di dati

USO IMPROPRIO DEL SEGNO $: Y=30 » ok _
X=y - assegna 11 nome y ad X
X=8y - assegna 50 ad x
S$X=8y - errore

TIPI DI DATI (definiti con gli statement typeset o declare):

— COSEMHI typeset (o declare) -r nome della costante=valore
declare -r a=l1 - -

— Stringhe (default) oppure typeset

Stypeset lettera, stringa numerica, messaggio
$declare lettera, stringa numerica, messaggio
Slettera="a"

$stringa numerica="12345"

Smessaggio="chiamami al 3861"

Secho "ecco qualche stringa"

Secho "Slettera, $stringa numerica,$messaggio”

- Interi: typeset -i variabile oppure declare -i variabile

Stypeset -i a
$Sa=100
Secho "a = $a" 5



Array

Dichiarazione di array: typeset (o declare) -a nome array
tarray di stringhe
Sdeclare -a arr
Sarr[0]="primo"
Sarr[1l]="secondo"
Sarr[10]="decimo"
#Array di interi:
typeset -1 b
b[l]=1
b[2]=2

lettura di un elemento dell'array: read b[10]

lettura dell'array fino al CR: read b

Stampa di un array: #Valori individuali
echo "elemento 0 = S$S{vettore[0]}
indice=2
echo "elemento Sindice = $

{vettore[$indice]}
echo ${a[l]}



Operazioni matematiche

Solo numeri interi con segno

Se si usano valori floating non segnala errore ma fa i calcoli con
numeri interi

Operazioniammesse: + - * [ % << >> & "oresc.) |
Operazioni matematiche anche su variabili stringa (conversione
iImplicita)

Se si racchiude 'operazione tra ((.)) il risultato viene convertito in
numero altrimenti resta stringa

Numeri in base 2, 8, 16

Stypeset -1 x=123

Stypeset -1i2 vy

Stypeset -18 z

Stypeset -i116 h

Sh=z=y=x # conversione automatica



Struttura di controllo If

STATEMENT if-elif-then-else-fi .

Oppure (( $nl<$n2))
read nl n2 44//////////////////
if (( nl<n2 )) Oppure:

then echo “$nl minore di $n2” then
else echo “$n2 minore di $nl” echo “$nl minore di $n2”
fi else

echo “$n2 minore di $nl”
S====================== fi

read nl n2

if (( nl<n2 ))

then echo “$nl minore di S$n2”
elif (( nl==n2 ))

then echo “$Snl uguale a $n2”
else echo “$nl maggiore di S$n2”
fi



Condizioni e confronti

TRANUMERI - (( )
TRASTRINGHE - [[ ]
DUE PUNTI () - CONDIZIONE TRUE

TEST SUNUMERI: == = < > <= >=
TEST SU STRINGHE: = = > < -z (stringa nulla)
Esempi:

#!/bin/bash

#!/bin/bash oy :
echo “scrivi una stringa”

Sl='string'
S2="String' read nome
if [[ $S1!=$S2 1] if [[ $nome = c* ]]
then then o
echo "$S1 non uguale a $S2" echo “Snome comincia con c”
£i else

echo “non comincia con c”
fi



Operatori logici
Operatori logici AND, OR: | &&

#!/bin/bash
declare -i X
declare -i y
declare -i z
read x
read y
read z
if ((x<y)) && ((x%<z))
then
echo "S$x e’ minore di Sy e $z"
fi

10



[

[

Operatori logici

Possibili opzioni :

nome - esiste?
nome - e’ un file regolare?
nome -» e’ un direttorio?
nome - e’ un file di caratteri?
nome -» e’ un file a blocchi?
nome -» e’ una pipe?
nome - e’ un socket?
nome - e’ un link ad un altro oggetto?
nome -» e’ non vuoto?
—a Snome ]] && [[ -f Snome ]] && [[ -s Snome ]]
nome - posso leggere?
nome -» posso modificarlo?
nome - posso esguirlo?
nome - ne sono proprietario?
nome - e’ 11l mio gruppo?

-r Snome ]] && [[ -w Snome ]] && [[ -X Snome ]]

11



Strutture di controllo

STATEMENT case-esac

echo "scrivi nome"
read nome
case S$Snome in
nomel) echo "primo caso"

echo H

nome2) echo "secondo caso"
echo H

[a-z][a-2]) echo "coppia"
echo H

*) echo "caso inatteso"

o o
rir

esacC

for file in *
do # per ogni elemento della dir corrente
case $file in # visualizza un messaggio
*.,txt) echo "$file: file di testo" ;;
*,gif) echo "S$file: file grafico" ;;
*,pdf) echo "$file: file PDF" ;;
*,c) echo "S$file: file sorgente" ;;
*) echo "S$file: file generico" ;;

esac

done

12




Strutture di controllo

declare -i n=0

STATEMENT WHILE  while ((n<4))

do
((n=n+1))
............................................. done
STATEMENT UNTIL declare -1 n=0
until ((n>4))
do
((n=n+1))
............................................................. done i
STATEMENT for
for n in 1 2 3 4 for nome in mario giuseppe vittorio
do do
echo “valore di n = S$n” echo “Snome”
done done
typeseF -1 ris=5 -« Oppure typeseF -1 ris=5
for n 1n 10 100 1000 for n 1n 10 100 1000
do do ((ris=S$Sris*n))
((ris=S$Sris*n)) done
done echo “ris=$ris”

echo “ris=Sris” 13



Qualche esempio

for parola in $linea #parsing di una stringa

do
echo “$parola”
done
for nome in * # lista dei file nella directory corrente
do # con permesso di lettura
if [[ -f Snome ]] && [[ -r Snome ]] && [[ -w Snome ]]
then
echo " il file regolare $Snome puo’ essere letto e scritto"
fi
done

« Comandi composti: separati da punto e virgola
Sfor n in *; do if [ -d Sn ]; then echo $n; fi; done
$ls -1|while read 1l;do echo $1;done

A~

Attenzione: il ';' va dove ci sarebbe return nella notazione
compatta della slide 8 ! 14



Parametri di linea ad uno script

* Possono essere:

— Argomenti semplici (numeri stringhe pathname), opzioni (per esempio —x 0 +Xx ),
redirezioni (> 0 <)

* Parametri posizionali:

- $% - PID
- $# - NUMERO DEI PARAMETRI
- $* - STRINGA FORMATA DA TUTTI I PARAMETRI
- $@ - ESPANDE GLI ARGOMENTTI
- %0 - NOME DELLO SCRIPT, DELLA FUNZIONE
- $1...$9,${10}... -> PARAMETRI
#!/bin/bash
if ((S# > 4))
then

echo "troppi parametri"
elif (($# == 4))
then
echo "ok"
for i in $@
do
echo "Sin
done
else
echo "SUSAGE"
fi



Parametri di linea ad uno script

Funzioni in BASH

Variabili globali: dichiarate implicitamente o dichiarate fuori da una funzione
Variabili locali: definite all'interno di una funzione con typedef o declare

Le variabili riservate sono globali

E' ammessa la ricorsione

| parametri passati ad una funzione sono recuperati con il meccansmo degli script

Uno script puo chiamare un altro script con lo stesso meccanismo del passaggio di
parametri

Ritorno parametri:

— Con Return:ritorno un valore di 8 bit nella variabile $? ATTENZIONE: salvare
subito $? perche e usata da tutti i comandi

— tramite variabili globali
- tramite file

— con la scrittura a=$(nome_funzione param)

16



Parametri di linea

ESEMPI

function sqr

{
((s=$1*$1))
echo "quadrato di $1 = Ss"
}
n=>5
sgr $n

function sqr
{
((s=$1*51))
return S$s
}
n=>5
sqr Sn
p=S$? # da salvare perche’ echo modifica la $?

echo "quadrato di $n = Sp"

17



e Istruzioni di base:
* Read
* Echo

Input/Output

« Exec — apre e chiude streams
e operatori per la redirezione

e read var

* il terminatore dell'ingresso e dato dalla variabile IFS

* di default, IFS=spazio|

tab|return

« Esempio di ridefinizione di IFS: [FS=*“.|"

declare -i var
declare -i tot=0
while read var
do

((tot=S$Stot+Svar))
done
echo "totale = S$tot"

# Lettura all'interno di un ciclo:

# continua a leggere fino a quando scrivo “d

18



Input/Output

* Redirezione dell'input:
« Totale: $script < file

» Parziale:

 REDIREZIONI:

while read var
do
((tot=tot+var))
done < aa
echo Stot

#parsing di un file

read inp

read out

while read stringa

do
for word in Sstringa
do

echo "Sword"

done

done < $inp > Sout

19



Exec

« Istruzione Exec: apre un file per lettura e scrittura

e Apertura di un file per lettura:

exec 8< file # 8 e’ il descrittore del file

o Apertura di un file per scrittura: exec 8> file
e Chiusura di un file: exec 8<&-
e Lettura/scrittura del file: read —u8 var

« Cattura dell'output (testuale) di un comando:
ESEMPIO:

var=$(ls —1)
var=$(sort filename)

 Lettura di un file in una variabile stringa:

var=$ (< filename)

# idem

/ echo —u8 S$var

var=$ (comando-Unix)

20



Segnali

Segnali inviata dalla tastiera:
control-c -» INT (segnale
control-\ - QUIT (segnale
control-s - STOP (segnale
control-q -» CONT (segnale

nr

nr.
nr.
nr.

.2)
3)

17)
19)

Segnali inviati da un processo: comando Kill

Skill [—nomesegnale| -numerosegnale] PID

Per catturare un segnale (tranne il segnale 9): istruzione TRAP

e Sintassi: trap 'uno o piu’ comandi Unix separati da ;' segnale
« ERRORE DI SCRIPT: trap 'echo “c’e’ stato un errore”' ERR
 FILE TEMPORANEI: trap 'rm /tmp/* > /dev/null ; exit' EXIT

NB: EXIT ¢ il segnale O, che un processo invia al kernel quando termina

» Per evitare che un processo sia terminato da tastiera: trap ‘’ INT QUIT

21



« Esempi di cattura segnale

#!/bin/bash

# questo script cattura
trap 'echo "ho ricevuto
trap 'echo "ho ricevuto

count=1
while (:) #while true
do

(( count=$count+l ))
done

Segnali

1 segnali

quit"’
int "

QUIT
INT

22



Varie

* Lunghezza stringhe: ${#stringa}

« Pattern matching in bash:

* corrisponde a tutte le stringhe
? corrisponde ad un singolo carattere qualsiasi
\X disinibisce il significato particolare del carattere X.

 Esempio: \\ rappresenta\
[...] corrisponde a uno dei caratteri racchiusi
[X-Z] corrisponde a tutti i caratteridsa X a Z

[*...] (oppure [!...]) corrisponde a tutti i caratteri che non ci sono

23



Ereditare variabili

Le variabili d'ambiente sono ereditate dai processi creati
Le variabili utente NON sono ereditate dai processi creati
Sexport nome variabile fa siche i processicreati ereditino la variabile

| processi creati NON modificano I'ambiente del padre
Per far si che uno script modifichi 'ambiente del padre --> dot script

Esempio:
$. ./script

Dove Script pud essere:

! /bin/bash

cd $1

24



Altri esercizi con riga di comando

Contare i file creati, ad esempio, il 30 settembre

ls -1|while read 1l;do echo $l|cut -f6-7 -d" ";done|grep "set 30" |wc -1
Contare i processi che appartengono ad un dato proprietario
Contare | file che appartengono ad un dato proprietario

Contare i processi creati da init

ps -ef|while read 1; do case $(echo $l|cut -£f3-3 -d" ") in 1l)echo 1l;esac;done|wc -1

25



Esempi di Script

#!/bin/bash
#scrive il nome dei file leggibili e scrivibili se il nome contiene la stringa data
USAGE='Use $0 <string>'
if [ ovs#r 1= r1v )
then
echo SUSAGE
else
for file in *
do
if [[ $file = *$1* ]] && [[ -r $file ]] && [[ -w S$file 1]
then
echo S$file

#!/bin/bash
# verifica se la subdir esiste; se esiste, cambia directory corrente,
# se non esiste, crea la directory e cambia directory.

#

if [ "s#" -eq "O0" ]

then
echo "USAGE: $0 nomedir"
exit

fi

if [[ -a $1 1]

then cd $1

else mkdir $1;cd $1

fi

echo "script $0. Sono nella directory S$PWD"



Esempi di Script

#!/bin/bash

# questo script aggiunge una intestazione data ai file specificati
#script "lista file" "intestazione"

for i in $1 #per tutti i file specificati

do
echo -e -n "#\n#$2\n#\n" > temp
cat temp $i > templ
mv templ S$i

done

#!/bin/bash
#scrive la stringa passata come argomento carattere per carattere
declare -i i
declare -i n
1=51
i=1
while (( 1 < ${#1} ))
do
n=s$i
echo $(echo $1 | cut -c $n-$n)
i=$i+1
done

27



Esempi di Script

#!/bin/bash
#script stringal stringa2 stringa3
# se stringa2 e' contenuta in stringal sostituisce stringa2 con stringa3
#
a=s1
b=$2
c=S$3
l1=s{#a}
12=${#b}
13=${#c}
i=1
if [[ Sa = *S$b* ]]
then

while(( $i<$11 ))

do

(( i1=$i+$12-1 ))

cl=$(echo $a|cut -c$i-$il)

if [[ $cl = $b ]]

then

((start=$i))

fi

((1i=$i+1))

done

(( end=$start+s$12 ))

(( start=$start-1))

testa=$(echo S$a|cut -cl-$start)

coda=$(echo $a|cut -c$end-$11)

echo "S$testa$c$coda"
fi

28



Esempi di Script

#!/bin/bash

#script stringal stringa2 stringa3

# se stringa2 e' contenuta in stringal sostituisce stringa2 con stringa3
#

#

# Elaborazione di stringhe in bash
#rimpiazza pattern con replacement in string:
# S{string/pattern/replacement}

#

a=s1

b=$2

c=S$3

echo ${a/$b/S$c}

29



Esempi di Script

#!/bin/bash
# questo script sostituisce le parole che contengono una stringa pl con la stringa p2
# nel file indicato nella lista data come terzo argomento
# ./subs.sh pl p2 lista file
for i in $3 #per tutti i file indicati
do
echo "file S$i"
while read n # $n contiene una stringa

do
for k in $n # Sk contiene parole
do
if [[ $k = *$1* 1]
then
echo -n "$2 "
else
echo -n "S$k "
fi
done
echo

done < $i > temp
mv temp S$i
done



Esempi di Script

#!/bin/bash

#scrive le righe del file dal carattere cl al carattere c2
#

USAGE="Use: $0 <charl> <char2> <file>."

declare flag="OFF"

declare -i c

declare -i length

if (( S$#% !'= 3 ))

then echo S$USAGE
elif [[ $1 !=2 11 || [ $2 != 2 1]
then echo S$SUSAGE
elif [[ ! -f $3 ]] && [[ ! -r $3 1]
then echo "Il file non esiste o non & leggibile"
else
while read line
do
for word in $line
do
((c=1))
((length=$(echo $word | wc -c))-1) #uguale a length=${#word}
while (( $c < length ))
do
character=$ (echo $word | cut -c S$c)
if [[ Scharacter = $2 ]]
then flag="OFF"
fi
if [[ $flag = "ON" ]]
then echo -n $character
fi
if [[ Scharacter = $1 ]]
then flag="ON"
fi
((c=$c+l))
done
done

done < $3
fi



Esempi di Script

#!/bin/bash
USAGE="myls.ksh, stampa la lista dei file ordinati nel formato size-nome-filemode-data"

echo -e "\n File ordinati per data \n"
echo -e "SIZE-NOME-FILE mode-DATA \n"

ls -latr|while read 1l;do echo $1l|cut -f5-5 -d" ";done >size.tmp
ls -latr|while read 1l;do echo $1l|cut -£9-9 -d" ";done >nome.tmp
ls -latr|while read 1l;do echo $1l|cut -f1-1 -d" ";done >mode.tmp
ls -latr|while read 1l;do echo $l|cut -£f6-7 -d" ";done >data.tmp

paste size.tmp nome.tmp mode.tmp data.tmp
rm *.tmp # rimozione file temporanei

echo -e "\n\n return.. \n\n"
read nn

echo -e "\n File ordinati per dimensione \n"
echo -e "SIZE-NOME-FILE mode-DATA \n"

ls -laSr|while read 1l;do echo $1l|cut -f5-5 -d" ";done >size.tmp
ls -laSr|while read 1l;do echo $1l|cut -£f9-9 -d" ";done >nome.tmp
ls -laSr|while read 1l;do echo $l|cut -fl-1 -d" ";done >mode.tmp

ls -laSr|while read 1l;do echo $1l|cut -f6-7 -d" ";done >data.tmp

paste size.tmp nome.tmp mode.tmp data.tmp
rm *.tmp



Esempi di Script

#!/bin/bash
#legge tutti i file con estensione .log selezionando solo le righe di commento
#che contengono la parola Giorgio e le scrivono accodandole sul file commenti.log
#Si supponga che le linee di commento inizino con #
#La sua attivazione pudO essere
#./script >> commenti.ksh
#
for n in *.log
do
echo "file $n"
while read linea
do
if [[ S$linea = "#"* 1]
then
for nn in $linea
do
if [[ $nn = "Giorgio" 1]]
then
echo "$linea"
fi
done
fi
done < $n
done



Esempi di Script

#!/bin/bash
fscrive il file dato come argomento per righe alternativamente minuscole e maiuscole

#

USAGE="Use: $0 <file>."
declare -i nlet=0

if (( $# !=1))

then

else

fi

echo -n $word " " | tr '[a-z]"'

echo SUSAGE
if [[ ! -f $1 1]
then
echo "il File non esistel!™"
else
while read line
do
for word in $line
do
if (( $nlet%2 == 0 ))
then
echo -n Sword " "
else
fi
((nlet=Snlet+l))
done

echo -e -n "\n"
done < $1
fi

I[A_Z]l

34



Esempi di Script

#!/bin/bash
#Questo script legge un file di testo (in cui nome viene dato in linea) e accoda in un
#secondo file (anch’esso dato in linea) solo le righe che contengono parole che
#cominciano (opzione —d) o finiscono (opzione —c) con un numero.
#
#script [-d][-c] <nomel> <nome2> Il nr. corretto di parametri e' 3
#
USAGE="script [-d][-c] <filel> <file2>"
if (( $# !'=3))
then
echo "errore nei parametril!"
echo "SUSAGE"

else
case $1 in
-d) while read linea
do
for n in $linea
do
if [[ $n = ["0"-"9"]* ]]
then
echo "$linea"
fi
done

done < $2 >> $3 ;;
-c) while read linea

do

for n in $linea

do
if [[ $n = *["0"-"9"] ]]
then

echo "$linea"

fi

done

done < $2 >> $3;;
*) echo "switch errato!";;
esac
fi



	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35

