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Abstract

This  lecture deals  with a  more  general  form of  the  equation of  state,  called van der  Waals 
equation, which gives a better description of reality both under the conceptual and numerical 
point of view. The distinction from gas and vapour naturally springs out from this equation as 
well as the existence of an unstable region of the P-V diagram, nor foreseen neither described by 
the classical ideal gas law. Even if this unstable region is not correctly described by the van der 
Waals equation under the analytical point of view, with added assumptions (conceptual patch) it 
is possible to give at least a qualitative description of reality. Last but not least the van der Waals 
equation foreseen the existence of negative pressures. These negative pressures exist in nature 
(even if they are unstable) and are fundamental for some biotic mechanisms

How to obtain the van der Waals (1873)

An equation of state is a relationship between the thermodynamic variables that fully define the 
state of a system. If the system is air (that is essentially a mixture of nitrogen and oxygen) or 
water vapour, four thermodynamic variables are enough to determine the state of the system and 
they can be a combination of pressure, volume, mass (or number of moles) and temperature. In 
the atmospheric physics the equation of state usually used is the well known

pV =n RT

where p is pressure n is the number of moles, T is the absolute temperature and R is the ideal gas 
constant (R = 8.3143 J mol-1 K-1).

Another form, even more used in meteorology, is the following 

 p=ρ Ra T

where ρ is the ideal gas density and Ra is the gas constant (i.e., the ideal gas constant R divided 
by the molar weight of the specific gas) that, for dry air, is Ra = 287.04   J K-1 . 
Both the above equations have essentially the same physical meaning and the same physical 
troubles.

The first of these troubles is the fact that when temperature decreases, keeping constant pressure 
and number of moles, the volume occupied by the gas tends to zero as well.  Of course this 
cannot be physically true because, being material, the gas constituents cannot disappear. This 
means that both the above equations of state cannot be used at extremely low temperatures. 
However, this trouble can be easily solved in an heuristic way using a slightly different form for 
the equation of state, that is

 p V −V 0=n R T



The advantage of this form of the equation of state is that when T tends toward zero at constant 
pressure and number of moles the gas volume tends toward V0 . Then the gas constituents (atoms 
or molecules) do not disappear, i.e., they still occupy the portion of space  V0 . If  V0 is enough 
small for  T ≫0 the modified equation of state has almost the same behaviour of the previous 
forms.

Another trouble of the ideal gas law, neither solved by the above modified form, is that when the 
number of moles increases at constant volume and temperature, it is quite natural to assume that 
the  gas pressure might not increase as expected (i.e., linearly with the number of moles) because 
of the mutual attraction between the gas constituents. In other words the pressure exerted by the 
gas on an virtual container is lower than that exerted by an ideal gas. This can be taken into 
account modifying the above equation of state in the following form

 p= n R T
V −V 0

−pn

The quantity pn  is function of the number of atoms and/or molecules per unit volume as well as 
from the average force exerted by two atoms and/or molecules. By simple inductive description 
of the interaction between the gas constituents described in the below figure, assuming as φ the 
average force exerted by the gas constituents within a radius of influence λ , it s possible to give 
an analytic description of the term pn  , that is

pn=
F
S
= N

2


2 φ
S

where N is the number of gas constituents contained in the sphere of λ diameter and F is the 
average force exerted on the surface S that divides the sphere of influence in two equivalent 
hemispheres.

Figure: Inductive determination of the average force F exerted over the surface S with the increasing 
of the number of gas constituents N into the sphere of influence. 



Introducing the Avogadro number A and the total gas volume V, the number of gas constituents 
N inside the sphere of influence becomes 
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and the above expression for the pressure correction assumes the form 
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Now, defining the molar specific volume as v m=V /n A  , with some algebra we can write the 
pressure correction as

pn=
π
36

λ4

vm
2 φ

which, even through this simple analytical approach, underlines the strong dependence of the 
correction factor by the radius of influence (fourth power of λ) and by the constituents density 
(second power of  1/vm ).  If  density is low as well  as the radius of influence, no matter  the 
strength of the average force φ , the correction term becomes negligible. That is the reason why 
many gases at standard atmospheric conditions can be considered as ideal.

Using the above pressure correction term in the modified version of the ideal gas law we obtain 
the following “real” gas law, usually called van der Waals equation of state,

p= R T
vm−a

− b

vm
2

where a and b are two positive defined constants that depends from the particular gas or vapour 
we are dealing with. In particular the  a constant is related to the volume occupied by the gas 
constituents  while  b  is  essentially  related  to  the  radius  of  influence  for  the  intra-molecular 
interaction.

The ideal gas law can be considered as a special case of the van der Waals equation of state, in 
fact when both a and b go to zero the van del Waald equation becomes the ideal gas one. Apart 
from this the above equation can give some useful theoretical hints on the behaviour of gases and 
vapours.

Critical temperatures (1861)

The first interesting theoretical aspect is that in the p-V (or equivalently p-vm) diagram the “real” 
gas isotherms are no more hyperbolas, but they can have minima and maxima as can be seen by 
simply deriving the van der Waals equation with respect to molar specific volume and imposing 
null derivatives, obtaining.
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But it is much more useful to go a step further in the theoretical approach and consider the two 
null derivatives together with the van der Waals equation ad a closed system of equations that 
can be  solved.  In  particular  what  is  usually  done  is  to  take the Van der  Waals equation in 
conjunction with its null-imposed derivatives to obtain a closed system of three equations in the 
three variables p, vm and T. The solutions of this system are

p= b

27a2
≡pc  , T= 8b

27R a
≡T c  and v=3a≡vc .

These solutions are called the “critical values” of the system for reasons that will appear clear 
(hopefully) later.

These  three  pressure,  temperature  and  specific  molar  value  can  be  used to  express  the free 
variables of the van der Waals equation in their “natural” form, that is with their typical units. 
This is done simply retrieving the parameters a,  b and R  (remember that  a and b different for 
different gases and vapours) as function of the pressure, volume and temperature critical values, 
that is

R=3
8

pc

vc T c
 , a=1

3
vc  and b=27

64
pc .

Substituting the above values into the van der Waals equation we obtain a much simpler and 
general form of the equation of state, which is called law of corresponding states, that is
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always written in the more elegant form 

pr=
8T r

3vr−1
− 3

vr
2

This equation can represent,  in principle,  the relationship between pressure,  temperature and 
molar  specific  volume  for  all  the  substances  when  measured  in  units  of  specific  pressure, 
temperature and molar specific volume. Just  to have a look to the specific variables for real 
substances you can use the table below. 

Substance Tc  (°C) pc (hPa)

N2 -122 34037

O2 -119 50346

H2O 374 220834

CO2 31 733000

Of course when  Tc and  pc are fixed, its molar specific value (density) is fixed as well by the 
simple relationship 



pc

T c

=3
8

R
vc

=3
8

Rgas ρc

What can be noticed from the above table is that critical pressures have high values, far beyond 
the  classical  atmospheric  values  (1013  hPa).  On  the  contrary,  critical  temperatures  show  a 
different behaviour for carbon dioxide and water and for oxygen. But what is the meaning of the 
critical temperature? It can be shown by quite simple algebra (compute the derivative of the law 
of corresponding states) the mathematical  constraint  to admit minima and maxima is that of 
T r1 , that is TT c . This means that for typical atmospheric conditions only water and carbon 
dioxide may have minima and maxima. Just to have a naive description of what said, above take 
a look to the figure below. But what does it mean for the van der Waals equation (i.e., the law of 
corresponding states) the possibility to have a minimum or maximum? This means that between 
the  minimum  and  maximum  pressures  decreases  with  molar  specific  volume  (i.e.,  with 
increasing density). This situation is completely new when compared for the behaviour of ideal 
gases, for which pressure increases with the decreasing of volume. This behaviour is essentially 
unstable, in fact in this range of the PV diagram small compressions (expansions) of a system 
initially  in  equilibrium with the environment  grow.  This  non linear  behaviour  stands  for  an 
extremely  important  process  that  takes  place  in  atmosphere  for  some substances  that  is  the 
change of phase.

Real isotherms (1873)

The behaviour of real isotherms is quite different for molar specific volumes (densities) in the 
unstable  range,  in  particular  what  empirically  observed is  that  for  decreasing molar  specific 
volume (i.e.,  increasing  of  density)  “real”  isotherms  reach  a  point  where  pressure  does  not 
increase any more and stays constant up to a specific volume (density) where pressures starts to 
(quickly) grow again. Even this behaviour does not springs out naturally from the van der Waals 
equation it is possible to use its form at least to find the point in which reality starts to differ from 
theory. This was done by James Maxwell a few years after the publication of the van der Waals 
work with semi-heuristic considerations. In fact, if pressure remains constant after a certain point 
(during phase transition) and if the van der Waals equation gives a real description away from 
phase transition, we can use it to find at least the value of the pressure where phase transition 
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takes place. In particular we are pretty sure that the total energy should remain constant (first law 
of thermodynamics), then for a cyclic process (see figure below) that moves from the point A 
(beginning of phase transition) to the point E (ending of phase transition) along a real isotherm 
and comes back to the initial point A along a van der Waals isotherm, we should have

∮dq=∮du∮ p dv .

Since the initial and final point are the same we are sure that 

∮du=0  and ∮ds=0

where s is the system entropy (reversible process). Using the definition of entropy, remembering 
that temperature is constant (isotherm), we are sure that

∮ds=∮ 1
T

dq= 1
T ∮ dq=0

then the first law of thermodynamics states that

∮ p dv=∫ABCA
pdv∫CDEC

pdv=0  then ∫ABCA
pdv=−∫CDEC

pdv

These  simple  considerations  give  us  an  easy rule  to  graphically  evaluate  (not  easy task)  or 
numerically evaluate the value of pressure that makes equal the two integrals.

Negative pressures?

One interesting aspect that surely readers already noticed is the existence of negative pressures. 
This is another interesting aspect of van der Waals equation. Far beyond to be a failure of the van 
der Waals equation these are an important predictive aspect. To understand, or at least to create 

Figure.  An  ideal   van  der  Waals  isotherm (black  line)  and  a  real  isotherm (red  line).  A  
represents the beginning of phase transition, E the end of phase transition, the segment ACE 
represents the real isotherm, the line ABCDE the van der Waals one. 



an habit in our minds to this concept, we can think to negative pressures as “tension” or “tensile“ 
pressures  instead  of  “compression”  pressures.  This  can  be  easily  understood  remembering 
recalling the  stress  tensor,  which  needs,  to  be defined,  a  surface  and a  force.  If  forces  and 
surfaces  have  opposite  verses  pressure  is  negative.  Experimentally  it  is  possible  to  obtain 
extremely  low  (high  in  absolute  value)  negative  pressures  up  to  300  000  hPa  for  water. 
Significantly low levels of negative pressure are currently occurring in trees. In fact, if you just 
try to compute the hydrostatic pressure at the rots of the trees exerted by the vertical amount of 
water that goes from the bottom up to the top of the leaves, you will find unsuspectedly high 
values. In spite of these high pressure values water reaches even the upper part of the tallest 
sequoia. This is possible thanks to the negative pressure. Negative pressures can be reached, as 
well  foreseen  by  the  van  der  Waals  equation,  only  during  phase  transition,  then  negative 
pressures  are  unstable.  Nevertheless  this  unstable  situation  is  maintained  by  trees  through 
transpiration. In other words they transpire to maintain a net flux from the roots up to the leaves, 
bringing nutrients with the fluid as well. This is the reason why plants do not need an earth to 
survive.

Do we really need van der Waals?

The answer to this question can be given only fixing correctly the problem. We can compare 
ideal gas law with van der Waals law only fixing two of the tree variables. So far we choosed to 
fix temperature and pressure to determine what happens to density (molar specific volume). 

Above critical temperature we do not care about the difference between ideal and van der Waals 
aeriforms. 

At the critical temperature we already found that
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Since we know that for ideal gases

p
T
=Rgas ρc

we can easily obtain the following relationship, remembering that pressure and temperature are 
the same.
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Then at critical pressure and temperature van der Waals density is higher than ideal one. Under 
the naïve point of view we can say that van der Waals gas needs an higher density (higher 
frequency of bumps) to counteract the intra molecular attraction to reach the same pressure and 
temperature.

For lower temperatures we can use the already obtained relationships

 a=1
3

vc  and b=27
64

pc .

into the van der Waals equation, that is



p= R
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if  we  are  far  from  the  critical  point  (case  already  studied)  we  can  consider  v m≫vc  and 
collecting T we obtain

p~ RT
v m

[1 vc
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substituting specific molar volume with density  ρ=M /vm  where  M is the molar weight we 
obtain 

p~Rgas T ρ [1 ρ
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then
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that is
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If, with a further approximation, we substitute densities with pressures (e.g., p ~ ρ for both ideal 
and van der Waals) we obtain

ρideal

ρ
~[1 p

pc
13−9

8

T c

T ]
This equation gives the van der Waals density departures from ideal gas density and, using the 
above critical values (see the table) you can decide if for the peculiar range of temperatures and 
pressure you are in an ideal or van der Waals situation.

Choosing the standard atmospheric partial pressures and 0 Celsius as a referring temperature you 
will obtain the following values

0 ºC C02 N2 O2 H2O

ρ_vdwaals/ρ_ideal 1.0011 1.0009 1.0013 1.0001

That is,  even if van der Waals gases and vapours are slightly denser than the ideal case the 
mistake committed is of the order of the 0.001 or lower.
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