
Propagation in laterally heterogeneous media:
the modal summation approach
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Propagation in LHM - Hybrid MS-FD

Reference layered model

Zone of high attenuation, where
Q is decreasing linearly toward
the artificial boundary.

Artificial boundaries, limiting
the FD grid.

Adjacent grid lines, where the wave
field is introduced into the FD grid. The
incoming wave field is computed with
the mode summation technique. The
two grid lines are transparent for
backscattered waves (Alterman and
Karal, 1968).
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Propagation in LHM - The modal approach
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Gregersen approach

The 2-D model is built up by a set of 
layered quarterspaces in welded contact

Definition of stress and displacement 
vectors and of their scalar product

One mode, at a given frequency, of the 
first structure is normally incident at 
the vertical interface

Definition of the coupling coefficients

Basic Theory - 2D mode coupling
Alsop approach

The 2-D model is built up by a set of 
layered quarterspaces in welded 
contact

The set of eigenfunctions, at a given 
frequency, form a complete set

One mode of the first structure is 
normally incident at the vertical 
interface

Limits:
The completeness assumption is wrong, 
as the Sturm-Liouville problem is 
singular



Coupling coefficients

Basic Theory - 2D mode coupling
2D model scheme

Two layered quarterspaces in welded 
contact

Stress-Displacement vectors for a 
given Love mode, at a given frequency

Scalar product



The expression that describes the displacement due to Love wave 
modes propagating in a layered halfspace has been generalized to 
laterally heterogeneous structures by Levshin (1985), so asymptotic 
expression of the FT of the transverse component of displacement, 
mUy, associated with the incoming Love mode m and transmitted into 
the mode m’, at a distance r from the source can be written as

where the subscript L refers to Love modes, prime-indexed quantities 
are related to medium II (the medium with the receiver) and those 
without index refer to medium I (the medium with the source), and d 
and d' indicate the distances travelled in medium I and II, respectively. 
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The expression represents the contribution of one single mode m 
generated by a point-source placed in medium I, transmitted across the 
vertical interface and recorded as mode m' in medium II at a distance 
r=d+d'. If  medium I and medium II are equal, it reduces exactly to the 
expression valid for a layered halfspace.

Displacement
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Model CONTINENT (C)

Model PAMIR (P)

Elastic and anelastic parameters of model C and model P. Thick lines represent S-wave

velocities; Qs is the quality factor common to both structures.

Couplings - Example
Structures C and P

Elastic and anelastic parameters of model C and model P.  
Qs is the quality factor common to both structures 



Fundamental mode incoming

Couplings - Coupling  coefficients

CFPF: from C to P
PFCF: from P to C
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Transmission of energy from incident fundamental mode of model C to first five modes of

model P. SUM T and SUM are the curves describing the outgoing energy, without and with the

inclusion of reflected energy.

Coupling - Coupling energy
Energy transmission and reflection

Transmission of energy from incident fundamental mode of model C to the first five modes of model P.
SUM T and SUM are the curves describing the outgoing energy, without and with the inclussion of reflected 

energy
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Synthetic seismograms for the three components of displacement, grouped for
the four structural models: models C and P and 2-D models CP and PC. For

each group four rows are shown, according to the number of incoming modes:
the first row is for the fundamental mode, the second row is for the first 5

incoming modes, the third row is for the first 10 modes and the fourth row is
for 110 incoming modes. For each component of motion the seismograms are
normalized to the maximum amplitude associated with the signal computed for

2-D model CP summing 110 modes.

CP
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Synthetic seismograms for the three components of displacement, grouped for
the 2-D structural models CP and PC. For each group four rows are shown,
according to the number of incoming modes and the considered couplings:
first and last rows are for the first 10 incoming modes and 110 incoming

modes, respectively (same as Fig. 21); second and third rows are for 10-110
incoming modes, excluding and including cross-couplings, respectively. For

each component of motion the seismograms are normalized to the maximum
amplitude associated with the signal computed for the 2-D model CP summing

110 modes.

An instantaneous point-source is 
placed at the depth of 10 km, with a 
scalar seismic moment of 1013 Nm. 
strike-receiver angle = 60°, 90°, 
dip = 90°, rake = 180°

Couplings - Seismograms
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The Wentzel-Kramers-Brillouin-Jeffreys approximation
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Computational scheme
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Conclusions

Basic Theory - 2D WKBJ



WKBJ approximation - 2D model
The aim is to compute synthetic seismograms in anelastic media that 
present heterogeneity both in horizontal and vertical directions (2D model)

The technique is largely used in seismology and is based on an assumption 
of regularity of the lateral variations of the elastic parameters 

A laterally varying model can be defined representing the elastic moduli and 
the density as

where     is a small parameter such that if           the medium becomes a 
laterally homogeneous layered structure (1D model)

The parameter     must be so small that the relative lateral variation of the 
elastic moduli and the density should be small over distances the order of a 
wavelength, i.e.

λ = λ(εx,εy, z) µ = µ(εx,εy, z) ρ = ρ(εx,εy, z)
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Methodology: WKBJ approximation - 2D model
If we focus our attention on a model made up by only two structures, 
this problem is solved introducing between them a set of sub-
structures that have the objective to ‘‘smooth’’ the gradient of the 
lateral variation, so that the new laterally varying model presents weak 
lateral heterogeneities, where weak is meant in the sense of the 
wavelength.

2D model with a diffused boundary zone that replaces the sharp vertical boundary between the two initial 
quarter-spaces. The solid vertical lines are the boundaries between the interpolating structures, whose width 

depends on the impedance contrast. The dotted lines represent trajectories in the parameters’ space.



Methodology: WKBJ approximation - 2D model
In the condition of regularity previously mentioned, it can be assumed 
that the energy carried out by each propagation mode is neither 
transferred to other modes or reflected. This means that the modes 
are un-coupled: each mode propagates with a wave number determined 
only by the local elastic properties, i.e. by the local structure. 

The sum is over the modes k, c is the phase velocity, u is the group 
velocity,     is the travel time and    is the attenuation factor
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Modal summation in 3D media
We treat the problem of the derivation of the surface wave field far 
from the seismic source (compared with the wavelength) in a LHM, 
where, from now on, the heterogeneity is considered in both horizontal 
directions. 

As in 2D case, if the heterogeneity is not so severe, it can be reviewed 
as a small perturbation, i.e. within a wavelength, of a reference lateral 
homogeneous model and a procedure based on the ray method can be 
used to construct an approximate solution corresponding to the wave 
field (Woodhouse, 1974; AA.VV. 1989; Dahlen and Tromp, 1998).

The principal quantities that ray methods use are travel time and 
geometrical spreading, which are characteristics of rays. 

Treating the propagation of waves from the point of view of ray theory 
requires that the minimum wavenumber must be much larger than the 
modulus of the ratio of the lateral gradient of elastic parameter and the 
value of this parameter. 



Modal summation in 3D media
Starting from available models, e.g. cellular models given in Panza et al. 
(2007) and Brandmayr et al. (2010), the 3D model is determined by 
distributing a set of vertically heterogeneous sections on a regular grid 
in such a way that the WKBJ approximation is satisfied: each element of 
the grid is occupied by a vertically heterogeneous anelastic structure 
(1D structure).  

A Cartesian reference framework is associated with the grid itself.  The 
grid step is determined in such a way the lateral heterogeneity is small 
within a wavelength. So, the grid step is chosen as the maximum length 
that still allows the relative variation of the lateral gradient of the 
elastic parameters to be smaller than the shortest wavelength.


