
COMPUTATIONAL STATISTICS

OPTIMISATION

Luca Bortolussi

Department of Mathematics and Geosciences
University of Trieste

Office 238, third floor, H2bis
luca@dmi.units.it

Trieste, Winter Semester 2016/2017



OUTLINE

1 STOCHASTIC GRADIENT DESCENT

2 CONJUGATE GRADIENTS

3 NEWTON’S METHODS



STOCHASTIC GRADIENT DESCENT CONJUGATE GRADIENTS NEWTON’S METHODS 3 / 27

BASICS

Consider a function f (x), from Rn to R, twice differentiable.
Their minima are points such that ∇f (x) = 0.
At a minimum x∗ of f , the Hessian matrix Hf (x∗) is positive
semidefinite, i.e. vT Hf v ≥ 0.
If a point x∗ is such that (a) ∇f (x) = 0 and (b) Hf (x∗) is
positive definite, then x∗ is a minimum of f .
For a quadratic function f (x) = 1

2xT Ax − bT x + c the
condition ∇f (x) = 0 reads Ax − b = 0.
If A is invertible and positive definite, then the point
x∗ = A−1b is the unique minimum of f , as f is a convex
function.
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GRADIENT DESCENT

Notation. xk denotes the sequence of points of the
descent. gk = ∇f (xk ). The update is in the direction pk :

xk+1 = xk + ηkpk

In gradient descent, at a point x, take a step towards
−∇f (x), hence in the update rule becomes we set
pk = −gk .
In the simplest case, ηk = η. If η is not small enough, we
can step over the minimum. If η is very small this usually
not happens, but convergence is very slow.
For a quadratic function, we have that pk = −Axk + b.
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STOCHASTIC GRADIENT DESCENT

If the function to minimise is of the form f (x) =
∑N

i=1 fi(x),
as is the case for ML problems, then we can use stochastic
gradient descent, which instead of taking a step along gk ,
it steps along the direction −∇fi(xk).
The algorithm iterates over the dataset one or more times,
typically shuffling it each time.
Alternatively to one single observations, small batches
(mini-batches) of observations can be used to improve the
method.
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SGD, CROSS ENTROPY, AND MINI-BATCHES

The cross-entropy between distributions p and q is:

H(p,q) = H(p) + DKL(p ‖ q) = −
∑

x
p(x) log q(x)

The empirical distribution pemp of the dataset (xi , yi) gives
to each observed point probability 1/N, for N total points.
Maximizing the log likelihood is the same as minimizing the
cross entropy between the empirical probability and the
probability predicted by the model. Calling the loss function
L(f (xi , θ), yi) = log p(yi | xi , θ), this is

H(pemp,p) =
1
N

∑
i

L(f (xi , θ), yi)
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SGD, CROSS ENTROPY, AND MINI-BATCHES

The cross entropy between the model and the true data
distribution is

H(pdata,p) = E((x,y)∼pdata)[L(f (x, θ), y)]

If we sample N points from pdata, H(pdata,p) is
approximated by H(pemp,p) in a statistical sense.
Similarly, the gradient ∇θH(pdata,p) can be approximated
by ∇θH(pemp,p).
We can see the use of a mini-batch of size m (with a single
pass on the data) in the SGD as a statistical approximation
of the gradient ∇θH(pdata,p): hence we minimize the
generalization error.
For very big data, we may not even use all data points in
training.
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SGD AND LEARNING RATE

The learning rate η of the SGD algorithm cannot be kept fixed at
each iteration. In fact, the algorithm would not converge in this
case, due to the noisy evaluations fo the gradient. Hence, ηk
must depend on the iteration

A sufficient condition for convergence of SGD is :
∞∑

k=1

ηk = ∞ and
∞∑

k=1

η2
k < ∞

Typically, one sets ηk = (1 − k
τ

)η0 + k
τ
ητ,

where τ is equal to the number of iterations for few epochs of the
algorithm (epoch = one iteration over the dataset). For deep
models (i.e. very complex), τ ≈ 100. Furthermore, ητ ≈ 0.01η0.

The choice of η0 is delicate. Too large and the algorithm may
diverge, too small and it may take forever. Strategy: monitor the
first 50-100 iterations (plot the estimated cost function, using the
same minibatch used for gradient), and find an “optimal” η0.
Then choose a larger one, avoiding instabilities.
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MOMENTUM AND NESTEROV-MOMENTUM

Introduces memory in the gradient,
by averaging the current value with
previous ones:
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 Figure 8.5: Momentum aims primarily to solve two problems: poor conditioning of the

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 Hessian matrix and variance in the stochastic gradient. Here, we illustrate how momentum
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If all gradients are aligned, momentum accelerates by
multiplying by 1/(1 − α). Generally, α = 0.5 or 0.9 or 0.99.
We can see the algorithm as a physical system subject to a
Newtown forces and evolving in continuous time. The cost
function is taken as a potential and modulated by η, and
the momentum term corresponds to viscous friction
(proportional to velocity). Initial velocity is equal to the
initial gradient.
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MOMENTUM AND NESTEROV-MOMENTUM

Introduces memory in the gradient,
by averaging the current value with
previous ones:
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 Figure 8.5: Momentum aims primarily to solve two problems: poor conditioning of the
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INITIALIZATION OF THE OPTIMISATION ALGORITHM

The initial point of the optimization algorithm is crucial for
convergence, especially in high dimensions. If we are in
the basin of attraction of a good minimum/ area with good
cost function, then the SGD will work fine. Otherwise not.
We can randomise initial conditions and try the
optimisation several times.
If we have some extra information about the solution,
better incorporate it: As a general rule, always use
asymmetric initial conditions (especially if the model has
symmetries: see neural networks).
Sample from a (zero mean) Gaussian or an uniform.
Range is important: if too large may result in instabilities. If
too small, may introduce too little variation.
Heuristics depend on the model to learn.
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ADAPTIVE LEARNING RATE: ADAGRAD

Introduce a different rate for each parameter. Modify them
to take the curvature of the search space into account.
AdaGrad: scales the learning rate inversely proportional to
the square root of the sum of all their historical squared
values. Good for convex problems.
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One of the most used regularization strategies, particularly
for deep models, is early stopping. Idea is that, for a
complex model (prone to overfitting), the best
generalization is not found at an optimum. A better solution
can be found along the trajectory going to it.
One uses a validation dataset to check during optimization
how validation error decreases, and stops at a minimum of
the validation curve. Time is thus treated as a
hyperparameter.
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 Figure 7.3: Learning curves showing how the negative log-likelihood loss changes over
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One can show that early stopping, for linear models, has a
similar effect as L2 regularization.
Early stopping is a very cheap form of regularization.
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 We can see in figure that this hyperparameter has a U-shaped validation set7.3
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GRADIENT DESCENT

Notation. xk denotes the sequence of points of the
descent. gk = ∇f (xk ). The update is in the direction pk :

xk+1 = xk + ηkpk

In gradient descent, at a point x, take a step towards
−∇f (x), hence in the update rule becomes we set
pk = −gk .
In the simplest case, ηk = η. If η is not small enough, we
can step over the minimum. If η is very small this usually
not happens, but convergence is very slow.
For a quadratic function, we have that pk = −Axk + b.
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GRADIENT DESCENT WITH LINE SEARCH

One possibility to improve gradient descent is to take the
best step possible, i.e. set ηk to a value minimising the
function f (xk + λpk) along the line with direction pk .
The minimum is obtained by solving for λ the equation

∇f (xk + λpk)T pk = gT
k+1pk = 0

and setting ηk to this solution.
for a quadratic function, we have that the best learning rate
is given by

ηk =
(b − Axk )T pk

pT Ap
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CONJUGATE GRADIENTS

Consider a quadratic minimisation problem. If the matrix A
would be diagonal, we could solve separately n different
1-dimensional optimisation problems.
We can change coordinates by an orthogonal matrix P that
diagonalises the matrix A. By letting x = Py, we can
rewrite the function f (x) as

f (y) =
1
2

yT PT APy − BT Py + c

The columns of P are called conjugate vectors and satisfy
pT

i Apj = 0 and pT
i Api > 0. They are linearly independent

and are very good directions to follows in a descent
method.
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CONJUGATE GRADIENTS

To construct conjugate vectors, we can use the
Gram-Schmidt orthogonalisation procedure: if v is linearly
independent of p1,. . . , pk , then

pk+1 = v −
k∑

j=1

pT
j Av

pT
j Apj

pj

We can start from a basis and construct the conjugate
vectors p1,. . . , pn.
In the conjugate vectors algorithm, we take step k + 1
along pk+1. The best ηk , according to line search, is

ηk =
−pT

k gk

pT
k Apk

It holds that ∇f (xk+1)T pi = 0 for all i = 1, . . . , k (Lunenberg
expanding subspace theorem).
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CONJUGATE GRADIENTS

The conjugate gradients method constructs pk ’s on the fly.
Works well also for non-quadratic problems. For quadratic
problems converges in at most n steps.
A good choice for a linearly independent vector v at step
k + 1 to construct pk+1 is thus ∇f (xk+1).
In this case, after some algebra, we can compute:

ηk+1 =
gT

k+1gk+1

pT
k+1Apk+1

pk+1 = −gk+1 + βkpk

with

βk =
gT

k+1gk+1

gT
k gk

or βk =
gT

k+1(gk+1 − gk )

gT
k gk

known as the Fletcher-Reeves or Polak-Ribière
(preferrable for non-quadratic problems) formulae .
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NEWTON-RAPSON METHOD

As an alternative optimisation for small n, we can use the
Newton-Rapson method, which has better convergence
properties than gradient descent.
By Taylor expansion

f (x + ∆) ≈ f (x) + ∆T∇f (x) +
1
2

∆T Hf (x)∆

where Hf is the Hessian of f (x).
Differentiating w.r.t. ∆, the minimum of the r.h.s. is when
∇f (x) = −Hf (x)∆, hence for ∆ = −H−1

f (x)∇f (x)

Thus we obtain the update rule:

xk+1 = xk − ηH−1
f (xk )∇f (xk )

with 0 < η < 1 to improve convergence.
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