COMPUTATIONAL STATISTICS
OPTIMISATION

Luca Bortolussi

Department of Mathematics and Geosciences
University of Trieste

Office 238, third floor, H2bis
luca@dmi.units.it

Trieste, Winter Semester 2016/2017

OUTLINE

@ STOCHASTIC GRADIENT DESCENT

STOCHASTIC GRADIENT DESCENT 3/27

BASICS

e Consider a function f(x), from R" to R, twice differentiable.
Their minima are points such that Vf(x) = 0.

o At a minimum x* of f, the Hessian matrix Hy(x*) is positive
semidefinite, i.e. v/ Hyv > 0.

e If a point x* is such that (a) Vf(x) = 0 and (b) H¢(x*) is
positive definite, then x* is a minimum of f.

e For a quadratic function f(x) = 3x” Ax - bTx + c the
condition Vf(x) = 0 reads Ax —b = 0.

o If Ais invertible and positive definite, then the point
x* = A 'b is the unique minimum of f, as f is a convex
function.

STOCHASTIC GRADIENT DESCENT 4/27

GRADIENT DESCENT

o Notation. x, denotes the sequence of points of the
descent. gx = Vf(Xx). The update is in the direction p :

Xk1+1 = Xk + 1nkPk

e In gradient descent, at a point x, take a step towards
-Vf(x), hence in the update rule becomes we set
Pk = —9k.

o In the simplest case, nx = n. If is not small enough, we
can step over the minimum. If n is very small this usually
not happens, but convergence is very slow.

e For a quadratic function, we have that px = —-Ax,x + b.

STOCHASTIC GRADIENT DESCENT 5727

STOCHASTIC GRADIENT DESCENT

e If the function to minimise is of the form f(x) = Z,’L fi(x),
as is the case for ML problems, then we can use stochastic
gradient descent, which instead of taking a step along g,
it steps along the direction —Vf;(xk).

e The algorithm iterates over the dataset one or more times,
typically shuffling it each time.

o Alternatively to one single observations, small batches
(mini-batches) of observations can be used to improve the
method.

STOCHASTIC GRADIENT DESCENT

SGD, CROSS ENTROPY, AND MINI-BATCHES

@ The cross-entropy between distributions p and q is:

H(p.q) = H(p) + Dke(p Il) = Zp (x)log q(x)

e The empirical distribution pemp of the dataset (x;, y;) gives
to each observed point probability 1/N, for N total points.

e Maximizing the log likelihood is the same as minimizing the
cross entropy between the empirical probability and the
probability predicted by the model. Calling the loss function
L(f(x;,0),yi;) = logp(yi | xi,0), this is

H(pemp,p) = 1NZ L(f(xi,6), yi)

i

STOCHASTIC GRADIENT DESCENT 7127

SGD, CROSS ENTROPY, AND MINI-BATCHES

e The cross entropy between the model and the true data
distribution is

H(Paata: P) = E((x,y)~pgaa) [L(F(X. 0), ¥)]

o If we sample N points from pyata, H(Pgata> P) iS
approximated by H(pemp, p) in a statistical sense.

e Similarly, the gradient VoH(pgata, P) Can be approximated
by VeH(pemp, p).

o We can see the use of a mini-batch of size m (with a single
pass on the data) in the SGD as a statistical approximation
of the gradient VoH(pgata, p): hence we minimize the
generalization error.

e For very big data, we may not even use all data points in
training.

STOCHASTIC GRADIENT DESCENT 8/27

SGD AND LEARNING RATE

@ The learning rate n of the SGD algorithm cannot be kept fixed at
each iteration. In fact, the algorithm would not converge in this
case, due to the noisy evaluations fo the gradient. Hence,
must depend on the iteration

@ A sufficient condition for convergence of SGD is :

i Nk = o0 and i ni < o0
k=1 k=1

o Typically, one sets 7, = (1 - %)no + %1,
where 7 is equal to the number of iterations for few epochs of the
algorithm (epoch = one iteration over the dataset). For deep
models (i.e. very complex), T ~ 100. Furthermore, n. ~ 0.017,.

@ The choice of 7 is delicate. Too large and the algorithm may
diverge, too small and it may take forever. Strategy: monitor the
first 50-100 iterations (plot the estimated cost function, using the
same minibatch used for gradient), and find an “optimal” .
Then choose a larger one, avoiding instabilities.

STOCHASTIC GRADIENT DESCENT 9/27

MOMENTUM AND NESTEROV-MOMENTUM

@ Introduces memory in the gradient,
by averaging the current value with
previous ones:

veaveVe(ZL @, ;0), (i))>

0+ 0+wv.

-30 ! ! I 1
-30 —20 -10 O 10 20

o If all gradients are aligned, momentum accelerates by
multiplying by 1/(1 — @). Generally, « = 0.5 or 0.9 or 0.99.

e We can see the algorithm as a physical system subject to a
Newtown forces and evolving in continuous time. The cost
function is taken as a potential and modulated by r, and
the momentum term corresponds to viscous friction
(proportional to velocity). Initial velocity is equal to the
initial gradient.

STOCHASTIC GRADIENT DESCENT 10/27

MOMENTUM AND NESTEROV-MOMENTUM

@ Introduces memory in the gradient, 20
by averaging the current value with "
previous ones: .

v av—€eVy lE:L(j’(:c(i);axy(i)) o0
m i=1 -20
0« 6 +w. -30

—-30 —20 —-10 O 10 20

Algorithm 8.2 Stochastic gradient descent (SGD) with momentum

Require: Learning rate €, momentum parameter a.
Require: Initial parameter 8, initial velocity v.
while stopping criterion not met do
Sample a minibatch of m examples from the training set {1, ..., 2™} with
corresponding targets y(“x
Compute gradient estimate: g %Vg > L(f(29;0),4D)
Compute velocity update: v < av — eg
Apply update: 6 < 0 +v
end while

STOCHASTIC GRADIENT DESCENT 11/27

MOMENTUM AND NESTEROV-MOMENTUM

o Nesterov momentum evaluates the gradient in an
intermediate point. It can be shown that it modifies
standard GD convergence rate to O(1/k?)

1 X))
_ il (3). (4)
v+ av—eVy lmzlL(f(az ;0 4+ av),y)]
0+ 0+,

Algorithm 8.3 Stochastic gradient descent (SGD) with Nesterov momentum

Require: Learning rate ¢, momentum parameter .
Require: Initial parameter 6, initial velocity v.
while stopping criterion not met do
Sample a minibatch of m examples from the training set {af:(l)7 . ,m(m>} with
corresponding labels y(®).
Apply interim update: 8 < 6 + av
Compute gradient (at interim point): g ,—}lvé > L(f(2®; 6),y™)
Compute velocity update: v < av — eg
Apply update: 0 < 6 + v
end while

STOCHASTIC GRADIENT DESCENT 12/27

INITIALIZATION OF THE OPTIMISATION ALGORITHM

e The initial point of the optimization algorithm is crucial for
convergence, especially in high dimensions. If we are in
the basin of attraction of a good minimum/ area with good
cost function, then the SGD will work fine. Otherwise not.

o We can randomise initial conditions and try the
optimisation several times.

o If we have some extra information about the solution,
better incorporate it: As a general rule, always use
asymmetric initial conditions (especially if the model has
symmetries: see neural networks).

@ Sample from a (zero mean) Gaussian or an uniform.
Range is important: if too large may result in instabilities. If
too small, may introduce too little variation.

@ Heuristics depend on the model to learn.

STOCHASTIC GRADIENT DESCENT 13/27

ADAPTIVE LEARNING RATE: ADAGRAD

o Introduce a different rate for each parameter. Modify them
to take the curvature of the search space into account.

e AdaGrad: scales the learning rate inversely proportional to
the square root of the sum of all their historical squared
values. Good for convex problems.

Algorithm 8.4 The AdaGrad algorithm

Require: Global learning rate €
Require: Initial parameter 6
Require: Small constant &, perhaps 1077, for numerical stability
Initialize gradient accumulation variable » = 0
while stopping criterion not met do
Sample a minibatch of m examples from the training set {a:(l)7 e ,w(m>} with
corresponding targets y(i).
Compute gradient: g « T:ng ZiL(f(a:(i); 0),y")
Accumulate squared gradient: r <+ r+g©g
Compute update: A _6;\/? ®g. (Division and square root applied

element-wise)
Apply update: 6 < 6 + A@
end while

STOCHASTIC GRADIENT DESCENT 14/27

ADAPTIVE LEARNING RATE: RMSPROP

e RMSProp: performs better in non-convex setting than
AdaGrad, by changing gradient accumulation into an
exponentially weighted moving average.

Algorithm 8.5 The RMSProp algorithm

Require: Global learning rate €, decay rate p.
Require: Initial parameter 6
Require: Small constant 6, usually 107%, used to stabilize division by small
numbers.
Initialize accumulation variables r = 0
while stopping criterion not met do
Sample a minibatch of m examples from the training set {:1:(1), e ,z(’”)} with
corresponding targets y (@),
Compute gradient: g + Vg 3=, L(f(z®;0),y™)
Accumulate squared gradient: r < pr+ (1 —p)g©® g
Compute parameter update: A@ = 7\/%” ©g. (ﬁ applied element-wise)
Apply update: 6 < 6 + A@
end while

STOCHASTIC GRADIENT DESCENT 15/27

ADAPTIVE LEARNING RATE: RMSPROP

o RMSProp can be also combined with Nesterov
Momentum. There is an extra hyperparameter controlling
the length scale of moving average.

Algorithm 8.6 RMSProp algorithm with Nesterov momentum
Require: Global learning rate €, decay rate p, momentum coefficient a.
Require: Initial parameter 6, initial velocity v.
Initialize accumulation variable r = 0
while stopping criterion not met do
Sample a minibatch of m examples from the training set {z(l), S ,z(m)} with
corresponding targets y(®).
Compute interim update: 8 < 6 + av
Compute gradient: g <+ mlvé ZiL(f(m(’);G), y®)
Accumulate gradient: r < pr + (1 —p)g© g
Compute velocity update: v + av — ﬁ ©g. (# applied element-wise)
Apply update: 0 < 0 + v
end while

STOCHASTIC GRADIENT DESCENT

ADAPTIVE LEARNING RATE: ADAM

@ Adam integrates RMSProp with momentum. Introduces a
second order correction. Quite stable w.r.t. hyperparameters.

Algorithm 8.7 The Adam algorithm

Require: Step size € (Suggested default: 0.001)

Require: Exponential decay rates for moment estimates, p; and py in [0,1).

(Suggested defaults: 0.9 and 0.999 respectively)

Require: Small constant § used for numerical stabilization. (Suggested default:

1078)
Require: Initial parameters 6
Initialize 1st and 2nd moment variables s =0, r =0
Initialize time step t = 0
while stopping criterion not met do

Sample a minibatch of m examples from the training set {m(l), .

corresponding targets y(i).

Compute gradient: g T—ng EiL(f(m(“; 0),y™)
t—t+1

Update biased first moment estimate: s < p1s+ (1 — p1)g

Update biased second moment estimate: 7 < par + (1 — p2)g © g

Correct bias in first moment: § + —2

1-pi
Correct bias in second moment: 7 #
2
Compute update: A@ = 7eﬁ (operations applied element-wise)

Apply update: 0 < 0 + A@
end while

16/27

STOCHASTIC GRADIENT DESCENT 17/27
DIGRESSION: REGULARIZATION BY EARLY STOPPING

e One of the most used regularization strategies, particularly
for deep models, is early stopping. Idea is that, for a
complex model (prone to overfitting), the best
generalization is not found at an optimum. A better solution
can be found along the trajectory going to it.

e One uses a validation dataset to check during optimization
how validation error decreases, and stops at a minimum of
the validation curve. Time is thus treated as a
hyperparameter.

T T
#—s Training set loss

— Validation set loss |

50 100 150 200 250

Time (epochs)

STOCHASTIC GRADIENT DESCENT 18/27

DIGRESSION: REGULARIZATION BY EARLY STOPPING

@ One can show that early stopping, for linear models, has a
similar effect as L, regularization.

e Early stopping is a very cheap form of regularization.

w2
~

STOCHASTIC GRADIENT DESCENT

DIGRESSION: REGULARIZATION BY EARLY STOPPING

Algorithm 7.1 The ecarly stopping meta-algorithm for determining the best
amount of time to train. This meta-algorithm is a general strategy that works
well with a variety of training algorithms and ways of quantifying error on the
validation set.

Let n be the number of steps between evaluations.

Let p be the “patience,” the number of times to observe worsening validation set

error before giving up.
Let 0, be the initial parameters.
0«80,
i+ 0
j+«0
V4 00
0* — 6
i
while j < p do
Update 6 by running the training algorithm for n steps.
i i+n
v« ValidationSetError(6)
if v’ < v then
Jj<0
6 —0
AR
vt
else
je—g+1
end if
end while
Best parameters are 8%, best number of training steps is ¢*

19/27

OUTLINE

© CONJUGATE GRADIENTS

CONJUGATE GRADIENTS 21/27

GRADIENT DESCENT

o Notation. x, denotes the sequence of points of the
descent. gx = Vf(Xx). The update is in the direction p :

Xk1+1 = Xk + 1nkPk

e In gradient descent, at a point x, take a step towards
-Vf(x), hence in the update rule becomes we set
Pk = —9k.

o In the simplest case, nx = n. If is not small enough, we
can step over the minimum. If n is very small this usually
not happens, but convergence is very slow.

e For a quadratic function, we have that px = —-Ax,x + b.

CONJUGATE GRADIENTS 22/27

GRADIENT DESCENT WITH LINE SEARCH

e One possibility to improve gradient descent is to take the
best step possible, i.e. set nx to a value minimising the
function f(xx + Apk) along the line with direction p.

@ The minimum is obtained by solving for A the equation

Vi(Xk + APk) Pk = 9}, 1Pk =0

and setting n to this solution.

e for a quadratic function, we have that the best learning rate
is given by

(b — Axx) Pk

k= pTAp

CONJUGATE GRADIENTS

CONJUGATE GRADIENTS

e Consider a quadratic minimisation problem. If the matrix A
would be diagonal, we could solve separately n different
1-dimensional optimisation problems.

@ We can change coordinates by an orthogonal matrix P that
diagonalises the matrix A. By letting x = Py, we can
rewrite the function f(x) as

1
f(y) = §yTPTAPy -B"Py+c

e The columns of P are called conjugate vectors and satisfy
p/ Ap; = 0 and p] Ap; > 0. They are linearly independent
and are very good directions to follows in a descent
method.

CONJUGATE GRADIENTS 24/27

CONJUGATE GRADIENTS

o To construct conjugate vectors, we can use the
Gram-Schmidt orthogonalisation procedure: if v is linearly
independent of p1,. .., Pk, then

k T
P; Av
Pkt1=V—) ——Pj
/Z—; P; Apj
@ We can start from a basis and construct the conjugate

vectors p4,. .., Pn-
o In the conjugate vectors algorithm, we take step k + 1
along px+1. The best 5y, according to line search, is
—Plgk
k= —F —
P/ AP«
e It holds that Vf(xx41)"p; = 0foralli=1,...,k (Lunenberg
expanding subspace theorem).

CONJUGATE GRADIENTS 25/217

CONJUGATE GRADIENTS

@ The conjugate gradients method constructs p«’s on the fly.
Works well also for non-quadratic problems. For quadratic
problems converges in at most n steps.

@ A good choice for a linearly independent vector v at step
k + 1 to construct pg.1 is thus VF(Xxx.1).

o In this case, after some algebra, we can compute:

9y, 19kt
P;Z+1Apk+1
Pk+1 = —9k+1 + BkPk

Nk+1 =

with

9, 9« 9, 9k
known as the Fletcher-Reeves or Polak-Ribiere
(preferrable for non-quadratic problems) formulae .

_ 9[+19k+1 or B — 9[+1 (9k+1 —9k)

OUTLINE

© NEWTON’S METHODS

NEWTON’S METHODS 27127

NEWTON-RAPSON METHOD

@ As an alternative optimisation for small n, we can use the
Newton-Rapson method, which has better convergence
properties than gradient descent.

e By Taylor expansion

FX+ A) ~ F(x) + ATVEX) + %ATH,(x)A

where Hy is the Hessian of f(x).

e Differentiating w.r.t. A, the minimum of the r.h.s. is when
Vf(x) = —Hy(x)A, hence for A = —H:'(x)V£(x)

@ Thus we obtain the update rule:
Xk+1 = Xk — UH;1 (Xk)Vf(Xk)

with 0 < < 1 to improve convergence.

	Stochastic Gradient Descent
	Conjugate gradients
	Newton's Methods

