COMPUTATIONAL STATISTICS OPTIMISATION

Luca Bortolussi

Department of Mathematics and Geosciences University of Trieste

Office 238, third floor, H2bis luca@dmi.units.it

Trieste, Winter Semester 2016/2017

OUTLINE

STOCHASTIC GRADIENT DESCENT

BASICS

- Consider a function *f*(**x**), from ℝⁿ to ℝ, twice differentiable. Their minima are points such that ∇*f*(**x**) = 0.
- At a minimum **x**^{*} of *f*, the Hessian matrix *H_f*(**x**^{*}) is positive semidefinite, i.e. **v**^T*H_f***v** ≥ 0.
- If a point **x**^{*} is such that (a) ∇*f*(**x**) = 0 and (b) *H_f*(**x**^{*}) is positive definite, then **x**^{*} is a minimum of *f*.
- For a quadratic function f(x) = ½x^TAx b^Tx + c the condition ∇f(x) = 0 reads Ax b = 0.
- If A is invertible and positive definite, then the point
 x* = A⁻¹b is the unique minimum of *f*, as *f* is a convex function.

GRADIENT DESCENT

Notation. x_k denotes the sequence of points of the descent. g_k = ∇f(x_k). The update is in the direction p_k :

$$\mathbf{x}_{k+1} = \mathbf{x}_k + \eta_k \mathbf{p}_k$$

- In gradient descent, at a point **x**, take a step towards $-\nabla f(\mathbf{x})$, hence in the update rule becomes we set $\mathbf{p}_k = -\mathbf{g}_k$.
- In the simplest case, $\eta_k = \eta$. If η is not small enough, we can step over the minimum. If η is very small this usually not happens, but convergence is very slow.
- For a quadratic function, we have that $\mathbf{p}_k = -A\mathbf{x}_k + \mathbf{b}$.

STOCHASTIC GRADIENT DESCENT

- If the function to minimise is of the form f(**x**) = ∑_{i=1}^N f_i(**x**), as is the case for ML problems, then we can use stochastic gradient descent, which instead of taking a step along **g**_k, it steps along the direction -∇f_i(**x**_k).
- The algorithm iterates over the dataset one or more times, typically shuffling it each time.
- Alternatively to one single observations, small batches (mini-batches) of observations can be used to improve the method.

SGD, CROSS ENTROPY, AND MINI-BATCHES

• The cross-entropy between distributions *p* and *q* is:

$$H(p,q) = H(p) + D_{\mathcal{KL}}(p \parallel q) = -\sum_{x} p(x) \log q(x)$$

- The empirical distribution p_{emp} of the dataset (x_i, y_i) gives to each observed point probability 1/N, for N total points.
- Maximizing the log likelihood is the same as minimizing the cross entropy between the empirical probability and the probability predicted by the model. Calling the loss function L(f(**x**_i, θ), y_i) = log p(y_i | x_i, θ), this is

$$H(p_{emp},p) = rac{1}{N}\sum_{i}L(f(\mathbf{x}_{i}, heta),y_{i})$$

SGD, CROSS ENTROPY, AND MINI-BATCHES

 The cross entropy between the model and the true data distribution is

$$H(p_{data}, p) = \mathbb{E}_{((\mathbf{x}, y) \sim p_{data})}[L(f(\mathbf{x}, \theta), y)]$$

- If we sample N points from p_{data}, H(p_{data}, p) is approximated by H(p_{emp}, p) in a statistical sense.
- Similarly, the gradient ∇_θH(p_{data}, p) can be approximated by ∇_θH(p_{emp}, p).
- We can see the use of a mini-batch of size *m* (with a single pass on the data) in the SGD as a statistical approximation of the gradient ∇_θH(p_{data}, p): hence we minimize the generalization error.
- For very big data, we may not even use all data points in training.

SGD AND LEARNING RATE

- The learning rate η of the SGD algorithm cannot be kept fixed at each iteration. In fact, the algorithm would not converge in this case, due to the noisy evaluations fo the gradient. Hence, η_k must depend on the iteration
- A sufficient condition for convergence of SGD is :

$$\sum_{k=1}^{\infty} \eta_k = \infty \qquad \text{and} \qquad \sum_{k=1}^{\infty} \eta_k^2 < \infty$$

- Typically, one sets $\eta_k = (1 \frac{k}{\tau})\eta_0 + \frac{k}{\tau}\eta_{\tau}$, where τ is equal to the number of iterations for few epochs of the algorithm (epoch = one iteration over the dataset). For deep models (i.e. very complex), $\tau \approx 100$. Furthermore, $\eta_{\tau} \approx 0.01\eta_0$.
- The choice of η_0 is delicate. Too large and the algorithm may diverge, too small and it may take forever. Strategy: monitor the first 50-100 iterations (plot the estimated cost function, using the same minibatch used for gradient), and find an "optimal" η_0 . Then choose a larger one, avoiding instabilities.

MOMENTUM AND NESTEROV-MOMENTUM

 Introduces memory in the gradient, by averaging the current value with previous ones:

$$oldsymbol{v} \leftarrow lpha oldsymbol{v} - \epsilon
abla oldsymbol{ heta} \left(rac{1}{m} \sum_{i=1}^m L(oldsymbol{f}(oldsymbol{x}^{(i)};oldsymbol{ heta}),oldsymbol{y}^{(i)})
ight)$$

 $oldsymbol{ heta} \leftarrow oldsymbol{ heta} + oldsymbol{v}.$

- If all gradients are aligned, momentum accelerates by multiplying by 1/(1 – α). Generally, α = 0.5 or 0.9 or 0.99.
- We can see the algorithm as a physical system subject to a Newtown forces and evolving in continuous time. The cost function is taken as a potential and modulated by η, and the momentum term corresponds to viscous friction (proportional to velocity). Initial velocity is equal to the initial gradient.

MOMENTUM AND NESTEROV-MOMENTUM

 Introduces memory in the gradient, by averaging the current value with previous ones:

$$oldsymbol{v} \leftarrow lpha oldsymbol{v} - \epsilon
abla oldsymbol{ heta} \left(rac{1}{m} \sum_{i=1}^m L(oldsymbol{f}(oldsymbol{x}^{(i)};oldsymbol{ heta}),oldsymbol{y}^{(i)})
ight)$$

 $oldsymbol{ heta} \leftarrow oldsymbol{ heta} + oldsymbol{v}.$

Algorithm 8.2 Stochastic gradient descent (SGD) with momentum

Require: Learning rate ϵ , momentum parameter α .

Require: Initial parameter θ , initial velocity v.

while stopping criterion not met do Sample a minibatch of m examples from the training set $\{x^{(1)}, \ldots, x^{(m)}\}$ with

corresponding targets $\boldsymbol{y}^{(i)}$. Compute gradient estimate: $\boldsymbol{g} \leftarrow \frac{1}{m} \nabla_{\boldsymbol{\theta}} \sum_{i} L(f(\boldsymbol{x}^{(i)}; \boldsymbol{\theta}), \boldsymbol{y}^{(i)})$

Compute velocity update: $\boldsymbol{v} \leftarrow \alpha \boldsymbol{v} - \epsilon \boldsymbol{g}$

Apply update: $\boldsymbol{\theta} \leftarrow \boldsymbol{\theta} + \boldsymbol{v}$

end while

MOMENTUM AND NESTEROV-MOMENTUM

 Nesterov momentum evaluates the gradient in an intermediate point. It can be shown that it modifies standard GD convergence rate to O(1/k²)

$$\boldsymbol{v} \leftarrow \alpha \boldsymbol{v} - \epsilon \nabla_{\boldsymbol{\theta}} \left[\frac{1}{m} \sum_{i=1}^{m} L\left(\boldsymbol{f}(\boldsymbol{x}^{(i)}; \boldsymbol{\theta} + \alpha \boldsymbol{v}), \boldsymbol{y}^{(i)} \right) \right]$$
$$\boldsymbol{\theta} \leftarrow \boldsymbol{\theta} + \boldsymbol{v},$$

Algorithm 8.3 Stochastic gradient descent (SGD) with Nesterov momentum

Require: Learning rate ϵ , momentum parameter α . Require: Initial parameter θ , initial velocity v. while stopping criterion not met do Sample a minibatch of m examples from the training set $\{\boldsymbol{x}^{(1)}, \ldots, \boldsymbol{x}^{(m)}\}$ with corresponding labels $\boldsymbol{y}^{(i)}$. Apply interim update: $\boldsymbol{\theta} \leftarrow \boldsymbol{\theta} + \alpha \boldsymbol{v}$ Compute gradient (at interim point): $\boldsymbol{g} \leftarrow \frac{1}{m} \nabla_{\boldsymbol{\theta}} \sum_{i} L(f(\boldsymbol{x}^{(i)}; \boldsymbol{\theta}), \boldsymbol{y}^{(i)})$ Compute velocity update: $\boldsymbol{v} \leftarrow \alpha \boldsymbol{v} - \epsilon \boldsymbol{g}$ Apply update: $\boldsymbol{\theta} \leftarrow \boldsymbol{\theta} + \boldsymbol{v}$ end while

INITIALIZATION OF THE OPTIMISATION ALGORITHM

- The initial point of the optimization algorithm is crucial for convergence, especially in high dimensions. If we are in the basin of attraction of a good minimum/ area with good cost function, then the SGD will work fine. Otherwise not.
- We can randomise initial conditions and try the optimisation several times.
- If we have some extra information about the solution, better incorporate it: As a general rule, always use asymmetric initial conditions (especially if the model has symmetries: see neural networks).
- Sample from a (zero mean) Gaussian or an uniform. Range is important: if too large may result in instabilities. If too small, may introduce too little variation.
- Heuristics depend on the model to learn.

ADAPTIVE LEARNING RATE: ADAGRAD

- Introduce a different rate for each parameter. Modify them to take the curvature of the search space into account.
- AdaGrad: scales the learning rate inversely proportional to the square root of the sum of all their historical squared values. Good for convex problems.

Algorithm 8.4 The AdaGrad algorithm

Require: Global learning rate ϵ Require: Initial parameter θ Require: Small constant δ , perhaps 10^{-7} , for numerical stability Initialize gradient accumulation variable $\mathbf{r} = \mathbf{0}$ while stopping criterion not met do Sample a minibatch of m examples from the training set $\{\mathbf{x}^{(1)}, \ldots, \mathbf{x}^{(m)}\}$ with corresponding targets $\mathbf{y}^{(i)}$. Compute gradient: $\mathbf{g} \leftarrow \frac{1}{m} \nabla_{\theta} \sum_{i} L(f(\mathbf{x}^{(i)}; \theta), \mathbf{y}^{(i)})$ Accumulate squared gradient: $\mathbf{r} \leftarrow \mathbf{r} + \mathbf{g} \odot \mathbf{g}$ Compute update: $\Delta \theta \leftarrow -\frac{\epsilon}{\delta + \sqrt{r}} \odot \mathbf{g}$. (Division and square root applied element-wise) Apply update: $\theta \leftarrow \theta + \Delta \theta$ end while

ADAPTIVE LEARNING RATE: **RMSP**ROP

 RMSProp: performs better in non-convex setting than AdaGrad, by changing gradient accumulation into an exponentially weighted moving average.

Algorithm 8.5 The RMSProp algorithm

Require: Global learning rate ϵ , decay rate ρ .

Require: Initial parameter θ

Require: Small constant δ , usually 10^{-6} , used to stabilize division by small numbers.

Initialize accumulation variables $\boldsymbol{r}=0$

 $\mathbf{while} \ \mathrm{stopping} \ \mathrm{criterion} \ \mathrm{not} \ \mathrm{met} \ \mathbf{do}$

Sample a minibatch of m examples from the training set $\{x^{(1)}, \ldots, x^{(m)}\}$ with corresponding targets $y^{(i)}$.

Compute gradient: $\boldsymbol{g} \leftarrow \frac{1}{m} \nabla_{\boldsymbol{\theta}} \sum_{i} L(f(\boldsymbol{x}^{(i)}; \boldsymbol{\theta}), \boldsymbol{y}^{(i)})$

Accumulate squared gradient: $\boldsymbol{r} \leftarrow \rho \boldsymbol{r} + (1-\rho) \boldsymbol{g} \odot \boldsymbol{g}$

Compute parameter update: $\Delta \theta = -\frac{\epsilon}{\sqrt{\delta + r}} \odot g$. $(\frac{1}{\sqrt{\delta + r}} \text{ applied element-wise})$ Apply update: $\theta \leftarrow \theta + \Delta \theta$

end while

ADAPTIVE LEARNING RATE: RMSPROP

 RMSProp can be also combined with Nesterov Momentum. There is an extra hyperparameter controlling the length scale of moving average.

Algorithm 8.6 RMSProp algorithm with Nesterov momentum

Require: Global learning rate ϵ , decay rate ρ , momentum coefficient α . Require: Initial parameter θ , initial velocity v. Initialize accumulation variable r = 0while stopping criterion not met do Sample a minibatch of m examples from the training set $\{x^{(1)}, \ldots, x^{(m)}\}$ with corresponding targets $y^{(i)}$. Compute interim update: $\tilde{\theta} \leftarrow \theta + \alpha v$ Compute gradient: $g \leftarrow \frac{1}{m} \nabla_{\tilde{\theta}} \sum_{i} L(f(x^{(i)}; \tilde{\theta}), y^{(i)})$ Accumulate gradient: $r \leftarrow \rho r + (1 - \rho)g \odot g$ Compute velocity update: $v \leftarrow \alpha v - \frac{\epsilon}{\sqrt{r}} \odot g$. $(\frac{1}{\sqrt{r}}$ applied element-wise) Apply update: $\theta \leftarrow \theta + v$ end while

ADAPTIVE LEARNING RATE: ADAM

 Adam integrates RMSProp with momentum. Introduces a second order correction. Quite stable w.r.t. hyperparameters.

Algorithm 8.7 The Adam algorithm

Require: Step size ϵ (Suggested default: 0.001) **Require:** Exponential decay rates for moment estimates, ρ_1 and ρ_2 in [0,1). (Suggested defaults: 0.9 and 0.999 respectively) **Require:** Small constant δ used for numerical stabilization. (Suggested default: 10^{-8} **Require:** Initial parameters θ Initialize 1st and 2nd moment variables s = 0, r = 0Initialize time step t = 0while stopping criterion not met do Sample a minibatch of m examples from the training set $\{\boldsymbol{x}^{(1)}, \ldots, \boldsymbol{x}^{(m)}\}$ with corresponding targets $\boldsymbol{y}^{(i)}$. Compute gradient: $\boldsymbol{g} \leftarrow \frac{1}{m} \nabla_{\boldsymbol{\theta}} \sum_{i} L(f(\boldsymbol{x}^{(i)}; \boldsymbol{\theta}), \boldsymbol{y}^{(i)})$ $t \leftarrow t + 1$ Update biased first moment estimate: $\mathbf{s} \leftarrow \rho_1 \mathbf{s} + (1 - \rho_1) \mathbf{g}$ Update biased second moment estimate: $\mathbf{r} \leftarrow \rho_2 \mathbf{r} + (1 - \rho_2) \mathbf{g} \odot \mathbf{g}$ Correct bias in first moment: $\hat{s} \leftarrow \frac{s}{1-\rho_1^t}$ Correct bias in second moment: $\hat{r} \leftarrow \frac{r}{1-\rho_0^2}$ Compute update: $\Delta \theta = -\epsilon \frac{\hat{s}}{\sqrt{\hat{r}} + \delta}$ (operations applied element-wise) Apply update: $\boldsymbol{\theta} \leftarrow \boldsymbol{\theta} + \Delta \boldsymbol{\theta}$ end while

DIGRESSION: REGULARIZATION BY EARLY STOPPING

- One of the most used regularization strategies, particularly for deep models, is early stopping. Idea is that, for a complex model (prone to overfitting), the best generalization is not found at an optimum. A better solution can be found along the trajectory going to it.
- One uses a validation dataset to check during optimization how validation error decreases, and stops at a minimum of the validation curve. Time is thus treated as a hyperparameter.

DIGRESSION: REGULARIZATION BY EARLY STOPPING

- One can show that early stopping, for linear models, has a similar effect as *L*₂ regularization.
- Early stopping is a very cheap form of regularization.

DIGRESSION: REGULARIZATION BY EARLY STOPPING

Algorithm 7.1 The early stopping meta-algorithm for determining the best amount of time to train. This meta-algorithm is a general strategy that works well with a variety of training algorithms and ways of quantifying error on the validation set.

Let n be the number of steps between evaluations.

Let p be the "patience," the number of times to observe worsening validation set error before giving up.

Let θ_o be the initial parameters.

 $\theta \leftarrow \theta_{\alpha}$ $i \leftarrow 0$ $i \leftarrow 0$ $v \leftarrow \infty$ $\theta^* \leftarrow \theta$ $i^* \leftarrow i$ while j < p do Update $\boldsymbol{\theta}$ by running the training algorithm for *n* steps. $i \leftarrow i + n$ $v' \leftarrow ValidationSetError(\theta)$ if v' < v then $i \leftarrow 0$ $\theta^* \leftarrow \theta$ $i^* \leftarrow i$ $v \leftarrow v'$ else $i \leftarrow i + 1$ end if end while

Best parameters are θ^* , best number of training steps is i^*

OUTLINE

GRADIENT DESCENT

Notation. x_k denotes the sequence of points of the descent. g_k = ∇f(x_k). The update is in the direction p_k :

$$\mathbf{x}_{k+1} = \mathbf{x}_k + \eta_k \mathbf{p}_k$$

- In gradient descent, at a point **x**, take a step towards -∇f(**x**), hence in the update rule becomes we set **p**_k = -**g**_k.
- In the simplest case, $\eta_k = \eta$. If η is not small enough, we can step over the minimum. If η is very small this usually not happens, but convergence is very slow.
- For a quadratic function, we have that $\mathbf{p}_k = -A\mathbf{x}_k + \mathbf{b}$.

GRADIENT DESCENT WITH LINE SEARCH

- One possibility to improve gradient descent is to take the best step possible, i.e. set η_k to a value minimising the function f(**x**_k + λ**p**_k) along the line with direction **p**_k.
- The minimum is obtained by solving for λ the equation

$$abla f(\mathbf{x}_k + \lambda \mathbf{p}_k)^T \mathbf{p}_k = \mathbf{g}_{k+1}^T \mathbf{p}_k = \mathbf{0}$$

and setting η_k to this solution.

 for a quadratic function, we have that the best learning rate is given by

$$\eta_k = \frac{(\mathbf{b} - A\mathbf{x}_k)^T \mathbf{p}_k}{\mathbf{p}^T A \mathbf{p}}$$

CONJUGATE GRADIENTS

- Consider a quadratic minimisation problem. If the matrix A would be diagonal, we could solve separately n different 1-dimensional optimisation problems.
- We can change coordinates by an orthogonal matrix *P* that diagonalises the matrix *A*. By letting **x** = *P***y**, we can rewrite the function *f*(**x**) as

$$f(\mathbf{y}) = \frac{1}{2}\mathbf{y}^T P^T A P \mathbf{y} - \mathbf{B}^T P \mathbf{y} + c$$

The columns of *P* are called conjugate vectors and satisfy

 p_i^T A**p**_j = 0 and **p**_i^T A**p**_i > 0. They are linearly independent
 and are very good directions to follows in a descent
 method.

CONJUGATE GRADIENTS

 To construct conjugate vectors, we can use the Gram-Schmidt orthogonalisation procedure: if v is linearly independent of p₁,..., p_k, then

$$\mathbf{p}_{k+1} = \mathbf{v} - \sum_{j=1}^{k} \frac{\mathbf{p}_j^T A \mathbf{v}}{\mathbf{p}_j^T A \mathbf{p}_j} \mathbf{p}_j$$

- We can start from a basis and construct the conjugate vectors p₁,..., p_n.
- In the conjugate vectors algorithm, we take step k + 1 along **p**_{k+1}. The best η_k, according to line search, is

$$\eta_k = \frac{-\mathbf{p}_k^T \mathbf{g}_k}{\mathbf{p}_k^T A \mathbf{p}_k}$$

• It holds that $\nabla f(\mathbf{x}_{k+1})^T \mathbf{p}_i = 0$ for all i = 1, ..., k (Lunenberg expanding subspace theorem).

CONJUGATE GRADIENTS

- The conjugate gradients method constructs p_k's on the fly.
 Works well also for non-quadratic problems. For quadratic problems converges in at most n steps.
- A good choice for a linearly independent vector v at step k + 1 to construct p_{k+1} is thus ∇f(x_{k+1}).
- In this case, after some algebra, we can compute:

$$\eta_{k+1} = \frac{\mathbf{g}_{k+1}^{T} \mathbf{g}_{k+1}}{\mathbf{p}_{k+1}^{T} A \mathbf{p}_{k+1}}$$
$$\mathbf{p}_{k+1} = -\mathbf{g}_{k+1} + \beta_{k} \mathbf{p}_{k}$$

with

$$\beta_k = rac{\mathbf{g}_{k+1}^T \mathbf{g}_{k+1}}{\mathbf{g}_k^T \mathbf{g}_k} \quad ext{or} \quad \beta_k = rac{\mathbf{g}_{k+1}^T (\mathbf{g}_{k+1} - \mathbf{g}_k)}{\mathbf{g}_k^T \mathbf{g}_k}$$

known as the Fletcher-Reeves or Polak-Ribière (preferrable for non-quadratic problems) formulae .

OUTLINE

NEWTON-RAPSON METHOD

- As an alternative optimisation for small n, we can use the Newton-Rapson method, which has better convergence properties than gradient descent.
- By Taylor expansion

$$f(\mathbf{x} + \Delta) \approx f(\mathbf{x}) + \Delta^T \nabla f(\mathbf{x}) + \frac{1}{2} \Delta^T H_f(\mathbf{x}) \Delta$$

where \mathbf{H}_{f} is the Hessian of $f(\mathbf{x})$.

- Differentiating w.r.t. Δ , the minimum of the r.h.s. is when $\nabla f(\mathbf{x}) = -H_f(\mathbf{x})\Delta$, hence for $\Delta = -\mathbf{H}_f^{-1}(\mathbf{x})\nabla f(\mathbf{x})$
- Thus we obtain the update rule:

$$\mathbf{x}_{k+1} = \mathbf{x}_k - \eta \mathbf{H}_f^{-1}(\mathbf{x}_k) \nabla f(\mathbf{x}_k)$$

with $0 < \eta < 1$ to improve convergence.