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BAYESIAN LINEAR REGRESSION REVISITED

o Bayesian linear regression places a (Gaussian) prior over
the weights vector, and computes the (Gaussian) posterior
distribution over weights.

o What does this mean? Consider linear basis functions. In
this case, the regression line is a random line, with the
property that the output prediction at any point is a
Gaussian random variable

@ This concept can be generalised: taking linear
combinations of basis functions with (Gaussian) random
coefficients leads to a (Gaussian) random function
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RANDOM FUNCTIONS TERMINOLOGY

@ A random function is an infinite collection of random
variables indexed by the argument of the function

e A popular alternative name is a stochastic process

e When considering the random function evaluated at a
(finite) set of points, we get a random vector

e The distribution of this random vector is called finite
dimensional marginal
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IMPORTANT EXERCISE

Let ¢o(x),...,onm-1(x) be a fixed set of functions, and let
f(x) = X wipi(x). If w~ N(O, /), compute:

@ The single-point marginal distribution of f(x)

@ The two-point marginal distribution of f(x1), f(x2)
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THE GRAM MATRIX

e Generalising the exercise to more than two points, we get
that any finite dimensional marginal of this process is
multivariate Gaussian

@ The covariance matrix of this function is given by
evaluating a function of two variables at all possible pairs

@ The function is defined by the set of basis functions
k(x;, x5) = $(x) T $(x))

@ The covariance matrix is often called Gram matrix and is
(necessarily) symmetric and positive definite

e Bayesian prediction in regression then is essentially the
same as computing conditionals for Gaussians (more later)
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MAIN LIMITATION OF BAYESIAN REGRESSION

e Choice of basis functions inevitably impacts what can be
predicted

@ Suppose one wishes the basis functions to tend to zero as
X —

e Then, necessarily, very large input values will have
predicted outputs near zero with high confidence!

e Ideally, one would want a prior over functions which would
have the same uncertainty everywhere
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FUNCTION SPACE VIEW

o In order to construct such priors, one possibility would be
to construct a countable sequence of basis functions. We
can partition the full R” in compact sets, and define a finite
number of basis functions supported in each compact set
so that the variance in each point of the state space is a
constant (partition of unity).

e This approach, called the weights space view, is
unpractical, but it demonstrates the existence of truly
infinite dimensional Gaussian Processes.

o In general, it is more useful to take the dual point of view,
and work with kernels rather than with basis functions.
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GP DEFINITION

o A Gaussian Process (GP) is a stochastic process indexed
by a continuous variable x s.t. all finite dimensional
marginals are multivariate Gaussian

o A GP is uniquely defined by its mean and covariance
functions, denoted by u(x) and k(x, x’):

f~ GP(u k) o £ = (F(x1), ... F(xn)) ~ N (1 K),

= (u(x),....u(xn)), K= (k(xi.%))ij

@ The covariance function must satisfy some conditions
(Mercer’s theorem), essentially it needs to evaluate to a
symmetric positive definite function for all sets of input
points
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AN EXAMPLE

Consider a 1-dimensional GP with mean function u(x) = 0, and with
Gaussian covariance function:

1
k(x,x) = exp —5hx- X2

The variance at each point x is
k(x,x) = 1. If we consider a test set
______ X* = X1,...Xn, then the joint

1\/\ f distribution of f* = (f(x1),...,f(xn)) is

* ~ N(0,K(X", X"))

output, f(x)
L o

where K(X*, X*) is the Gram matrix,
N Ki = k(xi, xj), which is symmetric and
- input, x 5 positive definite.
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NOISE-FREE PREDICTION

@ Suppose now to observe the exact value of the GP at N different
points, X = xi,..., Xy, with observations f = f(xy),..., f(xn).

@ Consider also the test points X* = xi, ... X, with function values
f = (f(x1),...,f(xn)) (unobserved, to be estimated).

@ The joint prior distribution of f on inputs X and test points X* is

L]~ (o [N KRR ew

o If we observe the values at X, then we need to condition on
these values. Hence the conditional f*|f is

£X, X, f ~ N(K(X,, X)K(X,X)™'f, 010

K(X., X.) = K(Xo, X)K(X,X) T K(X, X)) (219
which is obtained by the standard formula for the conditional of a
Gaussian.
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AN EXAMPLE

Consider again the 1-dimensional GP with mean function
u(x) = 0, and with Gaussian covariance function:

output, f(x)
OS
output, f(x)
o N

) -2

-5 0 5 -5
input, x input, x

(a), prior (b), posterior
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NOISY PREDICTIONS

@ Suppose we cannot observe the values f of a GP at points X,
but a perturbed version of them:

y(x) = f(x) + &,
where & ~ N(0, 0?)
@ The the covariance of observations is cov(y) = K(X, X) + o/
@ The prior between observations X and test points X* is then

1]~ (o [MER A ). ea

@ Conditioning on observations y, we get

£.1X,y. X, ~ N(£, cov(f)), where (2.22)
f. 2 EBlf.|X,y,X.] = K(X,,X)[K(X,X)+021]" 'y, (2.23)
cov(f,) = K(X., X,) — K(X., X)[K(X,X) +021] 'K(X,X.,). (2.24)
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COMMENTS: LINEAR PREDICTOR

@ For a single point x*, the predictive distribution reads

k! (K +onI)"ly, (2.25)
k(x.,x.) — k] (K + 021)7k,. (2.26)

f*
VIfi]

where K. = (K(X*,X1), ..., K(X*,Xn))

@ It can be seen that the average prediction is a linear combination
of the kernels evaluated on the input points:

?(X*) = i a','k(X*, Xi)

where a = (K + d21)7y.
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COMMENTS: POSTERIOR GP

o Itis easy to see that the posterior process fly is again a
Gaussian process, with mean

E[f(X)ly] = K(x, X)(K + o?1)y
and covariance
k(X,x') = k(x,X') = K(X, X)(K + a21) ' K(X,X')

N

0.6

X X% X
W= |

0.4

-1

output, f(x)
o
post. covariance, cov(f(x),f(x’))

-2

-0.2

-5 0 5 -5 0 5
input, x input, x

(a), posterior (b), posterior covariance
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KERNELS

@ The notion of kernel comes from the theory of integral operators
on a space X with measure u. Arealkernel k : X x X - R
defines an integral operator Tx (applied to integrable f) as:

(TkF)(x f k(x, y)f(y)du(y)
@ A kernel is positive semidefinite if, for all f € Lo(X, u):

k(x, y)f(x)f(y)du(x)du(y) = 0

XxX

o Equivalently, a kernel is positive (semi)definite if for any
collection of npoints {x; | i = 1,..., n}, the Gram matrix K,
Kjj = I(xi, X;) is positive (semi)definite (Mercer’s theorem).

@ The Gram matrix of a symmetric kernel, k(X,y) = k(y,X), is
symmetric.
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EIGENFUNCTIONS

@ An eigenfunction ¢ with eigenvalue 2 of k satisfies

kay X)du(x) = A6(y)

@ There can be an infinite number of eigenfunctions, which can be
ordered w.r.t. decreasing eigenvalues, and they can be chosen
orthogonal, i.e. such that fgb, )i (X)du(X) = o

@ A kernel can be decomposed using eigenfunctions:

Theorem 4.2 (Mercer’s theorem). Let (X, u) be a finite measure space and
k € Loo(X2,12%) be a kernel such that Ty : La(X, 1) — Lo(X, 1) is positive
definite (see eq. (4.2)). Let ¢; € Lo(X, 1) be the normalized eigenfunctions of
Ty associated with the eigenvalues \; > 0. Then:

1. the eigenvalues {\;}32, are absolutely summable
2 o0
k(x,x) = > Nigi(x)¢; (X)), (4.37)
i=1

holds 1 almost everywhere, where the series converges absolutely and
uniformly p? almost everywhere. O
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REPRODUCING KERNEL HILBERT SPACES

Definition 6.1 (Reproducing kernel Hilbert space). Let H be a Hilbert space
of real functions f defined on an index set X. Then H is called a reproducing
kernel Hilbert space endowed with an inner product (-,-)% (and norm || f|lu =

ATy fw) if there exists a function k : X x X — R with the following properties:
1. for every x, k(x,x’) as a function of x' belongs to H, and
2. k has the reproducing property (f(:),k(-,x))n = f(x). ]
See e.g. Scholkopf and Smola [2002] and Wegman [1982]. Note also that as
k(x,-) and k(x’,-) are in H we have that (k(x, ), k(x', ))n = k(x,x').

The RKHS uniquely determines k, and vice versa, as stated in the following
theorem:

Theorem 6.1 (Moore-Aronszajn theorem, Aronszajn [1950]). Let X be an in-
dex set. Then for every positive definite function k(-,-) on X x X there exists
a unique RKHS, and vice versa. O
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RKHS AND EIGENFUNCTIONS

@ The functions belonging to the RKHS associated with a kernel k
can be written as a linear combination of the eigenfunctions ¢; of
k: f(x) = 5, fi(x), with 3; £2/4; < co (this is a smoothness
constraint).

@ Such functions define an Hilbert space H with inner product
_ figi
@ This Hilbert space is the RKHS corresponding to kernel k:

GOk = 3TN0 o (6:2)
i=1 ¢

Similarly

SRR AR = k(x, x). (6.3)

@ Furthermore, the norm of k(x,-) is k(x,X) < co: it belongs to H.
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KERNEL FUNCTIONS: CLASSIFICATION

A kernel k(x,y) can be classified w.r.t dependence on x and y.

@ Stationary kernel: it is a function of x — y (invariant to
translations).

@ Isotropic kernel: it is a function of ||x —y|| (invariant to rigid
motions).

@ Dot-product kernel: it is a function of X"y (invariant w.r.t.
rotations with respect to the origin).

Continuity properties of the GPs and kernels k.

@ Continuity in mean square of a process f at x: for each xx — X, it
holds that E[||f(xk) — f(x)I[?] — O.

@ A process is continuous in m.s. at x iff k is continuous at k(x, x).
For stationary kernels, kK must be continuous at zero.

o If k is 2kth differentiable, than f is kth differentiable (in m.s.).
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GAUSSIAN KERNEL

@ The Gaussian or Squared Exponential kernel is defined by

lIx - yli?
k(x.y) = aexp [—T
@ « is called the amplitude, it regulates the magnitude of variance
at each point x. 4, instead, is the characteristic length-scale,
which regulates the speed of decay of the correlation between
points.

@ The Gaussian kernel is isotropic and among the most used in
computational statistics, and its RKHS is dense in the space of
continuous functions over a compact set in R".

@ The Automatic-Relevance Detection Gaussian Kernel
generalises the GK as

K(x,y) = aexp l— Z 1/1—2’
i i
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MATERN KERNEL

@ The Matérn kernel is defined by

o L

with positive parameters v and ¢, where K, is a modified Bessel function

@ If v > h, then the process with Matérn kernel is h times
differentiable (in m.s.) For v — oo, then the MK becomes the GK.

o Examples of Matern Kernel:

— v=1/2
- v=2
_ v
= =
[°8 =
o o
S 2
g 3
o
<]
% 1 2 3 -5 0 5
input distance, r input, x

(a) (b)
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MATERN AND EXPONENTIAL KERNEL

@ Typical choice for MKis v = p + 1/2, giving

") = 2or\ D(p+1) <~ (p+9)! [ VBuryp—i )
buerna) = e (S R (e ) o (419

1=

It is possible that the most interesting cases for machine learning are v = 3/2
and v = 5/2, for which

bumaalr) = (14 Y20 exp (- Y20,

Vo e (-0,

(4.17)
hspa(r) = (1+

e forv =1/2, we get the Exponential Kernel

k(x.y) = exp[lix - yl/A]

which in one dimension corresponds to the Ornstein-Ulembeck

process (the model of velocity of a particle undergoing Brownian

motion), which is continuous but nowhere differentiable.

25/43
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POLYNOMIAL KERNEL

@ Simple dot-products kernels are the polynomial kernel, for p
integer:
k(x,x') = (x"x")P

@ This corresponds to a kernel obtained by a set of polynomial
basis functions:

D D D
k no_ np _ \P _ ’ ’
(x,x") = (x-x) = TqTy) = T, Tg, |- Zd, T,
d=1 di=1 dp=1

D D
=D (e wa) @l 2l 2 G(x) - pX). (4.23)

@ The basis functions ¢, are given by all monomials of degree p,
i.e. X m=p:

p!

1M1 M D
—x ez 4.24
mal--mpl ! D ( )

26/43
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COMPOSITION OF KERNELS

Kernels can be composed according to certain rules, giving rise to
new kernels.

Techniques for Constructing New Kernels.
Given valid kernels k1 (x,x’) and k2(x,x’), the following new kernels will also
be valid:
k(x,x') = cki(x,x) (6.13)
k(x,x) = f@E)k(x.x)f(x) 6.14)
k(x,x') = q(ki(x,x)) (6.15)
kX)) = oxp(ki(x,x) 6.16)
k(x,x") = ki(x,x") + ka(x,x") (6.17)
k(x,x') = kl(x x')ka(x,x) (6.18)
k(x,x) = ks ($(x), p(x)) (6.19)
k(x,x) = xTAxX (6.20)
k(x,x") = ka(Xa,x5) + ko (x5, %}) 6.21)
k(x,x") = ko(Xa, %) kp(xp,%p) (6.22)
where ¢ > 0 is a constant, f(-) is any function, ¢(-) is a polynomial with nonneg-
ative coefficients, ¢(x) is a function from x to RM, ks(-, -) is a valid kernel in
RM Aisa symmetric positive semidefinite matrix, X, and x; are variables (not
necessarily disjoint) with x = (X, Xp), and k, and k; are valid kernel functions
over their respective spaces.
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MARGINAL LIKELIHOOD

e In order to do model selection (e.g. between different
kernels) we can use the marginal likelihood.

@ This can be used also to set hyperparameters of the kernel
functions, like the amplitude or the lengthscale of the
Gaussian kernel.

e For GP, we can compute the marginal likelihood
analytically:

L = log p(y|X) = log f p(fIX)p(yif, X)df
which gives
__1 T 2 -1 _1 2 _N
L= 5Y (K+o°)7y 2Iog|(K+cr N 5 log 27

e This follows also by observing that y ~ N (0, K + /).



HYPERPARAMETERS

MARGINAL LIKELIHOOD

The log marginal likelihood

L= —%yT(K +o?)ly - % log (K + o?1)| - %I log 27

has three terms
o —3yT(K + o21)~"y is the data fit.
o —3log|(K + o21)| is a complexity penalty.
o —Nlog2ris a constant.

30/43
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MARGINAL LIKELIHOOD - HYPERPARAMETERS

Data from 1dim example with Gaussian kernels

40 20,
L 8
s .- 21
20 B o / o
- B -
0| S -
> £ 20t el
= T |eeame AT
) 4
S =
[ E Y
= o '
2 3
S £ -60
=4 [l
\ k<] 1
- minus complexity penalty R _80 ) v
=801 ___ data fit | 95% conf int — 4
— marginal likelihood | A
~100 = -100 5
10
characteristic lengthscale Characteristic lengthscale

(a) (b)

Figure 5.3: Panel (a) shows a decomposition of the log marginal likelihood into
its constituents: data-fit and complexity penalty, as a function of the characteristic
length-scale. The training data is drawn from a Gaussian process with SE covariance
function and parameters (¢,0f,0,) = (1,1,0.1), the same as in Figure 2.5, and we are
fitting only the length-scale parameter ¢ (the two other parameters have been set in
accordance with the generating process). Panel (b) shows the log marginal likelihood
as a function of the characteristic length-scale for different sizes of training sets. Also
shown, are the 95% confidence intervals for the posterior length-scales.
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MARGINAL LIKELIHOOD - HYPERPARAMETERS

Data from 1dim example with Gaussian kernels

o
©

noise standard deviation
al

characteristic lengthscale

Figure 5.4: Contour plot showing the log marginal likelihood as a function of the
characteristic length-scale and the noise level, for the same data as in Figure 2.5 and
Figure 5.3. The signal variance hyperparameter was set to 0'? = 1. The optimum is
close to the parameters used when generating the data. Note, the two ridges, one
for small noise and length-scale £ = 0.4 and another for long length-scale and noise
o2 = 1. The contour lines spaced 2 units apart in log probability density.
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MARGINAL LIKELIHOOD - HYPERPARAMETERS

Data coming
from a sample of
a 1dim GP with
Gaussian kernel
and
hyperparameters
A=1,a=1,

o =0.1.

3
2]
1
>
E; 0
31
-2
-3
3 0 5
input, x
(a), £=1
3 3
2| 2|
Lt
1 1
> >
50 < o +
g g
31 31 T 5
Iy
2 -2 +
-3 -3 +
-5 ) 5 -5 0 5
input, x input, x
(b), £=03 (0), (=3

Figure 2.5: (a) Data is generated from a GP with hyperparameters (£,0,0,) =
(1,1,0.1), as shown by the 4+ symbols. Using Gaussian process prediction with these
hyperparameters we obtain a 95% confidence region for the underlying function f
(shown in grey). Panels (b) and (c) again show the 95% confidence region, but this
time for hyperparameter values (0.3, 1.08,0.00005) and (3.0, 1.16,0.89) respectively.
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HYPERPARAMETER OPTIMISATION

o In order to set the hyperparameters, we can maximise the
log marginal likelihood:

L= _%yT(K+ o2y - % log (K + /)| - g log 27

o Its derivative w.r.t. an hyperparameter 6 is

0 0K 1 0K
—aa.logp(y|X,0) TK 109 K 'y -5 tr (K~ 186 )
J
‘ (5.9)
_ 1 T -1 oK R
= 2tlr ((aa K )—86‘) where aa= K™ 'y.

e The derivative is relatively cheap to compute, once we
invert the matrix K. Hence we can use gradient methods to
optimise L.

o Purely Bayesian methods (giving a prior on
hyperparameters) are complicated by the in general
complex functional form (no conjugate prior).

34/43
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NON-CONSTANT PRIOR MEAN

@ The typical choice for the prior mean is the zero function. Data is
processed by subtracting the sample mean from the
observations.

@ As an alternative, one can either use a deterministic function for
the priori mean (and subtract if from data, adding it back to
predictions), or use a generalised linear model for the prior
mean:

g(x) = f(x)+h(x)'B, where f(x) ~ GP(0,k(x,x')), (2.39)

o If we put a Gaussian prior over coefficients 8, we can treat them
in a Bayesian way, and get a GP:

g(x) ~ GP(h(x) b, k(x,x') + h(x) " Bh(x)), (2.40)
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NON-CONSTANT PRIOR MEAN

@ In this way, we obtain the following predictive distribution at a
point x*:

gX.) = HIB+K[K,'(y—H'pB) = f(X.)+R'B,

2.41
cov(g.) = cov(f.) + R (B™' + HK,'H")™'R, (2.41)

where the H matrix collects the h(x) vectors for all training (and H, all test)
cases, 8= (B~ '+ HK,'H")"'(HK'y + B™'b), and R = H, — HK,'K,.

@ The new predictive distribution has mean H/j (from the linear
model) plus a term coming from the GP model of residuals.

o Taking a flat prior (limit for B-1 — matrix of zeros):

g(X.) =f(X.)+R'B,

2.42
cov(gs) = cov(fy) + RT(HKy_lHT)_lR7 (2.42)

where the limiting 3 = (HK, 'HT)""HK_'y. Notice that predictions under
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FROM LOGISTIC REGRESSION TO GP CLASSIFICATION

@ The idea behind GP classification is to extend logistic (or probit)

regression, by assuming the following model for the class
conditionals:

n(x) = p(C1|x) = o(f(x)) where f ~ GP(u, k)

@ fis often call latent function. Note that = is a random function, as
fis.

latent function, f(x)
class probability, 7t(x)

input, x input, x

(a) (b)
Figure 3.2: Panel (a) shows a sample latent function f(z) drawn from a Gaussian
process as a function of z. Panel (b) shows the result of squdahmg this sample func-

tion through the logistic logit function, A(z) = (1 + exp(—z))~" to obtain the class
probability 7(z) = A(f(z)).
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@ fis often call latent or nuisance function. It is not observed
directly. We only observe at a point x the realisation of a
Bernoulli random variable with probability 7(x).

o Inference at a test point x* is done, as usual in a Bayesian
setting, in two steps:

@ Compute the posterior f* of f at the prediction point x*.

p(f Xy, x,) = /'p<f*|x,x*,f>p<fwx,y>df,

with p(fX,y) = p(ylf)p(fiX)/p(y/X) by Bayes theorem.

© Compute the predictive distribution at x*

T £ pra=+1|X,y, %) = / o(f)p(foI X,y %) df..

GP CcLAS39/43

(3.9)

(3.10)
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LAPLACE APPROXIMATION

@ As in Bayesian logistic regression, the computation of the
posterior p(f|X,y) cannot be carried out analytically.

@ However, we can do a Laplace approximation of the posterior
around the MAP f. The unnormalised log posterior is:

W(f) £ logp(ylf) + logp(f|X)

3.12
= logp(y|f) — 1f'TI(’lf - llog K| — ﬁ10g27r. (3.12)
2 2 2
Differentiating eq. (3.12) w.r.t. f we obtain
VU(f) = Viegp(ylf) — K 'f, (3.13)
VVU(f) = VViogp(ylf) - K~! = -W - K1, (3.14)

where W is diagonal, as observations are i.i.d.
@ It can be optimised with a Newton-Rapson scheme:

2 = £ — (VVI) IV = £+ (K71 + W)Y (Viegp(y|f) — K'f)
= (K" + W)L (WE+ Viegp(ylf)). (3.18)
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LAPLACE APPROXIMATION

@ The Laplace approximation around the MAP 7 is a Gaussian q
with mean

E [fi X, y,x.] = k(x.) Kt = k(x.)"Viogp(y|f). (3.21)

and variance

Volful X,y %] = k(x, %) k] Kk, + k] KWK+ W) Kk,
= k(x., %) -k (K + W™k, (3.24)

@ The prediction 7* can be computed by the integral
mo= EfniXyx] = [olff Xy x)d (329)

which can be approximated with the same logit-probit-logit trick
used for Bayesian logistic regression.
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EXPECTATION PROPAGATION

@ A (better) alternative to Laplace approximation is to use a
variational method, typically for the probit activation function.

o A first option is to approximate the posterior distribution by a
Gaussian g, minimising the (reversed) KL divergence
KL(q(fIX,y), p(flX,y)) (the minimisation of the KL divergence
KL(p(fIX,y), q(fIX,y)) is intractable).

@ Alternatively, one can use the Expectation Propagation
algorithm, which constructs iteratively (over obs i, until
convergence) a Gaussian approximation of the posterior by

@ taking the current Gaussian approximation and factoring
out the term for the i-th likelihood p(y;lf;), obtaining a
distribution for all observations but the i-th one.

@ multiplying the cavity by the exact likelihood of the i-th
observation, and finding a Gaussian approximation by
moment matching of such a (non-Gaussian) distribution.

@ EP is more accurate than Laplace approximation, and provides
also an approximation of the Marginal likelihood.
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PITFALLS OF GP PREDICTION

o Addition of a new observation always reduces uncertainty
at all points — vulnerable to outliers

e Optimisation of hyperparameters often tricky: works well if
o is known, otherwise it can be seriously multimodal

o MAIN PROBLEM: GP prediction relies on a matrix
inversion which scales cubically with the number of
points!

e Sparsification methods have been proposed but in high
dimension GP regression is likely to be tricky nevertheless
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