

Programmazione di sistema in Linux:
System Call per il controllo processi

E. Mumolo, DIA

Utente
Shell comandi di linea
Compilatori
Editor, debugger,..

System
(kernel)

FILE SYSTEM Processi
Rete
IPC
Schedulazione
Semafori
...

Device a
caratteri

Device a
blocchi

HW

Chiamate delle System call (Trap)

interfaccia

Codice
delle
System call

Struttura generica di Linux

Posix

● Un cenno ai primi Standard Posix:
– POSIX.1(1003.1a)  interfacce base, supporto per processo singolo e multiplo,

controllo dei processi, segnali, file system, pipe, fifo …

– POSIX.1(1003.1b)  Estensioni Real Time  segnali, schedulazione prioritaria,
timer, I/O asincrono, prioritario, sincrono, messaggi, semafori …

– POSIX.1(1003.1c)  Thread  controllo dei thread,attributi, schedulazione,
variabili condizione …

– POSIX.2  comandi shell

– POSIX.6(1003.1e)  sicurezza

– POSIX.7  amministrazione di sistema

– POSIX.8(1003.1f)  accesso ai file di rete

– …

● <sys/types.h> definisce tipi di dati: dev_t, pid_t, size_t, ...

System call per la gestione dei processi

● fork crea un processo

● exec carica un codice eseguibile

● wait aspetta la terminazione del processo

● signal cattura un segnale

● kill invia un segnale

Controllo processi: chiamata di sistema fork()

#include <stdio.h>
#include <sys/types.h>
void Figlio(void);
void Padre(void);
void main(void)
{
 pid_t pid;
 pid = fork();
 if (pid == 0) Figlio();
 else Padre();
}
void Figlio(void)
{ int i=0;

printf("Sono il figlio. i= %d\n",i);
}
void Padre(void)
{
 int i=1;

printf("Sono il padre. i= %d\n",i);
}

stack dati

Variabili
d'ambiente

registri processo=ambiente

codice

Controllo processi: chiamata di sistema fork()

#include <stdio.h>
#include <sys/types.h>
void Figlio(void);
void Padre(void);
void main(void)
{
 pid_t pid;
 pid = fork();
 if (pid == 0) Figlio();
 else Padre();
}
void Figlio(void)
{ int i=0;

printf("Sono il figlio. i= %d\n",i);
}
void Padre(void)
{
 int i=1;

printf("Sono il padre. i= %d\n",i);
}

Variabili
d'ambiente

registri

Punto
di
inizio

Controllo processi: chiamata di sistema fork()

#include <stdio.h>
#include <sys/types.h>
void Figlio(void);
void Padre(void);
void main(void)
{
 pid_t pid;
 pid = fork();
 if (pid == 0) Figlio();
 else Padre();
}
void Figlio(void)
{ int i=0;
 printf("Sono il figlio.i=%d\n",i);
}
void Padre(void)
{
 int i=1;
 printf("Sono il padre.i=%d\n",i);
}

Variabili
d'ambiente

registri

Controllo processi: chiamata di sistema fork()

#include <stdio.h>
#include <sys/types.h>
void Figlio(void);
void Padre(void);
void main(void)
{
 pid_t pid;
 pid = fork();
 if (pid == 0) Figlio();
 else Padre();
}
void Figlio(void)
{ int i=0;
 printf("Sono il figlio.i=%d\n",i);
}
void Padre(void)
{
 int i=1;
 printf("Sono il padre.i=%d\n",i);
}

Variabili
d'ambiente

registri

#include <stdio.h>
#include <sys/types.h>
void Figlio(void);
void Padre(void);
void main(void)
{
 pid_t pid;
 pid = fork();
 if (pid == 0) Figlio();
 else Padre();
}
void Figlio(void)
{ int i=0;
 printf("Sono il figlio.i=%d\n",i);
}
void Padre(void)
{
 int i=1;
 printf("Sono il padre.i=%d\n",i);
}

Variabili
d'ambiente

registri

Nel padre, la fork() ritorna il
pid del progesso generato

Nel figlio, la for()
ritorna pid=0

Controllo processi: chiamata di sistema fork()

#include <stdio.h>
#include <sys/types.h>
void Figlio(void);
void Padre(void);
void main(void)
{
 pid_t pid;
 pid = fork();
 if (pid == 0) Figlio();
 else Padre();
}
void Figlio(void)
{ int i=0;
 printf("Sono il figlio.i=%d\n",i);
}
void Padre(void)
{
 int i=1;
 printf("Sono il padre.i=%d\n",i);
}

Variabili
d'ambiente

registri

#include <stdio.h>
#include <sys/types.h>
void Figlio(void);
void Padre(void);
void main(void)
{
 pid_t pid;
 pid = fork();
 if (pid == 0) Figlio();
 else Padre();
}
void Figlio(void)
{ int i=0;
 printf("Sono il figlio.i=%d\n",i);
}
void Padre(void)
{
 int i=1;
 printf("Sono il padre.i=%d\n",i);
}

Variabili
d'ambiente

registri

pid=??? pid=0

Controllo processi: chiamata di sistema fork()

#include <stdio.h>
#include <sys/types.h>
void Figlio(void);
void Padre(void);
void main(void)
{
 pid_t pid;
 pid = fork();
 if (pid == 0) Figlio();
 else Padre();
}
void Figlio(void)
{ int i=0;
 printf("Sono il figlio.i=%d\n",i);
}
void Padre(void)
{
 int i=1;
 printf("Sono il padre.i=%d\n",i);
}

Variabili
d'ambiente

registri

#include <stdio.h>
#include <sys/types.h>
void Figlio(void);
void Padre(void);
void main(void)
{
 pid_t pid;
 pid = fork();
 if (pid == 0) Figlio();
 else Padre();
}
void Figlio(void)
{ int i=0;
 printf("Sono il figlio.i=%d\n",i);
}
void Padre(void)
{
 int i=1;
 printf("Sono il padre.i=%d\n",i);
}

Variabili
d'ambiente

registri

pid=??? pid=0

Chiamata di sistema fork()

● System call: pid_t fork();

– crea un nuovo processo figlio, copiando completamente l’immagine di
memoria del processo padre (data, heap, stack)

– La memoria è completamente INDIPENDENTE tra padre e figlio

– il codice viene generalmente condiviso tra padre e figlio

– codice copy-on-write (copiato quando viene modificato)

– tutti i descrittori dei file aperti nel processo padre (UFDT)
sono duplicati nel processo figlio

– sia il processo child che il processo parent continuano ad eseguire
l’istruzione successiva alla fork

– processo figlio: ritorna 0

– processo padre: ritorna il process ID del processo figlio

– Errore della fork → pid negativo

Chiamata di sistema fork(). Esempio
#include <stdio.h>
#include <sys/types.h>
void Figlio(void);
void Padre(void);
void main(void)
{
 pid_t pid;
 pid = fork();
 if (pid == 0) Figlio();
 else Padre();
}
void Figlio(void)
{
 int i=0;
 for(i=0;i<10;i++){

usleep(200);
printf("\tSono il figlio. i= %d\n",i);

 }
}
void Padre(void)
{
 int i=1;
 for(i=0;i<10;i++){

usleep(250);
printf("Sono il padre. i= %d\n",i);

 }
}

Chiamata di sistema fork()

● Ereditarieta' in pid_t fork();

– Non tutte le proprieta' del padre vengono ereditate dal figlio
● Esempio PID, PPID, file locking, operazione semop, timer, ...

– Le variabili d'ambiente sono ereditate, a parte nuove
variabili

– Nuove variabili della shell vengono ereditate dal figlio col
comando export

– export ­p mostra le variabili della shell esportate

Identificativi dei processi

● Identificativi di processo:
– Process ID (PID)

– Parent Process ID (PPID) del processo che l'ha generato

– Process Group ID (PGID) del gruppo di processi al quale appartiene

– Process Real User : UID dell'utente che ha richiesto accesso

– Process Real Group ID: GID dell'utente che ha richiesto accesso

– Process Effective User ID: normalmente uguale al REAL USER ID,

– Process Effective Group ID:

● Lettura identificativi

– Process ID del processo: pid_t getpid();

– Process ID del processo padre: pid_t getppid();

– Real user ID: uid_t getuid();

– Real group ID: gid_t getgid();

– Effective user ID: uid_t geteuid();

– Effective group ID: gid_t getegid();

Terminazione processi

● Terminazione dei processi:

– Terminazione normale:
● eseguire un return da main (equivale a chiamare exit());
● chiamare la funzione exit(): chiude gli stream I/O, chiama _exit()
● Chiamare _exit(): torna al kernel immediatamente

– Terminazione anormale:
● Ricezione segnali
● Chiamando abort()

● In ogni caso, l’azione del kernel e’ lo stesso:

– Rimozione della memoria utilizzata dal processo

– Chiusura dei descrittori aperti

● Stato di un processo: raccolto con wait(), waitpid()

#include <unistd.h>
void _exit(int status);

#include <stdlib.h>
void _exit(int status);

Controllo processi

● pid_t wait(int *status);

● pid_t waitpid(pid_t pid, int *status, int options);

– Argomento pid:

● pid == -1 attende la prima terminazione

● pid > 0 attende la terminazione del processo generato con
process id corrispondente

● pid == 0  attende la terminazione di qualsiasi processo con
process group id uguale a quello del processo chiamante

● pid < -1  attende la terminazione di qualsisi child con process
group ID uguale a –pid

– Argomento status

● puntatore ad un intero;
● se diverso da NULL, contiene lo stato della terminazione

– Differenza wait/waitpid: wait aspetta il primo figlio

/*forkd1.c*/ #include <stdio.h> #include <unistd.h> #include <sys/types.h>
int main(int argc, char *argv[]){
 pid_t cpid, w, t1,t2,t3,t4,t5; int status;
 printf("Sono il processwo MAIN. PID %ld, PPID %ld\n", (long) getpid(), (long) getppid());
 t1 = fork();
 if (t1 == 0) { /* codice del figlio */

 printf("processo T1; PID %ld, PPID %ld\n", (long) getpid(), (long) getppid());
 sleep(1); _exit(0);

 } else { /* codice del padre */
 t2 = fork();
 if (t2 == 0) { /* figlio */

printf("processo T2; PID %ld, PPID %ld\n", (long) getpid(), (long) getppid());
sleep(1); _exit(0);

 } else {
t3 = fork();
if (t3 == 0) { /* figlio */

printf("processo T3; PID %ld, PPID %ld\n", (long) getpid(), (long) getppid());
sleep(1); _exit(0);

} else {
waitpid(t1, &status,0); printf("sono il padre, ho aspettato t1\n");
waitpid(t2, &status,0); printf("sono il padre, ho aspettato t2\n");
t4 = fork();
if (t4 == 0) { /* figlio */
 Printf("processo T4; PID %ld, PPID %ld\n", (long) getpid(), (long) getppid());
 Sleep(1); _exit(0);
} else {
 waitpid(t4, &status,0); printf("sono il padre, ho aspettato t4\n");
 waitpid(t3, &status,0); printf("sono il padre, ho aspettato t3\n");
 t5 = fork();
 if (t5 == 0) { /* figlio */

printf("proc. T5; PID %ld, PPID %ld\n", (long) getpid(), (long) getppid());
sleep(1); _exit(0);

 } else { /* padre */
waitpid(t5, &status,0); printf("sono il padre, ho atteso t5\n");
}

}
}

 }
 }
}

main

T1
T2

T3

T4

T5

T1 T2 T3

T4

T5

fork

fork

fork

fork

fork

start

end

start

start

start

start

end

end

end

watpid(T1)

watpid(T2)

watpid(T3)

watpid(T4)

watpid(T5)

Controllo processi

● Cosa succede se il padre termina prima del figlio?

– il processo child viene "adottato" dal processo init (pid 1): quando
un processo termina, il kernel esamina la tabella dei processi per
vedere se aveva figli; in caso affermativo, il PPID viene posto
uguale a 1

● Cosa succede se il figlio termina prima del padre?
– il processo va in Stato ‘zombie’
– vengono mantenute le informazioni che sono richieste dal padre

tramite wait e waitpid
– il processo resterà uno zombie fino a quando il parent non

eseguirà una delle system call wait
● I processi figli del processo init non possono diventare

zombie
– tutte le volte che un child di init termina, init esegue una chiamata

wait e raccoglie eventuali informazioni
– in questo modo gli zombie vengono eliminati

Controllo processi
#include <sys/types.h> //pid_t
#include <unistd.h> //fork()
#include <sys/wait.h> //waitpid
#include <stdio.h> //printf...
#include <stdlib.h> //exit()

int main(void)
{

pid_t pid;
int status;

pid=fork();
if(pid!=0) {

printf("pid1=%d\n",pid);
wait(&status);printf("status1=%d\n",status);
exit(0);

}else{
pid=fork(); if(pid==0) exit(1);
printf("\tpid=%d ppid=%d\n",pid,getpid());
wait(&status);printf("\tstatus=%d\n",status);
pid=fork(); if(pid==0) exit(2);
printf("\tpid2=%d\n",pid);
wait(&status);printf("\tstatus2=%d\n",status);
pid=fork(); if(pid==0) abort();
printf("\tpid3=%d\n",pid);
wait(&status);printf("\tstatus3=%d\n",status);
pid=fork(); if(pid==0) status /= 0;
printf("\tpid4=%d\n",pid);
wait(&status);printf("\tstatus4=%d\n",status);
exit(0);

}
}

wait() wait()

wait()

wait()

wait()

exit(1)

exit(2)

abort()

/=0

exit(0)

printf()

fork();

processo
padre

figlio

figlio del figliofork();

processo
padre

processo
figlio NB:

exit(n) ritorna il valore n*256
al processo padre

abort() e /=0 inviano un segnale
al processo figlio

Controllo processi

/* processi ZOMBIE */

#include <sys/types.h>
#include <sys/wait.h>
#include <stdio.h>
#include <stdlib.h>

int main(void)
{

pid_t pid;

printf("ID del main=%d\n", getpid());
pid = fork();
if (pid == 0) { /* primo processo figlio*/

pid = fork();
if (pid > 0)

{printf("\tsono il 1o figlio. ID=%d PPID=%d\n", getpid(), getppid());
exit(0);

} /* il primo figlio termina */
else{

sleep(2);
printf("\t\tsono il 2o figlio. L'ID di mio padre e'= %d\n", getppid());
exit(0);

}
}
/* A questo punto sono tornato al processo originale cioe' il padre dei due figli*/
sleep(1);
printf("sono il processo %d\n", getpid());
exit(0);

}

fork()

fork()

printf()
exit()

sleep(2)
printf()
exit()

printf()
exit()

Qui siamo all'interno del
secondo processo figlio;non
appena suo padre (il primo
processo figlio) chiama
exit(), viene adottato.
Il secondo processo figlio
continua ...

sleep()
printf()
exit()

ZOMBIE!

figlio

Riepilogo...

Un codice d'esempio di un processo

void main(int argc, char *argv[])
{
 int i,fd, numero_righe,newlen,oldlen;
 int size=100, n;
 char **righe, *str="ieri";
 Char testo[100], *p;
 FILE *fp;

 righe=(char**)malloc(100*sizeof(char*));
 numero_righe=atoi(argv[2]);
 fd=open(argv[1],O_WRONLY);
 fp=fopen(argv[1],"r");
 oldlen=0;
 fork();
 fgets(testo, size, fp);
 newlen=strlen(testo);
 righe[i]=malloc(strlen(testo));
 strcpy(righe[i],testo);
 p = strstr(righe[i], "oggi");
 n = p­righe[i]+oldlen;
 lseek(fd,n,SEEK_SET);
 write(fd,str,4);
 oldlen+=newlen;
 close (fp);
 close(fd);
}

void main(int argc, char *argv[])
{
 int i,fd, numero_righe,newlen,oldlen;
 int size=100, n;
 char **righe, *str="ieri";
 Char testo[100], *p;
 FILE *fp;

 righe=(char**)malloc(100*sizeof(char*));
 numero_righe=atoi(argv[2]);
 fd=open(argv[1],O_WRONLY);
 fp=fopen(argv[1],"r");
 oldlen=0;
 fork();
 fgets(testo, size, fp);
 newlen=strlen(testo);
 righe[i]=malloc(strlen(testo));
 strcpy(righe[i],testo);
 p = strstr(righe[i], "oggi");
 n = p­righe[i]+oldlen;
 lseek(fd,n,SEEK_SET);
 write(fd,str,4);
 oldlen+=newlen;
 close (fp);
 close(fd);
}

.

.

.

Nuovo processo creato per duplicazione

Riepilogo...

Il codice d'esempio

void main(int argc, char *argv[])
{
 int i,fd, numero_righe,newlen,oldlen;
 int size=100, n;

 fork();

void main(int argc, char *argv[])
{
 int i,fd, numero_righe,newlen,oldlen;
 int size=100, n;

 fork();
 wait();

 n = p­righe[i]+oldlen;
 lseek(fd,n,SEEK_SET);
 write(fd,str,4);
 oldlen+=newlen;
 close (fp);
 close(fd);
}

Nuovo processo creato

wait();

...Attesa...

 n = p­righe[i]+oldlen;
 lseek(fd,n,SEEK_SET);
 write(fd,str,4);
 oldlen+=newlen;
 close (fp);
 close(fd);
}

Riepilogo...

usando waitpid:

void main(int argc, char *argv[])
{
 int i,fd, numero_righe,newlen,oldlen;
 int size=100, n;

 i=fork();

void main(int argc, char *argv[])
{
 int i,fd, numero_righe,newlen,oldlen;
 int size=100, n;

 fork();
 wait();

 n = p­righe[i]+oldlen;
 lseek(fd,n,SEEK_SET);
 write(fd,str,4);
 oldlen+=newlen;
 close (fp);
 close(fd);
}

waitpid(i);

...Attesa...

 n = p­righe[i]+oldlen;
 lseek(fd,n,SEEK_SET);
 write(fd,str,4);
 oldlen+=newlen;
 close (fp);
 close(fd);
}

Riepilogo...

● Fork() ritorna il pid del nuovo processo al processo chiamante fork()
● Fork() ritorna 0 al processo generato
● Il nuovo processo eredita dal processo che ha eseguito la fork():

● Variabili d'ambiente
● La UFDT (file aperti)
● Process Real User ID
● Process Real Group ID
● Process Effective User ID
● Process Effective Group ID

● I processi creati vengono rimossi da Linux se terminano mentre sono
attesi da wait()

● Se termina senza essere atteso da wait diventa Zombie
● Se il processo chiamante la fork termina prima del figlio, il processo

creato viene adottato dal processo 1

Chiamata di sistema exec()

● Quando un processo chiama una delle system call exec :

– Il processo viene rimpiazzato COMPLETAMENTE dal codice contenuto nel
file specificato (text, data, heap, stack vengono sostituiti)

– il nuovo programma inizia a partire dalla sua funzione main

– il process id non cambia

● Esistono sei versioni di exec:

– int execl(char *pathname, char *arg0, …);

– int execv(char *pathname, char *argv[]);

– int execle(char *pathname, char *arg0, …, char* envp[]);

– int execve(char *pathname, char *argv[] , char* envp[]);

– int execlp(char *filename, char *arg0, …);

– int execvp(char *filename, char *argv[]);

Chiamata di sistema exec()

● Cosa viene ereditato da exec?
– UFDT (file aperti)

– Variabili d'ambiente

– PID e PPID

– real uid e real gid

– current working directory (variabile PWD)

– root e home directory

– maschera creazione file (umask)

– segnali in attesa

Chiamata di sistema exec()

● Cosa non viene ereditato da exec?

– effective user id e effective group id

– vengono settati in base ai valori dei bit di protezione
● Cosa succede ai file aperti?

– Dipende dal flag close-on-exec che è associato ad ogni
descrittore

– Se close-on-exec è true, vengono chiusi
– Altrimenti, vengono lasciati aperti (comportamento di default)

Esempio d'uso di exec()

#include <stdlib.h> /* 'errno' */
#include <unistd.h> /* 'execle' */
#include <stdio.h> /* 'printf' and 'NULL' */
#include <errno.h> /* 'ENOENT' and 'ENOMEM' */

int main(void)
{

pid_t pid;

if (execlp("/home/mumolo/all", "all", "primo_arg", "secondo_arg", "terzo_arg", NULL) < 0)
err_sys("execlp error");

if (waitpid(pid, NULL, 0) < 0)
err_sys("wait error");

exit(0);
}

● Questo processo sovrascrive il suo ambiente col codice eseguibile all

● Sorgente di all
#include <stdlib.h>
#include <stdio.h>
int main(int argc, char *argv[])
{

int i;
printf("Sono il processo all. I miei argomenti passati da exec sono:\n");
for (i = 1; i < argc; i++) /* fa l'eco di tutti gli argomenti */

printf("argv[%d]: %s\n", i, argv[i]);
exit(0);

}

Gli argomenti passati sono sempre stringhe!

Esempio d'uso di exec()

#include <stdlib.h> /* 'errno' */
#include <unistd.h> /* 'execle' */
#include <stdio.h> /* 'printf' and 'NULL' */
#include <errno.h> /* 'ENOENT' and 'ENOMEM' */

int main(void)
{

pid_t pid;
if (execlp("/home/mumolo/all1", "all1", "5", "10", "5700", NULL) < 0)

err_sys("execlp error");

if (waitpid(pid, NULL, 0) < 0)
err_sys("wait error");

exit(0);
}

● Questo processo sovrascrive il suo ambiente col codice eseguibile all1

● Sorgente di all1
#include <stdlib.h>
#include <stdio.h>
int main(int argc, char *argv[])
{

int i, buf[10];
printf("Sono il processo all. I miei argomenti passati da exec sono numeri:\n");
for (i = 1; i < argc; i++) /* trasforma gli argomenti in int */

buf[i]=atoi(argv[i]);

for (i = 1; i < argc; i++)
printf("buf[%d]: %d\n", i, buf[i]);

exit(0);
}

Gli argomenti passati sono sempre stringhe!

Le stringhe passate vengono trasformate in int!

Esempio d'uso di exec()

#include <stdio.h>
#include <unistd.h>
main()
{

printf("Esecuzione di ls\n");
execl("/bin/ls", "ls", "­l", (char *)0);
printf("La chiamata di execl ha generato un errore\n");
exit(1);

}

#include <stdio.h>
#include <unistd.h>
main()
{

printf("Esecuzione di ps ­f\n");
execl("/bin/ps", "ps", "­f", (char *)0);
printf("La chiamata di execl ha generato un errore\n");
exit(1);

}

● Esecuzione processo ls

● Esecuzione processo ps
Se la execl funziona, non
c'è più traccia della printf!
Quindi la printf viene eseguita
solo se c'è stato un problema.

Uso di exec() e fork()

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <errno.h>

main()
{

pid_t pid;
int status;

switch(pid = fork()) {
case ­1:

fatal("fork failed"); break;
case 0:

execl("/bin/ls", "ls", "­l", (char *)0);
sys_err("exec failed");
break;

default:
wait(&status);
printf("ls completato\n");
exit(0);

}
}

Che succede se non aspetto?

Implementazione di grafi delle precedenze
assegna

T3T1

T2

stampa
int main(int argc, char *argv[]){
 pid_t cpid, w, t1,t2,t3,t4,t5;

 t3 = fork();
 if (t3 == 0) { /* codice del figlio */

 execl("/home/T3", (char *)0);
 } else { /* codice del padre */
 t1 = fork();
 if (t1 == 0) { /* codice del figlio */

 execl("/home/T1", (char *)0);
 } else { /* codice del padre */
 waitpid(t1, NULL, 0)

 t2 = fork();
 if (t2 == 0) { /* codice del figlio */

 execl("/home/T2", (char *)0);
 } else { /* codice del padre */

 waitpid(t2, NULL, 0);
 waitpid(t3, NULL, 0);

 }
 }

}
}

fork

wait
fork

Implementazione di grafi delle precedenze

T3
T2

T1

T4
T5

T6

T7

int main(int argc, char *argv[]){
 pid_t cpid, w, t1,t2,t3,t4,t5;

 t1 = fork();
 if (t1 == 0) { /* codice del figlio */

 execl("/home/T1", (char *)0);
 } else { /* codice del padre */
 waitpid(t1, NULL, 0);
 t3 = fork();
 if (t3 == 0) { /* codice del figlio */

 execl("/home/T3", (char *)0);
 } else {

 t2 = fork();
 if (t2 == 0) { /* codice del figlio */

 execl("/home/T2", (char *)0);
 } else {
 waitpid(t2,NULL,0);
 t4 = fork();

if (t4 == 0) { /* codice del figlio */
 execl("/home/T4", (char *)0);

 } else { /* codice del padre */
t5 =fork();
if (t5 == 0) { /* codice del figlio */

 execl("/home/T5", (char *)0);
 } else { /* codice del padre */

t6 = fork();
if (t6 == 0) { /* codice del figlio */

 execl("/home/T6", (char *)0);
 } else { /* codice del padre */

waitpid(t5, NULL, 0);
 waitpid(t4, NULL, 0);

 waitpid(t6, NULL, 0);
 }

}
}

}

Implementazione di grafi delle precedenze

\

Implementazione di grafi delle precedenze

Implementazione di grafi delle precedenze
A

B C D

E F

G

Implementazione di grafi delle precedenze

\ \

\ \

S1

S2 S3 S4

S5 S6 S7

S8

Implementazione di grafi delle precedenze

\ \

L'ambiente di un processo

● Un ambiente è rappresentato da un vettore di puntatori a caratteri
terminato da un puntatore nullo.

● Ogni puntatore (che non sia quello nullo) punta ad una stringa della
forma: identificatore = valore

● Per accedere all’ambiente da un programma C, è possibile:

– aggiungere il parametro envp a quelli del main:

– oppure usare la variabile globale seguente:

extern char **environ;

– Usare il comando env

/* showmyenv */
#include <stdio.h>
main(int argc, char **argv, char **envp)
{

while(*envp) printf("%s\n",*envp++);
}

**environ

NULL

char*

char*

identificatore = valore

identificatore = valore

**envp

Stampa dell'ambiente

#include <sys/types.h>
#include <sys/wait.h>
#include <stdio.h>
#include <stdlib.h>

int main(int argc, char *argv[])
{

int i;
char **ptr;
extern char **environ;

for (i = 0; i < argc; i++) /* fa l'eco di tutti gli argomenti */
printf("argv[%d]: %s\n", i, argv[i]);

for (ptr = environ; *ptr != 0; ptr++) /* e di tutto l'ambiente */
printf("%s\n", *ptr);

exit(0);
}

Primo programma di shell

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <string.h>
#define MAXLINE 128
int main(void)
{

char buf[MAXLINE];
pid_t pid;
int status;
printf("%% "); /* prompt */
while (fgets(buf, MAXLINE, stdin) != NULL) {

if (buf[strlen(buf) ­ 1] == '\n') buf[strlen(buf) ­ 1] = 0;
if ((pid = fork()) < 0) {

printf("errore di fork "); exit(1);
} else if (pid == 0) { /*figlio */

execlp(buf, buf, NULL);
printf("non posso eseguire: %s", buf);
exit(127);

} else
if ((pid = waitpid(pid, &status, 0)) < 0) /* padre */

{printf("errore di waitpid"); exit(1);}
printf("%% ");

}
exit(0);

}

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42

