Programmazione di sistema in Linux:
System Call per il controllo processi

E. Mumolo, DIA

Codice
delle
System call

Struttura generica di Linux

Chiamate delle System call (Trap)

| interfaccia |
FILE SYSTEM Process|
Rete
IPC
Schedulazione
Semafori

Device a Device a
caratteri blocchi

HW

Utente

Shell comandi di linea
Compilatori

Editor, debugger,..

System
(kernel)

PosiX

* Un cenno ai primi Standard Posix:

- POSIX.1(1003.1a) -> interfacce base, supporto per processo singolo e multiplo,
controllo dei processi, segnali, file system, pipe, fifo ...

- POSIX.1(1003.1b) - Estensioni Real Time - segnali, schedulazione prioritaria,
timer, 1/O asincrono, prioritario, sincrono, messaggi, semafori ...

- POSIX.1(1003.1c) - Thread - controllo dei thread,attributi, schedulazione,
variabili condizione ...

- POSIX.2 - comandi shell
- POSIX.6(1003.1e) - sicurezza
- POSIX.7 - amministrazione di sistema

- POSIX.8(1003.1f) - accesso ai file di rete

o <sys/types.h> definisce tipi di dati: dev _t, pid_t, size t, ...

System call per la gestione dei processi

* fork crea un processo

e exec carica un codice esequibile

o Wwalt aspetta la terminazione del processo
e signal cattura un segnale

 Kill Invia un segnale

Controllo processi: chiamata di sistema fork()

codice

reqistri

#include <stdio.h>
#include <sys/types.h>
void Figlio(void);

void Padre(void);

void main(void)

stack

{
pid t pid;
pid = fork();
if (pid == 0) Figlio();
else Padre();
}

void Figlio(void)
{ int i=0;

printf("Sono il figlio. i
}
void Padre(void)
{

int i=1;
printf("Sono il padre. i=

processo=ambiente

e

dati

Variabili
d'ambiente

Controllo processi: chiamata di sistema fork()

reqistri

#include <stdio.h>
#include <sys/types.h>
void Figlio(void);

void Padre(void);

—- void main(void)

Punto
di

inizio (
pid t pid;
pid = fork();
if (pid == 0) Figlio();
else Padre();
}

void Figlio(void)

{ int i=0;

printf("Sono il figlio. i= %d\n",i);

}
void Padre(void)

{

int i=1;
printf("Sono il padre. i= %d\n",i);

Variabili
d'ambiente

Controllo processi: chiamata di sistema fork()

reqgistri

#include <stdio.h>
#include <sys/types.h>
void Figlio(void);
void Padre(void);
void main(void)
{

pid t pid;
—yr pid = fork();
if (pid == 0) Figlio();
else Padre();

}
void Figlio(void)
{ int i=0;

printf("Sono il figlio.i=%d\n",i);

}
void Padre(void)
{

int i=1;

printf("Sono il padre.i=%d\n",i);

}

Variabili
d'ambier

Controllo processi: chiamata di sistema fork()

Nel padre, la fork() ritorna il
pid del progesso generato

reqgistri

{
}
{

}

#include
#include <sys/types.h>
void Figlio(void);
void Padre(void);
void main(void)

void Figlio(void)

void Padre(void)

<stdio.h>

pid t pid;
pid = fork()%
if (pid == 0) Figlio();
else Padre();

int i=0;

printf("Sono il figlio.i=%d\n",i);

int i=1;
printf("Sono il padre.i=%d\n",i);

Variabili
d'ambient

ritorna pid=0

reqistri

{

}

void Padre(void)

{

}

#include
#include <sys/types.h>
void Figlio(void);
void Padre(void);
void main(void)

void Figlio(void)

<stdio.h>

pid t pid;
pid = fork();
if (pid == 0) Figlio();
else Padre();

int i=0;
printf("Sono il figlio.i=%d\n",i});

int i=1;
printf("Sono il padre.i=%d\n",1i);

Variabili
d'ambient

Nel figlio, la for()

Controllo processi: chiamata di sistema fork()

pid=27?7 pid=0

registri reqistri

#include <stdio.h>
#include <sys/types.h>
void Figlio(void);
void Padre(void);
void main(void)
{

pid t pid;

pid = fork();

else Padre();

#include <stdio.h>
#include <sys/types.h>
void Figlio(void);
void Padre(void);
void main(void)
{

pid t pid;

pid = fork();

if (pid == 0) Figlio();

_> else Padre();

} }
void Figlio(void) void Figlio(void)
{ int i=0; { int i=0;

printf("Sono il figlio.i=%d\n",i); printf("Sono il figlio.i=%d\n",i);

} }
void Padre(void) void Padre(void)
{ {

int i=1;
printf("Sono il padre.i=%d\n",1i);

int i=1;
printf("Sono il padre.i=%d\n",i);

}

}

Variabili
d'ambient

Variabili
d'ambient

Controllo processi: chiamata di sistema fork()

pid=272? pid=0

registri reqistri

#include <stdio.h>
#include <sys/types.h>
void Figlio(void);
void Padre(void);
void main(void)
{
pid t pid;
pid = fork();
if (pid == 0) Figlio();
else Padre();

#include <stdio.h>
#include <sys/types.h>
void Figlio(void);
void Padre(void);
void main(void)
{
pid t pid;
pid = fork();
if (pid == 0) Figlio();
else Padre();

} }
void Figlio(void) —l void Figlio(void)
{ int i=0; { int i=0;

printf("Sono il figlio.i=%d\n",i); printf("Sono il figlio.i=%d\n",i);

} }
- vOid Padre(void) void Padre(void)
{ {
int i=1; int i=1;

printf("Sono il padre.i=%d\n",i); printf("Sono il padre.i=%d\n",i);

}

}

Variabili
d'ambient

Variabili
d'ambient

Chiamata di sistema fork()

e System call: pid_t fork();

— crea un nuovo processo figlio, copiando completamente I'immagine di
memoria del processo padre (data, heap, stack)

- La memoria e completamente INDIPENDENTE tra padre e figlio
- il codice viene generalmente condiviso tra padre e figlio

— codice copy-on-write (copiato quando viene modificato)

— tutti | descrittori del file aperti nel processo padre (UFDT)
sono duplicati nel processo figlio

- sia Il processo child che il processo parent continuano ad eseguire
I'istruzione successiva alla fork

— processo figlio: ritorna O
— processo padre: ritorna il process ID del processo figlio
- Errore della fork — pid negativo

Chiamata di sistema fork(). Esempio

#include <stdio.h>
#include <sys/types.h>
void Figlio(void);

void Padre(void);

void main(void)

{
pid t pid;
pid = fork();
if (pid == 0) Figlio();
else Padre();
}
void Figlio(void)
{
int i=0;
for(i=0;i<10;i++){
usleep(200);
printf("\tSono il figlio. i= %d\n",i);
}
}
void Padre(void)
{
int i=1;

for(i=0;1i<10;i++){
usleep(250);
printf("Sono il padre. i= %d\n",i);

Chiamata di sistema fork()

* Ereditarieta’ in pid_t fork();

- Non tutte le proprieta' del padre vengono ereditate dal figlio
 Esempio PID, PPID, file locking, operazione semop, timer, ...

- Le variabili d'ambiente sono ereditate, a parte nuove
variabili

- Nuove variabili della shell vengono ereditate dal figlio col
comando export

- export -p mostra le variabili della shell esportate

Identificativi dei processi

 Identificativi di processo:

Process ID (PID)

Parent Process ID (PPID) del processo che I'ha generato

Process Group ID (PGID) del gruppo di processi al quale appartiene
Process Real User : UID dell'utente che ha richiesto accesso
Process Real Group ID: GID dell'utente che ha richiesto accesso
Process Effective User ID: normalmente uguale al REAL USER ID,
Process Effective Group ID:

 Lettura identificativi

Process ID del processo: pid t getpid();
Process ID del processo padre: pid t getppid();
Real user ID: uid t getuid();

Real group ID: gid t getgid();

Effective user ID: uid t geteuid();

Effective group ID: gid t getegid();

Terminazione processi

- Terminazione dei processi: #include <stdiib.n>
void _exit(int status);

— Terminazione normale:

e eseguire un return da main (€quivale a chiamare exit());
« chiamare la funzione exit(): chiude gli stream I/O, chiama _exit()
 Chiamare _exit(): torna al kernel immediatamente

- Terminazione anormale: #include <unistd.h>

« Ricezione segnali void _exit(int status);

« Chiamando abort()
* In ogni caso, l'azione del kernel e’ lo stesso:
- Rimozione della memoria utilizzata dal processo
— Chiusura dei descrittori aperti
 Stato di un processo: raccolto con wait(), waitpid()

Controllo processi

. pid_t wait(int *status);

e pid_t waitpid(pid_t pid, int *status, 1int options);

- Argomento pid:

pid == -1-> attende la prima terminazione

pid >0 =->attende la terminazione del processo generato con
process id corrispondente

pid == 0 = attende la terminazione di qualsiasi processo con
process group id uguale a quello del processo chiamante

pid < -1 - attende la terminazione di qualsisi child con process
group ID uguale a —pid

- Argomento status

e puntatore ad un intero;

 se diverso da NULL, contiene lo stato della terminazione

- Differenza wait/waitpid: wait aspetta il primo figlio

/*forkdl.c*/ #include <stdio.h>#include <unistd.h> #include <sys/types.h>
int main(int argc, char *argv[]){
pid t cpid, w, t1,t2,t3,t4,t5; int status;
printf("Sono il processwo MAIN. PID %1d, PPID %1d\n", (long) getpid(), (long) getppid());
tl = fork();
if (tl == 0) { /* codice del figlio */
printf("processo T1l; PID %$1d, PPID %1d\n", (long) getpid(), (long) getppid());
sleep(l); _exit(0);
} else { /* codice del padre */
t2 = fork();
if (t2 == 0) { /* figlio */
printf ("processo T2; PID %1d, PPID %1d\n", (long) getpid(), (long) getppid());
sleep(l); _exit(0);

} else {
t3 = fork();
if (t3 == 0) { /* figlio */

printf ("processo T3; PID %$1d, PPID %1d\n", (long) getpid(), (long) getppid());
sleep(l); _exit(0);
} else {
waitpid(tl, &status,0); printf("sono il padre, ho aspettato tl\n");
waitpid(t2, &status,0); printf("sono il padre, ho aspettato t2\n");
t4 = fork();
if (t4 == 0) { /* figlio */
Printf("processo T4; PID %1d, PPID %1d\n", (long) getpid(), (long) getppid());
Sleep(l); _exit(0);
} else {
waitpid(t4, &status,0); printf("sono il padre, ho aspettato t4\n");
waitpid(t3, &status,0); printf("sono il padre, ho aspettato t3\n");
t5 = fork();
if (t5 == 0) { /* figlio */
printf("proc. T5; PID %1d, PPID %1d\n", (long) getpid(), (long) getppid());
sleep(l); _exit(0);
} else { /* padre */
waitpid(t5, &status,0); printf("sono il padre, ho atteso t5\n");
}

main

watpid(T1)

watpid(T2)

watpid(T4)
watpid(T3)

watpid(T5)

fork
fork > >
fork start
P start
T1
T2
T3
- end
fork >
Start
T4
end
- —
fork
start
T5
end

start

end

Controllo processi

 Cosa succede se il padre termina prima del figlio?

— 1l processo child viene "adottato" dal processo init (pid 1): quando
un processo termina, il kernel esamina la tabella dei processi per
vedere se aveva figli; in caso affermativo, il PPID viene posto
uguale a 1

« Cosa succede se il figlio termina prima del padre?
— 1l processo va in Stato ‘zombie’

- vengono mantenute le informazioni che sono richieste dal padre
tramite wait e waitpid

- il processo restera uno zombie fino a quando il parent non
eseguira una delle system call wait

* | processi figli del processo init hon possono diventare

zombie S o |
- tutte le volte che un child di init termina, init esegue una chiamata
wait e raccoglie eventuali informazioni

- In questo modo gli zombie vengono eliminati

#include <sys/types.h>
#include <unistd.h>
#include <sys/wait.h>
#include <stdio.h>
#include <stdlib.h>

int main(void)

{

proce
padre

proce
figlio

pid t pid;
int status;

pid=fork();
if(pid!=0) {

SsO
\ exit(0);
}else({
pid=fork();
pid=fork();
SSO
pid=fork();
pid=fork();
exit(0);
}

Controllo processi

//pid t
//fork()
//waitpid
//printf...
//exit()

printf("pidl=%d\n",pid);
. wait(&status);printf("statusl=%d\n",status);

if(pid==0) exit(1l);

printf ("\tpid=%d ppid=%d\n",pid,getpid());
wait(&status);printf("\tstatus=%d\n",status);
if(pid==0) exit(2);

printf ("\tpid2=%d\n",pid);
wait(&status);printf("\tstatus2=%d\n",status);
if(pid==0) abort();

printf ("\tpid3=%d\n",pid);
wait(&status);printf("\tstatus3=%d\n",status);
if (pid==0) status /= 0;
printf (" \tpid4=%d\n",pid);
wait(&status);printf("\tstatus4=%d\n",status);

processo
padre

fork();

figlio

; figlio del figlio
C exit(1)

wait) wait()-

printf(), wait()

wa

' exit(0)

NB:

exit(n) ritorna

il valore n*256

al processo padre

abort() e /=0 inviano un segnale
al processo figlio

Controllo processi

Qui siamo all'interno del

/* processi ZOMBIE */ fork() secondo processo figlio;non

appena suo padre (il primo
#include <sys/types.h> rp(?cesso fi Il?o) chiz(almpa
#include <sys/wait.h> fork() P g

#include <stdio.h> ‘ eXit()’ viene adOttatO-_ _
#include <stdlib.h> Il secondo processo figlio
printf() sleep(2) continua ...

int main(void) sleep() ety printf()
¢ | printf() exit()
pid_t pid; exit() /4
ZOMBIE!

printf("ID del main=%d\n", getpid());

pid = fork();

if (pid == 0) { /* primo processo figlio*/
pid = fork();

if (pid > 0)
{printf("\tsono il lo figlio. ID=%d PPID=%d\n", getpid(), getppid());
exit(0);
figlio } /* il primo figlio termina */
else{
sleep(2);
printf("\t\tsono il 20 figlio. L'ID di mio padre e'= %d\n", getppid());
exit(0);
}
}
/* A questo punto sono tornato al processo originale cioe' il padre dei due figli*/
sleep(1l);
printf("sono il processo %d\n", getpid());
exit(0);

Riepilogo...

Un codice d'esempio di un processo Nuovo processo creato per duplicazione
void main(int argc, char *argv[]) void main(int argc, char *argv[])
{ {

—> int i, fd, numero_righe,newlen,oldlen; int i, fd, numero righe,newlen,oldlen;

— int size=100, n; int size=100, n;
char **righe, *str="ieri"; char **righe, *str="ieri";

Char testo[100], *p; Char testo[100], *p;

FILE *fp; FILE *fp;
righe=(char**)malloc(100*sizeof (char*)); righe=(char**)malloc(100*sizeof (char*));
numero_righe=atoi(argv[2]); numero_righe=atoi(argv[2]);
fd=open(argv[1l],0 WRONLY) ; fd=open(argv[1l],0 WRONLY);
fp=fopen(argv[1l],"xr"); fp=fopen(argv[1l],"r");

— oldlen=0; oldlen=0;

—> fork(); fork();

— fgets(testo, size, fp); —» fgets(testo, size, fp);
newlen=strlen(testo); newlen=strlen(testo);
righe[i]=malloc(strlen(testo)); righe[i]=malloc(strlen(testo));
strcpy(righe[i],testo); strcpy(righe[i],testo);

p = strstr(righe[i], "oggi"); p = strstr(righe[i], "oggi");
n = p-righe[i]+oldlen; n = p-righe[i]+oldlen;
lseek(fd,n,SEEK SET); lseek(fd,n,SEEK SET);
write(fd,str,4); write(fd,str,4);
oldlent+=newlen; oldlen+=newlen;

close (fp); close (fp);

close(fd); close(fd);

Riepilogo...

Il codice d'esempio NUOVO processo creato

void main(int argc, char *argv[])
—{
int i, fd, numero_righe,newlen,oldlen;
int size=100, n;

— fork(); —p void main(int argc, char *argv[])
wait(); {

int i, fd, numero_righe,newlen,oldlen;
int size=100, n;

fork();
.JAttesa... wait();

n = p-righe[i]+oldlen;
lseek(fd,n,SEEK _SET);
write(fd,str,4);
oldlen+=newlen;

close (fp);

close(fd);

n = p-righe[i]+oldlen;
lseek(fd,n,SEEK SET);
write(fd,str,4);
oldlen+=newlen;

close (fp);

close(fd);

Riepilogo...

usando waitpid:

void main(int argc, char *argv[])
—»{
int i, fd, numero_righe,newlen,oldlen;
int size=100, n;

— i=fork(); —p void main(int argc, char *argv[])
waitpid(1i); {

int i, fd, numero_righe,newlen,oldlen;
int size=100, n;

fork();
.JAttesa... wait();

n = p-righe[i]toldlen;
lseek(fd,n,SEEK _SET);
write(fd,str,4);
oldlen+=newlen;

close (fp);

close(fd);

n = p-righe[i]+oldlen;
lseek(fd,n,SEEK SET);
write(fd,str,4);
oldlen+=newlen;

close (fp);

close(fd);

Riepilogo...

Fork() ritorna il pid del nuovo processo al processo chiamante fork()
Fork() ritorna O al processo generato

Il nuovo processo eredita dal processo che ha eseguito la fork():
 Variabili d'ambiente

La UFDT (file aperti)

Process Real User ID

Process Real Group ID

Process Effective User ID

* Process Effective Group ID
| processi creati vengono rimossi da Linux se terminano mentre sono
attesi da wait()

Se termina senza essere atteso da wait diventa Zombie

Se il processo chiamante la fork termina prima del figlio, il processo
creato viene adottato dal processo 1

Chiamata di sistema exec()

 Quando un processo chiama una delle system call exec :

- |l processo viene rimpiazzato COMPLETAMENTE dal codice contenuto nel
file specificato (text, data, heap, stack vengono sostituiti)

- il nuovo programma inizia a partire dalla sua funzione main

- il process id non cambia
« Esistono sei versioni di exec:

- 1int execl(char *pathname, char *argo, ..);

- 1int execv(char *pathname, char *argv[]);

- 1int execle(char *pathname, char *arg0, .., char* envp[]);
- 1nt execve(char *pathname, char *argv[] , char* envp[]);
- 1int execlp(char *filename, char *arg0, ..);

- 1int execvp(char *filename, char *argv[]);

Chiamata di sistema exec()

e Cosa viene ereditato da exec?
- UFDT (file aperti)

- Variabili d'ambiente

- PID e PPID

- real uid e real gid

- current working directory (variabile PWD)
- root e home directory

- maschera creazione file (umask)

- segnali in attesa

Chiamata di sistema exec()

e Cosa non viene ereditato da exec?

- effective user id e effective group id
— vengono settati in base ai valori dei bit di protezione

 Cosa succede ai file aperti?

- Dipende dal flag close-on-exec che e associato ad ogni
descrittore

- Se close-on-exec e true, vengono chiusi
- Altrimenti, vengono lasciati aperti (comportamento di default)

Esempio d'uso di exec()

« Questo processo sovrascrive il suo ambiente col codice eseguibile all

#include <stdlib.h> /* ‘'errno' */

#include <unistd.h> /* ‘'execle' */

#include <stdio.h> /* ‘'printf' and 'NULL' */
#include <errno.h> /* 'ENOENT' and 'ENOMEM' */

int main(void)

{
pid t pid;
if (execlp("/home/mumolo/all", "all", "primo_arg", "secondo arg", "terzo_arg", NULL) < 0)
err sys("execlp error");
if (waitpid(pid, NULL, 0) < 0)
err sys("wait error");
exit(0);
} Gli argomenti passati sono sempre stringhe!

« Sorgentedi all

#include <stdlib.h>
#include <stdio.h>
int main(int argc, char *argv[])

{
int i;
printf("Sono il processo all. I miei argomenti passati da exec sono:\n");
for (i = 1; i < argc; i++) /* fa l'eco di tutti gli argomenti */
printf("argv[%d]: %s\n", i, argv[i]);
exit(0);

Esempio d'uso di exec()

« Questo processo sovrascrive il suo ambiente col codice eseguibile all1l

#include <stdlib.h> /* ‘'errno' */

#include <unistd.h> /* ‘'execle' */

#include <stdio.h> /* ‘'printf' and 'NULL' */
#include <errno.h> /* 'ENOENT' and 'ENOMEM' */

int main(void)

{
pid t pid;
if (execlp("/home/mumolo/alll", "alll", "5", "10", "5700", NULL) < 0)
err sys("execlp error");
if (waitpid(pid, NULL, 0) < 0)
err sys("wait error");
exit(0);
}

« Sorgentedi alll

#include <stdlib.h>

#include <stdio.h>

int main(int argc, char *argv[])

{
int i, buf[10];
printf("Sono il processo all. I miei argomenti passati da exec sono numeri:\n");
for (i = 1; i < argc; i++) /* trasforma gli argomenti in int */

buf[i]=atoi(argv[i]);

Gli argomenti passati sono sempre stringhe!

for (i = 1; i < argc; i++) Le stringhe passate vengono trasformate in int!

printf("buf[%d]: %d\n", i, buf[i]);
exit(0);

Esempio d'uso di exec()

e Esecuzione processo Is

#include <stdio.h>
#include <unistd.h>
main()

{

}

« Esecuzione processo ps

printf("Esecuzione di 1ls\n");
execl("/bin/1ls", "1ls", "-1", (char *)0);
printf("La chiamata di execl ha generato un errore\n");

exit(1l); \
Se la execl funziona, non

c'é piu traccia della printf!

4include <stdio.h> Quindi la printf viene eseguita
4include <unistc;1 h> solo se c'e stato un problema.
main()

{

printf("Esecuzione di ps -f\n");

execl("/bin/ps", "ps", "-f", (char *)0);

printf("La chiamata di execl ha generato un errore\n");
exit(1l);

Uso di exec() e fork()

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <errno.h>

main()

{
pid t pid;
int status;

switch(pid = fork()) {
case -1:
fatal("fork failed"); break;
case 0O:
execl("/bin/1ls", "1ls", "-1", (char *)0);
sys_err("exec failed");

break;
default: Che succede se non aspetto?

—watt(&status);
printf("ls completato\n");
exit(0);

Implementazione di grafi delle precedenze

e %ssegna N1, N2, N3 8

s Jo =

i Stampa N1, N2, Ny

assegna

fork

11 T3

T2

. L stampa
int main(int argc, char *argv[])({
pid t cpid, w, t1,t2,t3,t4,t5;

t3 = fork();
if (t3 == 0) { /* codice del figlio */
execl("/home/T3", (char *)0);
} else { /* codice del padre */
tl = fork();
if (tl == 0) { /* codice del figlio */
execl("/home/T1", (char *)0);
} else { /* codice del padre */
waitpid(tl, NULL, 0)
t2 = fork();

if (t2 == 0) { /* codice del figlio */
execl("/home/T2", (char *)0);

} else { /* codice del padre */
waitpid(t2, NULL, 0);
waitpid(t3, NULL, 0);

Implementazione di grafi delle precedenze

int main(int argc, char *argv[]){
pid_t cpid, w, tl1,t2,t3,t4,t5;

\\‘ tl = fork();
\& if (tl == 0) { /* codice del figlio */
(:) C%) execl("/home/T1", (char *)0);
T6 } else { /* codice del padre */
waitpid(tl, NULL, 0);
t3 = fork();

if (t3 == 0) { /* codice del figlio */
execl("/home/T3", (char *)0);
} else {
t2 = fork();
if (t2 == 0) { /* codice del figlio */
execl("/home/T2", (char *)0);
T1 } else {

waitpid(t2,NULL,0);
| t4 = fork();
3 if (t4 == 0) { /* codice del figlio */
T4 N execl("/home/T4", (char *)0);

5 | } else { /* codice del padre */
T t5 =fork();
- T6 if (t5 == 0) { /* codice del figlio */

execl("/home/T5", (char *)0);

17 } else { /* codice del padre */

t6 = fork();

if (t6 == 0) { /* codice del figlio */
execl("/home/T6", (char *)0);

} else { /* codice del padre */
waitpid(t5, NULL, 0);
waitpid(t4, NULL, 0);
waitpid(t6, NULL, 0);

T2

Implementazione di grafi delle precedenze

%
Yo

Implementazione di grafi delle precedenze

Implementazione di grafi delle precedenze
(B %
B~

Imnlementazione di grafi delle precedenze

aY

S5 S6 S7

NV
S8

Implementazione di grafi delle precedenze

L'ambiente di un processo

Un ambiente e rappresentato da un vettore di puntatori a caratteri
terminato da un puntatore nullo.

Ogni puntatore (che non sia quello nullo) punta ad una stringa della
forma: identificatore = valore

Per accedere allambiente da un programma C, e possibile:

— aggiungere il parametro envp a quelli del main:

/* showmyenv */

#include <stdio.h> **environ **envp
main(int argc, char **argv, char **envp) V ‘(/
{

while(*envp) printf("$s\n", *envp++); char* . identificatore = valore
}

PR : char s jgentificatore = valore
— oppure usare la variabile globale seguente:
NULL

extern char **environ;

- Usare il comando env

Stampa dell'ambiente

#include <sys/types.h>
#include <sys/wait.h>
#include <stdio.h>

#include <stdlib.h>

int main(int argc, char *argv[])
{

int i;

char **ptr;

extern char **environ;

for (i = 0; i < argc; i++) /* fa 1l'eco di tutti gli argomenti */
printf("argv[%d]: %s\n", i, argv[i]);

for (ptr = environ; *ptr != 0; ptr++) /* e di tutto l'ambiente */
printf("%s\n", *ptr);

exit(0);

#include
#include
#include
#include

Primo programma di shell

<stdio.h>

<stdlib.h>
<unistd.h>
<string.h>

#define MAXLINE 128

int main(

{

char buf [MAXLINE];
pid t pid;
int status;
printf("%% "); /* prompt */
while (fgets(buf, MAXLINE, stdin) != NULL) {
if (buf[strlen(buf) - 1] == '\n') buf[strlen(buf) - 1]

void)

if ((pid = fork()) < 0) {

}

}

printf("errore di fork "); exit(l);
else if (pid == 0) { /*figlio */
execlp(buf, buf, NULL),
printf("non posso eseguire: %s", buf);
exit(127);
else

if ((pid = waitpid(pid, &status, 0)) < 0) /* padre */

{printf("errore di waitpid"); exit(1l);}

printf("%% ");

}

exit (

0);

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42

