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Manua Loa CO2 atmospheric data
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Measured over 40 years. We observe a seasonal periodic
behaviour and an increasing frend.

We want to construct a GP model of it.

The goal is to build a good kernel.



Manua Loa CO2 atmospheric data

Idea: combination of simple kernels
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CO2 concentration, ppm

Manua Loa CO2 atmospheric data

11 hyperparameters, which are optimised.
Optimal marginal likelihood: logp(y|X,8) = —108.5.

We now examine and interpret the hyperparameters which optimize the )
marginal likelihood. The long term trend has a magnitude of #; = 66 ppm 400 o
and a length scale of 6, = 67 years. The mean predictions inside the range S_
of the training data and extending for 20 years into the future are depicted in g 900 i 0.5
Figure 5.7 (a). In the same plot (with right hand axis) we also show the medium - d
term effects modelled by the rational quadratic component with magnitude é 260 0
0 = 0.66 ppm, typical length 6; = 1.2 years and shape 63 = 0.78. The very 8
small shape value allows for covariance at many different length-scales, which 8N 340
is also evident in Figure 5.7 (a). Notice that beyond the edge of the training av0| .- J\‘ .
data the mean of this contribution smoothly decays to zero, but of course it

still has a contribution to the uncertainty, see Figure 5.6.
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The hyperparameter values for the decaying periodic contribution are: mag-
nitude 03 = 2.4 ppm, decay-time 654 = 90 years, and the smoothness of the
periodic component is 05 = 1.3. The quite long decay-time shows that the
data have a very close to periodic component in the short term. In Figure 5.7
(b) we show the mean periodic contribution for three years corresponding to
the beginning, middle and end of the training data. This component is not
exactly sinusoidal, and it changes its shape slowly over time, most notably the
amplitude is increasing, see Figure 5.8.

concentration, ppm

5
o
C02



Manua Loa CO2 atmospheric data

For the noise components, we get the amplitude for the correlated compo-
nent g = 0.18 ppm, a length-scale of 6,3 = 1.6 months and an independent
noise magnitude of #1; = 0.19 ppm. Thus, the correlation length for the noise
component is indeed inferred to be short, and the total magnitude of the noise
is just V62 + 6%, = 0.26 ppm, indicating that the data can be explained very
well by the model. Note also in Figure 5.6 that the model makes relatively
confident predictions, the 95% confidence region being 16 ppm wide at a 20
year prediction horizon.

Prediction
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Rational Quadratic Kernel
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Figure 4.3: Panel (a) covariance functions, and (b) random functions drawn from
Gaussian processes with rational quadratic covariance functions, eq. (4.20), for differ-
ent values of & with £ = 1. The sample functions on the right were obtained using a
discretization of the z-axis of 2000 equally-spaced points.

with @, £ > 0 can be seen as a scale mizture (an infinite sum) of squared
exponential (SE) covariance functions with different characteristic length-scales
(sums of covariance functions are also a valid covariance, see section 4.2.4).
Parameterizing now in terms of inverse squared length scales, 7 = £72, and
putting a gamma distribution on p(7|a, 8) o« 7* ! exp(—ar/8),> we can add
up the contributions through the following integral

knq(r) = /p(fla,ﬁ)ksa(rl'r) dr
\ TQ (4.20)

o /'ra_lexp (— %)exp( T; )d'r X (1+2a€2)_a,

where we have set §~! = ¢2. The rational quadratic is also discussed by Matérmn




Periodic Kernel

Another interesting example of this warping construction is given in MacKay
[1998] where the one-dimensional input variable z is mapped to the two-dimensional
u(z) = (cos(z),sin(x)) to give rise to a periodic random function of z. If we
use the squared exponential kernel in u-space, then

2 gin? z—z'
k(z,z') = exp (— — 2(2 2 )), (4.31)

as (cos(z) — cos(z’))? + (sin(z) — sin(z’))? = 4sin?(252").




Summary of Kernels
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Table 4.1: Summary of several commonly-used covariance functions. The covariances
are written either as a function of x and x’, or as a function of r = |x — x'|. Two
columns marked ‘S’ and ‘ND’ indicate whether the covariance functions are stationary
and nondegenerate respectively. Degenerate covariance functions have finite rank, see

section 4.3 for more discussion of this issue.




