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UNSUPERVISED LEARNING - OVERVIEW

Unsupervised learning: No
labels are given to the
learning algorithm (input
only), leaving it on its own to
find structure in its input.

9.2. Mixtures of Gaussians 433
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Figure 9.5 Example of 500 points drawn from the mixture of 3 Gaussians shown in Figure 2.23. (a) Samples
from the joint distribution p(z)p(x|z) in which the three states of z, corresponding to the three components of the
mixture, are depicted in red, green, and blue, and (b) the corresponding samples from the marginal distribution
p(x), which is obtained by simply ignoring the values of z and just plotting the x values. The data set in (a) is
said to be complete, whereas that in (b) is incomplete. (c) The same samples in which the colours represent the
value of the responsibilities γ(znk) associated with data point xn, obtained by plotting the corresponding point
using proportions of red, blue, and green ink given by γ(znk) for k = 1, 2, 3, respectively

matrix X in which the nth row is given by xT
n . Similarly, the corresponding latent

variables will be denoted by an N × K matrix Z with rows zT
n . If we assume that

the data points are drawn independently from the distribution, then we can express
the Gaussian mixture model for this i.i.d. data set using the graphical representation
shown in Figure 9.6. From (9.7) the log of the likelihood function is given by

ln p(X|π, µ,Σ) =

N∑

n=1

ln

{
K∑

k=1

πkN (xn|µk,Σk)

}
. (9.14)

Before discussing how to maximize this function, it is worth emphasizing that
there is a significant problem associated with the maximum likelihood framework
applied to Gaussian mixture models, due to the presence of singularities. For sim-
plicity, consider a Gaussian mixture whose components have covariance matrices
given by Σk = σ2

kI, where I is the unit matrix, although the conclusions will hold
for general covariance matrices. Suppose that one of the components of the mixture
model, let us say the jth component, has its mean µj exactly equal to one of the data

Figure 9.6 Graphical representation of a Gaussian mixture model
for a set of N i.i.d. data points {xn}, with corresponding
latent points {zn}, where n = 1, . . . , N .
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Clustering: discover groups of similar examples within the
data.
Density estimation: determine the distribution of data
within the input space.
Dimensionality reduction: project the data from a
high-dimensional space to a lower dimension space. Often
down to two or three dimensions for the purpose of
visualization.
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DENSITY ESTIMATION

Given input data x1, . . . ,xN, sampled by an unknown distribution
p(X ), estimate p.

One way to solve this problem is to fix a parametric family of
distributions p(X |θ) and then estimate parameters θ according to
ML, MAP, or with a fully Bayesian treatment. The drawback is
that a bad choice of the family of distributions can result in a
poor fit of data.

Non-parametric methods try to construct an estimate from data
only, avoiding the pitfalls involved in choosing the correct family
of models.
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HISTOGRAM DENSITY

(1D) Partition input space in bins (intervals) B1, . . . ,Bk ,s each of
size ∆i , and count how many input points nj fall inside each bin
j . Define the density p(x) as pi if x ∈ Bi , where

pi =
ni

N∆i

The resulting density is discontinuous, and the quality of the fit
depends on the bin size.

Curse of dimensionality: the number of bins grows exponentially
with the dimension d of x.

2.5. Nonparametric Methods 121

Figure 2.24 An illustration of the histogram approach
to density estimation, in which a data set
of 50 data points is generated from the
distribution shown by the green curve.
Histogram density estimates, based on
(2.241), with a common bin width ∆ are
shown for various values of ∆.
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In Figure 2.24, we show an example of histogram density estimation. Here
the data is drawn from the distribution, corresponding to the green curve, which is
formed from a mixture of two Gaussians. Also shown are three examples of his-
togram density estimates corresponding to three different choices for the bin width
∆. We see that when ∆ is very small (top figure), the resulting density model is very
spiky, with a lot of structure that is not present in the underlying distribution that
generated the data set. Conversely, if ∆ is too large (bottom figure) then the result is
a model that is too smooth and that consequently fails to capture the bimodal prop-
erty of the green curve. The best results are obtained for some intermediate value
of ∆ (middle figure). In principle, a histogram density model is also dependent on
the choice of edge location for the bins, though this is typically much less significant
than the value of ∆.

Note that the histogram method has the property (unlike the methods to be dis-
cussed shortly) that, once the histogram has been computed, the data set itself can
be discarded, which can be advantageous if the data set is large. Also, the histogram
approach is easily applied if the data points are arriving sequentially.

In practice, the histogram technique can be useful for obtaining a quick visual-
ization of data in one or two dimensions but is unsuited to most density estimation
applications. One obvious problem is that the estimated density has discontinuities
that are due to the bin edges rather than any property of the underlying distribution
that generated the data. Another major limitation of the histogram approach is its
scaling with dimensionality. If we divide each variable in a D-dimensional space
into M bins, then the total number of bins will be MD. This exponential scaling
with D is an example of the curse of dimensionality. In a space of high dimensional-Section 1.4
ity, the quantity of data needed to provide meaningful estimates of local probability
density would be prohibitive.

The histogram approach to density estimation does, however, teach us two im-
portant lessons. First, to estimate the probability density at a particular location,
we should consider the data points that lie within some local neighbourhood of that
point. Note that the concept of locality requires that we assume some form of dis-
tance measure, and here we have been assuming Euclidean distance. For histograms,

Rules for number of bins

k =
√

N: simple but often used

Scott’s normal ref rule: k = N1/3

3.5σ̂

Freedman–Diaconis’ rule: k = N1/3

2IQR
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DATA-BASED ESTIMATOR

Histogram estimation at a point x uses information only from few
data points close to x , those lying in the same bin. But bins are
rigid and result in discontinuous densities.

We can do better “placing a (hard/ soft) box” in each point x .

Consider now a little box B containing point x, with volume V ,
and let P be the probability that a sampled point is in B, i.e.
P =

∫
B p(x)dx. The probability P can be estimated as P = K /N,

for sufficiently large K and N (law of large numbers for
Binomial), where K is the number of points falling into B.
Furthermore, if B is sufficiently small, we can approximate P as
p(x)V . It then follows that

p(x) =
K

NV
for x ∈ B.

We can now either fix K and estimate V from data
(K -nearest-neighbour) or fix V and estimate K from data
(kernel-based or Parzen estimators)
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PARZEN ESTIMATOR

Consider the function (Parzen window)

k(u) =

{
1, ‖u‖∞ ≤ 1

2
0, otherwise

Then a data point xn is inside the cube of edge length h centred
in x if and only if

k
(x − xn

h

)
= 1,

so that the number of data points in the cube is

K =
∑

n

k
(x − xn

h

)
.

Then the estimate for the density p (in d dimensions) becomes:

p(x) =
1

Nhd

∑
n

k
(x − xn

h

)
.
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PARZEN ESTIMATOR

The Parzen window is still discontinuous. An alternative
approach is to use a smooth function, i.e. a kernel satisfying
k(x) ≥ 0 and

∫
k(x)dx = 1.

a common choice is the Gaussian kernel, giving the estimate:

p(x) =
1
N

∑
n

1
(2πh2)1/2

exp
(
‖x − xn‖

2

h2

)
124 2. PROBABILITY DISTRIBUTIONS

Figure 2.25 Illustration of the kernel density model
(2.250) applied to the same data set used
to demonstrate the histogram approach in
Figure 2.24. We see that h acts as a
smoothing parameter and that if it is set
too small (top panel), the result is a very
noisy density model, whereas if it is set
too large (bottom panel), then the bimodal
nature of the underlying distribution from
which the data is generated (shown by the
green curve) is washed out. The best den-
sity model is obtained for some intermedi-
ate value of h (middle panel).
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set used earlier to demonstrate the histogram technique. We see that, as expected,
the parameter h plays the role of a smoothing parameter, and there is a trade-off
between sensitivity to noise at small h and over-smoothing at large h. Again, the
optimization of h is a problem in model complexity, analogous to the choice of bin
width in histogram density estimation, or the degree of the polynomial used in curve
fitting.

We can choose any other kernel function k(u) in (2.249) subject to the condi-
tions

k(u) ! 0, (2.251)∫
k(u) du = 1 (2.252)

which ensure that the resulting probability distribution is nonnegative everywhere
and integrates to one. The class of density model given by (2.249) is called a kernel
density estimator, or Parzen estimator. It has a great merit that there is no compu-
tation involved in the ‘training’ phase because this simply requires storage of the
training set. However, this is also one of its great weaknesses because the computa-
tional cost of evaluating the density grows linearly with the size of the data set.

2.5.2 Nearest-neighbour methods
One of the difficulties with the kernel approach to density estimation is that the

parameter h governing the kernel width is fixed for all kernels. In regions of high
data density, a large value of h may lead to over-smoothing and a washing out of
structure that might otherwise be extracted from the data. However, reducing h may
lead to noisy estimates elsewhere in data space where the density is smaller. Thus
the optimal choice for h may be dependent on location within the data space. This
issue is addressed by nearest-neighbour methods for density estimation.

We therefore return to our general result (2.246) for local density estimation,
and instead of fixing V and determining the value of K from the data, we consider
a fixed value of K and use the data to find an appropriate value for V . To do this,
we consider a small sphere centred on the point x at which we wish to estimate the
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K -NEAREST NEIGHBOUR ESTIMATOR

It may be more convenient to have h depending on the local
density of observations, to avoid over or under-smoothing.

K -nearest neighbour solves this problem by setting the radius of
the sphere/ box for Parzen estimation such that it exactly
contains K points, i.e. equal to the distance of the K -th closest
point to x. Then p(x) is estimated as K /V (x)N, where V (x) is
the volume of the sphere/box.

K -NN can be used also for classification, by assigning to class
Ck class-conditional probability in x equal to Kk/K , where Kk is
the number of points of class K .2.5. Nonparametric Methods 125

Figure 2.26 Illustration of K-nearest-neighbour den-
sity estimation using the same data set
as in Figures 2.25 and 2.24. We see
that the parameter K governs the degree
of smoothing, so that a small value of
K leads to a very noisy density model
(top panel), whereas a large value (bot-
tom panel) smoothes out the bimodal na-
ture of the true distribution (shown by the
green curve) from which the data set was
generated.
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density p(x), and we allow the radius of the sphere to grow until it contains precisely
K data points. The estimate of the density p(x) is then given by (2.246) with V set to
the volume of the resulting sphere. This technique is known as K nearest neighbours
and is illustrated in Figure 2.26, for various choices of the parameter K, using the
same data set as used in Figure 2.24 and Figure 2.25. We see that the value of K
now governs the degree of smoothing and that again there is an optimum choice for
K that is neither too large nor too small. Note that the model produced by K nearest
neighbours is not a true density model because the integral over all space diverges.Exercise 2.61

We close this chapter by showing how the K-nearest-neighbour technique for
density estimation can be extended to the problem of classification. To do this, we
apply the K-nearest-neighbour density estimation technique to each class separately
and then make use of Bayes’ theorem. Let us suppose that we have a data set com-
prising Nk points in class Ck with N points in total, so that

∑
k Nk = N . If we

wish to classify a new point x, we draw a sphere centred on x containing precisely
K points irrespective of their class. Suppose this sphere has volume V and contains
Kk points from class Ck. Then (2.246) provides an estimate of the density associated
with each class

p(x|Ck) =
Kk

NkV
. (2.253)

Similarly, the unconditional density is given by

p(x) =
K

NV
(2.254)

while the class priors are given by

p(Ck) =
Nk

N
. (2.255)

We can now combine (2.253), (2.254), and (2.255) using Bayes’ theorem to obtain
the posterior probability of class membership

p(Ck|x) =
p(x|Ck)p(Ck)

p(x)
=

Kk

K
. (2.256)
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CLUSTERING: AN OVERVIEW

Given input data x1, . . . ,xN, group data into K separate groups, such
that points in each group are as similar as possible and points in
different groups are as different as possible.

We need a notion of dissimilarity between input points. Different
measures can produce different clusters.

Clustering can be defined as a (hard) combinatorial optimisation
problem. Clustering algorithms implement different approximate
search strategies.

Some methods require to fix a priori the number of clusters
(k -means, k -medoids).

Other methods produce a tree of possible clusters (hierarchical
clustering).

Soft clustering returns a probabilistic assignment of each point
to each cluster.
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DISSIMILARITY MEASURES

There are many different ways of constructing a dissimilarity
between input points, depending on the nature of the data (e.g.
categorical, ordinal, numerical). The choice is usually data and
application oriented.

Typically, each input point can be seen as a vector of attributes
xi = xi1, . . . , xin.

On numerical data (x ∈ Rn) one usually uses a p-norm, like the
(squared) Euclidean norm, or the 1-norm.

On categorical data, one can start from a dissimilarity between
single attributes and then combine it by adding the dissimilarities
of single attributes in a vector of attributes, possible weighted:

d(x,y) =
∑

k

wk d(xi , yi )

On ordinal data, one can take the distance of the (normalised)
rank.
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DISSIMILARITY MEASURES

A K -clustering can be seen as a map C : {1, . . . ,N} → {1, . . . ,K },
assigning each input point to a cluster.

There are two important quantities associated with a a
clustering. The within cluster distance is

W (C) =
1
2

K∑
k=1

∑
C(i)=k

∑
C(j)=k

d(xi,xj)

while the between-cluster distance is

B(C) =
1
2

K∑
k=1

∑
C(i)=k

∑
C(j),k

d(xi,xj)

It holds that W (C) + B(C) = T = 1
2
∑

i
∑

j,i d(xi,xj) where T is
the total distance.

Clustering algorithms try to solve (approximatively) the NP-hard
combinatorial optimisation problem:

argmaxCB(C) = argminCW (C)



DENSITY ESTIMATION CLUSTERING EXPECTATION MAXIMISATION DIMENSIONALITY REDUCTION 14 / 47

HIERARCHICAL CLUSTERING

Hierarchial clustering
combines (or divide) the
dataset pairwise, producing a
tree of successive groupings,
called dendrogram.

The dissimilarity measure can
be used to assign a length to
the edges of the dendrogram.

522 14. Unsupervised Learning
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FIGURE 14.12. Dendrogram from agglomerative hierarchical clustering with
average linkage to the human tumor microarray data.

chical structure produced by the algorithm. Hierarchical methods impose
hierarchical structure whether or not such structure actually exists in the
data.

The extent to which the hierarchical structure produced by a dendro-
gram actually represents the data itself can be judged by the cophenetic
correlation coefficient. This is the correlation between the N(N−1)/2 pair-
wise observation dissimilarities dii′ input to the algorithm and their corre-
sponding cophenetic dissimilarities Cii′ derived from the dendrogram. The
cophenetic dissimilarity Cii′ between two observations (i, i′) is the inter-
group dissimilarity at which observations i and i′ are first joined together
in the same cluster.

The cophenetic dissimilarity is a very restrictive dissimilarity measure.
First, the Cii′ over the observations must contain many ties, since only N−1
of the total N(N − 1)/2 values can be distinct. Also these dissimilarities
obey the ultrametric inequality

Cii′ ≤ max{Cik, Ci′k} (14.40)

Agglomerative HC combines pairwise clusters (initially single
data points), until they are all merged. The sequence of
combinations produces the dendrogram.

Divisive HC starts from a single cluster and splits it in two
iteratively.
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AGGLOMERATIVE HIERARCHICAL CLUSTERING

Agglomerative HC keeps a list with the current clusters, and at
each step combines the two clusters G,H that are closer to each
other. Different ways of measure the cluster dissimilarity give
rise to different dendrograms.

Single Linkage:

dSL(G,H) = min
i∈G,j∈H

d(xi ,xj )

Complete Linkage:

dCL(G,H) = max
i∈G,j∈H

d(xi ,xj )

Group Average:

dGA(G,H) =
1

NGNH

∑
i∈G,j∈H

d(xi ,xj )

524 14. Unsupervised Learning

Average Linkage Complete Linkage Single Linkage

FIGURE 14.13. Dendrograms from agglomerative hierarchical clustering of hu-
man tumor microarray data.

observations within them are relatively close together (small dissimilarities)
as compared with observations in different clusters. To the extent this is
not the case, results will differ.

Single linkage (14.41) only requires that a single dissimilarity dii′ , i ∈ G
and i′ ∈ H, be small for two groups G and H to be considered close
together, irrespective of the other observation dissimilarities between the
groups. It will therefore have a tendency to combine, at relatively low
thresholds, observations linked by a series of close intermediate observa-
tions. This phenomenon, referred to as chaining, is often considered a de-
fect of the method. The clusters produced by single linkage can violate the
“compactness” property that all observations within each cluster tend to
be similar to one another, based on the supplied observation dissimilari-
ties {dii′}. If we define the diameter DG of a group of observations as the
largest dissimilarity among its members

DG = max
i∈G
i′∈G

dii′ , (14.44)

then single linkage can produce clusters with very large diameters.
Complete linkage (14.42) represents the opposite extreme. Two groups

G and H are considered close only if all of the observations in their union
are relatively similar. It will tend to produce compact clusters with small
diameters (14.44). However, it can produce clusters that violate the “close-
ness” property. That is, observations assigned to a cluster can be much
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k -MEANS

The number of clusters k is fixed. The algorithm assumes
numerical vectors and works with the euclidean distance.

Each cluster is represented by its centroid yj . The assignment of
input points xn to clusters is obtained by a 1-of-k scheme
(one-hot encoding), with boolean variables rnj equal to one iff
point xn is assigned to cluster j .

The algorithm tries to minimise the following distortion measure,
related to the inter-cluster distance:

J =
k∑

j=1

N∑
n=1

rnj‖xn − yj‖
2
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k -MEANS

Minimisation of J follows a greedy strategy, and alternates
between two steps:

Minimise J w.r.t. rnj holding yj fixed. This is achieved by
assigning each point xn to the closest centroid (ties broken
arbitrarily).

Minimise J w.r.t. yj . The derivative in this case is

2
∑

n

rnj (xn − yj )

leading to the solution:

yj =

∑
n rnjxn∑

n rnj

i.e. each yj is reassigned to the current cluster center.

The algorithm iterates until convergence. Initially, centroids can
be initialised randomly or to random data points (preferrable).
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k -MEANS
426 9. MIXTURE MODELS AND EM
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Figure 9.1 Illustration of the K-means algorithm using the re-scaled Old Faithful data set. (a) Green points
denote the data set in a two-dimensional Euclidean space. The initial choices for centres µ1 and µ2 are shown
by the red and blue crosses, respectively. (b) In the initial E step, each data point is assigned either to the red
cluster or to the blue cluster, according to which cluster centre is nearer. This is equivalent to classifying the
points according to which side of the perpendicular bisector of the two cluster centres, shown by the magenta
line, they lie on. (c) In the subsequent M step, each cluster centre is re-computed to be the mean of the points
assigned to the corresponding cluster. (d)–(i) show successive E and M steps through to final convergence of
the algorithm.
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k -MEDOIDS

Works similarly to k -means, with two major differences:

The distance between two points x and x′ is given by a generic
function D(x,x′).

Centroids are restricted to be selected among data points.

restricting centroids to datapoints makes the algorithm more
robust to outliers.
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MIXTURES OF GAUSSIANS

This is a soft clustering technique: each point will have a certain
probability of being assigned to any of the classes.

It is a generative approach, assuming data is generated by a
mixture of Gaussians of the form

p(x) =
K∑

k=1

πkN(x|µk ,Σk )

We can then learn from the input data the parameters of the
mixtures, and compute the probability of assigning each point x
to a class k .

This learning problem is best solved by introducing latent
variables z for the class of each point x, and the using the
Expectation-Maximisation algorithm maximise the likelihood.
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MIXTURES OF GAUSSIANS

Let us introduce latent variables z = (z1, . . . , zK ), such that zk is
one iff a point belongs to the k -th Gaussian in the mixture.

Latent variables are not observed, but we can assume the full
input would consist of pairs (xn, zn).

Then p(x) is the marginal distribution

p(x) =
∑

z

p(x, z) =
∑

z

p(x|z)p(z),

where

p(z) =
∏

k

πzk
k and p(x|z) =

∏
k

N(x|µk ,Σk )zk

An important quantity is the responsibility γ(zk ) (i.e. the
probability of assigning x to class k ):

γ(zk ) = p(zk = 1|x) =
πkN(x|µk ,Σk )∑
k πkN(x|µk ,Σk )
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LATENT VARIABLES

Expectation-Maximisation (EP) is a general algorithm to
maximise likelihood for models with observed variables
X = x1, . . . ,xN and latent (non-observed) variables
Z = z1, . . . , zN .

We assume family of models parameterised by θ. The
log-likelihood we have to optimise is

log p(X|θ) = log
∑

Z

p(X,Z|θ)

With some work, one can prove that the following decomposition
holds (where q(Z) is a generic distribution on Z):

log p(X|θ) = L(q, θ) + KL(q||p)

L(q, θ) =
∑

Z

q(Z) log
p(X,Z|θ)

q(Z)

KL(q||p) = −
∑

Z

q(Z) log
p(Z|X, θ)

q(Z)
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LIKELIHOOD DECOMPOSITION

Let’s prove: log p(X|θ) = L(q, θ) + KL(q||p), with

L(q, θ) =
∑

Z

q(Z) log
p(X,Z|θ)

q(Z)
KL(q||p) = −

∑
Z

q(Z) log
p(Z|X, θ)

q(Z)

(Use log p(X|θ) =
∑

Z q(Z) log p(X|θ), add and subtract to the log
factor log p(Z|X, θ), then use
log p(X|θ) + log p(Z|X, θ) = log p(X,Z|θ), finally add and remove∑

Z q(Z) log q(Z).)
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LIKELIHOOD DECOMPOSITION
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LIKELIHOOD DECOMPOSITION AND EM

L(q, θ) is a functional of q (it is a distribution on the latent
variables Z ) and a function of the parameters θ.

As KL(q||p) ≥ 0, with equality iff q = p(Z|X, θ), it follows that

L(q, θ) ≤ log p(X|θ)

i.e. L(q, θ) is a lower bound on the log likelihood of interest.

Expectation-Maximisation is an optimisation algorithm which
optimises the lower bound L(q, θ) alternating two phases: one in
which L is optimised w.r.t. q (E step) and one in which it is
optimised w.r.t. θ (M step).

It is guaranteed to converge to a local optimum of log p(X|θ).
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EXPECTATION STEP

In the E step, L(q, θ) is optimised w.r.t. q(Z), holding the current
value θold of θ fixed.

To find the solution, consider the decomposition
log p(X|θold ) = L(q, θold ) + KL(q||p), and note that log p(X|θold )
does not depend on q, hence the value of L(q, θold ) can never
exceed log p(X|θold ).

Furthermore, it attains this value when KL(q||p) = 0, i.e. for

q(Z) = p(Z|X, θold )

When observations Xn are i.i.d., with corresponding latent
variables zn, then p(Z|X, θ) factorises w.r.t. observations:

9.4. The EM Algorithm in General 453

Figure 9.14 The EM algorithm involves alter-
nately computing a lower bound
on the log likelihood for the cur-
rent parameter values and then
maximizing this bound to obtain
the new parameter values. See
the text for a full discussion.

θold θnew

L (q, θ)

ln p(X|θ)

complete data) log likelihood function whose value we wish to maximize. We start
with some initial parameter value θold, and in the first E step we evaluate the poste-
rior distribution over latent variables, which gives rise to a lower bound L(θ, θ(old))

whose value equals the log likelihood at θ(old), as shown by the blue curve. Note that
the bound makes a tangential contact with the log likelihood at θ(old), so that both
curves have the same gradient. This bound is a convex function having a uniqueExercise 9.25
maximum (for mixture components from the exponential family). In the M step, the
bound is maximized giving the value θ(new), which gives a larger value of log likeli-
hood than θ(old). The subsequent E step then constructs a bound that is tangential at
θ(new) as shown by the green curve.

For the particular case of an independent, identically distributed data set, X
will comprise N data points {xn} while Z will comprise N corresponding latent
variables {zn}, where n = 1, . . . , N . From the independence assumption, we have
p(X,Z) =

∏
n p(xn, zn) and, by marginalizing over the {zn} we have p(X) =∏

n p(xn). Using the sum and product rules, we see that the posterior probability
that is evaluated in the E step takes the form

p(Z|X, θ) =
p(X,Z|θ)∑

Z

p(X,Z|θ)
=

N∏

n=1

p(xn, zn|θ)

∑

Z

N∏

n=1

p(xn, zn|θ)

=

N∏

n=1

p(zn|xn, θ) (9.75)

and so the posterior distribution also factorizes with respect to n. In the case of
the Gaussian mixture model this simply says that the responsibility that each of the
mixture components takes for a particular data point xn depends only on the value
of xn and on the parameters θ of the mixture components, not on the values of the
other data points.

We have seen that both the E and the M steps of the EM algorithm are increas-
ing the value of a well-defined bound on the log likelihood function and that the
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MAXIMISATION STEP

In the M step, the distribution q(Z) is held fixed, and the lower
bound L(q, θ) is optimised w.r.t. θ, obtaining a novel point θnew .

For the new value θnew , L(q, θnew ) does not necessarily coincide
with log p(X|θnew ), i.e. the KL-divergence is generally non-zero.

In particular, as we are optimising, this implies that both (a) the
value of L(q, θ) and (b) the value of log p(X|θ) are increased in
the M step.

By plugging q(Z) = p(Z|X, θold ) into L(q, θ), we see that we are
optimising

452 9. MIXTURE MODELS AND EM

Figure 9.12 Illustration of the E step of
the EM algorithm. The q
distribution is set equal to
the posterior distribution for
the current parameter val-
ues θold, causing the lower
bound to move up to the
same value as the log like-
lihood function, with the KL
divergence vanishing. ln p(X|θold)L(q, θold)

KL(q||p) = 0

shown in Figure 9.13. If we substitute q(Z) = p(Z|X, θold) into (9.71), we see that,
after the E step, the lower bound takes the form

L(q, θ) =
∑

Z

p(Z|X, θold) ln p(X,Z|θ) −
∑

Z

p(Z|X, θold) ln p(Z|X, θold)

= Q(θ, θold) + const (9.74)

where the constant is simply the negative entropy of the q distribution and is there-
fore independent of θ. Thus in the M step, the quantity that is being maximized is the
expectation of the complete-data log likelihood, as we saw earlier in the case of mix-
tures of Gaussians. Note that the variable θ over which we are optimizing appears
only inside the logarithm. If the joint distribution p(Z,X|θ) comprises a member of
the exponential family, or a product of such members, then we see that the logarithm
will cancel the exponential and lead to an M step that will be typically much simpler
than the maximization of the corresponding incomplete-data log likelihood function
p(X|θ).

The operation of the EM algorithm can also be viewed in the space of parame-
ters, as illustrated schematically in Figure 9.14. Here the red curve depicts the (in-

Figure 9.13 Illustration of the M step of the EM
algorithm. The distribution q(Z)
is held fixed and the lower bound
L(q, θ) is maximized with respect
to the parameter vector θ to give
a revised value θnew. Because the
KL divergence is nonnegative, this
causes the log likelihood ln p(X|θ)
to increase by at least as much as
the lower bound does.

ln p(X|θnew)L(q, θnew)

KL(q||p)

which can be rewritten as

L(q, θ) = EZ|X,θold [log p(X,Z|θ)] + H(Z|X, θold )
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EM VISUALLY
452 9. MIXTURE MODELS AND EM
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shown in Figure 9.13. If we substitute q(Z) = p(Z|X, θold) into (9.71), we see that,
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∑
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= Q(θ, θold) + const (9.74)

where the constant is simply the negative entropy of the q distribution and is there-
fore independent of θ. Thus in the M step, the quantity that is being maximized is the
expectation of the complete-data log likelihood, as we saw earlier in the case of mix-
tures of Gaussians. Note that the variable θ over which we are optimizing appears
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algorithm. The distribution q(Z)
is held fixed and the lower bound
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E step
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where the constant is simply the negative entropy of the q distribution and is there-
fore independent of θ. Thus in the M step, the quantity that is being maximized is the
expectation of the complete-data log likelihood, as we saw earlier in the case of mix-
tures of Gaussians. Note that the variable θ over which we are optimizing appears
only inside the logarithm. If the joint distribution p(Z,X|θ) comprises a member of
the exponential family, or a product of such members, then we see that the logarithm
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Figure 9.14 The EM algorithm involves alter-
nately computing a lower bound
on the log likelihood for the cur-
rent parameter values and then
maximizing this bound to obtain
the new parameter values. See
the text for a full discussion.
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complete data) log likelihood function whose value we wish to maximize. We start
with some initial parameter value θold, and in the first E step we evaluate the poste-
rior distribution over latent variables, which gives rise to a lower bound L(θ, θ(old))

whose value equals the log likelihood at θ(old), as shown by the blue curve. Note that
the bound makes a tangential contact with the log likelihood at θ(old), so that both
curves have the same gradient. This bound is a convex function having a uniqueExercise 9.25
maximum (for mixture components from the exponential family). In the M step, the
bound is maximized giving the value θ(new), which gives a larger value of log likeli-
hood than θ(old). The subsequent E step then constructs a bound that is tangential at
θ(new) as shown by the green curve.

For the particular case of an independent, identically distributed data set, X
will comprise N data points {xn} while Z will comprise N corresponding latent
variables {zn}, where n = 1, . . . , N . From the independence assumption, we have
p(X,Z) =

∏
n p(xn, zn) and, by marginalizing over the {zn} we have p(X) =∏

n p(xn). Using the sum and product rules, we see that the posterior probability
that is evaluated in the E step takes the form

p(Z|X, θ) =
p(X,Z|θ)∑

Z

p(X,Z|θ)
=

N∏

n=1

p(xn, zn|θ)

∑

Z

N∏

n=1

p(xn, zn|θ)

=

N∏

n=1

p(zn|xn, θ) (9.75)

and so the posterior distribution also factorizes with respect to n. In the case of
the Gaussian mixture model this simply says that the responsibility that each of the
mixture components takes for a particular data point xn depends only on the value
of xn and on the parameters θ of the mixture components, not on the values of the
other data points.

We have seen that both the E and the M steps of the EM algorithm are increas-
ing the value of a well-defined bound on the log likelihood function and that the
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EM: MISCELLANEA

In the EM algorithm, both the E and the M steps increase the
lower bound, and a complete cycle increases the full
log-likelihood. Hence, the algorithm will eventually converge to a
(local) maximum of the full log-likelihood.

A similar approach can be used to maximise the log-posterior
distribution log p(θ|X) = log p(θ,X) − log p(X):

454 9. MIXTURE MODELS AND EM

complete EM cycle will change the model parameters in such a way as to cause
the log likelihood to increase (unless it is already at a maximum, in which case the
parameters remain unchanged).

We can also use the EM algorithm to maximize the posterior distribution p(θ|X)
for models in which we have introduced a prior p(θ) over the parameters. To see this,
we note that as a function of θ, we have p(θ|X) = p(θ,X)/p(X) and so

ln p(θ|X) = ln p(θ,X) − ln p(X). (9.76)

Making use of the decomposition (9.70), we have

ln p(θ|X) = L(q, θ) + KL(q∥p) + ln p(θ) − ln p(X)

! L(q, θ) + ln p(θ) − ln p(X). (9.77)

where ln p(X) is a constant. We can again optimize the right-hand side alternately
with respect to q and θ. The optimization with respect to q gives rise to the same E-
step equations as for the standard EM algorithm, because q only appears in L(q, θ).
The M-step equations are modified through the introduction of the prior term ln p(θ),
which typically requires only a small modification to the standard maximum likeli-
hood M-step equations.

The EM algorithm breaks down the potentially difficult problem of maximizing
the likelihood function into two stages, the E step and the M step, each of which will
often prove simpler to implement. Nevertheless, for complex models it may be the
case that either the E step or the M step, or indeed both, remain intractable. This
leads to two possible extensions of the EM algorithm, as follows.

The generalized EM, or GEM, algorithm addresses the problem of an intractable
M step. Instead of aiming to maximize L(q, θ) with respect to θ, it seeks instead
to change the parameters in such a way as to increase its value. Again, because
L(q, θ) is a lower bound on the log likelihood function, each complete EM cycle of
the GEM algorithm is guaranteed to increase the value of the log likelihood (unless
the parameters already correspond to a local maximum). One way to exploit the
GEM approach would be to use one of the nonlinear optimization strategies, such
as the conjugate gradients algorithm, during the M step. Another form of GEM
algorithm, known as the expectation conditional maximization, or ECM, algorithm,
involves making several constrained optimizations within each M step (Meng and
Rubin, 1993). For instance, the parameters might be partitioned into groups, and the
M step is broken down into multiple steps each of which involves optimizing one of
the subset with the remainder held fixed.

We can similarly generalize the E step of the EM algorithm by performing a
partial, rather than complete, optimization of L(q, θ) with respect to q(Z) (Neal and
Hinton, 1999). As we have seen, for any given value of θ there is a unique maximum
of L(q, θ) with respect to q(Z) that corresponds to the posterior distribution qθ(Z) =
p(Z|X, θ) and that for this choice of q(Z) the bound L(q, θ) is equal to the log
likelihood function ln p(X|θ). It follows that any algorithm that converges to the
global maximum of L(q, θ) will find a value of θ that is also a global maximum
of the log likelihood ln p(X|θ). Provided p(X,Z|θ) is a continuous function of θ

Here the E step is the same (log p(θ)) does not depend on q,
while the M step is required to maximise L(q, θ) + log p(θ).

There are several Generalised EM (GEM) algorithms that try to
overcome a hard E or M step. E.g. the M step can be replaced
by some steps increasing L(q, θ) without reaching an optimum.
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EM FOR THE MIXTURE OF GAUSSIANS

Remember that for a mixture of K gaussians, we have

p(Z) =
∏

n

πznk
k

and
p(X|Z) =

∏
n

∏
k

N(xn |µk ,Σk )znk

hence the log-likelihood of the joint distribution is

442 9. MIXTURE MODELS AND EM

Figure 9.9 This shows the same graph as in Figure 9.6 except that
we now suppose that the discrete variables zn are ob-
served, as well as the data variables xn.

xn

zn

N

µ Σ

π

Now consider the problem of maximizing the likelihood for the complete data
set {X,Z}. From (9.10) and (9.11), this likelihood function takes the form

p(X,Z|µ,Σ, π) =

N∏

n=1

K∏

k=1

πznk

k N (xn|µk,Σk)znk (9.35)

where znk denotes the kth component of zn. Taking the logarithm, we obtain

ln p(X,Z|µ,Σ, π) =

N∑

n=1

K∑

k=1

znk {lnπk + lnN (xn|µk,Σk)} . (9.36)

Comparison with the log likelihood function (9.14) for the incomplete data shows
that the summation over k and the logarithm have been interchanged. The loga-
rithm now acts directly on the Gaussian distribution, which itself is a member of
the exponential family. Not surprisingly, this leads to a much simpler solution to
the maximum likelihood problem, as we now show. Consider first the maximization
with respect to the means and covariances. Because zn is a K-dimensional vec-
tor with all elements equal to 0 except for a single element having the value 1, the
complete-data log likelihood function is simply a sum of K independent contribu-
tions, one for each mixture component. Thus the maximization with respect to a
mean or a covariance is exactly as for a single Gaussian, except that it involves only
the subset of data points that are ‘assigned’ to that component. For the maximization
with respect to the mixing coefficients, we note that these are coupled for different
values of k by virtue of the summation constraint (9.9). Again, this can be enforced
using a Lagrange multiplier as before, and leads to the result

πk =
1

N

N∑

n=1

znk (9.37)

so that the mixing coefficients are equal to the fractions of data points assigned to
the corresponding components.

Thus we see that the complete-data log likelihood function can be maximized
trivially in closed form. In practice, however, we do not have values for the latent
variables so, as discussed earlier, we consider the expectation, with respect to the
posterior distribution of the latent variables, of the complete-data log likelihood.
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EM FOR THE MIXTURE OF GAUSSIANS

In the E step, we need to compute p(Z|X, µΣ, π), which is given
by

9.3. An Alternative View of EM 443

Using (9.10) and (9.11) together with Bayes’ theorem, we see that this posterior
distribution takes the form

p(Z|X, µ,Σ, π) ∝
N∏

n=1

K∏

k=1

[πkN (xn|µk,Σk)]
znk . (9.38)

and hence factorizes over n so that under the posterior distribution the {zn} are
independent. This is easily verified by inspection of the directed graph in Figure 9.6Exercise 9.5
and making use of the d-separation criterion. The expected value of the indicatorSection 8.2
variable znk under this posterior distribution is then given by

E[znk] =

∑

znk

znk [πkN (xn|µk,Σk)]
znk

∑

znj

[
πjN (xn|µj ,Σj)

]znj

=
πkN (xn|µk,Σk)

K∑

j=1

πjN (xn|µj ,Σj)

= γ(znk) (9.39)

which is just the responsibility of component k for data point xn. The expected value
of the complete-data log likelihood function is therefore given by

EZ[ln p(X,Z|µ,Σ, π)] =

N∑

n=1

K∑

k=1

γ(znk) {lnπk + lnN (xn|µk,Σk)} . (9.40)

We can now proceed as follows. First we choose some initial values for the param-
eters µold, Σold and πold, and use these to evaluate the responsibilities (the E step).
We then keep the responsibilities fixed and maximize (9.40) with respect to µk, Σk

and πk (the M step). This leads to closed form solutions for µnew, Σnew and πnew

given by (9.17), (9.19), and (9.22) as before. This is precisely the EM algorithm forExercise 9.8
Gaussian mixtures as derived earlier. We shall gain more insight into the role of the
expected complete-data log likelihood function when we give a proof of convergence
of the EM algorithm in Section 9.4.

9.3.2 Relation to K-means
Comparison of the K-means algorithm with the EM algorithm for Gaussian

mixtures shows that there is a close similarity. Whereas the K-means algorithm
performs a hard assignment of data points to clusters, in which each data point is
associated uniquely with one cluster, the EM algorithm makes a soft assignment
based on the posterior probabilities. In fact, we can derive the K-means algorithm
as a particular limit of EM for Gaussian mixtures as follows.

Consider a Gaussian mixture model in which the covariance matrices of the
mixture components are given by ϵI, where ϵ is a variance parameter that is shared

where the expectations of the znk are
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Using (9.10) and (9.11) together with Bayes’ theorem, we see that this posterior
distribution takes the form

p(Z|X, µ,Σ, π) ∝
N∏

n=1

K∏

k=1

[πkN (xn|µk,Σk)]
znk . (9.38)

and hence factorizes over n so that under the posterior distribution the {zn} are
independent. This is easily verified by inspection of the directed graph in Figure 9.6Exercise 9.5
and making use of the d-separation criterion. The expected value of the indicatorSection 8.2
variable znk under this posterior distribution is then given by

E[znk] =

∑

znk

znk [πkN (xn|µk,Σk)]
znk

∑

znj

[
πjN (xn|µj ,Σj)

]znj

=
πkN (xn|µk,Σk)

K∑

j=1

πjN (xn|µj ,Σj)

= γ(znk) (9.39)

which is just the responsibility of component k for data point xn. The expected value
of the complete-data log likelihood function is therefore given by

EZ[ln p(X,Z|µ,Σ, π)] =

N∑

n=1

K∑

k=1

γ(znk) {lnπk + lnN (xn|µk,Σk)} . (9.40)

We can now proceed as follows. First we choose some initial values for the param-
eters µold, Σold and πold, and use these to evaluate the responsibilities (the E step).
We then keep the responsibilities fixed and maximize (9.40) with respect to µk, Σk

and πk (the M step). This leads to closed form solutions for µnew, Σnew and πnew

given by (9.17), (9.19), and (9.22) as before. This is precisely the EM algorithm forExercise 9.8
Gaussian mixtures as derived earlier. We shall gain more insight into the role of the
expected complete-data log likelihood function when we give a proof of convergence
of the EM algorithm in Section 9.4.

9.3.2 Relation to K-means
Comparison of the K-means algorithm with the EM algorithm for Gaussian

mixtures shows that there is a close similarity. Whereas the K-means algorithm
performs a hard assignment of data points to clusters, in which each data point is
associated uniquely with one cluster, the EM algorithm makes a soft assignment
based on the posterior probabilities. In fact, we can derive the K-means algorithm
as a particular limit of EM for Gaussian mixtures as follows.

Consider a Gaussian mixture model in which the covariance matrices of the
mixture components are given by ϵI, where ϵ is a variance parameter that is shared



DENSITY ESTIMATION CLUSTERING EXPECTATION MAXIMISATION DIMENSIONALITY REDUCTION 32 / 47

EM FOR THE MIXTURE OF GAUSSIANS

In the M step, we first compute the expectation w.r.t.
p(Z|X, µ,Σ, π), of the complete data log-likelihood
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Then we maximise this expression w.r.t. the parameters (with
Nk =

∑
n γ(znk )), obtaining
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3. M step. Re-estimate the parameters using the current responsibilities

µnew
k =

1

Nk

N∑

n=1

γ(znk)xn (9.24)

Σnew
k =

1

Nk

N∑

n=1

γ(znk) (xn − µnew
k ) (xn − µnew

k )
T (9.25)

πnew
k =

Nk

N
(9.26)

where

Nk =

N∑

n=1

γ(znk). (9.27)

4. Evaluate the log likelihood

ln p(X|µ,Σ, π) =

N∑

n=1

ln

{
K∑

k=1

πkN (xn|µk,Σk)

}
(9.28)

and check for convergence of either the parameters or the log likelihood. If
the convergence criterion is not satisfied return to step 2.

9.3. An Alternative View of EM

In this section, we present a complementary view of the EM algorithm that recog-
nizes the key role played by latent variables. We discuss this approach first of all
in an abstract setting, and then for illustration we consider once again the case of
Gaussian mixtures.

The goal of the EM algorithm is to find maximum likelihood solutions for mod-
els having latent variables. We denote the set of all observed data by X, in which the
nth row represents xT

n , and similarly we denote the set of all latent variables by Z,
with a corresponding row zT

n . The set of all model parameters is denoted by θ, and
so the log likelihood function is given by

ln p(X|θ) = ln

{∑

Z

p(X,Z|θ)

}
. (9.29)

Note that our discussion will apply equally well to continuous latent variables simply
by replacing the sum over Z with an integral.

A key observation is that the summation over the latent variables appears inside
the logarithm. Even if the joint distribution p(X,Z|θ) belongs to the exponential
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The algorithm is initialised by choosing µk , Σk , πk . Typically, one
runs a k-means clustering, and initialised the parameters as the
result of the clustering:
� µk , Σk : sample mean and variances in cluster k ;
� πk : fraction of data points in cluster k .

Each loop the EM algorithm thus compute the responsibilities
and the new mean, variance and mixture probabilities.

Computation is iterated until convergence is met, i.e. the change
in parameters, or in the log-likelihood
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becomes smaller than a prescribed error.
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MIXTURE OF GAUSSIANS AND k -MEANS

k -means and mixtures of Gaussians are related: the latter is a
soft version of k -means: each data point is assigned to each
cluster with a given probability.

Suppose we run EM on a gaussian mixture, by fixing the
covariance to be equal to εI, where ε is held fixed. The
responsibilities are now estimated as

444 9. MIXTURE MODELS AND EM

by all of the components, and I is the identity matrix, so that

p(x|µk,Σk) =
1

(2πϵ)1/2
exp

{
− 1

2ϵ
∥x − µk∥2

}
. (9.41)

We now consider the EM algorithm for a mixture of K Gaussians of this form in
which we treat ϵ as a fixed constant, instead of a parameter to be re-estimated. From
(9.13) the posterior probabilities, or responsibilities, for a particular data point xn,
are given by

γ(znk) =
πk exp {−∥xn − µk∥2/2ϵ}∑
j πj exp

{
−∥xn − µj∥2/2ϵ

} . (9.42)

If we consider the limit ϵ → 0, we see that in the denominator the term for which
∥xn − µj∥2 is smallest will go to zero most slowly, and hence the responsibilities
γ(znk) for the data point xn all go to zero except for term j, for which the responsi-
bility γ(znj) will go to unity. Note that this holds independently of the values of the
πk so long as none of the πk is zero. Thus, in this limit, we obtain a hard assignment
of data points to clusters, just as in the K-means algorithm, so that γ(znk) → rnk

where rnk is defined by (9.2). Each data point is thereby assigned to the cluster
having the closest mean.

The EM re-estimation equation for the µk, given by (9.17), then reduces to the
K-means result (9.4). Note that the re-estimation formula for the mixing coefficients
(9.22) simply re-sets the value of πk to be equal to the fraction of data points assigned
to cluster k, although these parameters no longer play an active role in the algorithm.

Finally, in the limit ϵ → 0 the expected complete-data log likelihood, given by
(9.40), becomesExercise 9.11

EZ[ln p(X,Z|µ,Σ, π)] → −1

2

N∑

n=1

K∑

k=1

rnk∥xn − µk∥2 + const. (9.43)

Thus we see that in this limit, maximizing the expected complete-data log likelihood
is equivalent to minimizing the distortion measure J for the K-means algorithm
given by (9.1).

Note that the K-means algorithm does not estimate the covariances of the clus-
ters but only the cluster means. A hard-assignment version of the Gaussian mixture
model with general covariance matrices, known as the elliptical K-means algorithm,
has been considered by Sung and Poggio (1994).

9.3.3 Mixtures of Bernoulli distributions
So far in this chapter, we have focussed on distributions over continuous vari-

ables described by mixtures of Gaussians. As a further example of mixture mod-
elling, and to illustrate the EM algorithm in a different context, we now discuss mix-
tures of discrete binary variables described by Bernoulli distributions. This model
is also known as latent class analysis (Lazarsfeld and Henry, 1968; McLachlan and
Peel, 2000). As well as being of practical importance in its own right, our discus-
sion of Bernoulli mixtures will also lay the foundation for a consideration of hidden
Markov models over discrete variables.Section 13.2

In the limit ε → 0, this converges to 1 for the component
minimising ‖xn − µk ‖ (as in k -means). Means also converge to
the same expression for k -means. Furthermore, the data
log-likelihood in this limit is
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i.e. EM and k -means minimise the same score function.
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PRINCIPAL COMPONENT ANALYSIS

PCA is a widely used method for dimensionality reduction,
feature extraction, lossy compression, and visualisation.

The starting point is a dataset X of d-dimensional input data
x1, . . . ,xN .

It is a linear projection technique. The idea is to project a
d-dimensional dataset into an m-dimensional one, m < d , such
that either (a) the total sum of square error is minimised or (b)
the variance of the projected data is maximised.

Both methods lead to the same result.

The so obtained linear subspace is known as principal
subspace, and its axes as principal components.

There exist a probabilistic formulation of PCA, which assumes a
linear Gaussian generative model for the data and learns its
parameters by maximum likelihood, possibly exploiting an EM
algorithm.
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PCA: MAXIMUM VARIANCE FORMULATION

Consider a dataset X, and assume u1, . . . ,um is an orthonormal
basis of the m-dimensional space we are looking for. Arrange
them column-wise in a matrix U.

The projection of a point xn in the subspace spanned by U is
given by UT xj .

The mean of the projected data is thus UT x̄, where x̄ = 1
N

∑
n xn.

The variance of the projected data instead is

1
N

∑
n

[UT xn − UT x̄][UT xn − UT x̄]T = UT SU

where
S =

1
N

∑
n

(xn − x̄)(xn − x̄)T

is the data-covariance matrix
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PCA: MAXIMUM VARIANCE FORMULATION

Consider the case m = 1, for simplicity. We maximise the
variance, subject to the constraint that u1 is normalised
(otherwise the optimal solution is to take it to infinity). For this we
introduce a Langrange multiplier λ1, and maximise the
Lagrangian:

uT
1 Su1 + λ1(1 − uT

1 u1)

Deriving w.r.t. u1 and setting to zero we get

Su1 = λ1u1

hence λ1 is an eigenvalue of S and u1 an eigenvector.

Multiplying both sides for uT
1 and using uT

1 u1 = 1, we get

uT
1 Su1 = λ1

which shows that the variance is maximised by taking the
eigenvector of the largest eigenvalue of S.
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PCA: MAXIMUM VARIANCE FORMULATION

In the general case of m > 1, one can inductively show that the
optimal choice is to the the eigenvectors u1, . . . ,um associated to
the largest m eigenvalues λ1, . . . , λm.

The cost of finding all eigenvalues/ eigenvectors of S is O(d3)
(plus the cost of computing S, which is O(Nd2). If we are only
interested in m eigenvectors, we can use specialised algorithms
that cost O(md2).
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PCA: MINIMUM-ERROR FORMULATION

Here we take a complementary approach to variance
maximisation. We fix an orthonormal basis uj , and express the
data points in this new basis, as

xn =
∑

j

(xT
n uj )uj

The goal is to best approximate these points using only m
dimensions, i.e. with points of the form

x̃n =
m∑

j=1

znjuj +
d∑

j=m+1

bjuj

where znj = xT
n uj and bj = x̄T uj .
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PCA: MINIMUM-ERROR FORMULATION

By taking the mean sum of square error,

J =
1
N

∑
n

‖xn − x̃n‖
2

and inserting the expression for x̃n, we get

J =
d∑

j=m+1

uT
j Suj

From this expression, using lagrange multipliers like for the max
variance case, we see immediately that the minimum is obtained
by taking the m principal components as the eigenvectors of the
m largest eigenvalues, so that J is the sum of the d −m smallest
eigenvalues.
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PCA APPLICATIONS

Dimensionality reduction: run PCA for the m largest eigenvalues
explaining α% of the data variance.

Data compression: reduce coordinates of points by PCA and
reconstruct them by using x̃n =

∑m
j=1 znjuj +

∑d
j=m+1 bjuj .

Example: handwritten digits 12.1. Principal Component Analysis 567

Original M = 1 M = 10 M = 50 M = 250

Figure 12.5 An original example from the off-line digits data set together with its PCA reconstructions
obtained by retaining M principal components for various values of M . As M increases
the reconstruction becomes more accurate and would become perfect when M = D =
28 × 28 = 784.

where we have made use of the relation

x =

D∑

i=1

(
xTui

)
ui (12.21)

which follows from the completeness of the {ui}. This represents a compression
of the data set, because for each data point we have replaced the D-dimensional
vector xn with an M -dimensional vector having components

(
xT

nui − xTui

)
. The

smaller the value of M , the greater the degree of compression. Examples of PCA
reconstructions of data points for the digits data set are shown in Figure 12.5.

Another application of principal component analysis is to data pre-processing.
In this case, the goal is not dimensionality reduction but rather the transformation of
a data set in order to standardize certain of its properties. This can be important in
allowing subsequent pattern recognition algorithms to be applied successfully to the
data set. Typically, it is done when the original variables are measured in various dif-
ferent units or have significantly different variability. For instance in the Old Faithful
data set, the time between eruptions is typically an order of magnitude greater thanAppendix A
the duration of an eruption. When we applied the K-means algorithm to this data
set, we first made a separate linear re-scaling of the individual variables such thatSection 9.1
each variable had zero mean and unit variance. This is known as standardizing the
data, and the covariance matrix for the standardized data has components

ρij =
1

N

N∑

n=1

(xni − xi)

σi

(xnj − xj)

σj
(12.22)

where σi is the variance of xi. This is known as the correlation matrix of the original
data and has the property that if two components xi and xj of the data are perfectly
correlated, then ρij = 1, and if they are uncorrelated, then ρij = 0.

However, using PCA we can make a more substantial normalization of the data
to give it zero mean and unit covariance, so that different variables become decorre-
lated. To do this, we first write the eigenvector equation (12.17) in the form

SU = UL (12.23)
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PCA APPLICATIONS

A third common application is data renormalisation, a technique
usually known as withening or sphering.

The idea is to do a PCA with m = d , in order to make the data
have zero mean and unit covariance.

Consider the full eigenvalue equation SU = UL, where L is the
diagonal matrix with eigenvalues. After solving it, we
renormalise data as

yn = L−1/2UT (xn − x̄)

These new points have unit covariance:

568 12. CONTINUOUS LATENT VARIABLES
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Figure 12.6 Illustration of the effects of linear pre-processing applied to the Old Faithful data set. The plot on
the left shows the original data. The centre plot shows the result of standardizing the individual variables to zero
mean and unit variance. Also shown are the principal axes of this normalized data set, plotted over the range
±λ

1/2
i . The plot on the right shows the result of whitening of the data to give it zero mean and unit covariance.

where L is a D × D diagonal matrix with elements λi, and U is a D × D orthog-
onal matrix with columns given by ui. Then we define, for each data point xn, a
transformed value given by

yn = L−1/2UT(xn − x) (12.24)

where x is the sample mean defined by (12.1). Clearly, the set {yn} has zero mean,
and its covariance is given by the identity matrix because

1

N

N∑

n=1

ynyT
n =

1

N

N∑

n=1

L−1/2UT(xn − x)(xn − x)TUL−1/2

= L−1/2UTSUL−1/2 = L−1/2LL−1/2 = I. (12.25)

This operation is known as whitening or sphereing the data and is illustrated for the
Old Faithful data set in Figure 12.6.Appendix A

It is interesting to compare PCA with the Fisher linear discriminant which was
discussed in Section 4.1.4. Both methods can be viewed as techniques for linear
dimensionality reduction. However, PCA is unsupervised and depends only on the
values xn whereas Fisher linear discriminant also uses class-label information. This
difference is highlighted by the example in Figure 12.7.

Another common application of principal component analysis is to data visual-
ization. Here each data point is projected onto a two-dimensional (M = 2) principal
subspace, so that a data point xn is plotted at Cartesian coordinates given by xT

nu1

and xT
nu2, where u1 and u2 are the eigenvectors corresponding to the largest and

second largest eigenvalues. An example of such a plot, for the oil flow data set, isAppendix A
shown in Figure 12.8.
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PCA APPLICATIONS
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Another common application of principal component analysis is to data visual-
ization. Here each data point is projected onto a two-dimensional (M = 2) principal
subspace, so that a data point xn is plotted at Cartesian coordinates given by xT

nu1

and xT
nu2, where u1 and u2 are the eigenvectors corresponding to the largest and

second largest eigenvalues. An example of such a plot, for the oil flow data set, isAppendix A
shown in Figure 12.8.

An example of withering
above.

Finally, PCA can be used for
data visualisation, by
projecting data on a 2D
space.
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Figure 12.7 A comparison of principal compo-
nent analysis with Fisher’s linear
discriminant for linear dimension-
ality reduction. Here the data in
two dimensions, belonging to two
classes shown in red and blue, is
to be projected onto a single di-
mension. PCA chooses the direc-
tion of maximum variance, shown
by the magenta curve, which leads
to strong class overlap, whereas
the Fisher linear discriminant takes
account of the class labels and
leads to a projection onto the green
curve giving much better class
separation.
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Figure 12.8 Visualization of the oil flow data set obtained
by projecting the data onto the first two prin-
cipal components. The red, blue, and green
points correspond to the ‘laminar’, ‘homo-
geneous’, and ‘annular’ flow configurations
respectively.

12.1.4 PCA for high-dimensional data
In some applications of principal component analysis, the number of data points

is smaller than the dimensionality of the data space. For example, we might want to
apply PCA to a data set of a few hundred images, each of which corresponds to a
vector in a space of potentially several million dimensions (corresponding to three
colour values for each of the pixels in the image). Note that in a D-dimensional space
a set of N points, where N < D, defines a linear subspace whose dimensionality
is at most N − 1, and so there is little point in applying PCA for values of M
that are greater than N − 1. Indeed, if we perform PCA we will find that at least
D − N + 1 of the eigenvalues are zero, corresponding to eigenvectors along whose
directions the data set has zero variance. Furthermore, typical algorithms for finding
the eigenvectors of a D×D matrix have a computational cost that scales like O(D3),
and so for applications such as the image example, a direct application of PCA will
be computationally infeasible.

We can resolve this problem as follows. First, let us define X to be the (N ×D)-
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PCA IN HIGH DIMENSIONS

By defining the matrix X with rows (xn − x̄)T , we have that
S = N−1X T X , hence the eigenvector equation is
N−1X T Xui = λiui .

By multiplying both sides by X , and calling Xui = vi , we have
that the equation N−1XX T vi = λivi holds for the same
eigenvalues.

We can solve it for vi and obtain ui back by setting

ui =
1

(Nλi )1/2
X T vi

The matrix XX T is N × N, while X T X is d × d , hence if N << d ,
this second formulation is more convenient (notice: X T X will
have at most N − 1 non null eigenvalues).
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PROBABILISTIC PCA

Probabilistic PCA rephrases PCA in a probabilistic framework by
defining a generative model for the data. Assume z is a vector in
Rm, with distribution N(z|0, I). The generative model for x is

x = Wz + µ + ε

with ε = N(0, σ2I).

Hence Probabilstic PCA learns a map (i.e. W , µ, σ2) from the
low dimensional space to the high dimensional one, by
maximum likelihood.

Solution is µ = x̄, W = U(L−σ2I)1/2R, σ2 = 1/(d −m)
∑d

j=m+1 λj ;
where U is the matrix with columns given by the m largest
eigenvectors of S, L is the diagonal matrix with the m largest
eigenvalues, and R is an arbitrary rotation matrix.

The projection of a point x is given by E[z|x] = MW T (x − x̄), with
M = W T W + σ2I (z is pushed closer to 0 than with PCA).

For σ2 → 0, we obtain back the classic PCA solution.
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OTHER DIMENSIONALITY REDUCTION METHODS

There are many dimensionality reduction techniques, that try to
circumvent the limitations of PCA, mainly the linearity of the
manifold we project into.

We list a few here: kernel PCA, using a dual formulation in terms
of kernels, principal curves and surfaces, working with non-linear
manifolds, autoassociative neural networks, for which the
projection is expressed as a NN, Indipendent component
analysis, which uses a probabilistic formulation with a
non-gaussian, but factorised distribution over the reduced
variables z.
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