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UNSUPERVISED LEARNING - OVERVIEW

Unsupervised learning: No
labels are given to the
learning algorithm (input
only), leaving it on its own to
find structure in its input.
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UNSUPERVISED LEARNING - OVERVIEW

Unsupervised learning: No |
labels are given to the

learning algorithm (input 03
only), leaving it on its own to :
find structure in its input.

0 0.5 1 0 0.5 1

o Clustering: discover groups of similar examples within the
data.

o Density estimation: determine the distribution of data
within the input space.

e Dimensionality reduction: project the data from a
high-dimensional space to a lower dimension space. Often
down to two or three dimensions for the purpose of
visualization.
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DENSITY ESTIMATION

Given input data X, ..., Xn, sampled by an unknown distribution
p(X), estimate p.

@ One way to solve this problem is to fix a parametric family of
distributions p(X|6) and then estimate parameters 6 according to
ML, MAP, or with a fully Bayesian treatment. The drawback is
that a bad choice of the family of distributions can result in a
poor fit of data.

@ Non-parametric methods try to construct an estimate from data
only, avoiding the pitfalls involved in choosing the correct family
of models.
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HISTOGRAM DENSITY

@ (1D) Partition input space in bins (intervals) By, ..., Bk,s each of
size A, and count how many input points n; fall inside each bin
j. Define the density p(x) as p; if x € B;, where
pi = NA
@ The resulting density is discontinuous, and the quality of the fit
depends on the bin size.

@ Curse of dimensionality: the number of bins grows exponentially
with the dimension d of x.

An illustration of the histogram approach H

to density estimation, in which a data set 3 A=0.04 RUIeS fOI’ number Of b|ns
of 50 data points is generated from the

distribution shown by the green curve.

Histogram density estimates, based on O 05 1 [+] k = VN Slmple but Often Used

(2.241), with a common bin width A are

shown for various values of A. A =0.08 s
= ‘.d @ Scott’s normal ref rule: k = Y~

0 0.5 1 3.56

5
A =025 . . i . N1/3
N ;i @ Freedman-Diaconis’ rule: k = 555
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DATA-BASED ESTIMATOR

@ Histogram estimation at a point x uses information only from few
data points close to x, those lying in the same bin. But bins are
rigid and result in discontinuous densities.

@ We can do better “placing a (hard/ soft) box” in each point x.

@ Consider now a little box B containing point x, with volume V,
and let P be the probability that a sampled point is in B, i.e.
P = [;p(x)dx. The probability P can be estimated as P = K/N,
for sufficiently large K and N (law of large numbers for
Binomial), where K is the number of points falling into B.
Furthermore, if B is sufficiently small, we can approximate P as
p(x) V. It then follows that

for x € B.

@ We can now either fix K and estimate V from data
(K-nearest-neighbour) or fix V and estimate K from data
(kernel-based or Parzen estimators)
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PARZEN ESTIMATOR

@ Consider the function (Parzen window)

1 ulle <3
k(u) _{ 0, otherwise

@ Then a data point x,, is inside the cube of edge length h centred
in x if and only if
K (x - xn) _1,

h
so that the number of data points in the cube is

X — Xp
K=Y k( i )
n
@ Then the estimate for the density p (in d dimensions) becomes:

P09 = s LK)
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PARZEN ESTIMATOR

@ The Parzen window is still discontinuous. An alternative
approach is to use a smooth function, i.e. a kernel satisfying
k(x) > 0 and [ k(x)dx = 1.

@ a common choice is the Gaussian kernel, giving the estimate:

1 1 lIX — X2
0= 5 3 gy " )

lllustration of the kernel density model 5
(2.250) applied to the same data set used h = 0.005
to demonstrate the histogram approach in
Figure 2.24. We see that h acts as a i
smoothing parameter and that if it is set 0 05 1
too small (top panel), the result is a very 5 .
noisy density model, whereas if it is set h=0.07
too large (bottom panel), then the bimodal
nature of the underlying distribution from
which the data is generated (shown by the " 05 1
green curve) is washed out. The bestden- 5
sity model is obtained for some intermedi-
ate value of h (middle panel).

h=02
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K-NEAREST NEIGHBOUR ESTIMATOR

@ It may be more convenient to have h depending on the local
density of observations, to avoid over or under-smoothing.

@ K-nearest neighbour solves this problem by setting the radius of
the sphere/ box for Parzen estimation such that it exactly
contains K points, i.e. equal to the distance of the K-th closest
point to x. Then p(x) is estimated as K/V(x)N, where V(x) is
the volume of the sphere/box.

@ K-NN can be used also for classification, by assigning to class
Ck class-conditional probability in x equal to Kx/K, where K is

the number of points of class K.

lllustration of K-nearest-neighbour den-
sity estimation using the same data set
as in Figures 2.25 and 2.24. We see
that the parameter K governs the degree
of smoothing, so that a small value of
K leads to a very noisy density model
(top panel), whereas a large value (bot-
tom panel) smoothes out the bimodal na-
ture of the true distribution (shown by the
green curve) from which the data set was
generated.

5

0.5

0.5

K =30

0.5
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CLUSTERING: AN OVERVIEW
Given input data x4, ..., XN, group data into K separate groups, such

that points in each group are as similar as possible and points in
different groups are as different as possible.

@ We need a notion of dissimilarity between input points. Different
measures can produce different clusters.

o Clustering can be defined as a (hard) combinatorial optimisation
problem. Clustering algorithms implement different approximate
search strategies.

@ Some methods require to fix a priori the number of clusters
(k-means, k-medoids).

@ Other methods produce a tree of possible clusters (hierarchical
clustering).

@ Soft clustering returns a probabilistic assignment of each point
to each cluster.
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DISSIMILARITY MEASURES

@ There are many different ways of constructing a dissimilarity
between input points, depending on the nature of the data (e.g.
categorical, ordinal, numerical). The choice is usually data and
application oriented.

@ Typically, each input point can be seen as a vector of attributes
Xi = X1, .., Xin-

@ On numerical data (x € R") one usually uses a p-norm, like the
(squared) Euclidean norm, or the 1-norm.

@ On categorical data, one can start from a dissimilarity between
single attributes and then combine it by adding the dissimilarities
of single attributes in a vector of attributes, possible weighted:

alx,y) = Z wid(X;, ¥i)
K

@ On ordinal data, one can take the distance of the (normalised)
rank.
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DISSIMILARITY MEASURES

@ A K-clustering can be seenasamap C: {1,..., Ny —{1,..., K},
assigning each input point to a cluster.

@ There are two important quantities associated with a a
clustering. The within cluster distance is

we)y=5> > > dxix)
k=1 C(i)=k C(j)=k

while the between-cluster distance is

Z PAPIELRY

=k C(j)#k
e Itholds that W(C) + B(C) = T = } 3 ¥4 d(Xi, X;) where T is
the total distance.

@ Clustering algorithms try to solve (approximatively) the NP-hard
combinatorial optimisation problem:

argmaxB(C) = argmin,W(C)

13747
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HIERARCHICAL CLUSTERING

@ Hierarchial clustering
combines (or divide) the
dataset pairwise, producing a
tree of successive groupings,
called dendrogram.

o The dissimilarity measure can
be used to assign a length to
the edges of the dendrogram.

FIGURE 14.12. Dendy
average linkage to

@ Agglomerative HC combines pairwise clusters (initially single
data points), until they are all merged. The sequence of
combinations produces the dendrogram.

@ Divisive HC starts from a single cluster and splits it in two
iteratively.
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AGGLOMERATIVE HIERARCHICAL CLUSTERING

@ Agglomerative HC keeps a list with the current clusters, and at
each step combines the two clusters G, H that are closer to each
other. Different ways of measure the cluster dissimilarity give
rise to different dendrograms.

o Single Linkage:

dsi (G, H) = iergi'rE]H d(x;,x j) Aveage Linkage Conplts Linage SigeLinkage

@ Complete Linkage:

de (G, H) = iég?g(H d(x;, ;)

@ Group Average:

FIGURE 14.13. from

1 man tumor microarray data.
dea(G, H) = Z d(x;, x;)

NaNy icGjeH

clustering of hu-
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K-MEANS

@ The number of clusters k is fixed. The algorithm assumes
numerical vectors and works with the euclidean distance.

@ Each cluster is represented by its centroid y;. The assignment of
input points X, to clusters is obtained by a 1-of-k scheme
(one-hot encoding), with boolean variables rp; equal to one iff
point x,, is assigned to cluster j.

@ The algorithm tries to minimise the following distortion measure,
related to the inter-cluster distance:

N

J= 2, 2 mlkn = i

Jj=1 n=1
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K-MEANS

@ Minimisation of J follows a greedy strategy, and alternates
between two steps:

@ Minimise J w.r.t. ry holding y; fixed. This is achieved by
assigning each point x,, to the closest centroid (ties broken
arbitrarily).

@ Minimise J w.r.t. y;. The derivative in this case is
2 Z Inj(Xn = ¥))
n
leading to the solution:

Y = Zn I'njXn
j=2n
2n I'nj
i.e. eachy; is reassigned to the current cluster center.

@ The algorithm iterates until convergence. Initially, centroids can
be initialised randomly or to random data points (preferrable).
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K-MEANS

-2

-2
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K-MEDOIDS

o Works similarly to k-means, with two major differences:

@ The distance between two points x and x’ is given by a generic
function D(x,x’).

@ Centroids are restricted to be selected among data points.

@ restricting centroids to datapoints makes the algorithm more
robust to outliers.
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MIXTURES OF GAUSSIANS

@ This is a soft clustering technique: each point will have a certain
probability of being assigned to any of the classes.

@ ltis a generative approach, assuming data is generated by a
mixture of Gaussians of the form

K
p(x) = Z N Xk, Xk)
=

@ We can then learn from the input data the parameters of the
mixtures, and compute the probability of assigning each point x
to a class k.

@ This learning problem is best solved by introducing latent
variables z for the class of each point x, and the using the
Expectation-Maximisation algorithm maximise the likelihood.
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MIXTURES OF GAUSSIANS

@ Let us introduce latent variables z = (z1, ..., zx), such that z is
one iff a point belongs to the k-th Gaussian in the mixture.

@ Latent variables are not observed, but we can assume the full
input would consist of pairs (Xn, z,).

@ Then p(x) is the marginal distribution
p(x) = " p(x.2) = > p(xiz)p(2),
z z

where

p(z) = Hnik and  p(xz) = I—[N(Xlﬂk,zk)Zk
k K

@ An important quantity is the responsibility y(zx) (i.e. the
probability of assigning x to class k):

N (Xluk, X
7 = pla = 1) = £ L(x;k ;)k)
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LATENT VARIABLES

@ Expectation-Maximisation (EP) is a general algorithm to
maximise likelihood for models with observed variables
X = xy,...,Xy and latent (non-observed) variables
Z=2,...,2N.

@ We assume family of models parameterised by 6. The
log-likelihood we have to optimise is

log p(Xi6) = log " p(X, ZI)
z

@ With some work, one can prove that the following decomposition
holds (where g(Z) is a generic distribution on Z):

log p(XI6) = L(q,6) + KL(qllp)
xmm

Z q(z @)
KL(qllp) = Zq(Z)I X) )
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LIKELIHOOD DECOMPOSITION
o Let’s prove: log p(XI9) = L(g.6) + KL(qllp), with

- p(X,Z|) X.0)
- ; q(Z)log = 7= KL(qllp) = Z q(z )
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LIKELIHOOD DECOMPOSITION
o Let’s prove: log p(XI9) = L(g.6) + KL(qllp), with

_ p(X.Z19) X, )
= ; q(Z)log = 7= KL(qllp) = Z q(z )

o (Use log p(X|8) = ¥z q(Z) log p(X|#), add and subtract to the log
factor log p(Z|X, 6), then use
log p(X|6) + log p(ZIX, 8) = log p(X, Z|9), finally add and remove
2z9(2)logq(2).)
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LIKELIHOOD DECOMPOSITION AND EM

o £(q,0) is a functional of q (it is a distribution on the latent
variables Z) and a function of the parameters 6.

@ As KL(qllp) = 0, with equality iff g = p(Z|X, 9), it follows that
L(q.9) < log p(XI6)

i.e. £(qg,0) is a lower bound on the log likelihood of interest.

o Expectation-Maximisation is an optimisation algorithm which
optimises the lower bound £L(q, 8) alternating two phases: one in
which £ is optimised w.r.t. q (E step) and one in which it is
optimised w.r.t. 6 (M step).

o ltis guaranteed to converge to a local optimum of log p(X|9).
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EXPECTATION STEP

@ In the E step, £(q, 0) is optimised w.r.t. g(Z), holding the current
value 6,4 of 0 fixed.

@ To find the solution, consider the decomposition
log p(X|6oid) = L(q. 6oia) + KL(qllp), and note that log p(X|6oiq)
does not depend on g, hence the value of £(q,80q) can never
exceed log p(X|for)-

o Furthermore, it attains this value when KL(qllp) = 0, i.e. for
9(Z) = p(ZIX. boia)

@ When observations X, are i.i.d., with corresponding latent
variables z,,, then p(Z|X, 9) factorises w.r.t. observations:

N

X.206) [1rGxnzale)
p(ZIX.0) = 9)__ _n= [ ozt ) ©75)

(X,Z6) N =
Z” ) Zﬂp(xmzn\e) =

Z n=1
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MAXIMISATION STEP

@ In the M step, the distribution q(Z) is held fixed, and the lower
bound £(q, ) is optimised w.r.t. 8, obtaining a novel point 0,ey.

@ For the new value 6pen, £(9g, Onew) does not necessarily coincide
with log p(X|0rew ), i.€. the KL-divergence is generally non-zero.

@ In particular, as we are optimising, this implies that both (a) the
value of £(q,6) and (b) the value of log p(X|6) are increased in
the M step.

@ By plugging g(Z) = p(ZIX, 6.14) into L(q, ), we see that we are
optimising

L(g,0) = > p(ZX,0°)Inp(X,Z|0) — Y p(Z[X,0°¢) Inp(Z[X, 6°)
Z Z

which can be rewritten as

£(q,6) = Ezix.654[109 P(X, ZI6)] + H(ZIX, 6o1a)
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EM VISUALLY

KL(qllp)

KL(qllp) =0 _I_
L(q,0°%) In p(X]6°'%)
L(q,0") Inp(X]6")
E step
M step

Figure 9.14 The EM algorithm involves alter-
nately computing a lower bound
on the log likelihood for the cur-
rent parameter values and then
maximizing this bound to obtain
the new parameter values. See
the text for a full discussion.

Inp(X1)

pold gnew
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EM: MISCELLANEA

o In the EM algorithm, both the E and the M steps increase the
lower bound, and a complete cycle increases the full
log-likelihood. Hence, the algorithm will eventually converge to a
(local) maximum of the full log-likelihood.

@ A similar approach can be used to maximise the log-posterior
distribution log p(6]X) = log p(6, X) — log p(X):
Inp(0|X) L(g,0) + KL(q|lp) + Inp(0) — Inp(X)
L(g,0) +1np(0) — Inp(X). (9.77)

Vol

Here the E step is the same (log p(6)) does not depend on q,
while the M step is required to maximise £(q, 6) + log p(6).

@ There are several Generalised EM (GEM) algorithms that try to
overcome a hard E or M step. E.g. the M step can be replaced
by some steps increasing £(q, ) without reaching an optimum.
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EM FOR THE MIXTURE OF GAUSSIANS

@ Remember that for a mixture of K gaussians, we have
p2) = [
n

and

p(XiZ) = [ | [ T~ alas, =)™
k

n

hence the log-likelihood of the joint distribution is

N K
Inp(X,Z|p, X, 7) = Z Z Zng {ln g + In N (x5 |y, Xie) } -

n=1 k=1

30/47

(9.36)
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EM FOR THE MIXTURE OF GAUSSIANS

@ In the E step, we need to compute p(Z|X, uX, 7), which is given
by

N K
p(Z|IX, 1, B, 7) H H (6N (X | g, )] (9.38)
where the expectations of the z,, are

Z Znk (TN (X | g, Bi)] 7

E[an] = Znk _
Z [77‘7'/\/’()(”‘“]_, E])] nj

Znj

N (X |, i)

K
> mN (k. 35)

=1

= (znk) 9.39)
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EM FOR THE MIXTURE OF GAUSSIANS

@ In the M step, we first compute the expectation w.r.t.
p(ZIX, u, X, ), of the complete data log-likelihood

N K
Ez[Inp(X, Z|p, 3, m)] = > > " y(zn) {Inm + N (x|, Si)} . (9.40)

n=1 k=1

@ Then we maximise this expression w.r.t. the parameters (with
N = %n¥(Zn)), obtaining

N
1
ew - — . 9.24
i Nk;v(z o)X (9.24)
1 N
TV = MZWM) (xn — 1) (%0 — p=)" (9.25)
n=1
N,
mev = =k (9.26)

N
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EM FOR THE MIXTURE OF GAUSSIANS

@ The algorithm is initialised by choosing u, Xk, 7x. Typically, one
runs a k-means clustering, and initialised the parameters as the
result of the clustering:

o uk, Xx: sample mean and variances in cluster k;
o mrk: fraction of data points in cluster k.

@ Each loop the EM algorithm thus compute the responsibilities
and the new mean, variance and mixture probabilities.

o Computation is iterated until convergence is met, i.e. the change
in parameters, or in the log-likelihood

Inp(X|p, X, 7) = ZIH{ZMN xn|uk,2k)} (9.28)
n=1

becomes smaller than a prescribed error.
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MIXTURE OF GAUSSIANS AND K-MEANS

@ k-means and mixtures of Gaussians are related: the latter is a
soft version of k-means: each data point is assigned to each
cluster with a given probability.

@ Suppose we run EM on a gaussian mixture, by fixing the
covariance to be equal to €/, where ¢ is held fixed. The
responsibilities are now estimated as

i exp {— [0 — gy ?/2¢}
>, exp { —|%, — ;P /2€}

@ Inthe limit e — 0, this converges to 1 for the component
minimising ||X, — uxl| (as in k-means). Means also converge to
the same expression for k-means. Furthermore, the data
log-likelihood in this limit is

7(Z7vk) (942)

N K
1
Ez[np(X, Z|p, 2, )] ) Z ; Prk|[Xn — pag||* + const. (9.43)

i.e. EM and k-means minimise the same score function.
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PRINCIPAL COMPONENT ANALYSIS

o PCA is a widely used method for dimensionality reduction,
feature extraction, lossy compression, and visualisation.

@ The starting point is a dataset X of d-dimensional input data
X1,y..., XN

o Itis a linear projection technique. The idea is to project a
d-dimensional dataset into an m-dimensional one, m < d, such
that either (a) the total sum of square error is minimised or (b)
the variance of the projected data is maximised.

@ Both methods lead to the same result.

@ The so obtained linear subspace is known as principal
subspace, and its axes as principal components.

@ There exist a probabilistic formulation of PCA, which assumes a
linear Gaussian generative model for the data and learns its
parameters by maximum likelihood, possibly exploiting an EM
algorithm.
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PCA: MAXIMUM VARIANCE FORMULATION

@ Consider a dataset X, and assume uy, ..., Uy, is an orthonormal
basis of the m-dimensional space we are looking for. Arrange
them column-wise in a matrix U.

@ The projection of a point x,, in the subspace spanned by U is
given by UTx;.

@ The mean of the projected data is thus UTX, where X = 1, 3, X.

@ The variance of the projected data instead is
1N Z[UTX,, - U'X[U™x,-U™x]" = UTsuU
n

where

is the data-covariance matrix
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PCA: MAXIMUM VARIANCE FORMULATION

@ Consider the case m = 1, for simplicity. We maximise the
variance, subject to the constraint that uy is normalised
(otherwise the optimal solution is to take it to infinity). For this we
introduce a Langrange multiplier 14, and maximise the
Lagrangian:

u/ Sus +4(1 -ufuy)

@ Deriving w.r.t. u; and setting to zero we get
SU1 = A1Uq4

hence 11 is an eigenvalue of S and uy an eigenvector.

@ Multiplying both sides for ul and using u/u; = 1, we get
U1TSU1 = A4

which shows that the variance is maximised by taking the
eigenvector of the largest eigenvalue of S.
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PCA: MAXIMUM VARIANCE FORMULATION

@ In the general case of m > 1, one can inductively show that the
optimal choice is to the the eigenvectors uy,...,u, associated to
the largest m eigenvalues A4,...,4m.

@ The cost of finding all eigenvalues/ eigenvectors of Sis O(d®)
(plus the cost of computing S, which is O(Na?). If we are only
interested in m eigenvectors, we can use specialised algorithms
that cost O(md?).
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PCA: MINIMUM-ERROR FORMULATION

@ Here we take a complementary approach to variance
maximisation. We fix an orthonormal basis u;, and express the
data points in this new basis, as

Xn = ) (Xgu)u;

i

@ The goal is to best approximate these points using only m
dimensions, i.e. with points of the form

X, = Zz,,,u,+ Z biu;

j=m+1

where z,; = x/u; and b; = X"u;.

40/47
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PCA: MINIMUM-ERROR FORMULATION

@ By taking the mean sum of square error,

1 S 112
J= Nguxn—xnn

and inserting the expression for X,, we get

J= Zd: ujTSu,-

J=m+1

@ From this expression, using lagrange multipliers like for the max
variance case, we see immediately that the minimum is obtained
by taking the m principal components as the eigenvectors of the
m largest eigenvalues, so that J is the sum of the d — m smallest
eigenvalues.
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PCA APPLICATIONS

@ Dimensionality reduction: run PCA for the m largest eigenvalues
explaining a% of the data variance.

o Data compression: reduce coordinates of points by PCA and
reconstruct them by using X, = X" zyu; + Z/['j:m+1 bju;.
Example: handwritten digits

Original M =10 M =50 M =250

11(3][3][3]]3

Figure 12.5 An original example from the off-line digits data set together with its PCA reconstructions
obtained by retaining M principal components for various values of M. As M increases
the reconstruction becomes more accurate and would become perfect when M = D =
28 x 28 = 784.
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PCA APPLICATIONS

@ A third common application is data renormalisation, a technique
usually known as withening or sphering.

@ The idea is to do a PCA with m = d, in order to make the data
have zero mean and unit covariance.

@ Consider the full eigenvalue equation SU = UL, where L is the
diagonal matrix with eigenvalues. After solving it, we
renormalise data as

Yo = L7207 (x, - X)

@ These new points have unit covariance:

N N

1 1

N E YnYn N E L~ ?U" (x, — X)(x, — X)TUL™'/2
n=1 n=1

= L Y2UTSULV2=L"'2LL"Y2=1  (12.25)
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EXPECTATION MAXIMISATION DIMENSIONALITY REDUCTION

PCA APPLICATIONS

100
90
80
70
60
50
40

@ An example of withering
above.

o Finally, PCA can be used for
data visualisation, by
projecting data on a 2D
space.

44/47
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PCA IN HIGH DIMENSIONS

@ By defining the matrix X with rows (x, — X)”, we have that
S = N'XT X, hence the eigenvector equation is
N_1XTXU,' = A;u;.

@ By multiplying both sides by X, and calling Xu; = v;, we have
that the equation N-'XXTv; = A;v; holds for the same
eigenvalues.

@ We can solve it for v; and obtain u; back by setting

1 T
u, = WX V;

@ The matrix XX is N x N, while X" X is d x d, hence if N << d,
this second formulation is more convenient (notice: X7 X will
have at most N — 1 non null eigenvalues).
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PROBABILISTIC PCA

@ Probabilistic PCA rephrases PCA in a probabilistic framework by
defining a generative model for the data. Assume z is a vector in
R™, with distribution N(z|0, /). The generative model for x is

x=Wz+u+e
with e = N(0,021).

@ Hence Probabilstic PCA learns a map (i.e. W, u, o) from the
low dimensional space to the high dimensional one, by
maximum likelihood.

o Solutionis u =X, W = U(L-c?1)'?R, 02 =1/(d-m) £
where U is the matrix with columns given by the m Iargest
eigenvectors of S, L is the diagonal matrix with the m largest
eigenvalues, and R is an arbitrary rotation matrix.

m+1

@ The projection of a point x is given by E[z|x] = MWT(x — X), with
M = WTW + o2/ (z is pushed closer to 0 than with PCA).

@ For o2 — 0, we obtain back the classic PCA solution.
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OTHER DIMENSIONALITY REDUCTION METHODS

o There are many dimensionality reduction techniques, that try to
circumvent the limitations of PCA, mainly the linearity of the
manifold we project into.

@ We list a few here: kernel PCA, using a dual formulation in terms
of kernels, principal curves and surfaces, working with non-linear
manifolds, autoassociative neural networks, for which the
projection is expressed as a NN, Indipendent component
analysis, which uses a probabilistic formulation with a
non-gaussian, but factorised distribution over the reduced
variables z.
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