Determination of crystal structures by X-ray diffraction

ラメ メラメ

← ロ → → ← 何 →

 \equiv 990

- 3 [The geometrical structure factor](#page-21-0)
- [The atomic form factor](#page-30-0)

 \equiv \cap α

イロト イ押ト イヨト イヨト

1 [Bragg and Von Laue formulation of X-ray diffraction by a crystal](#page-2-0)

[Experimental geometries suggested by the Laue condition](#page-15-0)

[The geometrical structure factor](#page-21-0)

÷

 QQ

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$

Diffraction by a crystal

The electromagnetic probe

X-ray diffraction

- \bullet Interatomic distances are of the order of A
	- 10^{-8} cm
	- $E=\hbar\omega=\frac{hc}{\lambda}\sim 12.3\times 10^3$ eV
- Wavelength and energies characteristic of X-rays
- Sharp peaks of scattered radiation
	- due to long range order
	- not found for amorphous solids or liquids

Diffraction by a crystal

The electromagnetic probe

X-ray diffraction

- We consider a rigid lattice of ions
- **•** Effect of vibrations:
	- decrease the intensity of the scattered peaks
	- contribute to the diffuse background

X-ray diffraction pattern from a crystal

 \leftarrow

 Ω

 \rightarrow \rightarrow \equiv

Diffraction by a crystal

X-ray diffraction

Equivalent Formulations

- **•** Bragg formulation
	- used by crystallographers
- Von Laue formulation
	- exploits the reciprocal lattice
	- closer to the solid-state approach

X-ray diffraction pattern from a crystal

÷,

 QQQ

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$

[Bragg and Von Laue formulation of X-ray diffraction by a crystal](#page-6-0)

X-ray diffraction by a crystal Bragg formulation

Bragg's interpretation of X-ray diffraction

- Crystal composed of parallel planes (lattice planes)
	- separated by a distance d
- Conditions for the appearance of sharp diffraction peaks
	- X-rays are specularly reflected by the crystal planes
	- constructive interference of reflected X-rays
- Bragg's condition: $n\lambda = 2d \sin \theta$
	- **a** *n* · order of reflection
	- θ : angle of incidence on the crystal's plane

D.

 QQQ

→ 何 ▶ → ヨ ▶ → ヨ ▶

4 D F

Bragg interpretation of X-ray diffraction

Simple derivation of Bragg condition

- **Condition for constructive interference:**
	- path difference $(2d \sin \theta)$ equals an integral number of wavelengths
	- total angle of deflection of the incident rays: 2θ

Bragg's interpretation of X-ray diffraction

Further observations

- A large number of reflections arise as a result of
	- different wavelengths of incident X-rays
	- \bullet different reflection orders *n* for a given set of planes
	- different set of lattice planes (infinitely many)

Two possible resolutions of the same crystal lattice into planes

Von Laue formulation

Assumptions

- Crystal composed of scatterers at the sites R of a Bravais lattice • atoms, ions
- Peaks are observed for directions of constructive interference between all scattered rays
- no resolution of the lattice into crystal planes
- no need to assume specular reflection

two scattering centers separated by a displacement vector d

Von Laue formulation

Derivation of the condition of constructive interference

- Wave vector of incident radiation: $\bm{k} = \frac{2\pi}{\lambda}$ $\frac{2\pi}{\lambda} \hat{\bm{n}}$
- Wave vector of scattered radiation: $\bm{k}'=\frac{2\pi}{\lambda}$ $\frac{2\pi}{\lambda} \hat{\bm{n}}'$ • elastic scattering
- Path difference: $\boldsymbol{d} \cdot (\hat{\boldsymbol{n}} \hat{\boldsymbol{n}}')$

•
$$
\mathbf{d} \cdot (\mathbf{k} - \mathbf{k}') = 2\pi m
$$
 (m integer)

two scattering centers separated by a displaceme[nt v](#page-9-0)e[cto](#page-11-0)[r](#page-9-0) d

Von Laue formulation

Derivation of the condition of constructive interference

- For all scatteres in the lattice: $\boldsymbol{R} \cdot (\boldsymbol{k} \boldsymbol{k}') = 2 \pi m, \ \forall \ \boldsymbol{R}$
	- all scattered rays interfere constructively
- Alternatively: $e^{i(\boldsymbol{k}'-\boldsymbol{k})\cdot\boldsymbol{R}}=1$
	- $\bm{k}-\bm{k}'$ is a reciprocal lattice vector $\bm{\mathsf{K}}$

two scattering centers separated by a displacement vector d

[Daniele Toffoli](#page-0-0) November 26, 2016 12 / 33

目

 QQ

イロト イ部 トメ ヨ トメ ヨト

Von Laue formulation

Another geometrical interpretation

- $\bm{k}-\bm{k}^{\prime}$ is a reciprocal lattice vector \bm{K}
- $k = |\mathbf{k} \mathbf{K}|$ and squaring

$$
\bullet \ \mathbf{k} \cdot \hat{\mathbf{K}} = \frac{1}{2} \mathbf{K}
$$

• component of k along K

k-space plane (Bragg plane)

Equivalence of Bragg and Von Laue formulations

Proof

- Von Laue condition: $\mathbf{k}' \mathbf{k} = \mathbf{K}$ $(k' = k)$
- K is \perp to a family of direct lattice planes

K bisects the angle between k and k'

 \leftarrow

 200

一 一 三

×

Equivalence of Bragg and Von Laue formulations

Proof

- if d distance between planes, $|\bm{K}| = 2k$ sin $\theta = n|\bm{K_0}| = n\frac{2\pi}{d}$ d
- k sin $\theta = \frac{n\pi}{d}$ $\frac{n\pi}{d}$ (Bragg condition)
- Reflection from the lattice planes \perp K
- The order of reflection is $n = \frac{|K|}{|K_0|}$ $|\mathcal{K}_0|$

K bisects the angle between k and k'

[Bragg and Von Laue formulation of X-ray diffraction by a crystal](#page-2-0)

2 [Experimental geometries suggested by the Laue condition](#page-15-0)

[The geometrical structure factor](#page-21-0)

 QQ

ALCOHOL: YES

← ロ → → ← 何 →

Experimental geometries suggested by the Laue condition The Laue condition

Devising experimental setups

- Laue condition: the tip of k must lie on a Bragg plane
	- k -space plane
- Difficult to realize for fixed orientation and λ
- How do we achieve enough sampling of the reciprocal space?
	- vary the wavelength of X-rays
	- vary the direction of incidence (i.e. relative orientation of the crystal)
- **e** Ewald construction

 QQQ

正々 メラメ

Experimental geometries suggested by the Laue condition A geometrical construction

The Ewald sphere

- Draw a sphere of radius k centered on the tip of \bm{k} $(k=\frac{2\pi}{\lambda})$ $\frac{2\pi}{\lambda}$
	- **•** passes through the origin
- Diffraction peaks for lattice points on the surface of the sphere
	- k' satisfies the Laue condition

∍

← 重

 QQ

э

The Laue method

- Use polychromatic X-rays (from λ_1 to λ_0)
	- fixed orientation of the crystal and incident direction \hat{n}

•
$$
\boldsymbol{k}_1=\tfrac{2\pi}{\lambda_1}\boldsymbol{\hat{n}},\ \boldsymbol{k}_0=\tfrac{2\pi}{\lambda_0}\boldsymbol{\hat{n}}
$$

- $\sum_{\lambda_1} \sum_{\lambda_2} \sum_{\lambda_3} \sum_{\lambda_4} \sum_{\lambda_5} \sum_{\lambda_6} \sum_{\lambda_7} \sum_{\lambda_8} \sum_{\lambda_9} \sum_{\lambda_1} \sum_{\lambda_1} \sum_{\lambda_2} \sum_{\lambda_3} \sum_{\lambda_4} \sum_{\lambda_5} \sum_{\lambda_7} \sum_{\lambda_8} \sum_{\lambda_9} \sum_{\lambda_1} \sum_{\lambda_1} \sum_{\lambda_2} \sum_{\lambda_3} \sum_{\lambda_4} \sum_{\lambda_5} \sum_{\lambda_7} \sum_{\lambda_8} \sum_{\lambda_9} \sum_{\$
	- region between the two spheres

the Ewald construction for the Laue met[hod](#page-17-0)

 200

The rotating-crystal method

- Use monochromatic X-rays of fixed incident direction
- Vary the orientation of the crystal
	- rotation around a fixed axis
	- the reciprocal lattice rotates around the same axis by the same amount

the Ewald construction for the rotating-crystal method

4 D F

[Daniele Toffoli](#page-0-0) November 26, 2016 20 / 33

 QQ

The Debye-Scherrer Method

Powder Method

• Rotating-crystal method with rotation axis over all possible directions

- finely dispersed powder (randomly oriented crystals)
- Each K generates a sphere of radius K
- All K such that $K < 2k$ generates a cone of diffracted radiation
	- $K=2k$ sin $\frac{1}{2}\phi$

the Ewald construction for the Debye-Scherrer Method

[Bragg and Von Laue formulation of X-ray diffraction by a crystal](#page-2-0)

[Experimental geometries suggested by the Laue condition](#page-15-0)

3 [The geometrical structure factor](#page-21-0)

÷

 QQ

イロト イ母 トイヨ トイヨト

Diffraction by a monoatomic lattice with a basis

The geometrical structure factor

Several identical scatterers in the primitive cell

- *n* scatterers at positions $\{d_i\}_{i=1,\dots,n}$
	- *n*-atom basis (e.g. diamond structure: $n = 2$)
- For a Bragg peak with $K = k' k$
	- constructive/desctructive interference btw scattered rays
	- Phase difference: $\mathbf{K} \cdot (\mathbf{d}_i \mathbf{d}_i)$

path difference btw rays scattered by centers at a distance d

 Ω

ミメスミン

→ 何 ▶

Diffraction by a monoatomic lattice with a basis

The geometrical structure factor

Several identical scatterers in the primitive cell

- The amplitude of the rays will differ by a factor $e^{i \boldsymbol{K} \cdot (\boldsymbol{d}_i \boldsymbol{d}_j)}$
- For the *n* scatterers the amplitudes are in the ratio:

$$
e^{i\boldsymbol{K}\cdot\boldsymbol{d}_1}:e^{i\boldsymbol{K}\cdot\boldsymbol{d}_2}:\ldots e^{i\boldsymbol{K}\cdot\boldsymbol{d}_n}
$$

The total amplitude of X-ray scattered by the cell contains the factor

$$
S_{\mathbf{K}} = \sum_{j=1}^{n} e^{i\mathbf{K} \cdot \mathbf{d}_j}
$$

- \bullet S_K: geometrical structure factor
- $I_{\boldsymbol{K}} \propto |\mathcal{S}_{\boldsymbol{K}}|^2$

Þ

- 4 国家 4 国家

4 ロト 4 何 ト

 QQ

Diffraction by a monoatomic lattice with a basis

The geometrical structure factor

Absolute intensity in a Bragg peak

- The intensity depends on K through S_K
- Not the only source of K dependence
	- characteristic angular dependence of the scattering process
	- *e* internal structure of the scatterer
- \bullet S_K alone cannot be used to predict the absolute intensity
- When $S_{\mathbf{K}} = 0 \Longrightarrow I_{\mathbf{K}} = 0$
	- complete destructive interference

÷

 QQQ

The South Book

Examples

bcc viewed as a sc lattice with a basis

- The reciprocal lattice is fcc
- **•** bcc can be regarded as a sc lattice with a basis
	- **•** primitive vectors: $a\hat{x}$, $a\hat{y}$, $a\hat{z}$

$$
\bullet \text{ basis: } \mathbf{d}_1 = 0, \ \mathbf{d}_2 = \left(\frac{a}{2}\right)(\hat{\mathbf{x}} + \hat{\mathbf{y}} + \hat{\mathbf{z}})
$$

 \bullet K must be a vector of the reciprocal lattice

•
$$
K = \frac{2\pi}{a} (n_1 \hat{x} + n_2 \hat{y} + n_3 \hat{z})
$$

\n• $S_K = 1 + e^{i\pi(n_1 + n_2 + n_3)} = 1 + (-1)^{n_1 + n_2 + n_3}$
\n• $S_K = 2$ when $n_1 + n_2 + n_3$ is even
\n• $S_K = 0$ when $n_1 + n_2 + n_3$ is odd

4 **D** F

э

 \sim

 Ω

Examples

bcc viewed as a sc lattice with a basis

- K vectors for which $S_K = 0$ will have no Bragg reflection
	- o odd number of nearest-neighbour bonds
	- from the origin
- K vectors for which $S_K \neq 0$ define a reciprocal fcc lattice

side of $\frac{4\pi}{a}$

K points for which $S_K = 2$ (black circles) and $S_K = 0$ (white circles)

Examples

Monoatomic diamond lattice (C, Si, Ge, grey tin)

- Not a Bravais lattice
- Viewed as a fcc lattice with a two-atom basis

\n- $$
a_1 = \frac{a}{2}(\hat{y} + \hat{z})
$$
 etc
\n- basis: $d_1 = 0$, $d_2 = \frac{a}{4}(\hat{x} + \hat{y} + \hat{z})$
\n

 $\boldsymbol{\mathsf{K}}$ must be a vector of the bcc reciprocal lattice $\boldsymbol{\mathsf{K}}=\sum_{i} \mathsf{n}_i \boldsymbol{b}_i$

\n- \n
$$
b_1 = \frac{2\pi}{a} \left(\hat{y} + \hat{z} - \hat{x} \right)
$$
\n
\n- \n $b_1 = \frac{2\pi}{a} \left(\hat{y} + \hat{z} - \hat{x} \right)$ \n
\n- \n $S_K = 1 + e^{i\frac{\pi}{2}(n_1 + n_2 + n_3)}$ \n
\n- \n $S_K = 2$ when $n_1 + n_2 + n_3$ is twice an even number\n
\n- \n $S_K = 0$ when $n_1 + n_2 + n_3$ is twice an odd number\n
\n- \n $S_K = 1 \pm i$ when $n_1 + n_2 + n_3$ is odd\n
\n

÷

 QQQ

ヨメ メヨメ

4 D F → 何 ▶

Examples

Monoatomic diamond lattice (C, Si, Ge, grey tin)

•
$$
K = \sum_{i} n_{i} b_{i} = \frac{4\pi}{a} (\nu_{1} \hat{x} + \nu_{2} \hat{y} + \nu_{3} \hat{z})
$$

\n• $\nu_{j} = \frac{1}{2} (n_{1} + n_{2} + n_{3}) - n_{j}$
\n• $\sum_{j} \nu_{j} = \frac{1}{2} (n_{1} + n_{2} + n_{3})$

• The bcc is viewed as composed of two sc lattices

• The first contains the origin $(K = 0)$

- ν_i are integers $(n_1 + n_2 + n_3)$ twice an even/odd)
- $\mathcal{S}_{\bm K}=$ 0, 2 $(\mathcal{S}_{\bm K}=$ 0 when $\sum_j \nu_j$ is odd, as before)

K points for which $S_K = 2$, $S_K = 1 \pm i$, and $S_K = 0$ (w[hite](#page-29-0) [c](#page-27-0)[ircle](#page-28-0)[s\)](#page-29-0)

Examples

Monoatomic diamond lattice (C, Si, Ge, grey tin)

•
$$
K = \sum_{i} n_{i} b_{i} = \frac{4\pi}{a} (\nu_{1} \hat{x} + \nu_{2} \hat{y} + \nu_{3} \hat{z})
$$

\n• $\nu_{j} = \frac{1}{2} (n_{1} + n_{2} + n_{3}) - n_{j}$
\n• $\sum_{j} \nu_{j} = \frac{1}{2} (n_{1} + n_{2} + n_{3})$

- The bcc is viewed as composed of two sc lattices
- The second contains $\bm{K} = \frac{4\pi}{3}$ a $\overline{1}$ $\frac{1}{2}(\hat{\mathbf{x}}+\hat{\mathbf{y}}+\hat{\mathbf{z}})$
	- all ν_i must be integer $+\frac{1}{2}$ $(n_1 + n_2 + n_3 \text{ odd})$
	- $S_K = 1 \pm i$

K points for which $S_K = 2$, $S_K = 1 \pm i$, and $S_K = 0$ (w[hite](#page-30-0) [c](#page-28-0)[ircle](#page-29-0)[s\)](#page-30-0)

[Bragg and Von Laue formulation of X-ray diffraction by a crystal](#page-2-0)

[Experimental geometries suggested by the Laue condition](#page-15-0)

[The geometrical structure factor](#page-21-0)

÷

 QQ

イロト イ母 トイヨ トイヨト

Diffraction by a polyatomic crystal

The atomic form factor

Scattering by different centers in the basis

o If the scatterers are not identical

$$
S_{\boldsymbol{K}} = \sum_{j=1}^n f_j(\boldsymbol{K})e^{i\boldsymbol{K}\cdot\boldsymbol{d}_j}
$$

- $f_i(K)$: atomic form factor
- depends on its internal structure
- identical centers have identical $f_i(K)$
- **•** consistent with previous treatment

÷

 QQQ

- 4 重 8 - 4 重 8

[The atomic form factor](#page-32-0)

Diffraction by a polyatomic crystal

The atomic form factor

Scattering by different centers in the basis

• In simple treatments

$$
f_j(\mathbf{K}) = -\frac{1}{e} \int d\mathbf{r} e^{i\mathbf{K} \cdot \mathbf{r}} \rho_j(\mathbf{r})
$$

- Fourier transform of $\rho_i(\mathbf{r})$
- $\rho_i(\mathbf{r})$: electronic charge density of ion of type j at $\mathbf{r} = 0$

 \equiv

 Ω

 $A \oplus B$ $A \oplus B$ $A \oplus B$

4 0 8