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Bragg and Von Laue formulation of X-ray diffraction by a crystal

Diffraction by a crystal
The electromagnetic probe

X-ray diffraction

Interatomic distances are of the order of Å

10−8cm
E = ~ω = hc

λ ∼ 12.3× 103 eV

Wavelength and energies characteristic of X-rays

Sharp peaks of scattered radiation

due to long range order
not found for amorphous solids or liquids

X-ray diffraction pattern from a crystal
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Bragg and Von Laue formulation of X-ray diffraction by a crystal

Diffraction by a crystal
The electromagnetic probe

X-ray diffraction

We consider a rigid lattice of ions

Effect of vibrations:

decrease the intensity of the scattered peaks
contribute to the diffuse background

X-ray diffraction pattern from a crystal
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Bragg and Von Laue formulation of X-ray diffraction by a crystal

Diffraction by a crystal
X-ray diffraction

Equivalent Formulations

Bragg formulation

used by crystallographers

Von Laue formulation

exploits the reciprocal lattice
closer to the solid-state approach

X-ray diffraction pattern from a crystal
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Bragg and Von Laue formulation of X-ray diffraction by a crystal

X-ray diffraction by a crystal
Bragg formulation

Bragg’s interpretation of X-ray diffraction

Crystal composed of parallel planes (lattice planes)

separated by a distance d

Conditions for the appearance of sharp diffraction peaks

X-rays are specularly reflected by the crystal planes
constructive interference of reflected X-rays

Bragg’s condition: nλ = 2d sin θ

n : order of reflection
θ: angle of incidence on the crystal’s plane
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Bragg and Von Laue formulation of X-ray diffraction by a crystal

X-ray diffraction by a crystal
Bragg interpretation of X-ray diffraction

Simple derivation of Bragg condition

Condition for constructive interference:

path difference (2d sin θ) equals an integral number of wavelengths
total angle of deflection of the incident rays: 2θ

reflection from a family of lattice planes Bragg angle θ
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Bragg and Von Laue formulation of X-ray diffraction by a crystal

X-ray diffraction by a crystal
Bragg’s interpretation of X-ray diffraction

Further observations

A large number of reflections arise as a result of

different wavelengths of incident X-rays
different reflection orders n for a given set of planes
different set of lattice planes (infinitely many)

Two possible resolutions of the same crystal lattice into planes
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Bragg and Von Laue formulation of X-ray diffraction by a crystal

X-ray diffraction by a crystal
Von Laue formulation

Assumptions

Crystal composed of scatterers at the sites R of a Bravais lattice

atoms, ions

Peaks are observed for directions of constructive interference between
all scattered rays

no resolution of the lattice into crystal planes

no need to assume specular reflection

two scattering centers separated by a displacement vector d
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Bragg and Von Laue formulation of X-ray diffraction by a crystal

X-ray diffraction by a crystal
Von Laue formulation

Derivation of the condition of constructive interference

Wave vector of incident radiation: k = 2π
λ n̂

Wave vector of scattered radiation: k ′ = 2π
λ n̂′

elastic scattering

Path difference: d · (n̂ − n̂′)
d · (k − k ′) = 2πm (m integer)

two scattering centers separated by a displacement vector d
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Bragg and Von Laue formulation of X-ray diffraction by a crystal

X-ray diffraction by a crystal
Von Laue formulation

Derivation of the condition of constructive interference

For all scatteres in the lattice: R · (k − k ′) = 2πm, ∀ R
all scattered rays interfere constructively

Alternatively: e i(k
′−k)·R = 1

k − k ′ is a reciprocal lattice vector K

two scattering centers separated by a displacement vector d
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Bragg and Von Laue formulation of X-ray diffraction by a crystal

X-ray diffraction by a crystal
Von Laue formulation

Another geometrical interpretation

k − k ′ is a reciprocal lattice vector K
k = |k −K | and squaring

k · K̂ = 1
2K

component of k along K

k-space plane (Bragg plane)
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Bragg and Von Laue formulation of X-ray diffraction by a crystal

X-ray diffraction by a crystal
Equivalence of Bragg and Von Laue formulations

Proof

Von Laue condition: k ′ − k = K (k ′ = k)

K is ⊥ to a family of direct lattice planes

K bisects the angle between k and k′
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Bragg and Von Laue formulation of X-ray diffraction by a crystal

X-ray diffraction by a crystal
Equivalence of Bragg and Von Laue formulations

Proof

if d distance between planes, |K | = 2k sin θ = n|K0| = n 2π
d

k sin θ = nπ
d (Bragg condition)

Reflection from the lattice planes ⊥ K
The order of reflection is n = |K |

|K0|

K bisects the angle between k and k′
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Experimental geometries suggested by the Laue condition

Experimental geometries suggested by the Laue condition
The Laue condition

Devising experimental setups

Laue condition: the tip of k must lie on a Bragg plane

k-space plane

Difficult to realize for fixed orientation and λ

How do we achieve enough sampling of the reciprocal space?

vary the wavelength of X-rays
vary the direction of incidence (i.e. relative orientation of the crystal)

Ewald construction
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Experimental geometries suggested by the Laue condition

Experimental geometries suggested by the Laue condition
A geometrical construction

The Ewald sphere

Draw a sphere of radius k centered on the tip of k (k = 2π
λ )

passes through the origin

Diffraction peaks for lattice points on the surface of the sphere

k ′ satisfies the Laue condition

the Ewald construction
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Experimental geometries suggested by the Laue condition

Experimental geometries suggested by the Laue condition
The Laue method

Use polychromatic X-rays (from λ1 to λ0)
fixed orientation of the crystal and incident direction n̂
k1 = 2π

λ1
n̂, k0 = 2π

λ0
n̂

Diffracted rays in correspondence to multiple reciprocal lattice points
region between the two spheres

the Ewald construction for the Laue method
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Experimental geometries suggested by the Laue condition

Experimental geometries suggested by the Laue condition
The rotating-crystal method

Use monochromatic X-rays of fixed incident direction
Vary the orientation of the crystal

rotation around a fixed axis
the reciprocal lattice rotates around the same axis by the same amount

the Ewald construction for the rotating-crystal method
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Experimental geometries suggested by the Laue condition

Experimental geometries suggested by the Laue condition
The Debye-Scherrer Method

Powder Method

Rotating-crystal method with rotation axis over all possible directions

finely dispersed powder (randomly oriented crystals)
Each K generates a sphere of radius K

All K such that K < 2k generates a cone of diffracted radiation

K = 2k sin 1
2φ

the Ewald construction for the Debye-Scherrer Method
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The geometrical structure factor

Diffraction by a monoatomic lattice with a basis
The geometrical structure factor

Several identical scatterers in the primitive cell

n scatterers at positions {di}i=1,...,n

n-atom basis (e.g. diamond structure: n =2)

For a Bragg peak with K = k ′ − k
constructive/desctructive interference btw scattered rays
Phase difference: K · (di − dj)

path difference btw rays scattered by centers at a distance d
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The geometrical structure factor

Diffraction by a monoatomic lattice with a basis
The geometrical structure factor

Several identical scatterers in the primitive cell

The amplitude of the rays will differ by a factor e iK ·(di−dj )

For the n scatterers the amplitudes are in the ratio:

e iK ·d1 : e iK ·d2 : . . . e iK ·dn

The total amplitude of X-ray scattered by the cell contains the factor

SK =
n∑

j=1

e iK ·dj

SK : geometrical structure factor

IK ∝ |SK |2
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The geometrical structure factor

Diffraction by a monoatomic lattice with a basis
The geometrical structure factor

Absolute intensity in a Bragg peak

The intensity depends on K through SK

Not the only source of K dependence

characteristic angular dependence of the scattering process
internal structure of the scatterer

SK alone cannot be used to predict the absolute intensity

When SK = 0 =⇒ IK = 0

complete destructive interference
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The geometrical structure factor

Vanishing structure factor
Examples

bcc viewed as a sc lattice with a basis

The reciprocal lattice is fcc

bcc can be regarded as a sc lattice with a basis

primitive vectors: ax̂ , aŷ , aẑ
basis: d1 = 0, d2 = ( a

2 )(x̂ + ŷ + ẑ)

K must be a vector of the reciprocal lattice

K = 2π
a (n1x̂ + n2ŷ + n3ẑ)

SK = 1 + e iπ(n1+n2+n3) = 1 + (−1)n1+n2+n3

SK = 2 when n1 + n2 + n3 is even
SK = 0 when n1 + n2 + n3 is odd
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The geometrical structure factor

Vanishing structure factor
Examples

bcc viewed as a sc lattice with a basis

K vectors for which SK = 0 will have no Bragg reflection

odd number of nearest-neighbour bonds
from the origin

K vectors for which SK 6= 0 define a reciprocal fcc lattice

side of 4π
a

K points for which SK = 2 (black circles) and SK = 0 (white circles)
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The geometrical structure factor

Vanishing structure factor
Examples

Monoatomic diamond lattice (C, Si, Ge, grey tin)

Not a Bravais lattice

Viewed as a fcc lattice with a two-atom basis

a1 = a
2 (ŷ + ẑ) etc

basis: d1 = 0, d2 = a
4 (x̂ + ŷ + ẑ)

K must be a vector of the bcc reciprocal lattice K =
∑

i nibi

cubic cell of side of 4π
a

b1 = 2π
a (ŷ + ẑ − x̂) etc

SK = 1 + e i
π
2

(n1+n2+n3)

SK = 2 when n1 + n2 + n3 is twice an even number
SK = 0 when n1 + n2 + n3 is twice an odd number
SK = 1± i when n1 + n2 + n3 is odd
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The geometrical structure factor

Vanishing structure factor
Examples

Monoatomic diamond lattice (C, Si, Ge, grey tin)

K =
∑

i nibi = 4π
a (ν1x̂ + ν2ŷ + ν3ẑ)

νj = 1
2 (n1 + n2 + n3)− nj∑

j νj = 1
2 (n1 + n2 + n3)

The bcc is viewed as composed of two sc lattices

The first contains the origin (K = 0)

νi are integers (n1 + n2 + n3 twice an even/odd)
SK = 0, 2 (SK = 0 when

∑
j νj is odd, as before)

K points for which SK = 2, SK = 1± i , and SK = 0 (white circles)
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The geometrical structure factor

Vanishing structure factor
Examples

Monoatomic diamond lattice (C, Si, Ge, grey tin)

K =
∑

i nibi = 4π
a (ν1x̂ + ν2ŷ + ν3ẑ)

νj = 1
2 (n1 + n2 + n3)− nj∑

j νj = 1
2 (n1 + n2 + n3)

The bcc is viewed as composed of two sc lattices

The second contains K = 4π
a

1
2 (x̂ + ŷ + ẑ)

all νi must be integer + 1
2 (n1 + n2 + n3 odd)

SK = 1± i

K points for which SK = 2, SK = 1± i , and SK = 0 (white circles)
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The atomic form factor

Diffraction by a polyatomic crystal
The atomic form factor

Scattering by different centers in the basis

If the scatterers are not identical

SK =
n∑

j=1

fj(K )e iK ·dj

fj(K ): atomic form factor
depends on its internal structure
identical centers have identical fj(K )
consistent with previous treatment
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The atomic form factor

Diffraction by a polyatomic crystal
The atomic form factor

Scattering by different centers in the basis

In simple treatments

fj(K ) = −1

e

∫
dre iK ·rρj(r)

Fourier transform of ρj(r)
ρj(r): electronic charge density of ion of type j at r = 0
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