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Ground-state properties of the electron gas

Ground-state properties of the electron gas

General remarks

Maxwell-Boltzmann velocity distribution

@ Drude assumed the validity of the Maxwell-Boltzmann velocity
distribution (at thermal equilibrium)

m 3 _ _mv
2

27rkBT)

fe(v) = n(

o normalized such that [ fg(v)dv =n, n={;

o check yourself (ffooo e~ dy = )

e f(v)dv: number of e~ with velocities in the volume element dv at v
e per unit volume

o Equipartition theorem follows (¢, = 3kg; £ = 3kgT)
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Ground-state properties of the electron gas

Ground-state properties of the electron gas

General remarks

Fermi-Dirac velocity distribution

@ Valid for Fermions, as a consequence of the Pauli exclusion principle

_ (m/n)? 1
flv) = 473 (3m2-kgTo)
e k8T +1

o Ty determined such that [ f(v)dv =n
e Sommerfeld theory replaces fg(v) of Drude’s theory with f(v)
e profound consequences on & and ¢,
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General remarks

Ground-state properties of the electron gas

Maxwell-Boltzmann vs Fermi-Dirac velocity distribution

Plot of Maxwell-Boltzmann and Fermi-Dirac distributions for the same n given by T = 0.017j.
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Ground-state properties of the electron gas

Ground-state properties of the electron gas

Quantum mechanical solution

Mathematical treatment

W=
~—

@ The free electron gas is confined in a cube of edge L (L =V

@ Assume the independent electron approximation

Solve the TISE (separation of variables)

2V = (1)

Apply Born-von Karman boundary conditions to the general solution

Y(x,y +L,z) =1(x,y,2)
Y(x+Ly,z) =(x,y,2)

o Fill the energy levels by using the Pauli exclusion principle
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Ground-state properties of the electron gas

Quantum mechanical solution

Separation of variables

e Ansatz ¢(r) = X(x)Y(y)Z(2)
@ Upon substitution on the TISE:

2ﬁm dXQX(x) = e, X(x)
—%W Y(y) =¢/Y(y)
24 7(2) =e,2(2)

T 2mdz?

@ c=cxteyte;
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Ground-state properties of the electron gas

Ground-state properties of the electron gas

Quantum mechanical solution

Separation of variables
e Ansatz ¢(r) = X(x)Y(y)Z(2)

@ The boundary conditions are:

Z(z+L)=2Z(z)

Y(y+L)=Y(y)
X(x+ L) = X(x)

@ Three similar homogeneous ODEs of the second order
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Ground-state properties of the electron gas

Quantum mechanical solution

General and particular solutions

{;;qb(x) +K2p(x) =0
$(x + L) = ¢(x)

o General solution: ¢(x) = cre™ + cre=**

2 _ 2me _ R
°o kf=SF — =%

o Particular (normalized) solution: ¢(x) = e/

VL
o k=27 n=0,+1,+2,...
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Ground-state properties of the electron gas

Quantum mechanical solution

Eigenfunctions and eigenvalues of the problem

o Uulr) = Jyet
o normalized inside the cube: [ |¢x(r)|?dr =1

@ allowed wave vectors k:

2
° kx: 27anX; ky: 7any; kz: 271'an
e ny,ny,n,=0,x1,42,...

o c=¢(lk|) = % (depends only on k = |k|)

V~

~

allowed wave vectors in a 2D k space
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Ground-state properties of the electron gas

Quantum mechanical solution

Eigenfunctions and eigenvalues of the problem
o k() is eigenfunction of the momentum operator p = 2V

o BVyu(r) = pYx(r); p = hk
Ik

. . _ B
@ lIts velocity is v = = =

=

¥

allowed wave vectors in a 2D k space
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Ground-state properties of the electron gas

Quantum mechanical solution

Counting the quantum mechanical solutions

. 3
e Volume per allowed wave vector in k-space: (2£)3 = 82

@ For a region €2, the number is %

e must be very large on the scale of 2Tﬂ
e not too irregularly shaped

@ k-space density of levels: %

allowed wave vectors in a 2D k space
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Ground-state properties of the electron gas

Quantum mechanical solution

Occupation of the ground-state (T = 0K)

@ Place a maximum of two e~ on each level, starting with the lowest
o k=0=—¢c,=0
° ¢ = wkox g = :I:%
@ £y varies with the distance squared from O
@ The occupied region is a sphere (Fermi sphere)
o for very large N
e radius kr: Fermi wave vector
e volume: Q = 47“/(,3_-

4rk} k3
o N=2% =2(5E)(55) =35V
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Ground-state properties of the electron gas

Quantum mechanical solution

Occupation of the ground-state (T = 0K)

@ Given a density n = % the ground-state is formed by:
e occupying all levels with k < kg
o all levels with k > kr are empty
o kr = (372n)3
@ Some nomenclature:
o region Q: Fermi sphere
o kr: Fermi wave vector
e surface of Q: Fermi surface
e pr = hkr: Fermi momentum
o v = 2£: Fermi velocity
R k2

EF = 5,5 Ferml energy
Tr = %: Fermi temperature

@ The above quantities can be estimated from n
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Ground-state properties of the electron gas

Quantum mechanical solution

Some numbers

1
(33 1.92 363A 1

o kF— s 1
rs ~2— 6A:>kF~A1()\ A)
° —hk 420 » 108cm/s

aO
o 1% of c, (classical estimate at room temperature v ~ 10’cm/s)
h2k2 50.1
2m (230)(/([:30) = (&)2 eV
a0
o cF € 1.5-15 eV
o Tp =3t =25 x10°K

@ EfF =

75 )2
(%)
e energy per electron of a classical ideal gas vanishes at T = 0K
=_ 3
(5 — EkB T)
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Ground-state properties of the electron gas

Ground-state properties of the electron gas

Quantum mechanical solution

Some numbers

FERMI ENERGIES, FERMI TEMPERATURES, FERMI WAVE VECTORS, AND
FERMI VELOCITIES FOR REPRESENTATIVE METALS®

ELEMENT r./a, & T ke vy

Li 325  474eV 551 x 10°K 112 x 10°cm™' 129 x 10° cmysec

Na 393 324 an 092 107

K 486 212 246 075 086

Rb 520 185 215 070 081

Cs 562 159 1.84 065 075

Cu 267 700 816 136 157

Ag 3.02 549 638 120 139

Au 301 583 642 12t 140

Be 187 143 166 194 225

Mg 2,66 7.08 823 1.36 1.58

Ca 327 469 544 L1 128

Sr 357 393 457 1.02 LI8

Ba 37 364 423 098 1.13

Nb 307 532 6.18 118 137

Fe 212 111 130 171 198

Mn 214 109 127 170 196

Zn 230 9.47 110 158 183

Cd 259 747 8.68 140 1.62

Hg 2.65 I3 8.29 137 1.58

Al 207 117 136 175 203

Ga 219 104 121 1.66 192

In 241 863 100 151 174 -

T 248 815 9.46 146 169

Sn 222 102 118 164 190

Pb 230 947 110 158 183

Bi 225 990 115 161 187

sb 214 109 127 1.70 196

4
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Ground-state properties of the electron gas

Ground-state properties of the electron gas

Quantum mechanical solution

Total energy of the ground-state (T = 0K)

_ _ h2k?
o E=2x Zk<kF5k = Zk<k/—‘2 X Om

@ Standard way of treating summations:
> F(k) = v > F(k)Ak
k 8 k

.1 [ F(k)
\/linooVZk:F(k) / 8m3 dk

@ Therefore:

E / dk IPk* 1 hPkR
k<ke 873 2m w2 10m
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Ground-state properties of the electron gas

Quantum mechanical solution

Total energy of the ground-state (T = 0K)
E _ 1Pk}

°v 72 10m
e energy density of the electron gas

° % = %ks Tr
o for a classical particle § = 3kgT = T = 2TF ~ 10°K
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Ground-state properties of the electron gas

Quantum mechanical solution

Bulk properties of the ground-state

i . p—2E
o Electronic pressure: P = 5

o exerted by the electron gas
o Compressibility: K = _% v
@ Bulk modulus: B = ?

o Numerically: B—( 6.13 ) x 10'%dynes/cm?

BULK MOD[ LI IN 10'° DYNES{CM? FOR SOME
TYPICAL METALS"®

METAL FREE ELECTRON B MEASURED B
Li 239 11.5
Na 9.23 6.42
K 319 2.81
Rb 228 192
Cs 1.54 1.43
Cu 63.8 1343
Ag 34.5 99.9
Al 228 76.0
.
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The Fermi-Dirac distribution

Thermal properties of the free-electron gas
The Fermi-Dirac distribution

The partition function
o If T+ 0, N-electron excited states become populated
o thermal equilibrium is assumed
@ Boltzmann distribution law

—_E_
e kT

Pn(E) = 5
dae 8T

e Pn(E): probability of finding the system in the state of energy E

N
e Z=73 e %87 is the partition function
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The Fermi-Dirac distribution

Thermal properties of the free-electron gas
The Fermi-Dirac distribution

The partition function
_fn
e Fy=U—-TS=—kgTIh(Z) = Z=¢e kT
o Helmbholtz free energy
E—Fy

o Py(E)=e &

Daniele Toffoli January 11, 2017
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The Fermi-Dirac distribution

Thermal properties of the free-electron gas
The Fermi-Dirac distribution

Derivation
@ The N-electron state is specified by a list of the one-electron levels
occupied
o states k. (r)
o Define N =3 Py(EN)
e probability that the one-electron level i is occupied in the N-electron
state
e Pauli exclusion principle requires 0 < f,-N <1
e mean occupation of the level i

@ We will find an explicit expression for f,-N
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The Fermi-Dirac distribution

Thermal properties of the free-electron gas
The Fermi-Dirac distribution

Derivation
o N =1-% Py(EV)
o v labels N-electron states where i is not occupied
o fN=1-% Pn(E"! —ei)

N _ FN+1 ]
°E7_Ea — €

o N + l-electron states obtained from +'s by placing an electron in level i

gi—p
4] Defining M= FN+1 — FN - fl-N =1-—ekT Z PN+1(E0,4V+1)

N Nt
°fi :]_—ekBTfl.
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The Fermi-Dirac distribution

Thermal properties of the free-electron gas
The Fermi-Dirac distribution

Derivation
@ Assuming that f,-N = f,-NJrl for N ~ 10%?
1

! [CHID)

e kBT 41

;N =

— N _ 1
o N=3f" =2 e
e 8T 41
o N (or n=y) as a function of T and p
o We can express p as a function of nand T
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© Thermal properties of the free electron gas
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Thermal properties of the free electron gas

Thermal properties of the free-electron gas
Applications of the Fermi-Dirac distribution

Limiting form of fiN

@ In the ground-state:

fko =1 6(k)<€F
fato =0 e(k)>eF

@ For the f,-N distribution we have

fko =1 €(k) < W
fko =0 €(k) > p

@ Therefore limt_ou =¢f
@ i ~ g also at room temperature
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Thermal properties of the free electron gas

Thermal properties of the free-electron gas
Applications of the Fermi-Dirac distribution

Total energy of the electron gas

o Atany T, U =2}, e(k)f(e(k)):

<lc

@ Defining u =
u:/ws(k)f(e(k))
e From N =23, f(e(k)):
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Thermal properties of the free electron gas

Thermal properties of the free-electron gas
Applications of the Fermi-Dirac distribution

Density of levels

@ Working in spherical coordinates:

oo 2 o]
[ aFetn = [T = [ deeF)

w2 o

@ g(e): density of levels (per unit volume)

g(E):{h?n:ﬂ\/zhn;E €>0

0 e<0

@ At the Fermi level: g(ef) = ,%"TI;’;
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Thermal properties of the free electron gas

Thermal properties of the free-electron gas

Applications of the Fermi-Dirac distribution

Density of levels

@ Alternatively:

%L(i)l/z
c) = eF \eF
ge) =1,
o At the Fermi level: g(eF) = %i

e>0
e<0

Daniele Toffoli
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Thermal properties of the free electron gas

Thermal properties of the free-electron gas
Applications of the Fermi-Dirac distribution

Total energy and density of the electron gas
00
o u= [ deg(e)ef(e)

o n= [~ deg(c)f(e)
@ valid for any non-interacting electron systems
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Thermal properties of the free-electron gas

Applications of the Fermi-Dirac distribution

The Sommerfeld expansion
o For metals, T << Tf even at room temperature
e For T # 0 f(¢e) differs little from its T=0 form
o region Ae ~ kg T around

Fermi function f for given p at T = OK (top) and room temperature (bottom)

o DTl Sy 11,2017 334



Thermal properties of the free electron gas

Thermal properties of the free-electron gas
Applications of the Fermi-Dirac distribution

The Sommerfeld expansion
o Applied to integrals of the type [~ H(e)f(e)de.

e If H(e) does not vary much for Ae ~ kg T around p

o Taylor expansion of H(e) around p
o assumed to converge rapidly for well-behaved H(¢)

/oo H(e)f(e)de = ' H(e)de

(ks TV H () + 2 (ks TY*H" () + 02T

360 *

O"ﬂm |
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Thermal properties of the free electron gas

Thermal properties of the free-electron gas
Applications of the Fermi-Dirac distribution

Specific heat of the electron gas

@ Apply the Sommerfeld expansion to both u and n:
v = [ e+ ; (ke T)2ng’ (1) + £02)] + O(T)
no— /0” (e)de + 6(k 5T (1) + O(T*)

@ Also, to order T2:

/ " H(e)de = / " H(e)de + (1 — er)H(er)
0 0
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Thermal properties of the free electron gas

Thermal properties of the free-electron gas
Applications of the Fermi-Dirac distribution

Specific heat of the electron gas

@ Therefore:

v = [ er (- crlter) + ke TV )}
0

7.‘.2

+ g(kBT)2g(€F)

n = [ e (- cnsen + s a1 )

o Note:
o n= [, g(e)de
o up = [, eg(e)de
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Thermal properties of the free electron gas

Thermal properties of the free-electron gas
Applications of the Fermi-Dirac distribution

Deviation of p from ef

e From: )
T
0= (u—ecr)gler)+ g(ks T)’g'(eF)
o We get:
71_2 g/(EF)
= er— —(kgT)?

- EF[ 3 2sp)]

@ The difference is ~ 0.01% even at room T
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Thermal properties of the free electron gas

Thermal properties of the free-electron gas
Applications of the Fermi-Dirac distribution

Specific heat capacity, ¢,

e From: 2
U= ug—+ 6(kBT) ( )
o We get:
ou
& = < T> —kBTg(ap)

e varies linearly with T
e compare with the classical result ¢, = %nks (% ~ 10*2)
e electronic contribution is negligible even at room T
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Thermal properties of the free electron gas

Thermal properties of the free-electron gas
Applications of the Fermi-Dirac distribution

Specific heat capacity, c¢,: qualitative considerations

@ From the T-dependence of the Fermi function f(e):
e nr. of electrons excited (per unit volume): ~ g(eg) x kg T
e excitation energy: ~ kg T
o energy density: ~ (kg T)%g(er) — ¢, ~ k3 Tg(cF)

f
1.0 \‘
13
P
AE=kgT)

Fermi function at T # 0
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Thermal properties of the free electron gas

Thermal properties of the free-electron gas
Applications of the Fermi-Dirac distribution

. o . 2
Experimental verification of ¢, = - <kBFT> nkg

@ At room T ¢, is determined by the ionic contribution (oc T3 for
T —0)

o ¢, =~T +AT?
o Experimental data (of ;) are fitted to the equation: < = + AT?

e electronic contribution is comparable to the ionic at T of few K
o extrapolateat T — 0

e Experimentally [C] = [KC;LI] Multiply by ZNA

kB Tg(é‘f:)
n

2
T

C = —ZR
3

1, .7
= y= sz? = 0.1692(-2)? x 10~*cal mol~1K 2
F a0

v

Daniele Toffoli January 11, 2017 40 / 48



Thermal properties of the free electron gas

Thermal properties of the free-electron gas
Applications of the Fermi-Dirac distribution

. - . 2
Experimental verification of ¢, = % (%) nkg

‘SOMF, ROUGH EXPERIMENTAL VALUES FOR THE COEFFICIENT
OF THE LINEAR TERM IN T OF THE MOLAR SPECIFIC HEATS
OF METALS, AND THE VALUES GIVEN BY SIMPLE FREE

ELECTRON THEORY
FREE ELECTRON ¥ 'MEASURED ¥ RATIO®

ELEMENT (in 10~* cal-mole™*-K~2) (m*m)
Li 18 42 23
Na 26 3.5 13
K 40 47 =
Rb 46 58 13
Cs 33 77 LS
Cu | ] 1.6 13
Ag 15 16 L1
Au [ 2. 1.6 11
Be b3 05 042
Mg 24 32 13
Ca 36 6.5 18
St 43 8.7 20
Ba a7 6.5 14
Nb 1.6 20 12
Fe 15 12 80
Mn 15 40 27
Zn 18 L4 0.78
cd 13 L7 074
Hg 24 50 21
Al 22 30 14
Ga 24 15 0.62
In 20 43 15
Tl 31 35 L1
Sn &3 44 13
Pb 36 70 19
Bi 43 02 0.047
Sb 39 15 0.38

v
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@ The Sommerfeld theory of conduction in metals
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The Sommerfeld theory of conduction in metals

Sommerfeld theory of conduction in metals

Fermi-Dirac velocity distribution

Velocity distribution for electrons in a metal
@ Consider an element of volume dk around k
e number of one-electron levels: 2 x (#) :ﬁdk
o probability of occupation: f(e(k))
o total number of electrons: f(s(k))ﬁdk
o with velocity v = % — dk = (7)3dv

o therefore the number of electrons with velocity € (v, v + dv) is:

m\3
= 1
f(v)dv = (%) 5 dv
Ag3  1/2mv2—p
e kT +1

e probability density (per unit volume)
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The Sommerfeld theory of conduction in metals

Sommerfeld theory of conduction in metals

Validity of the classical description

AxAp ~ h
@ Sommerfeld used the Fermi-Dirac velocity distribution in an otherwise
classical theory
@ Classical description of electron dynamics is valid if:

e r and p can be specified as accurately as necessary
o without violating the uncertainty principle (AxAp ~ h)

@ The classical description is valid if:

o Ap << hkp~p
OAXNA’—"p>>éNr5~2—6A
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The Sommerfeld theory of conduction in metals

Sommerfeld theory of conduction in metals

Validity of the classical description

AxAp ~ h

@ Electronic position must be specified in some instances:
o for applied electromagnetic fields (Ax << A)
o for applied T gradients
@ Conclusions of the models were valid if E or T vary negligibly in the
scale of Ax
o valid for UV-vis radiation, not X-rays (QM must be used)
e usually valid for normal VT's
o We assumed Ax << /, the mean free path
o |~ 100A at room T
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The Sommerfeld theory of conduction in metals

Sommerfeld theory of conduction in metals

Improvements over Drude's theory

The use of Fermi-Dirac velocity distribution

o Affected properties:
e mean free path
o thermal conductivity
e thermopower
@ Properties not affected:
e magnetoresistance
e Hall coefficient
e DC and AC conductivities

Daniele Toffoli
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The Sommerfeld theory of conduction in metals

Sommerfeld theory of conduction in metals

Improvements over Drude's theory

Mean free path

oFromI:vFT%/:%XQZA

e | ~ 100 A are possible at room T

Thermal conductivity

@ From k = %V2TCV

K 7T2 kB

T3 ( . )2 = 2.44 x 10 8watt - ohm/K?
g

o excellent agreement with exp.
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Sommerfeld theory of conduction in metals

Improvements over Drude's theory

Thermopower

@ With Sommerfeld estimate of the specific heat:

)=—1. 42(£) x 10~*volt/K

o smaller by O(

ka) ~ 0.01 at room T
r
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