The Sommerfeld Theory of Metals

- 2

・ロン ・四 ・ ・ ヨン ・ ヨン

Outline

- 2 The Fermi-Dirac distribution
- 3 Thermal properties of the free electron gas
- 4 The Sommerfeld theory of conduction in metals

2 The Fermi-Dirac distribution

3 Thermal properties of the free electron gas

4) The Sommerfeld theory of conduction in metals

General remarks

Maxwell-Boltzmann velocity distribution

• Drude assumed the validity of the Maxwell-Boltzmann velocity distribution (at thermal equilibrium)

$$f_B(\mathbf{v}) = n(\frac{m}{2\pi k_B T})^{\frac{3}{2}} e^{-\frac{mv^2}{2k_B T}}$$

- normalized such that $\int f_B(\mathbf{v}) d\mathbf{v} = n$, $n = \frac{N}{V}$
 - check yourself $\left(\int_{-\infty}^{\infty} e^{-\alpha x^2} dx = \sqrt{\frac{\pi}{\alpha}}\right)$
- f(v)dv: number of e⁻ with velocities in the volume element dv at v
 per unit volume
- Equipartition theorem follows $(c_v = \frac{3}{2}k_B; \bar{c} = \frac{3}{2}k_BT)$

< 口 > < 同 > < 三 > < 三

General remarks

Fermi-Dirac velocity distribution

• Valid for Fermions, as a consequence of the Pauli exclusion principle

$$f(\mathbf{v}) = \frac{(m/\hbar)^3}{4\pi^3} \frac{1}{e^{\frac{(\frac{1}{2}mv^2 - k_B T_0)}{k_B T}} + 1}$$

- T_0 determined such that $\int f(\mathbf{v}) d\mathbf{v} = n$
- Sommerfeld theory replaces $f_B(\mathbf{v})$ of Drude's theory with $f(\mathbf{v})$
 - profound consequences on $\bar{\varepsilon}$ and c_v

General remarks

Maxwell-Boltzmann vs Fermi-Dirac velocity distribution

Plot of Maxwell-Boltzmann and Fermi-Dirac distributions for the same n given by $T = 0.01T_0$.

Daniele Toffoli

January 11, 2017 6 / 48

< □ > < ---->

Quantum mechanical solution

Mathematical treatment

- The free electron gas is confined in a cube of edge $L (L = V^{\frac{1}{3}})$
- Assume the independent electron approximation
- Solve the TISE (separation of variables)

$$-\frac{\hbar^2}{2m}\nabla^2\psi(\boldsymbol{r})=\varepsilon\psi(\boldsymbol{r})$$

• Apply Born-von Karman boundary conditions to the general solution

$$\begin{cases} \psi(x, y, z + L) = \psi(x, y, z) \\ \psi(x, y + L, z) = \psi(x, y, z) \\ \psi(x + L, y, z) = \psi(x, y, z) \end{cases}$$

• Fill the energy levels by using the Pauli exclusion principle

Daniele Toffoli

Quantum mechanical solution

Separation of variables

- Ansatz $\psi(\mathbf{r}) = X(x)Y(y)Z(z)$
- Upon substitution on the TISE:

$$\begin{cases} -\frac{\hbar^2}{2m}\frac{d^2}{dx^2}X(x) &= \varepsilon_x X(x) \\ -\frac{\hbar^2}{2m}\frac{d^2}{dy^2}Y(y) &= \varepsilon_y Y(y) \\ -\frac{\hbar^2}{2m}\frac{d^2}{dz^2}Z(z) &= \varepsilon_z Z(z) \end{cases}$$

• $\varepsilon = \varepsilon_x + \varepsilon_y + \varepsilon_z$

3

(日) (同) (三) (三)

Quantum mechanical solution

Separation of variables

- Ansatz $\psi(\mathbf{r}) = X(x)Y(y)Z(z)$
- The boundary conditions are:

$$\begin{cases} Z(z+L) = Z(z) \\ Y(y+L) = Y(y) \\ X(x+L) = X(x) \end{cases}$$

• Three similar homogeneous ODEs of the second order

Quantum mechanical solution

General and particular solutions

$$\begin{cases} \frac{d^2}{dx^2}\phi(x) + k^2\phi(x) &= 0\\ \phi(x+L) &= \phi(x) \end{cases}$$

• General solution: $\phi(x) = c_1 e^{ikx} + c_2 e^{-ikx}$ • $k^2 = \frac{2m\varepsilon}{\hbar^2} \Longrightarrow \varepsilon = \frac{\hbar^2 k^2}{2m}$

• Particular (normalized) solution: $\phi(x) = \frac{1}{\sqrt{I}}e^{ikx}$

•
$$k = \frac{2n\pi}{L}, n = 0, \pm 1, \pm 2, ...$$

イロト イポト イヨト イヨト 二日

Quantum mechanical solution

Eigenfunctions and eigenvalues of the problem

• $\psi_{\boldsymbol{k}}(\boldsymbol{r}) = \frac{1}{\sqrt{V}} e^{i \boldsymbol{k} \cdot \boldsymbol{r}}$

• normalized inside the cube: $\int |\psi_{\pmb{k}}(\pmb{r})|^2 d\pmb{r} = 1$

• allowed wave vectors **k**:

•
$$k_x = \frac{2\pi n_x}{L}; k_y = \frac{2\pi n_y}{L}; k_z = \frac{2\pi n_z}{L}$$

•
$$n_x, n_y, n_z = 0, \pm 1, \pm 2, \dots$$

•
$$arepsilon = arepsilon(|m{k}|) = rac{\hbar^2 k^2}{2m}$$
 (depends only on $k = |m{k}|)$

allowed wave vectors in a 2D k space

Quantum mechanical solution

Eigenfunctions and eigenvalues of the problem

• $\psi_{k}(\mathbf{r})$ is eigenfunction of the momentum operator $\mathbf{p} = \frac{\hbar}{i} \nabla$

•
$$\frac{\hbar}{i} \nabla \psi_{k}(\mathbf{r}) = \mathbf{p} \psi_{k}(\mathbf{r}); \ \mathbf{p} = \hbar \mathbf{k}$$

• Its velocity is
$$\mathbf{v} = \frac{\mathbf{p}}{m} = \frac{\hbar \mathbf{k}}{m}$$

allowed wave vectors in a 2D k space

イロト 不得下 イヨト イヨト

Quantum mechanical solution

Counting the quantum mechanical solutions

- Volume per allowed wave vector in k-space: $(\frac{2\pi}{L})^3 = \frac{8\pi^3}{V}$
- For a region Ω , the number is $\frac{\Omega V}{8\pi^3}$
 - must be very large on the scale of $\frac{2\pi}{I}$
 - not too irregularly shaped
- k-space density of levels: $\frac{V}{8\pi^3}$

allowed wave vectors in a 2D k space

< 一型

Quantum mechanical solution

Occupation of the ground-state (T = 0K)

- Place a maximum of two e^- on each level, starting with the lowest
 - $\mathbf{k} = \mathbf{0} \Longrightarrow \varepsilon_{\mathbf{k}} = \mathbf{0}$
 - $\psi \equiv \psi_{\boldsymbol{k}\sigma}, \ \sigma = \pm \frac{1}{2}$
- ε_k varies with the distance squared from O
- The occupied region is a sphere (Fermi sphere)
 - for very large N
 - radius k_F: Fermi wave vector
 - volume: $\Omega = \frac{4\pi}{3}k_F^3$

•
$$N = 2 \frac{\Omega V}{8\pi^3} = 2(\frac{4\pi k_F^3}{3})(\frac{V}{8\pi^3}) = \frac{k_F^3}{3\pi^2} V$$

Quantum mechanical solution

Occupation of the ground-state (T = 0K)

- Given a density $n = \frac{N}{V}$, the ground-state is formed by:
 - occupying all levels with $k < k_F$
 - all levels with $k > k_F$ are empty

•
$$k_F = (3\pi^2 n)^{\frac{1}{3}}$$

- Some nomenclature:
 - region Ω : Fermi sphere
 - *k_F*: Fermi wave vector
 - surface of Ω : Fermi surface
 - $p_F = \hbar k_F$: Fermi momentum

•
$$v_F = \frac{p_F}{m}$$
: Fermi velocity

- $\varepsilon_F = \frac{\hbar^2 k_F^2}{2m}$: Fermi energy
- $T_F = \frac{\tilde{\varepsilon}_F}{k_B}$: Fermi temperature
- The above quantities can be estimated from n

Quantum mechanical solution

Some numbers

•
$$k_F = \frac{\left(\frac{9\pi}{4}\right)^{\frac{1}{3}}}{r_s} = \frac{1.92}{r_s} = \frac{3.63}{\frac{r_s}{a_0}} \text{Å}^{-1}$$

• $r_s \sim 2\text{-6} \text{ Å} \Longrightarrow k_F \sim \text{Å}^{-1} (\lambda \sim \text{Å})$
• $v_F = \frac{\hbar}{m} k_F = \frac{4.20}{\frac{r_s}{a_0}} \times 10^8 \text{ cm/s}$
• 1% of c, (classical estimate at room temperature $v \sim 10^7 \text{ cm/s}$)
• $\varepsilon_F = \frac{\hbar^2 k_F^2}{2m} = (\frac{e^2}{2a_0})(k_F a_0)^2 = \frac{50.1}{(\frac{r_s}{a_0})^2} \text{ eV}$
• $\varepsilon_F \in 1.5\text{-15 eV}$
• $T_F = \frac{\varepsilon_F}{k_B} = \frac{58.2}{(\frac{r_s}{a_0})^2} \times 10^4 \text{K}$
• energy per electron of a classical ideal gas vanishes at $T = 0$ K
 $(\overline{\varepsilon} = \frac{3}{2}k_BT)$

3

イロト イポト イヨト イヨト

Quantum mechanical solution

Some numbers

ELEMENT	r_s/a_0	ϵ_{F}	T _F	k _F	v _F
Li	3.25	4.74 eV	$5.51 \times 10^{4} \text{ K}$	$1.12 \times 10^8 \text{ cm}^{-1}$	1.29 × 108 cm/sec
Na	3.93	3.24	3.77	0.92	1.07
K	4.86	2.12	2.46	0.75	0.86
Rb	5.20	1.85	2.15	0.70	0.81
Cs	5.62	1.59	1.84	0.65	0.75
Cu	2.67	7.00	8.16	1.36	1.57
Ag	3.02	5.49	6.38	1.20	1.39
Au	3.01	5.53	6.42	1.21	1.40
Be	1.87	14.3	16.6	1.94	2.25
Mg	2.66	7.08	8.23	1.36	1.58
Ca	3.27	4.69	5.44	1.11	1.28
Sr	3.57	3.93	4.57	1.02	1.18
Ba	3.71	3.64	4.23	0.98	1.13
Nb	3.07	5.32	6.18	1.18	1.37
Fe	2.12	11.1	13.0	1.71	1.98
Mn	2.14	10.9	12.7	1.70	1.96
Zn	2.30	9.47	11.0	1.58	1.83
Cd	2.59	7.47	8.68	1.40	1.62
Hg	2.65	7.13	8.29	1.37	1.58
Al	2.07	11.7	13.6	1.75	2.03
Ga	2.19	10.4	12.1	1.66	1.92
In	2.41	8.63	10.0	1.51	1.74 -
T1	2.48	8.15	9.46	1.46	1.69
Sn	2.22	10,2	11.8	1.64	1.90
Pb	2.30	9.47	11.0	1.58	1.83
Bi	2.25	9.90	11.5	1.61	1.87
Sb	2.14	10.9	12.7	1.70	1.96

FERMI ENERGIES, FERMI TEMPERATURES, FERMI WAVE VECTORS, AND FERMI VELOCITIES FOR REPRESENTATIVE METALS^a

Daniele Toffoli

Quantum mechanical solution

Total energy of the ground-state (T = 0K)

•
$$E = 2 \times \sum_{k < k_F} \varepsilon_k = \sum_{k < k_F} 2 \times \frac{\hbar^2 k^2}{2m}$$

• Standard way of treating summations:

$$\sum_{\mathbf{k}} F(\mathbf{k}) = \frac{V}{8\pi^3} \sum_{\mathbf{k}} F(\mathbf{k}) \Delta \mathbf{k}$$
$$\lim_{V \to \infty} \frac{1}{V} \sum_{\mathbf{k}} F(\mathbf{k}) = \int \frac{F(\mathbf{k})}{8\pi^3} d\mathbf{k}$$

• Therefore:

$$\frac{E}{V} = 2 \int_{k < k_F} \frac{d\mathbf{k}}{8\pi^3} \frac{\hbar^2 k^2}{2m} = \frac{1}{\pi^2} \frac{\hbar^2 k_F^5}{10m}$$

Image: Image:

Quantum mechanical solution

Total energy of the ground-state (T = 0K)

•
$$\frac{E}{V} = \frac{1}{\pi^2} \frac{\hbar^2 k_F^5}{10m}$$

• energy density of the electron gas
• $\frac{E}{N} = \frac{3}{5} k_B T_F$

• for a classical particle $\frac{E}{N} = \frac{3}{2}k_BT \Longrightarrow T = \frac{2}{5}T_F \sim 10^4 {
m K}$

(日) (同) (三) (三)

Quantum mechanical solution

Bulk properties of the ground-state

- Electronic pressure: $P = \frac{2}{3} \frac{E}{V}$
 - exerted by the electron gas
- Compressibility: $K = -\frac{1}{V} (\frac{\partial V}{\partial P})$
- Bulk modulus: $B = \frac{1}{K} = \frac{5}{3}P = \frac{10}{9}\frac{E}{V} = \frac{2}{3}n\varepsilon_F$
- Numerically: $B = (\frac{6.13}{r_s/a_0})^5 \times 10^{10} \mathrm{dynes/cm^2}$

BULK MODULI IN 10¹⁰ DYNES/CM² FOR SOME TYPICAL METALS^a

METAL	FREE ELECTRON B	MEASURED B	
Li	23.9	11.5	
Na	9.23	6.42	
K	3.19	2.81	
Rb	2.28	1.92	
Cs	1.54	1.43	
Cu	63.8	134.3	
Ag	34.5	99.9	
Al	228	76.0	

2 The Fermi-Dirac distribution

3 Thermal properties of the free electron gas

4) The Sommerfeld theory of conduction in metals

- ∢ ศ⊒ ▶

The Fermi-Dirac distribution

The partition function

- If $T \neq 0$, *N*-electron excited states become populated
 - thermal equilibrium is assumed
- Boltzmann distribution law

$$P_N(E) = \frac{e^{-\frac{E}{k_BT}}}{\sum_{\alpha} e^{-\frac{E_{\alpha}^N}{k_BT}}}$$

P_N(E): probability of finding the system in the state of energy E
 Z = Σ_α e^{- E_α^N/k_BT} is the partition function

イロト イポト イヨト イヨト 二日

The Fermi-Dirac distribution

Thermal properties of the free-electron gas

The Fermi-Dirac distribution

The partition function

•
$$F_N = U - TS = -k_B T \ln(Z) \Longrightarrow Z = e^{-\frac{F_N}{k_B T}}$$

Helmholtz free energy

•
$$P_N(E) = e^{-\frac{E-F_N}{k_BT}}$$

3

(日) (同) (三) (三)

The Fermi-Dirac distribution

Derivation

- The *N*-electron state is specified by a list of the one-electron levels occupied
 - states $\psi_{\boldsymbol{k}\sigma}(\boldsymbol{r})$
- Define $f_i^N = \sum P_N(E_\alpha^N)$
 - probability that the one-electron level *i* is occupied in the N-electron state
 - Pauli exclusion principle requires $0 \le f_i^N \le 1$
 - mean occupation of the level *i*
- We will find an explicit expression for f_i^N

The Fermi-Dirac distribution

Derivation

3

< ロ > < 同 > < 三 > < 三

The Fermi-Dirac distribution

Derivation

6

• Assuming that
$$f_i^N = f_i^{N+1}$$
 for $N \sim 10^{22}$

$$f_i^N = \frac{1}{e^{\frac{(\varepsilon_i - \mu)}{k_B T}} + 1}$$

•
$$N = \sum_{i} f_{i}^{N} = \sum_{i} \frac{1}{\frac{(\varepsilon_{i} - \mu)}{e^{\frac{1}{k_{B}T}} + 1}}$$

• N (or $n = \frac{N}{V}$) as a function of T and μ
• We can express μ as a function of n and T

3

(日) (同) (三) (三)

4 The Sommerfeld theory of conduction in metals

Applications of the Fermi-Dirac distribution

Limiting form of f_i^N

In the ground-state:

$$egin{cases} f_{m{k}\sigma} = 1 & arepsilon(m{k}) < arepsilon_F \ f_{m{k}\sigma} = 0 & arepsilon(m{k}) > arepsilon_F \end{cases}$$

• For the f_i^N distribution we have

$$\left\{ egin{array}{ll} f_{m{k}\sigma} = 1 & arepsilon(m{k}) < \mu \ f_{m{k}\sigma} = 0 & arepsilon(m{k}) > \mu \end{array}
ight.$$

- Therefore $\lim_{T\to 0} \mu = \varepsilon_F$
- $\mu\sim \varepsilon_{\rm F}$ also at room temperature

Applications of the Fermi-Dirac distribution

Total energy of the electron gas

• At any T, $U = 2 \sum_{k} \varepsilon(k) f(\varepsilon(k))$:

$$f(arepsilon(m{k})) = rac{1}{e^{rac{(arepsilon-\mu)}{m{k}_B T}}+1}$$

• Defining $u = \frac{U}{V}$

$$u = \int \frac{d\mathbf{k}}{4\pi^3} \varepsilon(\mathbf{k}) f(\varepsilon(\mathbf{k}))$$

• From $N = 2 \sum_{k} f(\varepsilon(k))$:

$$n = \int \frac{d\boldsymbol{k}}{4\pi^3} f(\varepsilon(\boldsymbol{k}))$$

3

Applications of the Fermi-Dirac distribution

Density of levels

• Working in spherical coordinates:

$$\int \frac{d\boldsymbol{k}}{4\pi^3} F(\varepsilon(\boldsymbol{k})) = \int_0^\infty \frac{k^2 dk}{\pi^2} F(\varepsilon(\boldsymbol{k})) = \int_{-\infty}^\infty d\varepsilon g(\varepsilon) F(\varepsilon)$$

• $g(\epsilon)$: density of levels (per unit volume)

$$g(arepsilon) = egin{cases} rac{m}{\hbar^2\pi^2}\sqrt{rac{2marepsilon}{\hbar^2}} & arepsilon > 0 \ 0 & arepsilon < 0 \end{cases}$$

• At the Fermi level: $g(\varepsilon_F) = \frac{mk_F}{\hbar^2 \pi^2}$

Applications of the Fermi-Dirac distribution

Density of levels

• Alternatively: $g(\varepsilon) = \begin{cases} \frac{3}{2} \frac{n}{\varepsilon_F} (\frac{\varepsilon}{\varepsilon_F})^{1/2} & \varepsilon > 0\\ 0 & \varepsilon < 0 \end{cases}$ • At the Fermi level: $g(\varepsilon_F) = \frac{3}{2} \frac{n}{\varepsilon_F}$

- 4 週 ト - 4 三 ト - 4 三 ト

Applications of the Fermi-Dirac distribution

Total energy and density of the electron gas

•
$$u = \int_{-\infty}^{\infty} d\varepsilon g(\varepsilon) \varepsilon f(\varepsilon)$$

•
$$n = \int_{-\infty}^{\infty} d\varepsilon g(\varepsilon) f(\varepsilon)$$

valid for any non-interacting electron systems

Applications of the Fermi-Dirac distribution

The Sommerfeld expansion

- For metals, $T \ll T_F$ even at room temperature
- For $T \neq 0$ $f(\varepsilon)$ differs little from its T=0 form
 - region $\Delta \varepsilon \sim k_B T$ around μ

Fermi function f for given μ at T = 0K (top) and room temperature (bottom)

Daniele Toffoli

Applications of the Fermi-Dirac distribution

The Sommerfeld expansion

- Applied to integrals of the type $\int_{-\infty}^{\infty} H(\varepsilon) f(\varepsilon) d\varepsilon$.
- If $H(\varepsilon)$ does not vary much for $\Delta \varepsilon \sim k_B T$ around μ
 - Taylor expansion of $H(\varepsilon)$ around μ
 - assumed to converge rapidly for well-behaved $H(\varepsilon)$

$$\int_{-\infty}^{\infty} H(\varepsilon)f(\varepsilon)d\varepsilon = \int_{-\infty}^{\mu} H(\varepsilon)d\varepsilon + \frac{\pi^2}{6}(k_BT)^2H'(\mu) + \frac{7\pi^4}{360}(k_BT)^4H'''(\mu) + O(\frac{k_BT}{\mu})^6$$

Applications of the Fermi-Dirac distribution

Specific heat of the electron gas

• Apply the Sommerfeld expansion to both *u* and *n*:

$$u = \int_0^{\mu} \varepsilon g(\varepsilon) d\varepsilon + \frac{\pi^2}{6} (k_B T)^2 [\mu g'(\mu) + g(\mu)] + O(T^4)$$

$$n = \int_0^{\mu} g(\varepsilon) d\varepsilon + \frac{\pi^2}{6} (k_B T)^2 g'(\mu) + O(T^4)$$

• Also, to order T^2 :

$$\int_0^\mu H(\varepsilon)d\varepsilon = \int_0^{\varepsilon_F} H(\varepsilon)d\varepsilon + (\mu - \varepsilon_F)H(\varepsilon_F)$$

Applications of the Fermi-Dirac distribution

Specific heat of the electron gas

• Therefore:

$$u = \int_{0}^{\varepsilon_{F}} \varepsilon g(\varepsilon) d\varepsilon + \varepsilon_{F} \left\{ (\mu - \varepsilon_{F})g(\varepsilon_{F}) + \frac{\pi^{2}}{6}(k_{B}T)^{2}g'(\varepsilon_{F}) \right\}$$
$$+ \frac{\pi^{2}}{6}(k_{B}T)^{2}g(\varepsilon_{F})$$
$$n = \int_{0}^{\varepsilon_{F}} g(\varepsilon) d\varepsilon + \left\{ (\mu - \varepsilon_{F})g(\varepsilon_{F}) + \frac{\pi^{2}}{6}(k_{B}T)^{2}g'(\varepsilon_{F}) \right\}$$

Note:

•
$$n = \int_0^{\varepsilon_F} g(\varepsilon) d\varepsilon$$

• $u_0 = \int_0^{\varepsilon_F} \varepsilon g(\varepsilon) d\varepsilon$

э

-

Image: A match a ma

Applications of the Fermi-Dirac distribution

Deviation of μ from $\varepsilon_{\textit{F}}$

• From:

$$0 = (\mu - \varepsilon_F)g(\varepsilon_F) + \frac{\pi^2}{6}(k_BT)^2g'(\varepsilon_F)$$

$$\mu = \varepsilon_F - \frac{\pi^2}{6} (k_B T)^2 \frac{g'(\varepsilon_F)}{g(\varepsilon_F)}$$
$$= \varepsilon_F \left[1 - \frac{1}{3} (\frac{\pi k_B T}{2\varepsilon_F})^2 \right]$$

 $\bullet\,$ The difference is $\sim 0.01\%$ even at room T

Image: Image:

Applications of the Fermi-Dirac distribution

Specific heat capacity, c_v

• From:

$$u = u_0 + \frac{\pi^2}{6} (k_B T)^2 g(\varepsilon_F)$$

• We get:

$$c_{v} = \left(\frac{\partial u}{\partial T}\right)_{v} = \frac{\pi^{2}}{3}k_{B}^{2}Tg(\varepsilon_{F})$$
$$= \frac{\pi^{2}}{2}\left(\frac{k_{B}T}{\varepsilon_{F}}\right)nk_{B}$$

- varies linearly with T
- compare with the classical result $c_v = \frac{3}{2}nk_B \left(\frac{k_BT}{\epsilon_F} \sim 10^{-2}\right)$
- electronic contribution is negligible even at room T

Applications of the Fermi-Dirac distribution

Specific heat capacity, c_v : qualitative considerations

- From the T-dependence of the Fermi function $f(\varepsilon)$:
 - nr. of electrons excited (per unit volume): $\sim g(\varepsilon_F) imes k_B T$
 - excitation energy: $\sim k_B T$
 - energy density: $\sim (k_B T)^2 g(\varepsilon_F) \rightarrow c_v \sim k_B^2 T g(\varepsilon_F)$

Fermi function at $T \neq 0$

_				
1 10	n 101	<u> </u>	Oth	011
- D U	11101	<u> </u>		VII

(日) (同) (三) (三)

Applications of the Fermi-Dirac distribution

Experimental verification of $c_v = \frac{\pi^2}{2} \left(\frac{k_B T}{\varepsilon_F} \right) n k_B$

• At room T c_{ν} is determined by the ionic contribution ($\propto T^3$ for $T \rightarrow 0)$

• $c_v = \gamma T + AT^3$

• Experimental data (of c_p) are fitted to the equation: $\frac{c_v}{T} = \gamma + AT^2$

- electronic contribution is comparable to the ionic at T of few K
- extrapolate at $T \rightarrow 0$
- Experimentally $[C] = [\frac{\text{cal}}{K \text{mol}}]$. Multiply by $\frac{ZN_A}{n}$:

$$C = \frac{\pi^2}{3} ZR \frac{k_B Tg(\varepsilon_F)}{n}$$

$$\implies \gamma = \frac{1}{2} \pi^2 R \frac{Z}{T_F} = 0.169 Z(\frac{r_s}{a_0})^2 \times 10^{-4} \text{cal mol}^{-1} K^{-2}$$

Applications of the Fermi-Dirac distribution

Experimental verification of $c_v = \frac{\pi^2}{2} \left(\frac{k_B T}{\varepsilon_F} \right) n k_B$

SOME ROUGH EXPERIMENTAL VALUES FOR THE COEFFICIENT OF THE LINEAR TERM IN T OF THE MOLAR SPECIFIC HEATS OF METALS, AND THE VALUES GIVEN BY SIMPLE FREE ELECTRON THEORY

ELEMENT	FREE ELECTRON y (in 10 ⁻⁴ cal-mo	MEASURED γ ble ⁻¹ -K ⁻²)	RATIO ^a (m*/m)
Li	1.8	4.2	2.3
Na	2.6	3.5	1.3
K	4.0	4.7	1.2
Rb	4.6	5.8	1.3
Cs	5.3	7.7	1.5
Cu	1.2	1.6	1.3
Ag	1.5	1.6	1.1
Au	1.5	1.6	1.1
Bc	1.2	0.5	0.42
Mg	2.4	3.2	1.3
Ca	3.6	6.5	1.8
St	4.3	8.7	2.0
Ba	4.7	6.5	1.4
Nb	1.6	20	12
Fe	1.5	12	8.0
Mn	1.5	40	27
Zn	1.8	1.4	0.78
Cd	2.3	1.7	0.74
Hg	2.4	5.0	2.1
Al	2.2	3.0	1.4
Ga	2.4	1.5	0.62
In	2.9	4.3	1.5
T1	3.1	3.5	1.1
Sn	3.3	4.4	1.3
Pb	3.6	7.0	1.9
Bi	4.3	0.2	0.04
Sb	3.9	1.5	0.38

Fermi-Dirac velocity distribution

Velocity distribution for electrons in a metal

- Consider an element of volume *dk* around *k*
 - number of one-electron levels: $2 \times \left(\frac{V}{(2\pi)^3}\right) = \frac{V}{(4\pi^3)} d\mathbf{k}$
 - probability of occupation: $f(\varepsilon(\mathbf{k}))$
 - total number of electrons: $f(\varepsilon(\mathbf{k})) \frac{V}{(4\pi^3)} d\mathbf{k}$
 - with velocity $\mathbf{v} = \frac{\hbar \mathbf{k}}{m} \rightarrow d\mathbf{k} = (\frac{m}{\hbar})^3 d\mathbf{v}$
- therefore the number of electrons with velocity $\in (\mathbf{v}, \mathbf{v} + d\mathbf{v})$ is:

$$f(\mathbf{v})d\mathbf{v} = rac{(rac{m}{\hbar})^3}{4\pi^3} rac{1}{e^{rac{1/2mv^2-\mu}{k_BT}}+1} d\mathbf{v}$$

• probability density (per unit volume)

Validity of the classical description

$\Delta x \Delta p \sim \hbar$

- Sommerfeld used the Fermi-Dirac velocity distribution in an otherwise classical theory
- Classical description of electron dynamics is valid if:
 - r and p can be specified as accurately as necessary
 - without violating the uncertainty principle $(\Delta x \Delta p \sim \hbar)$
- The classical description is valid if:
 - $\Delta p << \hbar k_F \sim p$
 - $\Delta x \sim \frac{\hbar}{\Delta p} >> \frac{1}{k_F} \sim r_s \sim 2-6\text{\AA}$

Validity of the classical description

$\Delta x \Delta p \sim \hbar$

- Electronic position must be specified in some instances:
 - for applied electromagnetic fields ($\Delta x \ll \lambda$)
 - for applied T gradients
- Conclusions of the models were valid if **E** or T vary negligibly in the scale of Δx
 - valid for UV-vis radiation, not X-rays (QM must be used)
 - usually valid for normal ∇T 's
- We assumed $\Delta x \ll I$, the mean free path
 - / \sim 100Å at room T

Improvements over Drude's theory

The use of Fermi-Dirac velocity distribution

- Affected properties:
 - mean free path
 - thermal conductivity
 - thermopower
- Properties not affected:
 - magnetoresistance
 - Hall coefficient
 - DC and AC conductivities

Improvements over Drude's theory

Mean free path

• From
$$I = \mathbf{v}_F \ \tau \rightarrow I = \frac{(r_s/a_0)^2}{\rho_{\mu}} \times 92 \text{ Å}$$

• $I \sim 100 \text{ Å}$ are possible at room T

Thermal conductivity

• From
$$\kappa = \frac{1}{3}v^2 \tau c_v$$

$$\frac{\kappa}{\sigma T} = \frac{\pi^2}{3} (\frac{k_B}{e})^2 = 2.44 \times 10^{-8} \text{watt} \cdot \text{ohm}/K^2$$

• excellent agreement with exp.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回

Improvements over Drude's theory

Thermopower

• With Sommerfeld estimate of the specific heat:

$$Q = -\frac{\pi^2}{6} \frac{k_B}{e} (\frac{k_B T}{\varepsilon_F}) = -1.42 (\frac{k_B T}{\varepsilon_F}) \times 10^{-4} \text{volt/K}$$

• smaller by
$$O(rac{k_BT}{\varepsilon_F})\sim 0.01$$
 at room T

Image: A matrix

- 4 E N