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Ground-state properties of the electron gas

Ground-state properties of the electron gas
General remarks

Maxwell-Boltzmann velocity distribution

Drude assumed the validity of the Maxwell-Boltzmann velocity
distribution (at thermal equilibrium)

fB(v) = n(
m

2πkBT
)

3
2 e
− mv2

2kBT

normalized such that
∫
fB(v)dv = n, n = N

V

check yourself (
∫∞
−∞ e−αx

2

dx =
√

π
α )

f (v)dv : number of e− with velocities in the volume element dv at v
per unit volume

Equipartition theorem follows (cv = 3
2kB ; ε̄ = 3

2kBT )
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Ground-state properties of the electron gas

Ground-state properties of the electron gas
General remarks

Fermi-Dirac velocity distribution

Valid for Fermions, as a consequence of the Pauli exclusion principle

f (v) =
(m/~)3

4π3

1

e
( 1

2 mv2−kBT0)

kBT + 1

T0 determined such that
∫
f (v)dv = n

Sommerfeld theory replaces fB(v) of Drude’s theory with f (v)

profound consequences on ε̄ and cv
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Ground-state properties of the electron gas

Ground-state properties of the electron gas
General remarks

Maxwell-Boltzmann vs Fermi-Dirac velocity distribution

Plot of Maxwell-Boltzmann and Fermi-Dirac distributions for the same n given by T = 0.01T0.
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Ground-state properties of the electron gas

Ground-state properties of the electron gas
Quantum mechanical solution

Mathematical treatment

The free electron gas is confined in a cube of edge L (L = V
1
3 )

Assume the independent electron approximation

Solve the TISE (separation of variables)

− ~2

2m
∇2ψ(r) = εψ(r)

Apply Born-von Karman boundary conditions to the general solution
ψ(x , y , z + L) = ψ(x , y , z)

ψ(x , y + L, z) = ψ(x , y , z)

ψ(x + L, y , z) = ψ(x , y , z)

Fill the energy levels by using the Pauli exclusion principle
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Ground-state properties of the electron gas

Ground-state properties of the electron gas
Quantum mechanical solution

Separation of variables

Ansatz ψ(r) = X (x)Y (y)Z (z)

Upon substitution on the TISE:
− ~2

2m
d2

dx2X (x) = εxX (x)

− ~2

2m
d2

dy2Y (y) = εyY (y)

− ~2

2m
d2

dz2Z (z) = εzZ (z)

ε = εx + εy + εz
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Ground-state properties of the electron gas

Ground-state properties of the electron gas
Quantum mechanical solution

Separation of variables

Ansatz ψ(r) = X (x)Y (y)Z (z)

The boundary conditions are:
Z (z + L) = Z (z)

Y (y + L) = Y (y)

X (x + L) = X (x)

Three similar homogeneous ODEs of the second order
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Ground-state properties of the electron gas

Ground-state properties of the electron gas
Quantum mechanical solution

General and particular solutions

{
d2

dx2φ(x) + k2φ(x) = 0

φ(x + L) = φ(x)

General solution: φ(x) = c1e
ikx + c2e

−ikx

k2 = 2mε
~2 =⇒ ε = ~2k2

2m

Particular (normalized) solution: φ(x) = 1√
L
e ikx

k = 2nπ
L , n = 0,±1,±2, . . .
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Ground-state properties of the electron gas

Ground-state properties of the electron gas
Quantum mechanical solution

Eigenfunctions and eigenvalues of the problem

ψk(r) = 1√
V
e ik·r

normalized inside the cube:
∫
|ψk(r)|2dr = 1

allowed wave vectors k :

kx = 2πnx
L ; ky =

2πny
L ; kz = 2πnz

L
nx , ny , nz = 0,±1,±2, . . .

ε = ε(|k |) = ~2k2

2m (depends only on k = |k |)

allowed wave vectors in a 2D k space
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Ground-state properties of the electron gas

Ground-state properties of the electron gas
Quantum mechanical solution

Eigenfunctions and eigenvalues of the problem

ψk(r) is eigenfunction of the momentum operator p = ~
i ∇

~
i ∇ψk(r) = pψk(r); p = ~k

Its velocity is v = p
m = ~k

m

allowed wave vectors in a 2D k space
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Ground-state properties of the electron gas

Ground-state properties of the electron gas
Quantum mechanical solution

Counting the quantum mechanical solutions

Volume per allowed wave vector in k-space: ( 2π
L )3 = 8π3

V

For a region Ω, the number is ΩV
8π3

must be very large on the scale of 2π
L

not too irregularly shaped

k-space density of levels: V
8π3

allowed wave vectors in a 2D k space
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Ground-state properties of the electron gas

Ground-state properties of the electron gas
Quantum mechanical solution

Occupation of the ground-state (T = 0K)

Place a maximum of two e− on each level, starting with the lowest

k = 0 =⇒ εk = 0
ψ ≡ ψkσ, σ = ± 1

2

εk varies with the distance squared from O

The occupied region is a sphere (Fermi sphere)

for very large N
radius kF : Fermi wave vector
volume: Ω = 4π

3 k3
F

N = 2 ΩV
8π3 = 2(

4πk3
F

3 )( V
8π3 ) =

k3
F

3π2V
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Ground-state properties of the electron gas

Ground-state properties of the electron gas
Quantum mechanical solution

Occupation of the ground-state (T = 0K)

Given a density n = N
V , the ground-state is formed by:

occupying all levels with k < kF
all levels with k > kF are empty
kF = (3π2n)

1
3

Some nomenclature:

region Ω: Fermi sphere
kF : Fermi wave vector
surface of Ω: Fermi surface
pF = ~kF : Fermi momentum
vF = pF

m : Fermi velocity

εF =
~2k2

F

2m : Fermi energy
TF = εF

kB
: Fermi temperature

The above quantities can be estimated from n
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Ground-state properties of the electron gas

Ground-state properties of the electron gas
Quantum mechanical solution

Some numbers

kF =
( 9π

4
)

1
3

rs
= 1.92

rs
= 3.63

rs
a0

Å−1

rs ∼2–6 Å =⇒ kF ∼ Å−1 (λ ∼ Å)

vF = ~
mkF = 4.20

rs
a0

× 108cm/s

1% of c , (classical estimate at room temperature v ∼ 107cm/s)

εF =
~2k2

F
2m = ( e2

2a0
)(kFa0)2 = 50.1

( rs
a0

)2 eV

εF ∈ 1.5–15 eV

TF = εF
kB

= 58.2
( rs
a0

)2 × 104K

energy per electron of a classical ideal gas vanishes at T = 0K
(ε̄ = 3

2kBT )
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Ground-state properties of the electron gas

Ground-state properties of the electron gas
Quantum mechanical solution

Some numbers
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Ground-state properties of the electron gas

Ground-state properties of the electron gas
Quantum mechanical solution

Total energy of the ground-state (T = 0K)

E = 2×
∑

k<kF
εk =

∑
k<kF

2× ~2k2

2m

Standard way of treating summations:∑
k

F (k) =
V

8π3

∑
k

F (k)∆k

lim
V→∞

1

V

∑
k

F (k) =

∫
F (k)

8π3
dk

Therefore:
E

V
= 2

∫
k<kF

dk
8π3

~2k2

2m
=

1

π2

~2k5
F

10m
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Ground-state properties of the electron gas

Ground-state properties of the electron gas
Quantum mechanical solution

Total energy of the ground-state (T = 0K)

E
V = 1

π2

~2k5
F

10m

energy density of the electron gas
E
N = 3

5kBTF

for a classical particle E
N = 3

2kBT =⇒ T = 2
5TF ∼ 104K
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Ground-state properties of the electron gas

Ground-state properties of the electron gas
Quantum mechanical solution

Bulk properties of the ground-state

Electronic pressure: P = 2
3
E
V

exerted by the electron gas

Compressibility: K = − 1
V (∂V∂P )

Bulk modulus: B = 1
K = 5

3P = 10
9

E
V = 2

3nεF

Numerically: B = ( 6.13
rs/a0

)5 × 1010dynes/cm2
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The Fermi-Dirac distribution

Thermal properties of the free-electron gas
The Fermi-Dirac distribution

The partition function

If T 6= 0, N-electron excited states become populated

thermal equilibrium is assumed

Boltzmann distribution law

PN(E ) =
e
− E

kBT∑
α e
− EN

α
kBT

PN(E ): probability of finding the system in the state of energy E

Z =
∑

α e
− EN

α
kBT is the partition function

Daniele Toffoli January 11, 2017 22 / 48



The Fermi-Dirac distribution

Thermal properties of the free-electron gas
The Fermi-Dirac distribution

The partition function

FN = U − TS = −kBT ln(Z ) =⇒ Z = e
− FN

kBT

Helmholtz free energy

PN(E ) = e
− E−FN

kBT
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The Fermi-Dirac distribution

Thermal properties of the free-electron gas
The Fermi-Dirac distribution

Derivation

The N-electron state is specified by a list of the one-electron levels
occupied

states ψkσ(r)

Define f Ni =
∑

PN(EN
α )

probability that the one-electron level i is occupied in the N-electron
state
Pauli exclusion principle requires 0 ≤ f Ni ≤ 1
mean occupation of the level i

We will find an explicit expression for f Ni
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The Fermi-Dirac distribution

Thermal properties of the free-electron gas
The Fermi-Dirac distribution

Derivation

f Ni = 1−
∑

PN(EN
γ )

γ labels N-electron states where i is not occupied

f Ni = 1−
∑

PN(EN+1
α − εi )

EN
γ = EN+1

α − εi
N + 1-electron states obtained from γ’s by placing an electron in level i

Defining µ = FN+1 − FN =⇒ f Ni = 1− e
εi−µ
kBT

∑
PN+1(EN+1

α )

f Ni = 1− e
εi−µ
kBT f N+1

i
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The Fermi-Dirac distribution

Thermal properties of the free-electron gas
The Fermi-Dirac distribution

Derivation

Assuming that f Ni = f N+1
i for N ∼ 1022

f Ni =
1

e
(εi−µ)

kBT + 1

N =
∑

i f
N
i =

∑
i

1

e
(εi−µ)
kBT +1

N (or n = N
V ) as a function of T and µ

We can express µ as a function of n and T
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Thermal properties of the free electron gas

Thermal properties of the free-electron gas
Applications of the Fermi-Dirac distribution

Limiting form of f Ni

In the ground-state: {
fkσ = 1 ε(k) < εF

fkσ = 0 ε(k) > εF

For the f Ni distribution we have{
fkσ = 1 ε(k) < µ

fkσ = 0 ε(k) > µ

Therefore limT→0 µ = εF

µ ∼ εF also at room temperature
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Thermal properties of the free electron gas

Thermal properties of the free-electron gas
Applications of the Fermi-Dirac distribution

Total energy of the electron gas

At any T, U = 2
∑

k ε(k)f (ε(k)):

f (ε(k)) =
1

e
(ε−µ)
kBT + 1

Defining u = U
V

u =

∫
dk
4π3

ε(k)f (ε(k))

From N = 2
∑

k f (ε(k)):

n =

∫
dk
4π3

f (ε(k))
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Thermal properties of the free electron gas

Thermal properties of the free-electron gas
Applications of the Fermi-Dirac distribution

Density of levels

Working in spherical coordinates:∫
dk
4π3

F (ε(k)) =

∫ ∞
0

k2dk

π2
F (ε(k)) =

∫ ∞
−∞

dεg(ε)F (ε)

g(ε): density of levels (per unit volume)

g(ε) =

{
m

~2π2

√
2mε
~2 ε > 0

0 ε < 0

At the Fermi level: g(εF ) = mkF
~2π2
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Thermal properties of the free electron gas

Thermal properties of the free-electron gas
Applications of the Fermi-Dirac distribution

Density of levels

Alternatively:

g(ε) =

{
3
2

n
εF

( ε
εF

)1/2 ε > 0

0 ε < 0

At the Fermi level: g(εF ) = 3
2

n
εF
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Thermal properties of the free electron gas

Thermal properties of the free-electron gas
Applications of the Fermi-Dirac distribution

Total energy and density of the electron gas

u =
∫∞
−∞ dεg(ε)εf (ε)

n =
∫∞
−∞ dεg(ε)f (ε)

valid for any non-interacting electron systems
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Thermal properties of the free electron gas

Thermal properties of the free-electron gas
Applications of the Fermi-Dirac distribution

The Sommerfeld expansion

For metals, T << TF even at room temperature

For T 6= 0 f (ε) differs little from its T=0 form

region ∆ε ∼ kBT around µ

Fermi function f for given µ at T = 0K (top) and room temperature (bottom)
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Thermal properties of the free electron gas

Thermal properties of the free-electron gas
Applications of the Fermi-Dirac distribution

The Sommerfeld expansion

Applied to integrals of the type
∫∞
−∞H(ε)f (ε)dε.

If H(ε) does not vary much for ∆ε ∼ kBT around µ

Taylor expansion of H(ε) around µ
assumed to converge rapidly for well-behaved H(ε)∫ ∞

−∞
H(ε)f (ε)dε =

∫ µ

−∞
H(ε)dε

+
π2

6
(kBT )2H ′(µ) +

7π4

360
(kBT )4H ′′′(µ) + O(

kBT

µ
)6
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Thermal properties of the free electron gas

Thermal properties of the free-electron gas
Applications of the Fermi-Dirac distribution

Specific heat of the electron gas

Apply the Sommerfeld expansion to both u and n:

u =

∫ µ

0
εg(ε)dε+

π2

6
(kBT )2[µg ′(µ) + g(µ)] + O(T 4)

n =

∫ µ

0
g(ε)dε+

π2

6
(kBT )2g ′(µ) + O(T 4)

Also, to order T 2:∫ µ

0
H(ε)dε =

∫ εF

0
H(ε)dε+ (µ− εF )H(εF )
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Thermal properties of the free electron gas

Thermal properties of the free-electron gas
Applications of the Fermi-Dirac distribution

Specific heat of the electron gas

Therefore:

u =

∫ εF

0
εg(ε)dε+ εF

{
(µ− εF )g(εF ) +

π2

6
(kBT )2g ′(εF )

}
+

π2

6
(kBT )2g(εF )

n =

∫ εF

0
g(ε)dε+

{
(µ− εF )g(εF ) +

π2

6
(kBT )2g ′(εF )

}
Note:

n =
∫ εF

0
g(ε)dε

u0 =
∫ εF

0
εg(ε)dε
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Thermal properties of the free electron gas

Thermal properties of the free-electron gas
Applications of the Fermi-Dirac distribution

Deviation of µ from εF

From:

0 = (µ− εF )g(εF ) +
π2

6
(kBT )2g ′(εF )

We get:

µ = εF −
π2

6
(kBT )2 g

′(εF )

g(εF )

= εF

[
1− 1

3
(
πkBT

2εF
)2

]
The difference is ∼ 0.01% even at room T
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Thermal properties of the free electron gas

Thermal properties of the free-electron gas
Applications of the Fermi-Dirac distribution

Specific heat capacity, cv

From:

u = u0 +
π2

6
(kBT )2g(εF )

We get:

cv =

(
∂u

∂T

)
v

=
π2

3
k2
BTg(εF )

=
π2

2

(
kBT

εF

)
nkB

varies linearly with T
compare with the classical result cv = 3

2nkB ( kBT
εF
∼ 10−2)

electronic contribution is negligible even at room T
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Thermal properties of the free electron gas

Thermal properties of the free-electron gas
Applications of the Fermi-Dirac distribution

Specific heat capacity, cv : qualitative considerations

From the T-dependence of the Fermi function f (ε):

nr. of electrons excited (per unit volume): ∼ g(εF )× kBT
excitation energy: ∼ kBT
energy density: ∼ (kBT )2g(εF )→ cv ∼ k2

BTg(εF )

Fermi function at T 6= 0
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Thermal properties of the free electron gas

Thermal properties of the free-electron gas
Applications of the Fermi-Dirac distribution

Experimental verification of cv = π2

2

(
kBT
εF

)
nkB

At room T cv is determined by the ionic contribution (∝ T 3 for
T → 0)

cv = γT + AT 3

Experimental data (of cp) are fitted to the equation: cv
T = γ + AT 2

electronic contribution is comparable to the ionic at T of few K
extrapolate at T → 0

Experimentally [C ] = [ cal
Kmol ]. Multiply by ZNA

n :

C =
π2

3
ZR

kBTg(εF )

n

=⇒ γ =
1

2
π2R

Z

TF
= 0.169Z (

rs
a0

)2 × 10−4cal mol−1K−2
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Thermal properties of the free electron gas

Thermal properties of the free-electron gas
Applications of the Fermi-Dirac distribution

Experimental verification of cv = π2

2

(
kBT
εF

)
nkB
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The Sommerfeld theory of conduction in metals

Sommerfeld theory of conduction in metals
Fermi-Dirac velocity distribution

Velocity distribution for electrons in a metal

Consider an element of volume dk around k
number of one-electron levels: 2× ( V

(2π)3 ) = V
(4π3)dk

probability of occupation: f (ε(k))
total number of electrons: f (ε(k)) V

(4π3)dk
with velocity v = ~k

m → dk = (m
~ )3dv

therefore the number of electrons with velocity ∈ (v , v + dv) is:

f (v)dv =
(m~ )3

4π3

1

e
1/2mv2−µ

kBT + 1

dv

probability density (per unit volume)
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The Sommerfeld theory of conduction in metals

Sommerfeld theory of conduction in metals
Validity of the classical description

∆x∆p ∼ ~

Sommerfeld used the Fermi-Dirac velocity distribution in an otherwise
classical theory

Classical description of electron dynamics is valid if:

r and p can be specified as accurately as necessary
without violating the uncertainty principle (∆x∆p ∼ ~)

The classical description is valid if:

∆p << ~kF ∼ p
∆x ∼ ~

∆p >>
1
kF
∼ rs ∼ 2–6Å
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The Sommerfeld theory of conduction in metals

Sommerfeld theory of conduction in metals
Validity of the classical description

∆x∆p ∼ ~

Electronic position must be specified in some instances:

for applied electromagnetic fields (∆x << λ)
for applied T gradients

Conclusions of the models were valid if E or T vary negligibly in the
scale of ∆x

valid for UV-vis radiation, not X-rays (QM must be used)
usually valid for normal ∇T ’s

We assumed ∆x << l , the mean free path

l ∼ 100Å at room T
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The Sommerfeld theory of conduction in metals

Sommerfeld theory of conduction in metals
Improvements over Drude’s theory

The use of Fermi-Dirac velocity distribution

Affected properties:

mean free path
thermal conductivity
thermopower

Properties not affected:

magnetoresistance
Hall coefficient
DC and AC conductivities
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The Sommerfeld theory of conduction in metals

Sommerfeld theory of conduction in metals
Improvements over Drude’s theory

Mean free path

From l = vF τ → l = (rs/a0)2

ρµ
× 92 Å

l ∼ 100 Å are possible at room T

Thermal conductivity

From κ = 1
3v

2τcv

κ

σT
=
π2

3
(
kB
e

)2 = 2.44× 10−8watt · ohm/K 2

excellent agreement with exp.
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The Sommerfeld theory of conduction in metals

Sommerfeld theory of conduction in metals
Improvements over Drude’s theory

Thermopower

With Sommerfeld estimate of the specific heat:

Q = −π
2

6

kB
e

(
kBT

εF
) = −1.42(

kBT

εF
)× 10−4volt/K

smaller by O( kBT
εF

) ∼ 0.01 at room T
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