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In Chapter 9 we calculated electronic levels in a metal by viewing it as a gas of nearly
free conduction electrons, only weakly perturbed by the periodic potential of the
jons. We can also take a very different point of view, regarding a solid (metal or
insulator) as a collection of weakly interacting neutral atoms. As an extreme example
of this, imagine assembling a group of sodium atoms into a body-centered cubic
array with a lattice constant of the order of centimeters rather than angstroms. All
electrons would then be in atomic levels localized at lattice sites, bearing no resem-
blance to the linear combinations of a few plane waves described in Chapter 9.

If we were to shrink the artificially large lattice constant of our array of sodium
atoms, at some point before the actual lattice constant of metallic sodium was reached
we would have to modify our identification of the electronic levels of the array with
the atomic levels of isolated sodium atoms. This would become necessary for a
particular atomic level, when the interatomic spacing became comparable to the
spatial extent of its wave function, for an electron in that level would then feel the
presence of the neighboring atoms.

The actual state of affairs for the 1s, 2s, 2p and 3s levels of atomic sodium is shown
in Figure 10.1. The atomic wave functions for these levels are drawn about two nuclei
separated by 3.7 A, the nearest-neighbor distance in metallic sodium. The overlap
of the 1s wave functions centered on the two sites is utterly negligible, indicating
that these atomic levels are essentially unaltered in metallic sodium. The overlap of
the 2s- and 2p-levels is exceedingly small, and one might hope to find levels in the
metal very closely related to these. However, the overlap of the 3s-levels (which hold
the atomic valence electrons) is substantial, and there is no reason to expect the
actual electronic levels of the metal to resemble these atomic levels.

The tight-binding approximation deals with the case in which the overlap of atomic
wave functions is enough to require corrections to the picture of isolated atoms, but
not so much as to render the atomic description completely irrelevant. The approxi-
mation is most useful for describing the energy bands that arise from the partially
filled d-shells of transition metal atoms and for describing the electronic structure
of insulators.

Quite apart from its practical utility, the tight-binding approximation provides an
instructive way of viewing Bloch levels complementary to that of the nearly free
electron picture, permitting a reconciliation between the apparently contradictory
features of localized atomic levels on the one hand, and free electron-like plane-wave
levels on the other.

GENERAL FORMULATION

In developing the tight-binding approximation, we assume that in the vicinity of
each lattice point the full periodic crystal Hamiltonian, H, can be approximated by
the Hamiltonian, H,,, of a single atom located at the lattice point. We also assume
that the bound levels of the atomic Hamiltonian are well localized; i.e., if ¢, is a
bound level of H,, for an atom at the origin,

Hald’n = Enl//n’ (10.1)
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Figure 10.1

Calculated electron wave functions for the levels of atomic sodium, plotted about two nuclei
separated by the nearest-neighbor distance in metallic sodium, 3.7 A. The solid curves are n(r)
for the 1s, 25, and 3s levels. The dashed curve is r times the radial wave function for the 2p levels.
Note how the 3s curves overlap extensively, the 25 and 2p curves overlap only a little, and the 1s
curves have essentially no overlap. The curves are taken from calculations by D. R. Hartree and
W. Hartree, Proc. Roy. Soc. A193, 299 (1948). The scale on the r-axis is in angstroms.

then we require that y,(r) be very small when r exceeds a distance of the order of
the lattice constant, which we shall refer to as the “range” of Y,

In the extreme case in which the crystal Hamiltonian begins to differ from H.,
(for an atom whose lattice point we take as the origin) only at distances from r = 0
that exceed the range of y,(r). the wave function (r) will be an excellent approxi-
mation to a stationary-state wave function for the full Hamiltonian, with eigenvalue
E,. So also will the wave functions i,(r — R) for all R in the Bravais lattice, since
H has the periodicity of the lattice.

To calculate corrections to this extreme case, we write the crystal Hamiltonian
H as

H = H, + AU(1), (10.2)
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where AU(r) contains all corrections to the atomic potential required to produce the
full periodic potential of the crystal (see Figure 10.2). If y,(r) satisfies the atomic
Schrodinger equation (10.1), then it will also satisfy the crystal Schrodinger equation
(10.2), provided that AU(r) vanishes wherever i,(r) does not. If this were indeed the
case, then each atomic level i,(r) would yield N levels in the periodic potential, with
wave functions y,(r — R), for each of the N sites R in the lattice. To preserve the
Bloch description we must find the N linear combinations of these degenerate wave
functions that satisfy the Bloch condition (see Eq. (8.6)):

Y(r + R) = & “y(r). (10.3)

AU(r)

Figure 10.2

The lower curve depicts the function AU(r) drawn along a line of atomic sites. When AU(r) is
added to a single atomic potential localized at the origin, the full periodic potential U(r) is re-
covered. The upper curve represents » times an atomic wave function localized at the origin.
When r¢(r) 1s large, AU(r) is small, and vice versa.

The N linear combinations we require are

Yalr) = Y e* My r — R), (10.9)
R

where k ranges through the N values in the first Brillouin zone consistent with the
Born-von Karman periodic boundary condition.! The Bloch condition (10.3) is
verified for the wave functions (10.4) by noting that

' Except when explicitly studying surface effects, one should avoid the temptation to treat a finite
crystal by restricting the summation on R in (10.4) to the sites of a finite portion of the Bravais lattice.
It is far more convenient to sum over an infinite Bravais lattice (the sum converging rapidly because of
the short range of the atomic wave function ¢,) and to represent the finite crystal with the usual Born-von
Karman boundary condition. which places the standard restriction (8.27) on k, when the Bloch condition
holds. With the sum taken over all sites, for example. it is permissible to make the crucial replacement
of the summation variable R" by R = R" — R, in the second to last line of Eq. (10.5).
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= e* ®y(r). (10.5)
Thus the wave functions (10.4) satisfy the Bloch condition with wave vector k,
while continuing to display the atomic character of the levels. The energy bands
arrived at in this way, however, have little structure, &,(k) being simply the energy
of the atomic level, E,, regardless of the value of k. To remedy this deficiency we must
recognize that a more realistic assumption is that y,(r) becomes small, but not
precisely zero, before AU(r) becomes appreciable (see Figure 10.2). This suggests

that we seek a solution to the full crystal Schrodinger equation that retains the
general form of (10.4):2

Y(r) = Y ¢ Rolr — R), (10.6)

but with the function ¢(r) not necessarily an exact atomic stationary-state wave
function, but one to be determined by further calculation. If the product AU(r)y,(r),
though nonzero, is exceedingly small, we might expect the function ¢(r) to be quite
close to the atomic wave function y,(r) or to wave functions with which y,(r) is
degenerate. Based on this expectation, one seeks a ¢(r} that can be expanded in a
relatively small number of localized atomic wave functions:*+*

¢(l’) = Z bnwn(r)‘ (10'7)
If we multiply the crystal Schrodinger equation
Hy(r) = (Hy + AU W(r) = EK)Y(r) (10.8)
by the atomic wave function ¥, *(r). integrate over all r, and use the fact that
'[!l/m*(r)Ha.l//(f) dr = '[(Hm!l/,..(r) V() dr = E, '[il/m*(r)sb(r) dr,  (10.9)

we find that
- €k — E,) '[!l/m*(r)!l/(r) dr = '[!l/m*(r) AU(r)(r) dr. (10.10)

2 It turns out (see p. 187) that any Bloch function can be wrilten in the form (10.6), the function ¢
being known as a Wannier function, so no generality is lost in this assumption.

3 By including only localized (i.e., bound) atomic wave functions in (10.7) we make our first serious
approximation. A complete set of atomic levels includes the ionized ones as well. This is the point at which
the method ceases to be applicable to levels well described by the almost free electron approximation.

4 Because of this method of approximating ¢, the tight-binding method is somelimes known as the
method of 1he linear combination of atomic orbitals (or LCAO).
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Placing (10.6) and (10.7) into (10.10) and using the orthonormality of the atomic
wave functions,

J!l/m*(r)w..(r) dr = 6,,, (10.11)
we arrive at an eigenvalue equation that determines the coefficients b,(k) and the

Bloch energies &(k):

n \R#0

+ 3 (jwm*(r) AU@Y) dr) b,
+Y (Z J¢,,,*(r) AU@Wr — R)e*'“dr) b,. (10.12)

n \R#0

€K) — Enbn = —6® — E,) ) (Z J¢m*(r)¢n(r ~ R)e*'® dr) b,

The first term on the right of Eq. (10.12) contains integrals of the form?

jdr U, O — R). (10.13)

We interpret our assumption of well-localized atomic levels to mean that (10.13)
is small compared to unity. We assume that the integrals in the third term on the right
of Eq. (10.12) are small, since they also contain the product of two atomic wave func-
tions centered at different sites. Finally, we assume that the second term on the right
of (10.12) is small because we expect the atomic wave functions to become small at
distances large enough for the periodic potential to deviate appreciably from the
atomic one.®

Consequently, the right-hand side of (10.13) (and therefore (§(k) — E,,)b,,) is always
small. This is possible il &(k) — E,, is small whenever b,, is not (and vice versa). Thus
&(k) must be close to an atomic level, say Eo, and all the b,, except those going with
that level and levels degenerate with (or close to) it in energy must be small:’

&(K) ~ Eg b, ~ Ounless E,, ~ Eq. (10.14)

If the estimates in (10.14) were strict equalities, we would be back to the extreme
case in which the crystal levels were identical to the atomic ones. Now, however, we

s Integrals whose integrands contain a product of wave functions centered on different lattice sites
are known as overlap integrals. The tight-binding approximation exploits the smallness of such overlap
integrals. They also play an important role in the theory of magnetism (Chapter 32).

6 This last assumption is on somewhat shakier ground than the others, since the ionic potentials
need not fall off as rapidly as the atomic wave functions. However, it is also less critical in determining the
conclusions we shall reach, since the term in question does not depend on k. In a sense this term simply
plays the role of correcting the atomic potentials within each cell to include the fields of the ions outside
the cell: it could be made as small as the other two terms by a judicious redefinition of the “atomic™
Hamiltonian and levels.

7 Note the similarity of this reasoning to that employed on pages 152 to 156. There. however, we
concluded that the wave function was a linear combination of only a small number of plane waves,
whose free electron energies were very close together. Here, we conclude that the wave function can be
represented, through (10.7) and (10.6), by only a small number of atomic wave functions, whose atomic
energies are very close together.
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can determine the levels in the crystal more accurately, exploiting (10.14) to estimate
the right-hand side of (10.12) by letting the sum over n run only through those levels
with energies either degenerate with or very close to E,. If the atomic level 0 is non-
degenerate,® i.c., an s-level, then in this approximation (10.12) reduces to a single
equation giving an explicit expression for the energy of the band arising from this
s-level (generally referred to as an “s-band™). If we are interested in bands arising from
an atomic p-level, which is triply degenerate, then (10.12) would give a set of three
homogeneous equations, whose eigenvalues would give the &(k) for the three p-bands,
and whose solutions b(k) would give the appropriate linear combinations of atomic
p-levels making up ¢ at the various k’s in the Brillouin zone. To get a d-band from
atomic d-levels, we should have to solve a 5 x 5 secular problem, etc.

Should the resulting &(k) stray sufficiently far from the atomic values at certain
k, it would be necessary to repeat the procedure, adding to the expansion (10.7) of ¢
those additional atomic levels whose energies the g(k) are approaching. In practice,
for example, one generally solves a 6 x 6 secular problem that includes both d- and
s-levels in computing the band structure of the transition metals, which have in the
atomic state an outer s-shell and a partially filled d-shell. This procedure goes under
the name of “s-d mixing” or “hybridization.”

Often the atomic wave functions have so short a range that only nearest-neighbor
terms in the sums over R in (10.12) need be retained, which very much simplifies
subsequent analysis. We briefly illustrate the band structure that emerges in the
simplest case.®

APPLICATION TO AN s-BAND ARISING FROM A SINGLE ATOMIC
s-LEVEL

If all the coefficients b in (10.12) are zero except that for a single atomic s-level, then
(10.12) gives directly the band structure of the corresponding s-band:

B + ZyRje* ®

&k) = E, — 1+ SR)ex ™ (10.15)
where E, is the energy of the atomic s-level, and
b= - '[dr AUQ@)| ()] (10.16)
oR) = '[ dr ¢*(r)p(r — R), (10.17)
and
yR) = — Idr ¢*r) AUMG(r — R). (10.18)

& For the moment we ignore spin-orbit coupling. We can therefore concentrate entirely on the orbital
parts of the levels. Spin can then be included by simply multiplying the orbital wave functions by the
appropnate spinors, and doubling the degeneracy of each of the orbital levels.

® The simplest case is that of an s-band. The next most complicated case, a p-band, is discussed in
Problem 2.
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The coefficients (10.16) to (10.18) may be simplified by appealing to certain sym-
metries. Since ¢ is an s-level, ¢(r) is real and depends only on the magnitude
r. From this it follows that o(—R) = %{R). This and the inversion symmetry of
the Bravais lattice, which requires that AU(—r) = AU(r), also imply that }(—R) =
WR). We ignore the terms in & in the denominator of (10.15), since they give small
corrections to the numerator. A final simplification comes from assuming that only
nearest-neighbor separations give appreciable overlap integrals.

Puiting these observations together, we may simplify (10.15) to

8K) = E, ~ f— ¥ y(R)cosk * R, (10.19)

where the sum runs only over those R in the Bravais lattice that connect the origin to
its nearest neighbors.

To be explicit, let us apply (10.19) to a face-centered cubic crystal. The 12 nearest
neighbors of the origin (see Figure 10.3) are at

R=2(£1,£1,0, S(£L0, 2D, S0 +1, D). (10.20)

Figure 10.3
The 12 nearest neighbors of the origin in a face-centered cubic
lattice with conventional cubic cell of side a.

Ifk = (k,, k,, k), then the corresponding 12 values of k - R are

x3 Fys
a i
k-R = E(iki’ tk;), Li=Xy;¥2:2 X (10.21)

Now AU(r) = AU(x, y, z) has the full cubic symmetry of the lattice, and is therefore
unchanged by permutations of its arguments or changes in their signs. This, together
with the fact that the s-level wave function ¢(r) depends only on the magnitude of r,
implies that y(R) is the same constant y for all 12 of the vectors (10.20). Consequently,
the sum in (10.19) gives, with the aid of (10.21),

&(k) = E; — B — 4y(cos 3k.a cos 3k,a
+ cos 3k,a cos 3k,a + cos tk.a cos tk.a), (10.22)
where
== '[lif ¢*(x, ¥, 2) AU(x, y, 2) $(x — %a,y — 4, 2). (10.23)

Equation (10.22) reveals the characteristic feature of tight-binding energy bands:
The bandwidth—i.e., the spread between the minimum and maximum energies in
the band—is proportional to the small overlap integral y. Thus the tight-binding
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bands are narrow bands, and the smaller the overlap, the narrower the band. In the
limit of vanishing overlap the bandwidth also vanishes, and the band becomes N-fold
degenerate, corresponding to the extreme case in which the electron simply resides
on any one of the N isolated atoms. The dependence of bandwidth on overlap integral
is illustrated in Figure 10.4.

Vin Energy levels
r (Spacing)!

______ é Bands,
each
with
N values
of k

]
N-fold (b)
degenerate
levels

Figure 10.4

(a) Schematic representation of nondegenerate electronic levels in
an atomic potential. (b) The energy levels for N such atoms in a
periodic array, plotted as a function of mean inverse interatomic
spacing. When the atoms are far apart (small overlap integrals)
the levels are nearly degenerate, but when the atoms are closer
together (larger overlap integrals), the levels broaden into bands.

In addition to displaying the effect of overlap on bandwidth, Eq. (10.22) illustrates
several general features of the band structure of a face-centered cubic crystal that are
not peculiar to the tight-binding case. Typical of these are the following:

1. In the limit of small ka, (10.22) reduces to:
&k) = E;, — p — 12y + yk?*a>. (10.24)

This is independent of the direction of k—i.e., the constant-energy surfaces in
the neighbourhood of k = 0 are spherical.'®

2. If &1s plotted along any line perpendicular to one of the square faces of the first
Brillouin zone (Figure 10.5), it will cross the square face with vanishing slope
(Problem 1).

< s Figure 10.5

The first Brillouin zone for face-centered cubic crystals. The point T
is at the center of the zone. The names K, L, W, and X are widely
used for the points of high symmetry on the zone boundary.

12 This can be deduced quite generally for any nondegenerate band in a crystal with cubic symmetry.
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3. If & is plotted along any line perpendicular to one of the hexagonal faces of the
first Brillouin zone (Figure 10.5), it need not, in general, cross the face with
vanishing slope (Problem 1).!!

GENERAL REMARKS ON THE TIGHT-BINDING METHOD

1. In cases of practical interest more than one atomic level appears in the ex-
pansion (10.7), leading to a 3 3 secular problem in the case of three p-levels, a
5 % 5 secular problem for five d-levels, etc. Figure 10.6, for example, shows the band
structure that emerges from a tight-binding calculation based on the 5-fold degenerate
atomic 3-d levels in nickel. The bands are plotted for three directions of symmetry
in the zone. each of which has its characteristic set of degeneracies.!?

0.6
0.6
3 Doubly
T degenerale it
€'D
0.0 L 0.0 — K
£ Doubly I
degenerate
06k
I ol
-1.2

Figure 10.6

A tight-binding calculation of the 3d bands of nickel. (G. C. Fletcher, Proc. Phys. Soc. A6S, 192
(1952).) Energies are given in units of & = 1.349 eV, so the bands are about 2.7 volts wide. The
lines along which & is plotted are shown in Figure 10.5. Note the characteristic degeneracies
along '’X and I'L, and the absence of degeneracy along I'K. The great width of the bands indicates
the inadequacy of so elementary a treatment.

2. A quite general feature of the tight-binding method is the relation between
bandwidth and the overlap integrals

7i(R) = — jdl‘ ¢.Xr) AU)¢;(r — R). (10.25)

1t Compare the nearly free electron case (page 158). where the rate of change of £along a line normal
to a Bragg plane was always found to vanish as the plane was crossed at points far from any other
Bragg planes. The tight-binding result illustrates the more general possibility that arises because there is
no plane of mirror symmetry parallel to the hexagonal face.

12 The calculated bands are so wide as to cast doubt on the validity of the entire expansion. A more
realistic calculation would have 1o include, at the very least, the effects of the 4s-level.
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If the y;; are small, then the bandwidth is correspondingly small. As a rule of
thumb, when the energy of a given atomic level increases (i.e., the binding energy
decreases) so does the spatial extent of its wave function. Correspondingly, the low-
lying bands in a solid are very narrow, but bandwidths increase with mean band
energy. In metals the highest band (or bands) are very broad, since the spatial ranges
of the highest atomic levels are comparable to a lattice constant, and the tight-binding
approximation is then of doubtful validity.

3. Although the tight-binding wave function (10.6) is constructed out of localized
atomic levels ¢, an electron in a tight-binding level will be found, with equal prob-
ability, in any cell of the crystal, since its wave function (like any Bloch wave function)
changes only by the phase factor e* ' ® as one moves from one cell to another a distance
R away. Thus as r varies from cell to cell, there is superimposed on the atomic struc-
ture within each cell a sinusoidal variation in the amplitudes of Re ¢ and Im ¢, as
illustrated in Figure 10.7.

Figure 10.7
Characteristic spatial variation of the real (or imaginary} part of the tight-binding wave function
(10.6).

A further indication that the tight-binding levels have a running wave or itinerant
character comes from the theorem that the mean velocity of an electron in a Bloch
level with wave vector k and energy &(k) is given by v(k) = (1/h) 8&/ck. (See Appendix
E.) If & is independent of k. 3&/¢k is zero, which is consistent with the fact that in
genuinely isolated atomic levels (which lead to zero bandwidth) the electrons are
indeed tied to individual atoms. If, however, there is any nonzero overlap in the atomic
wave functions, then &(k) will not be constant throughout the zone. Since a small
variation in & implies a small nonzero value of ¢€/ck, and hence a small but nonzero
mean velocity, as long as there is any overlap electrons will be able to move freely
through the crystal! Decreasing the overlap only reduces the velocity; it does not
eliminate the motion. One can view this motion as a quantum-mechanical tunneling
from lattice site to lattice site. The less the overlap, the lower the tunneling probability,
and hence the longer it takes to go a given distance.

4. In solids that are not monatomic Bravais lattices, the tight-binding approxi-
mation is more complicated. This problem arises in the hexagonal close-packed
metals, which are simple hexagonal with a two-point basis. Formally, one can treat
the two-point basis as a molecule, whose wave functions are assumed to be known,
and proceed as above. using molecular instead of atomic wave functions. If the
nearest-neighbor overlap remains small, then, in particular, it will be small in each
“molecule,” and an atomic s-level will give rise to two nearly degenerate molecular
levels. Thus a single atomic s-level yields two tight-binding bands in the hexagonal
close-packed structure.
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Alternatively, one can proceed by continuing to construct linear combinations of
atomic levels centered at the Bravais laitice points and at the basts points, generalizing
(106) to

Y =) ¢* Nagr — R) + bo(r — d — R)), (10.26)

(where d is the separation of the two basis atoms). This can be viewed as essentially
the first approach, in which, however, approximate molecular wave functions are
used, the approximation to the molecular levels being combined with the tight-
binding approximation to the levels of the entire crystal.!?

5. Inthe heavier elements spin-orbit coupling (see page 169) is of great importance
in determining the atomic levels, and should therefore be included in a tight-binding
treatment of the broadening of these levels into bands in the solid. In principle the
extension is straightforward. We stmply include in AU(r) the interaction between the
electron’s spin and the electric field of all ions except the one at the origin, incor-
porating that interaction into the atomic Hamiltonian. Once this is done we can no
longer use spin-independent linear combinations of atomic orbital wave functions,
but must work with linear combinations of both orbital and spin levels. Thus the
tight-binding theory of an s-level, when spin-orbit coupling is appreciable, would
approximate ¢ not by a single atomic s-level but by a linear combination (with k
dependent coefficients) of two levels with the same orbital wave fungctions and two
opposite spins. The tight-binding theory of a d-band would go from a 5 x 5 deter-
minantal problem to a 10 x 10 one, etc. As mentioned in Chapter 9, effects of spin-
orbit coupling, though often small, can frequently be quite crucial, as when they
eliminate degeneracies that would rigorously be present if such coupling were
ignored.!*

6. All the analysis of electronic levels in a periodic potential in this chapter (and
the preceding two) has been done within the independent electron approximation,
which either neglects the interaction between electrons, or, at best, includes it in some
average way through the effective periodic potential experienced by each single
electron. We shall see in Chapter 32 that the independent electron approximation
can fail when it gives at least one partially filled band that derives from well-localized
atomic levels with small overlap integrals. In many cases of interest (notably in
insulators and for the very low-lying bands in metals) this problem does not arise,
since the tight-binding bands are so low in energy as to be completely filled. However,
the possibility of such a failure of the independent electron approximation must be
kept in mind when narrow tight-binding bands are derived from partially filled
atomic shells—in metals, generally the d- and f-shells. One should be particularly
aware of this possibility in solids with a magnetic structure.

This failure of the independent electron approximation obscures the simple picture
the tight-binding approximation suggests: that of a continuous transition from the

'3 The “approximate molecular wave functions™ will thus be k-dependent.
4 The inclusion of spin-orbit coupling in the tight-binding method is discussed by J. Friedel, P.
Lenghart, and G. Leman, J. Phys. Chem. Solids 25, 781 (1964).
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metallic to the atomic state as the interatomic distance is continuously increased.'?
If we took the tight-binding approximation at face value, then as the lattice constant
in a metal increased, the overlap between all atomic levels would eventually become
small, and all bands—even the partially filled conduction band (or bands}—would
eventually become narrow tight-binding bands. As the conduction band narrowed,
the velocity of the electrons in it would diminish and the conductivity of the metal
would drop. Thus, we would expect a conductivity that dropped continuously to
zero with the overlap integrals as the metal was expanded.

In fact, however, it is likely that a full calculation going beyond the independent
electron approximation would predict that beyond a certain nearest-neighbor scpa-
ration the conductivity should drop abruptly to zero, the material becoming an
insulator (the so-called Mott transition).

The reason for this departure from the tight-binding prediction lies in the inability
of the independent electron approximation to treat the very strong additional repul-
sion a second electron feels at a given atomic site when another electron is already
there. We shall comment further on this in Chapter 32, but we mention the problem
here because it is sometimes described as a failure of the tight-binding method.!®
This is somewhat misleading in that the failure occurs when the tight-binding approxi-
mation to the independent electron model is at its best; it is the independent electron
approximation itself that fails.

WANNIER FUNCTIONS

We conclude this chapter with a demonstration that the Bloch functions for any
band can always be written in the form (10.4) on which the tight-binding approxi-
mation is based. The functions ¢ that play the role of the atomic wave functions are
known as Wannier functions. Such Wannier functions can be defined for any band,
whether or not it is well described by the tight-binding approximation; but if the band
is not a narrow tight-binding band, the Wannier functions will bear little resemblance
to any of the electronic wave functions for the isolated atom.

To establish that any Bloch function y,,(r) can be written in the form (10.4), we
first note that considered as a function of k for fixed r, ¥,,(r) is periodic in the reciprocal
lattice. It therefore has a Fourier series expansion in plane waves with wave vectors
in the reciprocal of the reciprocal lattice, i.e,, in the direct lattice. Thus for any fixed
r we can write

Yl = ;f..(R, e, 10.27)

where the coefficients in the sum depend on r as well as on the “wave vectors” R,
since for each r it is a different function of k that is being expanded.

15 A difficult procedure 1o realize in the laboratory, but a very tempting one to visualize theoretically,
as an aid in understanding the nature of energy bands.

16 See, for example, H. Jones, The Theory of Brillouin Zones and Electron States in Crystals, North-
Holland, Amsterdam, 1960, p. 229.
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The Fourier coefficients in (10.27) are given by the inversion formula'”

1
SR = — jdk Ry (F). (10.28)
‘0
Equation (10.27) is of the form (10.4), provided that the function f,(R, r) depends
on r and R only through their difference, r — R. But if r and R are both shifted by
the Bravais lattice vector R, then f is indeed unchanged as a direct consequence of
(10.28) and Bloch’s theorem, in the form (8.5). Thus f(R, r) has the form:

JAR, 1) = ¢,(r — R) ' (10.29)

Unlike tight-binding atomic functions ¢(r), the Wannier functions ¢,(r — R) at dif-
ferent sites (or with different band indices) are orthogonal (see Problem 3, Eq. (10.35)).
Since the complete set of Bloch functions can be written as linear combinations of
the Wannier functions, the Wannier functions ¢, (r — R) for all » and R form a
complete orthogonal set. They therefore offer an alternative basis for an exact
description of the independent electron levels in a crystal potential.

The similarity in form of the Wannier functions to the tight-binding functions
leads one to hope that the Wannier functions will also be localized—i.e., that when
r is very much larger than some length on the atomic scale, ¢,(r) will be negligibly
small. To the extent that this can be established, the Wannier functions offer an
ideal tool for discussing phenomena in which the spatial localization of electrons
plays an important role. Perhaps the most important areas of application are these:

1. Attempts to dertve a transport theory for Bloch electrons. The analog of free
electron wave packets, electronic levels in a crystal that are localized in both
r and k, are conveniently constructed with the use of Wannier functions. The
theory of Wannier functions is closely related to the theory of when and how
the semiclassical theory of transport by Bloch electrons (Chapters 12 and 13)
breaks down. i

2. Phenomena involving localized electronic levels, due, for example, to attractive
impurities that bind an electron. A very important example is the theory of donor
and acceptor levels in semiconductors (Chapter 28).

3. Magnetic phenomena, in which localized magnetic moments are found to exist
at suitable impurity sites.

Theoretical discussions of the range of Wannier functions are in general quite
subtle.'® Roughly speaking, the range of the Wannier function decreases as the band
gap increases (as one might expect from the tight-binding approximation, in which
the bands become narrower as the range of the atomic wave functions decreases).
The varnious “breakdown™ and “breakthrough™ phenomena we shall mention in

17" Here v, 1s the volume in k-space of the first Brillouin zone, and the integral is over the zone.
Equations (10.27) and (10.28) (with r regarded as a fixed parameter) arc just Egs. (ID.1) and (D.2) of
Appendix D. with direct and reciprocal space interchanged.

18 A relatively simple argument, but only in one dimension, is given by W. Kohn, Phys. Rev. 115,
809 (1959). A more general discussion can be found in E. I. Blount, Solid Stare Physics. Vol. 13, Academic
Press, New York, 1962, p. 305.
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Chapter 12 that occur when the band gap is small find their reflection in the fact

that theories based on the localization of the Wannier functions become less reliable
in this limit.

PROBLEMS

1. (a) Show thar along the principal symmetry directions shown in Figure 105 the tight-
binding expression (10.22) for the energies of an s-band in a face-centered cubic crystal reduces
to the following:

(i) AlongTX (k,=k =0 k =p2n/a, O0<p<l)
€=E, — B — 4y(1 + 2cos un).

(i) AlongTL (k, =k, =k =p2nfa, 0<p<d

e &§=E, — B~ 12y cos?unm.
(i) AlongTK (k,=0, k =k =p2n/a, 0<p<

&= E, — B — 4y(cos? un + 2 cos pn).
(iv) AlongI'W (k, =0, k, = p2n/a, k,=3p2nfa, O<p<l)
&=E, — B — 4y(cos ur + cos tum + cos pxn cos Lym).

(b) Show that on the square faces of the zone the normal derivative of & vanishes.
(c) Show that on the hexagonal faces of the zone, the normal derivative of & vanishes only
along lines joining the center of the hexagon 1o its vertices.

2. Tight-Binding p-Bands in Cubic Crystals

In dealing with cubic crystals, the most convenient linear combinations of three degenerate
atomic p-levels have the form x¢(r), y¢(r), and 2¢(r), where the function ¢ depends only on
the magnitude of the vector r. The energies of the three corresponding p-bands are found from
(10.12) by setting to zero the determinant

[ek) — E,) &; + Bi; + Fi;(k) = 0, (10.30)

where

7i;(k) = anem-k}’ij(R),

}’.'j(R) = J.dl‘ !I’i*(r)!l’j(r — R) AU(r),
Bij = v;(R = 0). (10.31)

(A term multiplying &(k) — E,, which gives rise to very small corrections analogous to those
given by the denominator of (10.15) in the s-band case, has been omitted from (10.30).)
(a) Asa consequence of cubic symmetry, show that

ﬁxx = ﬂy_v = ﬁ:z = ﬁr
B, = 0. (10.32)
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(b) Assuming that the y;;(R) are negligible except for nearest-neighbor R, show that (k)
is diagonal for a simple cubic Bravais lattice, so that x¢(r), y¢(r), and z¢(r) each generate inde-
pendent bands. (Note that this ceases to be the case if the y,;(R) for next nearest-neighbor R are
also retained.)

(c) For a face-centered cubic Bravais lattice with only nearest-neighbor 7, appreciable,
show that the energy bands are given by the roots of

&(k) — °%(k) +

—4y, sin 3k asin tk,a —4y, sin k.a sin ik,a
4y, cos $k,a cos tk,a L . ¥ ! = :

&k) — &%Kk) +

0 = | —4y, sin k,a sin 3k.a
L =% 4y, cos 3k,a cos 3k.a

—4y, sin $k,asin tk.a
&(k) — &°(k) +

—4y, sin 3kasin3k.a —4y, sinik,asin ik a
s B L b 4y, cos 3k,a cos tk,a

(10.33)
where
&%(k) = E, - B
— 4y,(cos 3k,a cos tk.a + cos 3k.a cos 3ka + cos k,a cos 3k.a),
Yo = — |dr[x* — y(y — I ]ond([x* + (y — 20 + (z — $a)*]'?) AUG),
= —jdr x(y = SN — 3a)* + (v — 1) + 1Y) AU(r),
Y2 = = |drxdx — 3a)d(S([(x — 30> + (y — 3a)* + 2] AU). (10.39)

(d) Show that all three bands are degenerate at k = 0, and that when k is directed along
either a cube axis (I'X) or a cube diagonal (I'L) there is a double degeneracy. Sketch the energy
bands (in analogy to Figure 10.6) along these directions.

3. Prove that Wannier functions centered on different lattice sites are orthogonal,

I¢,,*(r — R)$lr — R') dr o 5, Sy (10.35)

by appealing to the orthonormality of the Bloch functions and the identity (F.4) of Appendix F.
Show also that
J‘dr

if the integral of the |y;,.(r)|? over a primitive cell is normalized to unity.

2

ulr)| =1 (10.36)




