Electrons in a weak periodic potential

 \equiv 990

イロト イ部 トイヨ トイヨト

1 General approach to the Schrödinger equation

2 [Energy levels near a single Bragg plane](#page-14-0)

[Brillouin zones](#page-24-0)

 \equiv 990

イロト イ部 トイヨ トイヨト

1 General approach to the Schrödinger equation

[Energy levels near a single Bragg plane](#page-14-0)

画

イロト イ母 トイヨ トイヨト

 QQ

Electrons in a weak periodic potential

Applicability

Motivation

- Appropriate assumption for metals of I–IV groups
	- \bullet s and p electrons outside a noble gas closed-shell configuration
	- nearly free-electron metals
- **•** Justification:
	- valence electrons are excluded (Pauli exclusion principle) from the core region
	- electron's mobility screen the field due to the ionic cores

 Ω

e ville e

Case of a weak periodic potential

Summary: wave function of a Bloch level

Expand the Block wave function in plane waves:

$$
\psi_{\mathbf{k}}(\mathbf{r}) = \sum_{\mathbf{K}} c_{\mathbf{k}-\mathbf{K}} e^{i(\mathbf{k}-\mathbf{K})\cdot \mathbf{r}}
$$

 \bullet sum over all κ

• Coefficients $c_{\mathbf{k}-\mathbf{K}}$ and energy ε determined by

$$
\left[\frac{\hbar^2}{2m}(\mathbf{k}-\mathbf{K})^2-\varepsilon\right]c_{\mathbf{k}-\mathbf{K}}+\sum_{\mathbf{K}'}U_{\mathbf{K}'-\mathbf{K}}c_{\mathbf{k}-\mathbf{K}'}=0
$$

• For fixed k there is an equation for every K

 290

K ロ ▶ K 何 ▶

B \rightarrow \equiv \rightarrow

Case of a weak periodic potential

Free electron case

 $\bullet\;\;U_{\mathbf{K}}=0,\;\forall\mathbf{K},\;$ therefore:

$$
(\varepsilon_{\mathbf{k}-\mathbf{K}}^0-\varepsilon)c_{\mathbf{k}-\mathbf{K}}=0 \Longrightarrow \begin{cases} c_{\mathbf{k}-\mathbf{K}}=0\\ \varepsilon_{\mathbf{k}-\mathbf{K}}^0-\varepsilon=0 \end{cases}
$$

•
$$
\varepsilon_q^0 = \frac{\hbar^2}{2m} q^2
$$

• We have two possibilities:

- $\exists! \; K$ such that $\varepsilon^0_{\bm{k}-\bm{K}} = \varepsilon$
- \exists several $\pmb{\mathcal{K}},\ \pmb{\mathcal{K}}_1,\ldots,\pmb{\mathcal{K}}_m$ such that $\varepsilon^0_{\pmb{k}-\pmb{\mathcal{K}}_i}=\varepsilon$

 Ω

正々 メラメ

4 D F

Case of a weak periodic potential

Free electron case

- $\exists! \; \mathcal{K} \text{ such that } \varepsilon^0_{\mathcal{k}-\mathcal{K}} = \varepsilon \Longrightarrow \psi_{\mathcal{k}} \propto e^{i(\mathcal{k}-\mathcal{K}) \cdot \mathcal{K}}$
	- free electron solutions
- \exists several $\bm{\mathcal{K}},\ \bm{\mathcal{K}}_1,\ldots,\bm{\mathcal{K}}_m$ such that $\varepsilon^0_{\bm{k}-\bm{\mathcal{K}}_i}=\varepsilon$
	- m independent plane-wave solutions: $e^{i(k-K_i)\cdot r}$, $i=1,2,\ldots,m$
	- complete freedom in chosing the coefficients $c_{\mathbf{k} \mathbf{K}_i}$, $i = 1, 2, \ldots, m$
- \bullet Two similar situations arise when considering a very weak potential U

 Ω

イロト イ押ト イヨト イヨト

Case of a weak periodic potential

Non-degenerate case

• Fix k and $K = K_1$ such that $\forall K \neq K_1$

$$
|\varepsilon^0_{\textbf{k}-\textbf{K}_1}-\varepsilon^0_{\textbf{k}-\textbf{K}}|>>U
$$

Investigate the effect on the corresponding free-electron level $\varepsilon_{\mathbf{k}-\mathbf{K}_1}^0$, $\psi_{\bm k} \propto e^{i(\bm k - \bm K_1) \cdot \bm r}$

Case of a weak periodic potential

Non-degenerate case

• Put $K = K_1$:

$$
(\varepsilon-\varepsilon_{\mathbf{k}-\mathbf{K}_1}^0)c_{\mathbf{k}-\mathbf{K}_1}=\sum_{\mathbf{K}}U_{\mathbf{K}-\mathbf{K}_1}c_{\mathbf{k}-\mathbf{K}}
$$

\n- The r.h.s. is of order
$$
O(U^2)
$$
:
\n- $K \neq K_1$ on the r.h.s. $(U_0 = 0)$
\n- for $K \neq K_1$, $c_{k-K} \rightarrow 0$ when $U \rightarrow 0$
\n

• Explicitly:

$$
c_{\mathbf{k}-\mathbf{K}} = \frac{U_{\mathbf{K}_1-\mathbf{K}}c_{\mathbf{k}-\mathbf{K}_1}}{\varepsilon - \varepsilon_{\mathbf{k}-\mathbf{K}}^0} + \sum_{\mathbf{K}' \neq \mathbf{K}_1} \frac{U_{\mathbf{K}'-\mathbf{K}}c_{\mathbf{k}-\mathbf{K}'}}{\varepsilon - \varepsilon_{\mathbf{k}-\mathbf{K}}^0}
$$

D.

 299

 \mathbb{B} is a \mathbb{B} is

4 ロ ▶ 4 母 ▶ 4

Case of a weak periodic potential

Non-degenerate case

• Therefore, in case of no degeneracy, for $K \neq K_1$:

$$
c_{\mathbf{k}-\mathbf{K}} = \frac{U_{\mathbf{K}_1-\mathbf{K}}c_{\mathbf{k}-\mathbf{K}_1}}{\varepsilon-\varepsilon_{\mathbf{k}-\mathbf{K}}^0} + O(U^2)
$$

The Eq. for $c_{\bm{k} - \bm{\mathsf{K}}_1}$ becomes:

$$
(\varepsilon - \varepsilon_{\mathbf{k}-\mathbf{K}_1}^0)c_{\mathbf{k}-\mathbf{K}_1} = \sum_{\mathbf{K}} \frac{U_{\mathbf{K}-\mathbf{K}_1} U_{\mathbf{K}_1-\mathbf{K}}}{\varepsilon - \varepsilon_{\mathbf{k}-\mathbf{K}}^0}c_{\mathbf{k}-\mathbf{K}_1} + O(U^3)
$$

Finally, to order U^2 :

$$
\varepsilon - \varepsilon_{\mathbf{k}-\mathbf{K}_1}^0 = \sum_{\mathbf{K}} \frac{U_{\mathbf{K}-\mathbf{K}_1} U_{\mathbf{K}_1-\mathbf{K}}}{\varepsilon_{\mathbf{k}-\mathbf{K}_1}^0 - \varepsilon_{\mathbf{k}-\mathbf{K}}^0} + O(U^3)
$$

Case of a weak periodic potential

Non-degenerate case

$$
\varepsilon - \varepsilon_{\mathbf{k}-\mathbf{K}_1}^0 = \sum_{\mathbf{K}} \frac{U_{\mathbf{K}-\mathbf{K}_1} U_{\mathbf{K}_1-\mathbf{K}}}{\varepsilon_{\mathbf{k}-\mathbf{K}_1}^0 - \varepsilon_{\mathbf{k}-\mathbf{K}}^0} + O(U^3)
$$

- Weakly perturbed non-degenerate bands repel each-other
- The perturbation is of order U^2 , hence very small
- To order U only nearly-degenerate levels are affected

÷

 QQ

正々 メラメ

4 D F

Case of a weak periodic potential

Degenerate case: $|\varepsilon^0_{\bm{k}-\bm{K}_i} - \varepsilon^0_{\bm{k}-\bm{K}_j}| \sim O(U)$, $i,j=1,\ldots,m$

$$
\bullet \ \forall \textit{\textbf{K}} \neq \textit{\textbf{K}}_i, \ i=1,\ldots,m
$$

$$
|\varepsilon^0_{\mathbf{k}-\mathbf{K}_i}-\varepsilon^0_{\mathbf{k}-\mathbf{K}}|>>U
$$

- Coefficients $c_{\bm{k}-\bm{K}_i}$ do not necessarily vanish in the limit $U\to 0$
- For all other coefficients $c_{k-K} \to 0$
- For $c_{\mathbf{k}-\mathbf{K}_i}$, $i=1,2,\ldots,m$ we can write:

$$
(\varepsilon-\varepsilon_{\mathbf{k}-\mathbf{K}_i}^0)c_{\mathbf{k}-\mathbf{K}_i}=\sum_{j=1}^mU_{\mathbf{K}_j-\mathbf{K}_i}c_{\mathbf{k}-\mathbf{K}_j}+\sum_{\mathbf{K}\neq\mathbf{K}_1,\dots,\mathbf{K}_m}U_{\mathbf{K}-\mathbf{K}_i}c_{\mathbf{k}-\mathbf{K}}
$$

 \equiv

 Ω

イロト イ押ト イヨト イヨト

Case of a weak periodic potential

Degenerate case: $|\varepsilon^0_{\bm{k}-\bm{K}_i} - \varepsilon^0_{\bm{k}-\bm{K}_j}| \sim O(U)$, $i,j=1,\ldots,m$

$$
\bullet \ \forall K \neq K_i, i = 1, \ldots, m
$$

$$
c_{\mathbf{k}-\mathbf{K}} = \frac{1}{\varepsilon - \varepsilon_{\mathbf{k}-\mathbf{K}}^0} \left(\sum_{j=1}^m U_{\mathbf{K}_j - \mathbf{K}} c_{\mathbf{k}-\mathbf{K}_j} + \sum_{\mathbf{K}' \neq \mathbf{K}_1, ..., \mathbf{K}_m} U_{\mathbf{K}' - \mathbf{K}} c_{\mathbf{k}-\mathbf{K}'} \right)
$$

• Since $c_{\mathbf{k}-\mathbf{K}} \sim O(U)$ we have:

$$
c_{\mathbf{k}-\mathbf{K}} = \frac{1}{\varepsilon - \varepsilon_{\mathbf{k}-\mathbf{K}}^0} \left(\sum_{j=1}^m U_{\mathbf{K}_j - \mathbf{K}} c_{\mathbf{k}-\mathbf{K}_j} \right) + O(U^2)
$$

画

 QQ

正々 メラメ

4 ロ ▶ 4 母 ▶ 4

Case of a weak periodic potential

Degenerate case: $|\varepsilon^0_{\bm{k}-\bm{K}_i} - \varepsilon^0_{\bm{k}-\bm{K}_j}| \sim O(U)$, $i,j=1,\ldots,m$

• Putting everything together:

$$
(\varepsilon - \varepsilon_{\mathbf{k} - \mathbf{K}_i}^0) c_{\mathbf{k} - \mathbf{K}_i} = \sum_{j=1}^m U_{\mathbf{K}_j - \mathbf{K}_i} c_{\mathbf{k} - \mathbf{K}_j} + \sum_{j=1}^m \left(\sum_{\mathbf{K} \neq \mathbf{K}_1, ..., \mathbf{K}_m} \frac{U_{\mathbf{K} - \mathbf{K}_i} U_{\mathbf{K}_j - \mathbf{K}}}{\varepsilon - \varepsilon_{\mathbf{k} - \mathbf{K}}^0} \right) c_{\mathbf{k} - \mathbf{K}_j} + O(U^3)
$$

• For leading order corrections in U we have:

$$
(\varepsilon - \varepsilon_{\mathbf{k}-\mathbf{K}_i}^0)c_{\mathbf{k}-\mathbf{K}_i} = \sum_{j=1}^m U_{\mathbf{K}_j-\mathbf{K}_i}c_{\mathbf{k}-\mathbf{K}_j}
$$

General approach to the Schrödinger equation

2 [Energy levels near a single Bragg plane](#page-14-0)

画

イロト イ母 トイヨ トイヨト

 QQ

Degenerate case with $m = 2$

Mathematical treatment

• For $m = 2$ the equations (to leading order U) are

$$
\begin{cases}\n(\varepsilon - \varepsilon_{\mathbf{k} - \mathbf{K}_1}^0)c_{\mathbf{k} - \mathbf{K}_1} &= U_{\mathbf{K}_2 - \mathbf{K}_1}c_{\mathbf{k} - \mathbf{K}_2} \\
(\varepsilon - \varepsilon_{\mathbf{k} - \mathbf{K}_2}^0)c_{\mathbf{k} - \mathbf{K}_2} &= U_{\mathbf{K}_1 - \mathbf{K}_2}c_{\mathbf{k} - \mathbf{K}_1}\n\end{cases}
$$

• Put
$$
q = k - K_1
$$
, $K = K_2 - K_1$:

$$
\begin{cases}\n(\varepsilon - \varepsilon_q^0)c_q &= U_K c_{q-K} \\
(\varepsilon - \varepsilon_{q-K}^0)c_{q-K} &= U_{-K} c_q = U_K^* c_q\n\end{cases}
$$

With the assumption that $\varepsilon_{\bm q}^0\sim\varepsilon_{\bm q-\bm K}^0$, $|\varepsilon_{\bm q}^0-\varepsilon_{\bm q-\bm K'}^0|>>U$ for $K' \neq K$, 0

画

 QQQ

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$

Degenerate case with $m = 2$

Mathematical treatment

- $\varepsilon_{\bm{q}}^0=\varepsilon_{\bm{q}-\bm{\mathsf{K}}}^0\Longrightarrow|\bm{q}|=|\bm{q}-\bm{\mathsf{K}}|$: **q** must lie on a Bragg plane If $\varepsilon_{\bm{q}}^0 = \varepsilon_{\bm{q-K}'}^0$ only for $\bm{K}' = \bm{K}$: \bullet **q** must lie only on this Bragg plane
- Therefore q is close to only one Bragg plane

(a) q lie in the Bragg plane determined by K

(b) $\boldsymbol{q} - \frac{1}{2}\boldsymbol{K}$ is parallel to the plane

Degenerate case with $m = 2$

Mathematical treatment

- For two nearly degenerate levels, the electron's wave vector (nearly) satisfy the condition for a single Bragg scattering
- For m nearly degenerate levels, q lies nearby the intersection with m different Bragg planes
- As a general rule:
	- a weak periodic potential has its major effects on only those free electron levels whose wave vectors are close to ones at which Bragg reflections can occur

 Ω

イロト イ押ト イヨト イヨト

Degenerate case with $m = 2$

Mathematical treatment

• The linear system has non-trivial solutions only if:

$$
\begin{vmatrix} \varepsilon - \varepsilon_{\mathbf{q}}^{0} & -U_{\mathbf{K}} \\ -U_{\mathbf{K}}^{*} & \varepsilon - \varepsilon_{\mathbf{q}-\mathbf{K}}^{0} \end{vmatrix} = 0
$$

• Leading to a quadratic equation

$$
(\varepsilon - \varepsilon_{\mathbf{q}}^0)(\varepsilon - \varepsilon_{\mathbf{q}-\mathbf{K}}^0) - |U_{\mathbf{K}}|^2 = 0
$$

• With roots:

$$
\varepsilon = \frac{1}{2} (\varepsilon_{\mathbf{q}}^{0} + \varepsilon_{\mathbf{q}-\mathbf{K}}^{0}) \pm \left[\left(\frac{\varepsilon_{\mathbf{q}}^{0} - \varepsilon_{\mathbf{q}-\mathbf{K}}^{0}}{2} \right)^{2} + |U_{\mathbf{K}}|^{2} \right]^{1/2}
$$

Degenerate case with $m = 2$

Mathematical treatment

For \bm{q} on the Bragg plane, the two roots are $\varepsilon=\varepsilon_{\bm{q}}^0\pm |U_{\bm K}|^2$

• Also
$$
\frac{\partial \varepsilon}{\partial \mathbf{q}} = \frac{\hbar^2}{m} (\mathbf{q} - \frac{1}{2}\mathbf{K})
$$

- the gradient is parallel to the plane
- constant energy surfaces at Bragg's planes are ⊥ to the plane

plot of the two roots for q parallel to K

Degenerate case with $m = 2$

Mathematical treatment

• For **q** on the Bragg plane $c_{q} = \pm sgn(U_{K})c_{q-K}$ \bullet If $U_{\kappa} > 0$:

$$
\begin{cases} |\psi(\mathbf{r})|^2 \propto (\cos \frac{1}{2} \mathbf{K} \cdot \mathbf{r})^2 & \varepsilon = \varepsilon_{\mathbf{q}}^0 + |U_{\mathbf{K}}| \\ |\psi(\mathbf{r})|^2 \propto (\sin \frac{1}{2} \mathbf{K} \cdot \mathbf{r})^2 & \varepsilon = \varepsilon_{\mathbf{q}}^0 - |U_{\mathbf{K}}| \end{cases}
$$

If $U_{\mathbf{k}} < 0$:

$$
\begin{cases} |\psi(\mathbf{r})|^2 \propto (\sin \frac{1}{2} \mathbf{K} \cdot \mathbf{r})^2 & \varepsilon = \varepsilon_{\mathbf{q}}^0 + |U_{\mathbf{K}}| \\ |\psi(\mathbf{r})|^2 \propto (\cos \frac{1}{2} \mathbf{K} \cdot \mathbf{r})^2 & \varepsilon = \varepsilon_{\mathbf{q}}^0 - |U_{\mathbf{K}}| \end{cases}
$$

 p -like solutions: $|\psi(\bm{r})|^2 \propto (\sin \frac{1}{2} \bm{K} \cdot \bm{r})^2$ s-like solutions: $|\psi(\bm{r})|^2 \propto (\cos \frac{1}{2} \bm{K} \cdot \bm{r})^2$

Degenerate case with $m = 2$

Energy bands in one dimension

- **•** Free electron case: electronic levels are a parabola in k
	- **•** limit of no interaction
	- to $O(U)$ the levels are correct in the presence of U, except near Bragg points
- Nearby the point $\frac{1}{2}K$ the degeneracy is split by $2U_K$
	- the slope of the two curves must be zero at $\frac{1}{2}K$
	- \bullet the free electron curve is modified as Fig. (d)
- Extended-zone scheme: repeat the procedure near every Bragg point
	- for the corresponding Fourier component (Fig. (e))
	- emphasises continuity with the free electron levels
- Reduced-zone scheme: all levels are specified by $k \in \text{1st BZ}$
	- translate all pieces through the appropriate K to stay in the 1st BZ (Fig. (f))
- Repeated-zone scheme: shows the periodici[ty](#page-20-0) [of](#page-22-0) [l](#page-20-0)[ab](#page-21-0)[e](#page-22-0)[ll](#page-13-0)[in](#page-14-0)[g](#page-24-0) [in](#page-13-0) *[k](#page-23-0)*[-](#page-24-0)[sp](#page-0-0)[ace](#page-29-0) $\begin{array}{c} \bullet \end{array}$ January 13, 2017

Energy levels near a single Bragg plane

Degenerate case with $m = 2$

Energy bands in one dimension

Degenerate case with $m > 2$

Energy-wave-vector curves in three dimensions

- Plot ε vs **k** along straight lines in k-space
	- Uses a reduced-zone scheme
	- Most curves are highly degenerate
	- Introduction of a periodic potential lowers the degeneracy
	- Very complex curves also in the free-electron approximation

free-electron energy levels for a fcc Bravais lattice

General approach to the Schrödinger equation

[Energy levels near a single Bragg plane](#page-14-0)

D.

 QQ

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$

Procedures used to draw the Fermi surface

Drawing the Fermi surface

- Draw the free-electron Fermi sphere centered at $\bm{k} = 0$
- It will be deformed in a simple manner when it crosses Bragg planes
	- constant energy surfaces are \perp to Bragg planes
- Consider the effect of all Bragg planes intersecting the sphere
	- fractured sphere in the extended-zone scheme

deformation of the free-electron sphere near the Bragg plane when $U_{\mathbf{k}} \neq 0$

 200

医前头面

Procedures used to draw the Fermi surface

Drawing the Fermi surface

- Similar construction with spheres centered on each lattice point to get the repeated-zone scheme
- Translate all pieces back into the first zone to get the surface in the reduced-zone scheme

deformation of the free-electron sphere near the Bragg plane when $U_k \neq 0$

⊞ s an

 200

Procedures used to draw the Fermi surface

Brillouin zones

- All are set of points in k -space that can be reached:
	- \bullet 1st BZ: from the origin without crossing any Bragg plane
	- 2nd BZ: from the 1st BZ crossing one Bragg plane
	- $n + 1$ BZ: from the n BZ crossing one Bragg plane (not in the $n 1$ BZ)
- Each BZ is a primitive cell

BZs for a 2D square Bravais lattice of sice b. Only BZs 1 2 3 are entirely contained in the square of side 2b

Branches of the Fermi surface in the repeated-zone scheme

- Draw the free-electron Fermi sphere
- Deform it in the vicinity of every Bragg plane
- Translate the portion within the *n*-th BZ through all K
	- Branch of the Fermi surface assigned to the nth band

free-electron Fermi sphere for a fcc metal of valence 4. (c) 2nd zone Fermi surface.

(d) 3rd zone Fermi surface. (e) 4th zone Fermi surface.

[Daniele Toffoli](#page-0-0) January 13, 2017 29 / 30

 Ω

イロト イ母 トイヨ トイヨト

Geometrical structure factor

Monoatomic lattice with a basis

- For a basis of identical ions at positions $\bm{d}_{\!j}$: $U(\bm{r}) = \sum_{\bm{R}} \sum_{j} \phi(\bm{r} - \bm{R} - \bm{d}_{j})$:
	- atomic potentials $\phi(r)$ centered at the ions positions
- **o** Then we have:

$$
U_{\mathbf{K}} = \frac{1}{v} \int_C d\mathbf{r} e^{-i\mathbf{K} \cdot \mathbf{r}} U(\mathbf{r})
$$

= $\frac{1}{v} \int_V d\mathbf{r} e^{-i\mathbf{K} \cdot \mathbf{r}} \sum_j \phi(\mathbf{r} - \mathbf{d}_j)$
= $\frac{1}{v} \phi(\mathbf{K}) S_{\mathbf{K}}^*$

• If $S_{\kappa} = 0 \Longrightarrow U_{\kappa} = 0$

• lowest-order splitting of free-electron levels disappears

K ロ ▶ K 個 ▶ K 로 ▶ K 로 ▶ 『로 』 ◇ Q Q @