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General approach to the Schrodinger equation

Electrons in a weak periodic potential
Applicability

Motivation

@ Appropriate assumption for metals of I-IV groups
e s and p electrons outside a noble gas closed-shell configuration
o nearly free-electron metals
o Justification:
o valence electrons are excluded (Pauli exclusion principle) from the core
region
o electron’s mobility screen the field due to the ionic cores
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General approach to the Schrodinger equation

General approach to the TISE

Case of a weak periodic potential

Summary: wave function of a Bloch level

@ Expand the Block wave function in plane waves:

Yi(r) = ke kHOr
K

e sum over all K

o Coefficients cx_k and energy € determined by

h2
[%(k — K)2 — E]Ck_K + Z Uk'—kck—k =0
K/

o For fixed k there is an equation for every K
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General approach to the Schrodinger equation

General approach to the TISE

Case of a weak periodic potential

Free electron case

o Uk =0, VK, therefore:

Ck—K = 0
(ke —€)k-k = 0= 0 . 0
k—K -
0 _ K2
® &g = 2m4
@ We have two possibilities:
o J! K such that &} , =¢
o JIseveral K, Ki,..., K such that 5?(7,(,, =
v
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General approach to the Schrodinger equation

General approach to the TISE

Case of a weak periodic potential

Free electron case

_ i(k—K)-
@ 1! K such that 5?(7Kf5:>1pko<e’( )r
o free electron solutions

o dseveral K, Ki,..., K, such that 5?(—K- =c
o m independent plane-wave solutions: e/k=K)r =12 . 'm
o complete freedom in chosing the coefficients cxk_k,, i =1,2,...,m

@ Two similar situations arise when considering a very weak potential U
v
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General approach to the Schrodinger equation

General approach to the TISE

Case of a weak periodic potential

Non-degenerate case

@ Fix k and K = Kj such that VK # K;
|5?(—K1 —epx| >> U

@ Investigate the effect on the corresponding free-electron level 52_,(1,
Vg X ei(k—Ki)-r

oWy {

K, K k

‘5?(7K1 - 527;(‘ ~ O(U)
v
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General approach to the Schrodinger equation

General approach to the TISE

Case of a weak periodic potential

Non-degenerate case

o Put K = Kj:

0
(e — ek ) k—Ky = ZUK K1 Ck—K

@ The r.h.s. is of order O(U?):
o K # Kj on the r.h.s. (Up =0)
o for K # Ky, ck_x — 0 when U — 0

o Explicitly:
_ Uki—kck—k, n Z Uk'— Kk Ck—k
kK= T 0 g — €9
k—K K'#£K, k—K
V.
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General approach to the Schrodinger equation

General approach to the TISE

Case of a weak periodic potential

Non-degenerate case

@ Therefore, in case of no degeneracy, for K # Ki:

UK1—KCk7K1 + O(u2)

Ck—K = - _ 50
k—K

@ The Eq. for ck_k, becomes:

Uk _k, Uk, -
(5 — g?(_Kl)Ck_Kl = Z LOKIKCI(—Kl 4 O(U3)

e Finally, to order U?:

Uk_k, Uk, —

0 K-K; YKi—K 3

5—5,(7,(122—60 1_6(1) + O(U?)
K “k—Ki k—K
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General approach to the Schrodinger equation

General approach to the TISE

Case of a weak periodic potential

Non-degenerate case

Uk_k, Uk, —

0 K-K; VKi—K 3

E—EkaIZE W—FO(U)
K k—K1 k—K

@ Weakly perturbed non-degenerate bands repel each-other
@ The perturbation is of order U?, hence very small

@ To order U only nearly-degenerate levels are affected

Daniele Toffoli January 13, 2017

11 /30



General approach to the Schrodinger equation

General approach to the TISE

Case of a weak periodic potential

Degenerate case: ‘52,;(. — 52—K| ~0W), i,j=1,....m
i \j
VK #K;,i=1,....m
’E?(fK,' —ep k| >>U
o Coefficients cx_g, do not necessarily vanish in the limit U — 0

@ For all other coefficients cx_, — 0

@ For ck_k,, i =1,2,...,m we can write:

m
0
(6 —ek_k)k-K, = E Uk~ ki ck—k; + Z Uk—KCk—k
= K%K, Knm
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General approach to the Schrodinger equation

General approach to the TISE

Case of a weak periodic potential

Degenerate case: ‘ngK,‘ - 82*’9" ~O0(),ij=1,....m

O VK#Ki, i=1,...,m
1 m
Ck-K = "0 Z Uk;—k Ck—k; + Z Uk’ -k ck—k'
k=K \ j=1 K'#Kx,....Km

@ Since ¢,k ~ O(U) we have:

1 m
Ck-K = ——5— Z UKJ-—KCk—KJ- + O(Uz)
-k \' I
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General approach to the Schrodinger equation

General approach to the TISE

Case of a weak periodic potential

Degenerate case: ‘527&. — szin| ~0W), i,j=1,....m

@ Putting everything together:

m
0
(e—€p w)k-k = D> Uk Kk
j=1

- 0

1 \K#KpKn & k-K

m

J

@ For leading order corrections in U we have:

m

0
(e — b k)ok—k = Y _ Uk~ Ch—k;
j=1

Z Uk-k;Uk;—k

Ck—-kK; + O( U3

v
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Energy levels near a single Bragg plane

© Energy levels near a single Bragg plane
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Energy levels near a single Bragg plane

Energy levels near a single Bragg plane

Degenerate case with m = 2

Mathematical treatment

e For m = 2 the equations (to leading order U) are

(e —eh k%K = Uko—KiChk—k;
(E - 627K2)CI(—K2 = UKlszck—Kl
) Putq:k—Kl, K=K, - Ki:
(e —e9)cq = Ukcqg-k
0 _ _
(e —eq-k)ca-k = U-kcqg = Ukcq

: : 0. .0 0_ 0
o With the assumption that eq ~ e¢ k. |eq — €q_k/| >> U for
K #K, 0
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Energy levels near a single Bragg plane

Energy levels near a single Bragg plane

Degenerate case with m = 2

Mathematical treatment

0 _ .0 — .

° cqg=¢qk = lal=la—-K|:

e g must lie on a Bragg plane

o If 53 = ag_K, only for K' = K:
e g must lie only on this Bragg plane

@ Therefore g is close to only one Bragg plane

(a) q lie in the Bragg plane determined by K
(b) g — %K is parallel to the plane
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Energy levels near a single Bragg plane

Energy levels near a single Bragg plane

Degenerate case with m = 2

Mathematical treatment
@ For two nearly degenerate levels, the electron’s wave vector (nearly)
satisfy the condition for a single Bragg scattering
@ For m nearly degenerate levels, q lies nearby the intersection with m
different Bragg planes
@ As a general rule:
e a weak periodic potential has its major effects on only those free
electron levels whose wave vectors are close to ones at which Bragg
reflections can occur )
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Energy levels near a single Bragg plane

Energy levels near a single Bragg plane

Degenerate case with m = 2

Mathematical treatment

@ The linear system has non-trivial solutions only if:

_ 0 _
E—¢&q Uk

* 0 =0

@ Leading to a quadratic equation

(€ —cq)(c —cq-k) — [Ux[* =0

o With roots:

1/2

0 0 2
1 €q — Eq—K
e=5( ategKk)E (q 2q ) + |Uk|?
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Energy levels near a single Bragg plane

Energy levels near a single Bragg plane

Degenerate case with m = 2

Mathematical treatment
e For g on the Bragg plane, the two roots are ¢ = 62 + |Uk|?
Je __ h? 1
o Also % = E(q— §K)

o the gradient is parallel to the plane
e constant energy surfaces at Bragg's planes are | to the plane

&

plot of the two roots for g parallel to K
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Energy levels near a single Bragg plane

Energy levels near a single Bragg plane

Degenerate case with m = 2

Mathematical treatment
@ For g on the Bragg plane c¢q = £sgn(Uk)cq—k
o If Uk > 0:

9(r)|? < (cos K - r)? e =¢9 +|Ukl
]w(r)]2o<(sin%K-r)2 Ezag—|UK]

o If Uk <O

[p(r))? < (sin3K-r)2 = 9 + |Uk|
[(r)]? o (cos%K r)? e= 53 — |Uk|

Kr)2
ik .ry

e p-like solutions: |1p(r)|2 (sin
o s-like solutions: |¢)(r)|? o (cos 5 K
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Energy levels near a single Bragg plane

Energy levels near a single Bragg plane

Degenerate case with m = 2

Energy bands in one dimension

@ Free electron case: electronic levels are a parabola in k
e limit of no interaction
o to O(U) the levels are correct in the presence of U, except near Bragg
points

Nearby the point %K the degeneracy is split by 2Uk

e the slope of the two curves must be zero at %K
o the free electron curve is modified as Fig. (d)

Extended-zone scheme: repeat the procedure near every Bragg point

o for the corresponding Fourier component (Fig. (e))
e emphasises continuity with the free electron levels

@ Reduced-zone scheme: all levels are specified by k € 1st BZ
o translate all pieces through the appropriate K to stay in the 1st BZ
(Fig. (f))

Repeated-zone scheme: shows the periodicity of labelling in k-space
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Energy levels near a single Bragg plane

Energy levels near a single Bragg plane

Degenerate case with m =2

Energy bands in one dimension

i
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Energy levels near a single Bragg plane

Energy levels near a single Bragg plane

Degenerate case with m > 2

Energy-wave-vector curves in three dimensions

@ Plot € vs k along straight lines in k-space
o Uses a reduced-zone scheme
e Most curves are highly degenerate
e Introduction of a periodic potential lowers the degeneracy
e Very complex curves also in the free-electron approximation

Eléetrant per unit cell

free-electron energy levels for a fcc Bravais lattice

v
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@ General approach to the Schrodinger equation

© Energy levels near a single Bragg plane

© Brillouin zones

«O)>» «Fr « = Q>



Brillouin zones

Brillouin zones

Procedures used to draw the Fermi surface

Drawing the Fermi surface
@ Draw the free-electron Fermi sphere centered at k = 0
o It will be deformed in a simple manner when it crosses Bragg planes
e constant energy surfaces are | to Bragg planes
o Consider the effect of all Bragg planes intersecting the sphere
e fractured sphere in the extended-zone scheme

deformation of the free-electron sphere near the Bragg plane when Uy # 0
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Brillouin zones

Brillouin zones

Procedures used to draw the Fermi surface
Drawing the Fermi surface
@ Similar construction with spheres centered on each lattice point to
get the repeated-zone scheme

@ Translate all pieces back into the first zone to get the surface in
the reduced-zone scheme

®

deformation of the free-electron sphere near the Bragg plane when Uy # 0
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Brillouin zones

Brillouin zones

Procedures used to draw the Fermi surface

Brillouin zones

@ All are set of points in k-space that can be reached:
e 1st BZ: from the origin without crossing any Bragg plane
e 2nd BZ: from the 1st BZ crossing one Bragg plane

e n+ 1 BZ: from the n BZ crossing one Bragg plane (not in the n — 1
BZ)

@ Each BZ is a primitive cell

BZs for a 2D square Bravais lattice of sice b. Only BZs 1 2 3 are entirely contained in the square of side 2b

v

Daniele Toffoli January 13, 2017 28 / 30



Brillouin zones

Brillouin zones

Branches of the Fermi surface in the repeated-zone scheme

@ Draw the free-electron Fermi sphere

@ Deform it in the vicinity of every Bragg plane
@ Translate the portion within the n-th BZ through all K
e Branch of the Fermi su

free-electron Fermi sphere for a fcc metal of valence 4. (c) 2nd zone Fermi surface.

(d) 3rd zone Fermi surface. (e) 4th zone Fermi surface.
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Brillouin zones

Geometrical structure factor

Monoatomic lattice with a basis

@ For a basis of identical ions at positions d;:
U(r) =2 r2_;0(r — R—d):
e atomic potentials ¢(r) centered at the ions positions

@ Then we have:

1 ,
Uk = /dre_’K"U(r)
viJc

1 —iK-r
= V/Vdre K zj:gb(r—dj)

1 *
= ;¢(K)5K

) |fSK:0:>UK:0

o lowest-order splitting of free-electron levels disappears
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