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General approach to the Schrödinger equation

Electrons in a weak periodic potential
Applicability

Motivation

Appropriate assumption for metals of I–IV groups

s and p electrons outside a noble gas closed-shell configuration
nearly free-electron metals

Justification:

valence electrons are excluded (Pauli exclusion principle) from the core
region
electron’s mobility screen the field due to the ionic cores
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General approach to the Schrödinger equation

General approach to the TISE
Case of a weak periodic potential

Summary: wave function of a Bloch level

Expand the Block wave function in plane waves:

ψk(r) =
∑
K

ck−Ke i(k−K)·r

sum over all K

Coefficients ck−K and energy ε determined by

[
~2

2m
(k −K )2 − ε]ck−K +

∑
K ′

UK ′−Kck−K ′ = 0

For fixed k there is an equation for every K
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General approach to the Schrödinger equation

General approach to the TISE
Case of a weak periodic potential

Free electron case

UK = 0, ∀K , therefore:

(ε0
k−K − ε)ck−K = 0 =⇒

{
ck−K = 0

ε0
k−K − ε = 0

ε0
q = ~2

2mq2

We have two possibilities:

∃! K such that ε0
k−K = ε

∃ several K , K1, . . . ,Km such that ε0
k−Ki

= ε

Daniele Toffoli January 13, 2017 6 / 30



General approach to the Schrödinger equation

General approach to the TISE
Case of a weak periodic potential

Free electron case

∃! K such that ε0
k−K = ε =⇒ ψk ∝ e i(k−K)·r

free electron solutions

∃ several K , K1, . . . ,Km such that ε0
k−Ki

= ε

m independent plane-wave solutions: e i(k−Ki )·r , i = 1, 2, . . . ,m
complete freedom in chosing the coefficients ck−Ki

, i = 1, 2, . . . ,m

Two similar situations arise when considering a very weak potential U
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General approach to the Schrödinger equation

General approach to the TISE
Case of a weak periodic potential

Non-degenerate case

Fix k and K = K1 such that ∀K 6= K1

|ε0
k−K1

− ε0
k−K | >> U

Investigate the effect on the corresponding free-electron level ε0
k−K1

,

ψk ∝ e i(k−K1)·r

|ε0
k−K1

− ε0
k−K | ∼ O(U)
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General approach to the Schrödinger equation

General approach to the TISE
Case of a weak periodic potential

Non-degenerate case

Put K = K1:

(ε− ε0
k−K1

)ck−K1
=
∑
K

UK−K1ck−K

The r.h.s. is of order O(U2):

K 6= K1 on the r.h.s. (U0 = 0)
for K 6= K1, ck−K → 0 when U → 0

Explicitly:

ck−K =
UK1−Kck−K1

ε− ε0
k−K

+
∑

K ′ 6=K1

UK ′−Kck−K ′

ε− ε0
k−K
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General approach to the Schrödinger equation

General approach to the TISE
Case of a weak periodic potential

Non-degenerate case

Therefore, in case of no degeneracy, for K 6= K1:

ck−K =
UK1−Kck−K1

ε− ε0
k−K

+ O(U2)

The Eq. for ck−K1
becomes:

(ε− ε0
k−K1

)ck−K1
=
∑
K

UK−K1UK1−K

ε− ε0
k−K

ck−K1
+ O(U3)

Finally, to order U2:

ε− ε0
k−K1

=
∑
K

UK−K1UK1−K

ε0
k−K1

− ε0
k−K

+ O(U3)
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General approach to the Schrödinger equation

General approach to the TISE
Case of a weak periodic potential

Non-degenerate case

ε− ε0
k−K1

=
∑
K

UK−K1UK1−K

ε0
k−K1

− ε0
k−K

+ O(U3)

Weakly perturbed non-degenerate bands repel each-other

The perturbation is of order U2, hence very small

To order U only nearly-degenerate levels are affected
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General approach to the Schrödinger equation

General approach to the TISE
Case of a weak periodic potential

Degenerate case: |ε0
k−Ki

− ε0
k−Kj

| ∼ O(U), i , j = 1, . . . ,m

∀K 6= Ki , i = 1, . . . ,m

|ε0
k−Ki

− ε0
k−K | >> U

Coefficients ck−Ki
do not necessarily vanish in the limit U → 0

For all other coefficients ck−K → 0

For ck−Ki
, i = 1, 2, . . . ,m we can write:

(ε− ε0
k−Ki

)ck−Ki
=

m∑
j=1

UKj−Ki
ck−Kj

+
∑

K 6=K1,...,Km

UK−Ki
ck−K
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General approach to the Schrödinger equation

General approach to the TISE
Case of a weak periodic potential

Degenerate case: |ε0
k−Ki

− ε0
k−Kj

| ∼ O(U), i , j = 1, . . . ,m

∀K 6= Ki , i = 1, . . . ,m

ck−K =
1

ε− ε0
k−K

 m∑
j=1

UKj−Kck−Kj
+

∑
K ′ 6=K1,...,Km

UK ′−Kck−K ′


Since ck−K ∼ O(U) we have:

ck−K =
1

ε− ε0
k−K

 m∑
j=1

UKj−Kck−Kj

+ O(U2)
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General approach to the Schrödinger equation

General approach to the TISE
Case of a weak periodic potential

Degenerate case: |ε0
k−Ki

− ε0
k−Kj

| ∼ O(U), i , j = 1, . . . ,m

Putting everything together:

(ε− ε0
k−Ki

)ck−Ki
=

m∑
j=1

UKj−Ki
ck−Kj

+
m∑
j=1

 ∑
K 6=K1,...,Km

UK−Ki
UKj−K

ε− ε0
k−K

 ck−Kj
+ O(U3)

For leading order corrections in U we have:

(ε− ε0
k−Ki

)ck−Ki
=

m∑
j=1

UKj−Ki
ck−Kj
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Energy levels near a single Bragg plane

Energy levels near a single Bragg plane
Degenerate case with m = 2

Mathematical treatment

For m = 2 the equations (to leading order U) are{
(ε− ε0

k−K1
)ck−K1

= UK2−K1ck−K2

(ε− ε0
k−K2

)ck−K2
= UK1−K2ck−K1

Put q = k −K1, K = K2 −K1:{
(ε− ε0

q)cq = UKcq−K

(ε− ε0
q−K )cq−K = U−Kcq = U∗Kcq

With the assumption that ε0
q ∼ ε0

q−K , |ε0
q − ε0

q−K ′ | >> U for
K ′ 6= K , 0
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Energy levels near a single Bragg plane

Energy levels near a single Bragg plane
Degenerate case with m = 2

Mathematical treatment

ε0
q = ε0

q−K =⇒ |q| = |q −K |:
q must lie on a Bragg plane

If ε0
q = ε0

q−K ′ only for K ′ = K :

q must lie only on this Bragg plane

Therefore q is close to only one Bragg plane

(a) q lie in the Bragg plane determined by K

(b) q − 1
2
K is parallel to the plane

Daniele Toffoli January 13, 2017 17 / 30



Energy levels near a single Bragg plane

Energy levels near a single Bragg plane
Degenerate case with m = 2

Mathematical treatment

For two nearly degenerate levels, the electron’s wave vector (nearly)
satisfy the condition for a single Bragg scattering

For m nearly degenerate levels, q lies nearby the intersection with m
different Bragg planes

As a general rule:

a weak periodic potential has its major effects on only those free
electron levels whose wave vectors are close to ones at which Bragg
reflections can occur
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Energy levels near a single Bragg plane

Energy levels near a single Bragg plane
Degenerate case with m = 2

Mathematical treatment

The linear system has non-trivial solutions only if:∣∣∣∣ε− ε0
q −UK

−U∗K ε− ε0
q−K

∣∣∣∣ = 0

Leading to a quadratic equation

(ε− ε0
q)(ε− ε0

q−K )− |UK |2 = 0

With roots:

ε =
1

2
(ε0

q + ε0
q−K )±

(ε0
q − ε0

q−K

2

)2

+ |UK |2
1/2
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Energy levels near a single Bragg plane

Energy levels near a single Bragg plane
Degenerate case with m = 2

Mathematical treatment

For q on the Bragg plane, the two roots are ε = ε0
q ± |UK |2

Also ∂ε
∂q = ~2

m (q − 1
2K )

the gradient is parallel to the plane
constant energy surfaces at Bragg’s planes are ⊥ to the plane

plot of the two roots for q parallel to K
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Energy levels near a single Bragg plane

Energy levels near a single Bragg plane
Degenerate case with m = 2

Mathematical treatment

For q on the Bragg plane cq = ±sgn(UK )cq−K

If UK > 0: {
|ψ(r)|2 ∝ (cos 1

2K · r)2 ε = ε0
q + |UK |

|ψ(r)|2 ∝ (sin 1
2K · r)2 ε = ε0

q − |UK |

If UK < 0: {
|ψ(r)|2 ∝ (sin 1

2K · r)2 ε = ε0
q + |UK |

|ψ(r)|2 ∝ (cos 1
2K · r)2 ε = ε0

q − |UK |

p-like solutions: |ψ(r)|2 ∝ (sin 1
2K · r)2

s-like solutions: |ψ(r)|2 ∝ (cos 1
2K · r)2
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Energy levels near a single Bragg plane

Energy levels near a single Bragg plane
Degenerate case with m = 2

Energy bands in one dimension

Free electron case: electronic levels are a parabola in k

limit of no interaction
to O(U) the levels are correct in the presence of U, except near Bragg
points

Nearby the point 1
2K the degeneracy is split by 2UK

the slope of the two curves must be zero at 1
2K

the free electron curve is modified as Fig. (d)

Extended-zone scheme: repeat the procedure near every Bragg point

for the corresponding Fourier component (Fig. (e))
emphasises continuity with the free electron levels

Reduced-zone scheme: all levels are specified by k ∈ 1st BZ

translate all pieces through the appropriate K to stay in the 1st BZ
(Fig. (f))

Repeated-zone scheme: shows the periodicity of labelling in k-space
(Fig. (g))
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Energy levels near a single Bragg plane

Energy levels near a single Bragg plane
Degenerate case with m = 2

Energy bands in one dimension
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Energy levels near a single Bragg plane

Energy levels near a single Bragg plane
Degenerate case with m > 2

Energy-wave-vector curves in three dimensions

Plot ε vs k along straight lines in k-space

Uses a reduced-zone scheme
Most curves are highly degenerate
Introduction of a periodic potential lowers the degeneracy
Very complex curves also in the free-electron approximation

free-electron energy levels for a fcc Bravais lattice
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Brillouin zones

Brillouin zones
Procedures used to draw the Fermi surface

Drawing the Fermi surface

Draw the free-electron Fermi sphere centered at k = 0

It will be deformed in a simple manner when it crosses Bragg planes

constant energy surfaces are ⊥ to Bragg planes

Consider the effect of all Bragg planes intersecting the sphere

fractured sphere in the extended-zone scheme

deformation of the free-electron sphere near the Bragg plane when Uk 6= 0
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Brillouin zones

Brillouin zones
Procedures used to draw the Fermi surface

Drawing the Fermi surface

Similar construction with spheres centered on each lattice point to
get the repeated-zone scheme

Translate all pieces back into the first zone to get the surface in
the reduced-zone scheme

deformation of the free-electron sphere near the Bragg plane when Uk 6= 0
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Brillouin zones

Brillouin zones
Procedures used to draw the Fermi surface

Brillouin zones

All are set of points in k-space that can be reached:

1st BZ: from the origin without crossing any Bragg plane
2nd BZ: from the 1st BZ crossing one Bragg plane
n + 1 BZ: from the n BZ crossing one Bragg plane (not in the n − 1
BZ)

Each BZ is a primitive cell

BZs for a 2D square Bravais lattice of sice b. Only BZs 1 2 3 are entirely contained in the square of side 2b
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Brillouin zones

Brillouin zones
Branches of the Fermi surface in the repeated-zone scheme

Draw the free-electron Fermi sphere
Deform it in the vicinity of every Bragg plane
Translate the portion within the n-th BZ through all K

Branch of the Fermi surface assigned to the nth band

free-electron Fermi sphere for a fcc metal of valence 4. (c) 2nd zone Fermi surface.

(d) 3rd zone Fermi surface. (e) 4th zone Fermi surface.
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Brillouin zones

Geometrical structure factor
Monoatomic lattice with a basis

For a basis of identical ions at positions dj :
U(r) =

∑
R
∑

j φ(r − R − dj):

atomic potentials φ(r) centered at the ions positions

Then we have:

UK =
1

v

∫
C
dre−iK ·rU(r)

=
1

v

∫
V
dre−iK ·r

∑
j

φ(r − dj)

=
1

v
φ(K )S∗K

If SK = 0 =⇒ UK = 0
lowest-order splitting of free-electron levels disappears
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