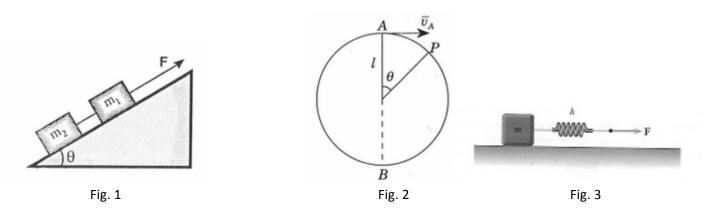
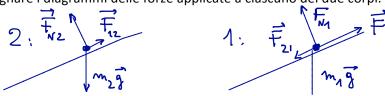
Università di Trieste, A.A. 2014/2015 - Lauree Triennali in Ingegneria

Fisica Generale 1, Prova Scritta Intermedia - B - 14.04.2015

Cognome	ognome	COGNOME	Nome	NOME
---------	--------	---------	------	------


Domanda Teorica

Enunciare nel modo più completo possibile il terzo principio della dinamica di Newton.


Se m corpo A erercite une forse F_{AB} su m corpo B, allone il corpo B escritte sul corpo A me forse F_{BA} mognele in modulo e directione, me offoste in verso Le due forse F_{AB} e $F_{S+} = -F_{AB}$ somo applicate a corpi divorii.

Istruzioni per gli esercizi:

Per ciascuna domanda rispondere fornendo solo il risultato finale: la grandezza incognita espressa simbolicamente in funzione delle grandezze date o di quelle ottenute in altre risposte, e poi il corrispondente risultato numerico, con il corretto numero di cifre significative e con le unità di misura appropriate.

- 1. Due corpi 1 e 2, rispettivamente di massa m_1 = 1,5 kg e m_2 = 2,5 kg, sono collegati da una fune inestensibile e di massa trascurabile, e sono disposti come in Figura 1, su un piano liscio (con attrito trascurabile), inclinato di un angolo θ = 25°. Al corpo 1 è applicata una forza costante di modulo F, diretta parallelamente al piano inclinato, verso l'alto.
- a. Disegnare i diagrammi delle forze applicate a ciascuno dei due corpi.

Sapendo che la fune ideale tra i due corpi sopporta una tensione massima T_{max} = 20 N:

b. Calcolare il massimo modulo F_{max} della forza che si può applicare al corpo 1, senza che la fune si spezzi per sovraccarico.

$$\mp_{\text{max}} = \mp_{\text{max}} \left(1 + \frac{m_1}{m_2} \right) < 30 \text{ N}$$

c. Calcolare l'accelerazione massima a_{max} . dei due corpi, corrispondente alla situazione limite sopra descritta ($F = F_{max}$).

$$Q_{\text{max}} = \frac{T_{\text{max}}}{m_2} - g_{\text{sin}} \mathcal{V} = 3.85 \text{ m/s}^2$$

- 2. Un sasso di massa m = 0.30 kg è legato all'estremo di una fune inestensibile, di massa trascurabile, di lunghezza l = 60 cm e fissa all'altro estremo. Si pone il sasso in rotazione in un piano verticale imprimendogli una velocità iniziale orizzontale nel punto A (Fig. 2) pari a $v_A = 3.0$ m s⁻¹. Trascurando la resistenza dell'aria, calcolare:
- a. Il modulo v_B della velocità nel punto B.

b. I valori minimo T_{min} e massimo T_{max} della tensione T della fune.

$$T_{min} = m\left(\frac{\tau_{r}^2}{\ell} - g\right) = 1,6 \text{ N}$$

$$T_{max} = m\left(\frac{\tau_{B}^2}{\ell} + g\right) = m\left(\frac{\tau_{A}^2}{\ell} + 5g\right) = 19,2 \text{ N}$$

c. Il valore massimo $v_{A,max}$ ammissibile per la velocità iniziale in A, affinchè la fune non si rompa, se la tensione di rottura della fune è T_{max} = 40 N.

- 3. Ad un corpo di massa m = 3.0 kg, posto su un piano orizzontale, è collegata una molla di costante elastica k = 500 N/m, all'estremo della quale agisce parallelamente al piano una forza F = 20 N, come indicato in Figura 3.
- a. Supponendo che, a causa dell'attrito statico con il piano orizzontale, il corpo sia in quiete, calcolare l'allungamento Δx della molla e il valore minimo del coefficiente di attrito statico μ_s , affinché il corpo rimanga in quiete.

$$\Delta x = \frac{F}{k} = 0.040 \text{ m}$$
 $\mu_s > \frac{F}{mg} = 0.68$

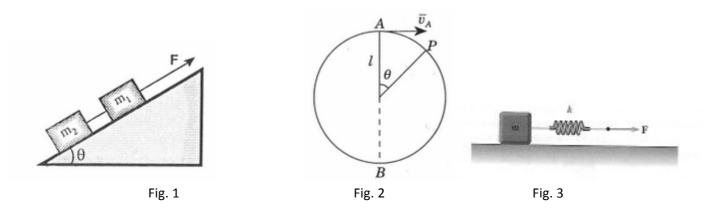
b. Se invece, con la stessa forza F applicata, il corpo fosse già in movimento, calcolare il modulo a della sua accelerazione, sapendo che il coefficiente di attrito dinamico con il piano orizzontale è μ_k = 0.40.

$$a = \frac{F}{m} - h_h y = 2,7 \text{ m/s}^2$$

Università di Trieste, A.A. 2014/2015 - Lauree Triennali in Ingegneria

Fisica Generale 1, Prova Scritta Intermedia - A - 14.04.2015

Cognome CognomE Nome NOME


Domanda Teorica

Definizione di forza conservativa. Definizione generale dell' energia potenziale, valida per qualsiasi forza

Ma forsa si dice conservativa se il suo lavoro su un qualisari forsaro chino è mello.

La differenza di energia ptensiale tra due posizioni i col f, per una forsa conservativa, e' definita come l'oposto oral lavoro della forsa su un qualitari percono della pori zione misiale i alla posizione finale f: $\Delta U = U(\vec{r}_f) - U(\vec{r}_i) \stackrel{\text{def}}{=} - \int_{-\vec{r}_i}^{\vec{r}_f} \vec{r}_i^2 \cdot d\vec{r}_i^2 = -W_i f$ Istruzioni per gli esercizi:

Per ciascuna domanda rispondere fornendo solo il risultato finale: la grandezza incognita espressa simbolicamente in funzione delle grandezze date o di quelle ottenute in altre risposte, e poi il corrispondente risultato numerico, con il corretto numero di cifre significative e con le unità di misura appropriate.

- 1. Due corpi 1 e 2, rispettivamente di massa m_1 = 3,5 kg nota e m_2 = 1,5 kg, sono collegati da una fune inestensibile e di massa trascurabile, e sono disposti come in Figura 1, su un piano liscio (con attrito trascurabile), inclinato di un angolo θ = 30°. Al corpo 1 è applicata una forza costante di modulo F, diretta parallelamente al piano inclinato, verso l'alto.
- a. Disegnare i diagrammi delle forze applicate a ciascuno dei due corpi.

Sapendo che la fune ideale tra i due corpi sopporta una tensione massima T_{max} = 30 N:

b. Calcolare il massimo modulo F_{max} della forza che si può applicare al corpo 1, senza che la fune si spezzi per sovraccarico.

$$T_{\text{max}} = T_{\text{max}} \left(1 + \frac{M_1}{M_2} \right) = 100 \text{ N}$$

c. Calcolare l'accelerazione massima a_{max} dei due corpi, corrispondente alla situazione sopra descritta ($F = F_{\text{max}}$).

$$Q_{\text{max}} = \frac{T_{\text{max}}}{M_2} - g \sin \theta = 15.1 \text{ m/s}^2 \approx 15 \text{ m/s}$$

- 2. Un sasso di massa m = 0.20 kg è legato all'estremo di una fune inestensibile, di massa trascurabile, di lunghezza l = 80 cm e fissa all'altro estremo. Si pone il sasso in rotazione in un piano verticale imprimendogli una velocità iniziale orizzontale nel punto A (Fig. 2) pari a $v_A = 4.0$ m s⁻¹. Trascurando la resistenza dell'aria, calcolare:
- a. Il modulo v_B della velocità nel punto B.

$$V_{B} = \sqrt{v_{A}^{2} + 4gl} = 6.9 \text{ m/s}$$

b. I valori minimo T_{min} e massimo T_{max} della tensione T della fune.

$$T_{min} = m \left(\frac{N_A^2}{\ell} - 9 \right) = 2.04 \text{ N} \approx 2.0 \text{ N}$$

$$T_{mex} = m \left(\frac{N_B^2}{\ell} + 9 \right) = m \left(\frac{N_A^2}{\ell} + 59 \right) = 13.8 \text{ N}$$

c. Il valore massimo $v_{A,max}$ ammissibile per la velocità iniziale in A, affinchè la fune non si rompa, se la tensione di rottura della fune è T_{max} = 32 N.

- 3. Ad un corpo di massa m = 3.0 kg, posto su un piano orizzontale, è collegata una molla di costante elastica k = 640 N/m, all'estremo della quale agisce parallelamente al piano una forza F = 16 N, come indicato in Figura 3.
- a. Supponendo che, a causa dell'attrito statico con il piano orizzontale, il corpo sia in quiete, calcolare l'allungamento Δx della molla e il valore minimo del coefficiente di attrito statico μ_s , affinché il corpo rimanga in quiete.

$$\Delta x = \frac{F}{k} = 0,025m$$
 $M_S \ge \frac{F}{mg} = 0,54$

b. Se invece, con la stessa forza F applicata, il corpo fosse già in movimento, calcolare il modulo a della sua accelerazione, sapendo che il coefficiente di attrito dinamico con il piano orizzontale è μ_k = 0.50.

PROBLETA 1 - Solutione a) diagrammi delle forse aplicate ai due conji $\frac{1}{2} + \frac{1}{2} + \frac{1}$ 1. My of gravità Kontato, mormali 2; m23 gravità

Tuz contatto, normale Fiz fune (1 on 2) F₂₁ fune (2 su 1) tarione della fine; $T = |\vec{F}_2| = |\vec{F}_{12}|$ (II pincipio,

fine ideale)

There = ? (note They, tarione della fine) Equationi del moto

for i shu corp:

F + Mig + F = Mi a mex

(accelerationi

ngusti a mex

(accelerationi

ngusti a mex

(accelerationi

ngusti a mex

(accelerationi

ngusti a mex

) caso limite, con caric of rodure Tomex = | Fiz = | Fiz projection sull'arrex (lungo il fiano inclinato) (1) Fmex + (-mg sind) + (-Tmex) = My a max } (2) -m28 sint + Tmex = m2 2 mex

noti my, mz, 8, Tmex si risdor il sistema melle due incognity Fuex a mex attenendo: 1) + max = Tmax (1 + m,) = ... c) amex = tmex - g sin d = ... valori mmonici per soditurione da deti PROBLEMA 2 . solurione Al dot: 1, m, r a

Al doteninary {a) r = ?
b) Thin, Thex = ?
c) note They (rotture):
r = ?

r = ?

r = ?

r = ? a) concernatione dell'energia me camica tra A & B KA+UA=KB+VB $\frac{1}{2}m v_{\rm H}^2 + m_{\rm H}^2 \cdot 2\ell = \frac{1}{2}m v_{\rm H}^2 + 10$ V5 = 12 + 49 = ...

b) tensione minima della fine: in A hiegrame delle forse aplicate el sorso et equeriani del moto;

in A:

mg + T = m a centripete sorso

il barro

il barro

il barro

il barro

in A

mg + Tmin = m (2 - g) tomi are

minima

mg - Tmin = m (2 - g)

mg + Tmin = m (3 - => Tmex = m (NB + g) $\left(\sqrt{\frac{2}{8}} + 4g!\right) = m\left(\frac{\sqrt{2}}{p} + 5g\right) = \dots$ c) se è nots max, si trave la corrispondente tomas There = m (Not mar + 5g) -> Thex Thex - 5q) = ...

PROBLEDA 3 - SolveionE m k == > dati { = | F | k (ortante elartica della molla a) blace in quiete (attrito statios) allmamento della molla=? $\Delta x = \frac{1}{k} = \dots$ F JEF = 0 minimo crefficiente di attito per = ? += Fs < pst = hrmg F₅ = F₇ F₇ = mg (module:) ⇒ Ms > t = ... b) bloces in moniments F+F+ + mg + F = ma Fr F a rojesioni : (x: F+(-fk) = ma attite of namico; (y: -mg+Fr=0 Fr = Mu = Mung a = F-th = F-m-mg