Laurea Magistrale in Matematica

Università degli Studi di Trieste Scuola Internazionale Superiore di Studi Avanzati

Corso di Istituzioni di Geometria Superiore 2 - A

Appello d'esame del 21 Febbraio 2017

Si risolvano i sequenti esercizi, motivando adequatamente le risposte.

1. Nello spazio delle matrici simmetriche 2×2 , $\operatorname{Sym}(2, \mathbb{R}) \simeq \mathbb{R}^3$, si consideri l'insieme Γ definito da:

$$\Gamma = \left\{ A = \begin{pmatrix} x & y \\ y & z \end{pmatrix} \text{ tale che } \det(A) = -1, \ \operatorname{tr}(A) = 0 \right\}.$$

- (a) (4 punti) Si mostri che Γ è una sottovarietà differenziabile di Sym $(2, \mathbb{R})$. Suggerimento: considerare la mappa liscia $F : \text{Sym}(2, \mathbb{R}) \to \mathbb{R}^2$ definita da $F(A) = (\det(A), \operatorname{tr}(A))$.
- (b) (3 punti) Si mostri che la varietà Γ è diffeomorfa ad un cerchio e si trovi un diffeomorfismo esplicito $\gamma: S^1 \to \Gamma$.

Si consideri ora l'insieme:

$$E = \{ (A, v) \in \Gamma \times \mathbb{R}^2 \text{ tale che } Av = v \}$$

e si osservino le due identità:

$$\begin{pmatrix} \cos \theta & \sin \theta \\ \sin \theta & -\cos \theta \end{pmatrix} \begin{pmatrix} 1 \\ \frac{\sin \theta}{1 + \cos \theta} \end{pmatrix} = \begin{pmatrix} 1 \\ \frac{\sin \theta}{1 + \cos \theta} \end{pmatrix}, \quad \theta \neq \pi$$

$$\begin{pmatrix} \cos \theta & \sin \theta \\ \sin \theta & -\cos \theta \end{pmatrix} \begin{pmatrix} \frac{\sin \theta}{1 - \cos \theta} \\ 1 \end{pmatrix} = \begin{pmatrix} \frac{\sin \theta}{1 - \cos \theta} \\ 1 \end{pmatrix}, \quad \theta \neq 0.$$

- (c) (4 punti) Si mostri E ha la struttura di fibrato vettoriale in rette su Γ con proiezione $p:(A,v)\mapsto A$.
- (d) (2 punti) Si tratta di un fibrato triviale? Giustificare la risposta.
- 2. Facendo riferimento a teoremi dimostrati in classe si provino le seguenti affermazioni.
 - (a) (4 punti) Un diffeomorfismo locale tra due varietà differenziabili è una mappa aperta.

- (b) (3 punti) Se M è una varietà differenziabile compatta di dimensione m>0, allora non può esistere una immersione $f\colon M\to \mathbb{R}^m$.
- **3.** Nello spazio Euclideo \mathbb{R}^3 con coordinate standard (x,y,z), si consideri la circonferenza Σ di centro l'origine, raggio 1, contenuta nel piano $\{z=0\}$, $\Sigma=\{(x,y,0)\in\mathbb{R}^3\,|\,x^2+y^2=1\}.$
 - (a) (2 punti) Si dimostri che per $\epsilon > 0$ sufficientemente piccolo la coomologia dell'aperto

$$U = \{ p \in \mathbb{R}^3 \, | \, d(p, \Sigma) < \epsilon \}$$

- è isomorfa alla coomologia di Σ .
- (b) (2 punti) Si dimostri che per $\epsilon > 0$ sufficientemente piccolo la coomologia di $U \setminus \Sigma$ è isomorfa alla coomologia del toro $S^1 \times S^1$.
- (c) (4 punti) Si usino i punti precedenti per calcolare i gruppi di coomologia di de Rham $H^k_{\mathrm{dR}}(\mathbb{R}^3 \setminus \Sigma), \, \forall k$.
- (d) (3 punti) Si descriva la struttura di \mathbb{R} -algebra della coomologia di de Rham di $\mathbb{R}^3 \setminus \Sigma$.